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ABSTRACT

A question that has plagued New Zealand botanists for many years is the occurrence

of the divaricate growth form in several different plant families, and what selection

pressure could have led to such parallel evolution. One prominent theory is that the

divaricate habit is an adaptation to climatic extremes. This study aims to test if the

‘self-shading’ growth form of divaricates protects their internal leaves from

photoinhibition under physiological drought and high irradiance. By being able to

forego the costs of maintaining photoprotective mechanisms, they should have greater

carbon gain than their non-divaricate congeners under these conditions.

To test if divaricates are protected from the detrimental effects of photoinhibition, the

water potentials, pigment and vitamin E concentrations, and photosynthetic rates of

two divaricates species in their natural habitat were measured. Additionally, these

parameters were recorded for the same divaricate species and their non-divaricate

congeners under glasshouse conditions. In the field there were clear differences in

several key parameters between divaricates under different levels of irradiance and

water availability, and in most cases there was clear evidence of photoinbition. In the

glasshouse, the maximum photosynthetic rates were significantly higher in divaricate

leaves than in non-divaricate leaves, but there were no clear differences in the

avoidance of photoinhibition between divaricates and non-divaricates. Interestingly,

more pronounced responses to the different treatments were observed between genera

than between the growth forms in the field and glasshouse experiments.

The presence of photoinhibition and photoprotective mechanisms in divaricate leaves

does not support the theory that the divaricate habit evolved as a physiological

response to extreme climate conditions. The absence of a strong difference in the

amount of photoinhibition between divariacte and non-divaricate congeners mean that

high irradiance and drought stress are unlikely to have been a key factor in the

evolution of the divaricate habit. That the within genus physiologies are more similar

than within the growth forms would indicate that the divaricate habit possibly evolved

after the evolution of the physiological responses of the genera.
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1.         INTRODUCTION

1.1 Overview

Divaricate plants, defined as much-branched and small-leaved shrubs or tree juveniles

with a wide branching angle (Kelly, 1994) appear to be adapted to exist under extreme

climatic conditions, such as mountain areas or salt marshes (McGlone & Webb,

1981). In New Zealand the percentage of divaricate plant forms is much higher than in

many other parts of the world. About 60 species in 20 different genera, 10% of the

woody species in New Zealand’s flora, are divaricate plants (Tomlinson, 1978).

The overall premise of this research was that the combination of physiological

drought, high irradiances and high temperatures initiates stress reactions with different

intensities between divaricate and non-divaricate plants. I compared two divaricate

shrubs with two non-divaricate species under different water conditions in the field

and under experimental conditions in the glasshouse. Also the divaricate species

Corokia cotoneaster and Coprosma propinqua growing on a dry N-facing slope and

in a streambed at Cass were used in a field trial. This research provides increased

knowledge of environmental reactions of divaricate shrubs. It gave us an opportunity

to test some of the possible processes and pathways that may have led to the evolution

of divaricate shrubs. This will therefore increase our knowledge of the evolution of

the New Zealand flora. Observing the responses of divaricate shrubs or tree juveniles

under water stress and several light conditions will help to explain their reactions in

extreme environments. The purpose of my research was to provide more information

about the hypothesis that the divaricate habit maximises photosynthetic production by

minimising the damage of high light loads and drought on photosynthesis. In that

context, the effect of architecture versus photochemical strategies on the ability to

tolerate certain physiological conditions in two genera with divaricate and non-

divaricate congeners was determined. It provides answers to the possible evolutionary

developments in the structure and habitat of these species.
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1.2 Introduction

The biogeographic formation of New Zealand is characterised by its early separation

from the Godwana land mass and the summation of mountain formations and faulting

processes, frequent occurences of volcanism and repeated changes between glacial

periods and periods of arid climate (Wardle, 1991). New Zealand’s colonisation by

vascular plants was almost exclusively via the long-distance transport of seeds. The

main colonisation period is assumed to be between the end of the Miocene and

beginning of the Pleistocene periods. New Zealand and southern Australia did not

only have the same latitude, 50-40°S, but also the same warm-temperate to

subtropical climate during the early Miocene. The flora was similar for both of the

main land masses (Pole, 1994). In the middle Miocene, temperatures increased in

Australia, the climate became more arid and monsoonal. New Zealand’s climate did

not change until cooling in the Pliocene-Pleistocene transition. Many taxa of tropical

and subtropical plants became extinct in New Zealand during this time (Mildenhall,

1980). This time period was also marked by mountain formation and volcanism.

Alpine and dryland habitats were created as well as new offshore islands. The

colonisation by tall woody taxa as well as the prevalence of seeds with long-distance

dispersal mechanisms are related to these geographic and climatic changes (McGlone

et al., 2001).

Herbaceous plants form around 32% of New Zealand’s native flora, but around 78%

of them are non-endemics (Mildenhall, 1980). Most endemic plants to New Zealand

are woody plants (McGlone et al., 2001.). Depending on their distribution, 55% of the

woody flora are endemic in the upper North Island, 17% in the lower North Island and

24% in the upper South Island. The lower South Island has only a few endemic

species, whereas on the Three Kings 85% of the endