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Abstract 
 

 
Conventional econometric models, such as discriminant analysis and logistic regression have 
been used to predict consumer choice.  However, in recent years, there has been a growing 
interest in applying artificial neural networks (ANN) to analyse consumer behaviour and to 
model the consumer decision-making process.  
 
Neural networks are considered as a field of artificial intelligence. The development of the 
models was inspired by the neural architecture of human brain. Neural networks have been 
generally applied to two different categories of problems - recognition problems and 
generalisation problems. Recognition problems include visual applications such as learning to 
recognize particular words and speak them. Generalization problems include classification 
and prediction.  
 
Recently, ANN have been applied in the business and marketing research areas. Most of the 
studies have utilised the multi-layer feed-forward neural networks (MLFN) in analysing 
consumer choice problems.  The purpose of this paper is to empirically compare the 
predictive power of the probability neural network (PNN), a special class of neural networks, 
and a MLFN with a logistic model on consumers’ choices between electronic banking and 
non-electronic banking.  Data for this analysis was obtained through a mail survey sent to 
1,960 New Zealand households.  The questionnaire gathered information on the factors 
consumers’ use to decide between electronic banking versus non-electronic banking.  The 
factors include service quality dimensions, perceived risk factors, user input factors, price 
factors, service product characteristics, and individual factors. In addition, demographic 
variables including age, gender, marital status, ethnic background, educational qualification, 
employment, income, and area of residence are considered in the analysis. 
 
Empirical results showed that both ANN models (MLFN and PNN) exhibit a higher overall 
percentage correct on consumer choice predictions than the logistic model. Furthermore, the 
PNN demonstrates to be the best predictive model since it has the highest overall percentage 
correct and a very low percentage error on both Type I and Type II errors 
 
 
JEL Classification: C20, C25, C29 
 
Keywords: Electronic Banking, Artificial Neural Network, Logistic Regression 
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1.  Introduction 
 

Quantitative analysis for forecasting in business and marketing, especially in consumer 

behavior and in the consumer decision-making process (consumer choice model), has become 

more popular in business practices. The ability to understand and to accurately predict a 

consumer decision can lead to more effectively targeting products, cost effectiveness in 

marketing strategies, increasing sales and result in substantial improvement in the overall 

profitability of the firm. Conventional econometric models, such as discriminant analysis and 

logistic regression can predict consumers’ choices, but recently, there has been a growing 

interest in using ANN to analyze and the model consumer decision-making process.  

ANN have been applied in many disciplines, including biology, psychology, statistics, 

mathematics, medical science, and computer science. Recently ANN have been applied to a 

variety of business areas such as accounting and auditing, finance (with special emphasis on 

bankruptcy prediction and credit evaluation), management and decision making, marketing 

and production (Vellido et al., 1999a). However, the technique has been sparsely used in 

modeling consumer choices. For example, Dasgupta et al. (1994) compared the performance 

of discriminant analysis and logistic regression models against an ANN model with respect to 

their ability to identify a consumer segment based upon their willingness to take financial 

risks and to purchase a non-traditional investment product.  Fish et al. (1995) examined the 

likelihood of clustering managers-customers purchasing from a firm via discriminant analysis, 

logistic regression and ANN models. Vellido et al. (1999b), using the Self-Organizing Map 

(SOM), an unsupervised neural network model, carried out an exploratory segmentation of 

the on-line shopping market while Hu et al. (1999) showed how neural networks can be used 

to estimate the posterior probabilities of consumer situational choices on communication 

channels (verbal versus non-verbal communications). 

Previous studies have utilised the multi-layer feed-forward neural network (MLFN) which is a 

family of the ANN. However, very few studies have applied a special class of artificial neural 

networks called “Probabilistic Neural Network (PNN)” in modelling consumers’ choices. The 

purpose of this study is to empirically compare the predictive power of the probability neural 

network (PNN), a special class of neural networks, and the MLFN with the logistic model on 

consumers’ banking choices between electronic banking and non-electronic banking. 
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2.  Banking Channels and Consumer Choice Theory 
 

The evolution of electronic banking, such as internet banking, has altered the nature of 

personal-customer banking relationships and has many advantages over traditional banking 

delivery channels.  This includes an increased customer base, cost savings, mass 

customization and product innovation, marketing and communications, development of non-

core businesses and the offering of services regardless of geographic area and time. 

Furthermore, information technological developments in the banking industry have speed up 

communication and transactions for customers. The information technology revolution in the 

banking industry distribution channels began in the early 1970s, with the introduction of the 

credit card, the Automatic Teller Machine (ATM) and the ATM networks.  This was followed 

by telephone banking, cable television banking in the 1980s, and the progress of Personal 

Computer (PC) banking in the late 1980s and in the early 1990s.  

Similar to its international counterparts, the adoption of electronic banking such as internet 

banking is growing in New Zealand. During the last quarter of 2001, there were 

approximately 480,000 regular internet users utilizing internet banking facilities to conduct 

their banking transactions.  This reflects a 54 percent growth from 170,000 users during the 

same quarter of 2000 (Taylor, 2002). It is predicted that the usage of internet banking in New 

Zealand will continue to grow in the near future, as customer support for internet banking is 

mounting.  

Despite its growing popularity, majority of consumer behavior banking studies has focused on 

a specific type of electronic banking instead of investigating the concept of electronic banking 

as a whole in relation to consumers’ decision making behavior (see Al-Ashban and Burney 

2001). Furthermore, the limited electronic banking studies that have been published are 

descriptive in nature, providing information on basic concepts of electronic banking instead of 

focusing on complex and in-depth consumer decision making processes (Orr, 1998).   

2.1  The Consumer Decision-Making Process 

The consumer decision-making process pioneered by Dewey (1910) in examining consumer 

purchasing behavior toward goods and services involves a five-stage decision process. This 

includes problem recognition, search, and evaluation of alternatives, choice, and outcome. 

Dewey’s paradigm was adopted and extended by Engel, Kollat and Blackwell (1973) and 

Block and Roering (1976). Block and Roering (1976) suggested that the environmental 

factors such as income, cultural, family, social and physical factors are crucial factors that 
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constraint consumers from advancing to the first four stages in the consumer decision-making 

process. 

 

 
 

 

 

 

 

 

 

 

 
 
 

Problem 
Recognition 

Information  
Search 

Decision Choice 
Between  

Electronic Banking 
and Non-electronic 

B ki

Electronic Banking 
Purchase and 
Consumption 

(Dependent 
Variable) 

Postpurchase 
Evaluation 

Service Quality Dimensions  
• Reliability 
• Assurance 
• Responsiveness 

Perceived Risk Factors  
• Financial Risk 
• Performance Risk 
• Physical Risk 
• Social Risk 
• Psychological Risk 

User Input Factors 
• Control  
• Enjoyment  
• Intention to Use  

Price Factors  
• Costs Associated with 

Electronic Banking 
• Bank Charges 

Service Product Characteristics 
• Core Services 
• Service Feature 
• Service Specification 
• Services Targets 

Individual Factors  
• Consumer knowledge 
• Consumer Resource 

Demographic Characteristics  
• Age Group  
• Gender 
• Marital Status 
• Educational Qualification 
• Ethnic Background 
• Area of Residence 
• Annual Income 
• Employment Level 

Consumer Decision-Making Process

Figure 1  
Consumer Decision-Making Process Model 

 



 4

Analogous to Dewey’s (1910) paradigm for goods, Zeithaml and Bitner (2003) suggested the 

decision-making process could be applied to services. The five stages of the consumer 

decision–making process operationalized by Zeithaml and Bitner (2003) were; need 

recognition, information search, evaluation of alternatives, purchases and consumption, and 

post-purchase evaluation (see Figure 1). Furthermore, the authors imply that in purchasing 

services, these five stages do not occur in a linear sequence as they usually do in the purchase 

of goods. 

2.2  Logistic Model in Electronic Banking 

For many durable commodities, the individual's choice is discrete and the traditional demand 

theory has to be modified to analyse such a choice (Ben-Akiva and Lerman, 1985). Let 

( )iiii zwyU ,,  be the utility function of the consumer i, where yi is a dichotomous variable 

indicating whether the individual is an electronic banking user, wi is the wealth of the 

consumer and zi is a vector of the consumer's characteristics. Also, let c be the average cost of 

using electronic banking, then economic theory posits that the consumer will choose to use 

electronic banking if  

 ( ) ( )iiiiiiii zw0yUzcw1yU ,,,, =≥−=  (1) 

Even though the consumer's decision is straightforward, the analyst does not have sufficient 

information to determine the individual's choice. Instead, the analyst is able to observe the 

consumer's characteristics and choice, and using them to estimate the relationship between 

them. Let xi be a vector is of the consumer's characteristics and wealth, ( )iii zwx ,=  , then 

equation (1) can be formulated as an ex-post model given by: 

 ( )i i iy f x= + ε  (2) 

where iε  is the random term. If the random term is assumed to have a logistic distribution, 

then the above represents the standard binary logit model. However, if we assume that the 

random term is normally distributed, then the model becomes the binary probit model 

(Maddala, 1993; Ben-Akiva and Lerman, 1985; Greene, 1990). The logit model will be used 

in this analysis because of convenience as the differences between the two models are slight 

(Maddala, 1993). The model will be estimated by the maximum likelihood method used in the 

LIMDEP software. 
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The decision to use electronic banking is hypothesised to be a function of the six variables 

(measured on a 5-point Likert-type scale) and demographic characteristics. The variables 

include service quality dimensions, perceived risk factors, user input factors, price factors, 

service product characteristics, and individual factors (see Figure 1). The demographic 

variables include age, gender, marital status, ethnic background, educational qualification, 

employment, income, and area of residence. 

Implicitly, the empirical model can be written under the general form: 

EBANKING =   f (SQ, PR, UIF, PI, SP, IN, YOUNG, OLD, GEN, MAR, HIGHSCH, 

EURO, MAORI, RURAL, HIGH, LOW, BLUE, WHITE, 

CASUAL, ε) (3) 

where: 

EBANKING =  1 if the respondent is an electronic banking user; 0 otherwise 

 

SQ (+) =   Service quality dimensions 

PR (-) =   Perceived risk factors 

UIF (+) =   User input factors 

PI (-) =   Price factors 

SP (+) =   Service product characteristics 

IN (+) =   Individual factors 

 

YOUNG (+) = Age level; 1 if respondent age is between 18 to 35 years old; 0 

otherwise 

OLD (-) =   Age level; 1 if respondent age is above 56 years old; 0 otherwise 

GEN (+) =   Gender; 1 if respondent is a male; 0 otherwise 

MAR (+) =   Marital status; 1 if respondent is married; 0 otherwise 

HIGHSCH (-) =  Education level; 1 if respondent completed high school; 0 otherwise 

EURO (+) =  Ethnic group level; 1 if respondent ethic group is New Zealand 

European; 0 otherwise 

MAORI (+) =  Ethnic group level; 1 if respondent ethic group is Maori; 0 otherwise 

RURAL (+) =  Residence level; 1 if respondent resides in rural area; 0 otherwise 

HIGH (+) = Income level; 1 if respondent income level is above $40,000; 0 

otherwise 

LOW (+) = Income level; 1 if respondent income level is below $19,999; 0 

otherwise 
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BLUE (+) =  Employment level; 1 if respondent is a blue-collar worker; 0 otherwise 

WHITE (+) = Employment level; 1 if respondent is a white-collar worker; 0 

otherwise 

CASUAL (+) =   Employment level; 1 if respondent is causal worker (unemployed, 

students and house persons; 0 otherwise 

ε =    Error term 

A priori hypotheses are indicated by (+) or (-) in the above specification (see Figure 1). For 

example, service quality dimensions such as reliability, assurance and responsiveness are 

positively related to the use of electronic banking (Gerrard and Cunningham (2003). 

Furthermore, consumers’ decision to use electronic banking is negatively related to financial, 

performance, physical risk, social, and psychological risks (Sarin, Sego and Chanvarasuth, 

2003).  

User input factors such as control, enjoyment, and intention to use have a positive impact on 

consumers’ decision to use electronic banking (Ng and Palmer, 1999).  Polatoglu and Ekin’s 

(2001) study identified that users of electronic banking were negatively influenced by price 

factors. Consumers are price sensitive. The service product characteristics of electronic 

banking such as consumers’ perception of a standard and consistent service, the time saving 

feature of electronic banking, and the absence of personal interactions, have been empirically 

found to positively influence consumers’ use of electronic banking (Polatoglu and Ekin, 2001; 

Karjaluoto, Mattila and Pento, 2002). Likewise individual factors such as consumers’ 

knowledge and resources positively influence consumers’ use of electronic banking. 

Demographic characteristics such as age, gender, marital status, education, ethnic group, area 

of residence, and income were hypothesised to influence the respondent’s decision to use 

electronic banking.  This research seeks to determine which age group has the greatest 

tendency to use electronic banking and whether gender plays a part in differentiating 

electronic banking users and non-electronic banking users.  Income was divided into low 

(below $19,000), medium (between $20,000-$39,000) and high (above $40,000); age group 

was divided into young (between 18 to 35 years old), medium (36 to 55 years old) and old 

(above 56 years old); ethnic group was divided into New Zealand European, Maori, and 

others (Pacific Islander or Asian); and employment level was divided into blue-collar works, 

white-collar worker, casual worker (including unemployed, students and house persons) and 

retirees. These are dummy variables and one dummy variable is dropped from each group to 

avoid the dummy trap problem in the model. 
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3.  Artificial Neural Network Models 
 

3.1  Multi-Layer Feed-Forward Neural Network (MLFN) 

The artificial neural network model, inspired by the structure of the nerve cells in the brain, 

can be represented as a massive parallel interconnection of many simple computational units 

interacting across weighted connections (Venugopal and Baets, 1994). Each computational 

unit (or neuron or node) consists of a set of input connections that receive signals from other 

computational units, a set of weights for input connection, and a transfer function (see Figure 

2). The output for the computational unit (node j) is the result of applying a transfer function 

Fj to the summation of all signals from each connection (Xi) times the value of the connection 

weight between node j and connection i (Wij) (Equation 4). 

( )j j ij iU F W X= ∑  (4) 

where Uj is output for node j and Fj is a transfer function which can take many different 

functional forms: linear functions, linear threshold functions, step functions, sigmoid 

functions or Gaussian function (James and Carol, 2000). 

The artificial neural network that is widely used is called multi-layer feed-forward neural 

network (MLFN) because the information flows in the direction from the origin to the 

destination, one cannot return to the origin, and the computational units are grouped into 3 

main layers – the first layer is the input layer, the last layer is the output layer, and the layer(s) 

in between is called the hidden layer(s) (Hu et al., 1999). Figure 3 shows the structure of the 

multi-layer feed-forward neural network with one hidden layer. Since the output of one layer 

is an input to the following layer, the output of the network can be exhibited algebraically as 

shown in equation 5. 

 ( ) ( ) ( )
J J i

2 2 1
j j j j ij i

j 1 j 1 i 1
Z F W .U F W .F W X

= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  (5) 

where Z is the output of the network, F is the transfer function in the output node, ( )1
ijW  and 

( )2
jW  are connection weights from input layer (node i) to hidden layer (node j) and from 

hidden layer (node j) to output layer, respectively. 
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Source: Modified from James and Carol (2000) 

Figure 2 
Structure of a Computational Unit (node j) 

 

 

 

Source: Modified from West et al. (1997) and Gradojevic and Yang (2000) 

Figure 3 
Multi-Layer Feed-Forward Neural Network Structure with One Hidden Layer 
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The calculation of the neural network weights is known as training process. The process starts 

by randomly initializing connection weights and introduces a set of data inputs and actual 

outputs to the network. Then the network calculates the network output and compares it to the 

actual output and calculated error. In an attempt to improve the overall predictive accuracy 

and to minimise the network total mean squared error, the network adjusts the connection 

weights by propagating the error backward through the network to determine how to best 

update the interconnection weights between individual neurons. For this reason, the learning 

algorithm is called back-propagation (Rao and Ali, 2002).  

While the performance of the MLFN can be influenced by the number of hidden nodes and 

layers in the network, there is no theoretical framework to determine the appropriate number 

of hidden nodes and layers, and also the optimal internal error threshold in a network. Too 

few hidden nodes and layers in the network will inhibit the learning ability of network. On the 

other hand, too many hidden nodes and layers could reduce the network generalizing ability 

and efficiency. In practice, the design of the neural network model is a tedious process of trail 

and error to find the optimal model.  

3.2  Probabilistic Neural Network (PNN) 

The PNN, original proposed by Specht (1990), is basically a classification network. Its 

general structure consists of 4 layers - an input layer, a pattern layer (the first hidden layer), a 

summation layer (the second hidden layer) and an output layer (see Figure 4).  

 

Source: Modified from Specht (1990) 

Figure 4 
The Probabilistic Neural Network (PNN) Architecture 
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PNN is conceptually based on the Bayesian classifier statistical principle. According to the 

Bayesian classification theorem, X will be classified into class A, if the inequality in equation 

6 holds: 

 ( ) ( )A A A B B Bh c f X h c f X>  (6) 

where X is the input vector to be classified, hA and hB are prior probabilities for class A and B, 

cA and cB are costs of misclassification for class A and B, fA(X) and fB(X) are probabilities of 

X given the density function of class A and B, respectively (Albanis and Batchelor, 1999). 

To determine the class, the probability density function is estimated by a non-parametric 

estimation method developed by Parzen (1962) and extended afterwards by Cacoulos (1966). 

The joint probability density function for a set of p variables can be expressed as: 

 ( )
( )

( ) ( )Aj AjA
2

X Y X Yn
2

A p 2 p
j 1A

1f X e
2 n

′− − −

σ

=

=
π σ

∑  (7) 

where p is the number of variables in the input vector X, nA is the number of training samples 

which belongs to class A, YAj is the jth training sample in class A and σ is a smoothing 

parameter (Chen et al., 2003).  

The working principle of PNN begins with the input layer, where inputs are distributed to the 

pattern units. Then the pattern unit, which is required for every training pattern, is used to 

memorize each training sample and estimate the contribution of a particular pattern to the 

probability density function. The summation layer comprises of a group of computational 

units with the number equal to the total number of classes. Each summation unit that delicate 

to a single class sums the pattern layer units corresponding to that summation unit’s class. 

Finally, the output neuron(s), which is a threshold discriminator, chooses the class with the 

largest response to the inputs (Albanis and Batchelor, 1999; Yang et al., 1999). 
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4.  Data and Methodology 
 

Data for this analysis was obtained through a random mail survey sent to 1,960 household in 

Canterbury Region, New Zealand.  The questionnaire gathered information on consumers’ 

decision to use electronic banking versus non-electronic banking. The mail survey was 

designed and implemented according to the Dillman Total Design Method (1991), which has 

proven to result in improved response rates and data quality.   The response rate of the survey 

was about 27%. The data set consisted of 527 observations (384 primarily electronic banking 

users, EB, and 143 primarily non-electronic banking users, NEB). To estimate the consumers’ 

decision between electronic banking and non electronic banking, all the available data are 

utilized in the model building process. LIMDEP software is used to estimate the logistic 

regression and NeuroShell2 package is used to construct the artificial neural network models, 

both MLFN and PNN. 

To examine the predictive power of models, the out-of-sample forecasting technique is 

applied. The sample is randomly divided into two sub-samples: a training sample and a 

forecasting sample. The training sample and the forecast sample contain 422 observations 

(304 electronic banking users and 118 non-electronic banking users) and 105 observations (80 

electronic banking users and 25 non-electronic banking users), respectively. All the models 

are re-estimated by using only the training samples and the out-of-sample forecasting were 

conducted over the forecasting samples.  Then, the classification rates (% correct and % 

incorrect classifications) of each model are computed and compared. The model with the 

highest percentage correct is considered as a superior model. 

 

 

5.  Empirical Results 
 

The estimated logistic regression equation (3) is as shown in Table 1. In general, the logistic 

model fitted the data quite well.  The chi-square test strongly rejected the hypothesis of no 

explanatory power and the model correctly predicted 92% of the observations.  Furthermore, 

SQ, PR, UIF, OLD, WHITE, CASUAL, HIGHSCH, HIGH, and RURAL are statistically 

significant and the signs on the parameter estimates support the a priori hypotheses outlined 

earlier. 
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Table 1 
Consumer Choice Model (Logistic Regression) 

 
Independent Variable1/, 2/ Coefficient S.E. Marginal Effect3/ Rank4/ 

SQ** 0.9589 0.4295 0.0664 5 
PR** -3.5081 0.4442 -0.2431 1 
UIF** 2.2332 0.3336 0.1547 2 
PI 0.0595 0.1716 0.0041 19 
SP -0.1069 0.3375 -0.0074 18 
IN -0.2003 0.3100 -0.0139 16 
YOUNG -0.2582 0.6410 -0.0192 14 
OLD* -0.7996 0.5115 -0.0623 7 
GEN -0.1911 0.4109 -0.0134 17 
MAR 0.2143 0.4241 0.0152 15 
HIGHSCH** -1.1449 0.3985 -0.0866 4 
EURO 0.4724 0.6251 0.0382 11 
MAORI 1.1719 1.7379 0.0511 8 
RURAL* 0.6655 0.4350 0.0420 10 
HIGH* -0.6430 0.4991 -0.0492 9 
LOW 0.3964 0.5173 0.0255 12 
BLUE 0.3254 0.5455 0.0209 13 
WHITE** 1.4765 0.6114 0.0893 3 
CASUAL** 1.4619 0.8873 0.0638 6 
Constant 0.1450 2.0079 0.0104  
   

Log likelihood function -99.3037 McFadden R2   0.6777
Chi squared (df = 19)  417.5549 Prob.[ 2χ  > value]       0.0000
    

Predicted Outcomes NEB EB Overall (n = 527) 
% Correct 83.22 95.31 92.03 
% Incorrect  16.78 4.69 9.97 
Note: 1/ Dependent variable is consumer choice on banking channel. 

2/ * and ** represent 10% and 5% significant level, respectively. 
 3/ Marginal effect is at the mean value. For dummy variable, marginal effect is P|1 - P|0. 
 4/ Rank is based on the absolute marginal effect. 
 

The estimated coefficients indicate that service quality dimensions and user input factors have 

a positive impact on consumers’ likelihood to electronic banking.  This implies the level of 

service quality in electronic, the independence and freedom associated with electronic 

banking and the enjoyment that could be derived from electronic banking will favourably 

influence consumers’ decision to use electronic banking. Perceived risk factors were found as 

hypothesised, to negatively affect the probability to use electronic banking.  Research tells us 

a consumer who is risk adverse perceives electronic banking as a financial risk when it is not 

possible to reverse a mistakenly entered transaction or stopping a payment.  Furthermore, the 

threat of personal information accessed by a third party negatively influences a consumer’s 
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likelihood to use electronic banking.  This supports the finding of Ho and Ng (1994) and 

Lockett and Littler (1997). 

The demographic variables (age, employment, education, income and residence) were also 

significant in explaining the respondents’ probability in using electronic banking.  For 

example, the negative coefficient of the age group above 56 years showed that senior 

consumers were less likely to use electronic banking.  Senior consumers are more risk adverse 

and prefer a personal banking relationship to non personal electronic banking.  High school 

respondents may be less likely to use electronic banking due to their low income status.  

Furthermore, electronic banking transaction could be costly for this age group who primarily 

work part-time. 

Additional information can be obtained through analysis of the marginal effects calculated as 

the partial derivatives of the non-linear probability function, evaluated at each variable’s 

sample mean (Greene, 1990). For example, the consumers’ choice of electronic banking is 

relatively sensitive to the perceived risk (PR) (Rank = 1) and the user input factor (UIF) 

(Rank = 2), where an unit increases in PR and UIN scores would decrease and increase the 

probability of being an electronic banking user by 24.31% and 15.47%, respectively.  

The overall percentage correct of 92.03 shows that the logistic model is quite accurate in 

consumers’ choice prediction. However, the percentage incorrect indicate that the logistic 

model is likely to produce Type I error (wrongly reject H0 or accept non-electronic banking 

user as electronic banking user) compared to than Type II error (wrongly accept H0 or accept 

electronic banking user as non-electronic banking user), as it has 19.78% and 4.69% incorrect 

on non-electronic banking and electronic banking classifications, respectively (see Table 1). 

Given that the neural network uses nonlinear functions, it is very difficult to spell out the 

algebraic relationship between a dependent variable and an independent variable. 

Furthermore, the learned output or connection weights could not be elucidated and tested. 

Therefore, only the relative contribution factors and the classification rates are presented in 

Table 2. Both MLFN and PNN used the same numbers of independent variables as the 

logistic model for the input layer nodes. The best network for the MLFN in this study is the 

one hidden layer network with 19 hidden neurons (19-19-1) and applies the logistic function 

as the activation function on both hidden and output layers. For PNN, the network requires 

the number of pattern units must be at least equal the number of training patterns and the 

number of summation units must equal to the number of classes (or choices). Thus the 

network configuration is 19-527-2-1.  
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Table 2 
Neural Networks’ Relative Contribution Factor 

 
MLPN1/  PNN2/ Input Variable Relative contribution Rank  Relative contribution Rank 

SQ 0.0648 5 0.0524 11
PR 0.1259 1 0.1113 1
UIF 0.1165 2 0.1091 2
PI 0.0331 16 0.0960 4
SP 0.0808 4 0.0563 9
IN 0.0811 3 0.0808 6
YOUNG 0.0316 17 0.0092 16
OLD 0.0406 10 0.0004 18
GEN 0.0451 7 0.1082 3
MAR 0.0246 19 0.0576 8
HIGHSCH 0.0426 8 0.0227 14
EURO 0.0386 12 0.0258 12
MAORI 0.0377 14 0.0803 7
RURAL 0.0480 6 0.0096 15
HIGH 0.0425 9 0.0236 13
LOW 0.0313 18 0.0000 19
BLUE 0.0380 13 0.0559 10
WHITE 0.0403 11 0.0070 17
CASUAL 0.0371 15 0.0938 5
 

Predicted Outcome NEB EB Overall 
(n = 527) NEB EB Overall 

(n = 527) 
% Correct 86.71 97.92 94.88 99.30 100.00 99.81 
% Incorrect 13.29 2.08 5.12 0.70 0.00 0.19 
Note: 1/ The network is utilized with learning rate = 0.1, momentum = 0.1 and initial weight = 0.3 
 2/ Smoothing factor: 0.518588 
  

The classification results in Table 2 show that both MLFN and PNN exhibit a superior ability 

to learn and memorize the patterns corresponding to consumers’ choice on the electronic 

banking. Both of methods have higher overall percentage correct on consumers’ choice 

predictions than the logistic model. Generally, the MLFN model can predict quite well on the 

electronic banking group but its performance is relatively poor when predicting the non-

electronic banking group. In contrast, the PNN can predict well for both groups. Therefore, 

the PNN is assumed to be the best prediction model in this study since it has the highest 

overall percentage correct (99.81%) and a very low percentage error on Type I error (0.70%) 

with 0.00% of Type II errors.  

The relative contribution factors and the ranks in Tables 1 and 2 showed a consistency result 

across all the models. That is, both perceived risk (PR) and the user input factor (UIF) have a 

strong influence on the consumers’ decision between electronic banking and non electronic 

banking in all three models, Rank = 1 and 2 respectively, whereas the other variables have a 
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strong influence in some models but they might have less influence in another model or vice 

versa. Therefore, these two factors must be considered and set as high priority factors as they 

strongly impact on the consumers’ decision in choosing between electronic banking and non 

electronic banking. 

The within-sample forecast always yields an upward bias; the out-of-sample forecast is a 

more appropriate measure of the future predictive power. Table 3 shows the classification 

rates on out-of-sample prediction for the logistic, MLFN and PNN models. The classification 

results show that the neural network models are better precision on the out-of-sample forecast 

than the logistic model. In addition, the PNN model outperforms the MLFN model. The PNN 

yields the highest overall percentage correct and the smallest error rate for both in sample 

forecast and out-of-sample forecast. This implies that the PNN can predict consumers’ 

choices more accurately than the MLFN and the logistic model. It can also be considered as 

the superior model for the consumers’ choice prediction. 

 

Table 3 
Classification Rates for the Out-of-Sample Forecast 

 
Model NEB  EB Overall (n = 105) 

LOGIT    
  % Correct 88.00 92.50 91.43 
  % Incorrect 12.00 7.50 8.57 
    
MLFN    
  % Correct 84.00 95.00 92.38 
  % Incorrect 16.00 5.00 7.62 
    
PNN    
  % Correct 96.00 100.00 99.05 
  % Incorrect 4.00 0.00 0.95 
 

 

6.  Conclusion 
 

The estimated results from the logistic regression indicate that age, occupation, qualification, 

income, area of residence, service quality, perceived risk and user input factor are the major 

factors that influence consumers’ decision between electronic banking versus non electronic 

banking. The logistic model can be considered as an accurate prediction model because the 

overall correct classification rates are high, above 90.00% for both in-sample and out-of-
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sample predictions. However, its performance does not outperform both neural network 

models, MLFN and PNN, for both in-sample and out-of-sample forecasts. 

The neural networks yield better prediction results but there are some drawbacks on using the 

neural networks. Firstly, the neural networks lack theoretical background concerning the 

explanatory capabilities. The connection weights in the networks cannot be interpreted or 

used to identify the relationships between dependent and independent variables. Secondly, 

there are no formal techniques for non-linear methods to test the relative relevance of the 

independent variables and to carry out the variable selection process. Lastly, the neural 

networks learning process can be very time consuming.  

In summary, in term of prediction accuracy, the results present in this paper indicated that the 

PNN can be successfully implemented to predict consumers’ choices because it outperforms 

both the MLFN and the logistic model. This indicates the superiority of using the PNN for 

prediction of consumers’ choices. Furthermore, the study exhibits the potential of the neural 

methodology, especially the PNN, as an analysis tool to for marketing research. Since neither 

the consumers’ choices are always binary nor the neural network is limited to the binary 

choice classification problem, the research on the predictive power of the neural networks on 

the multiple level classifications would be an area for further research, particularly on the 

consumers’ choice prediction. 
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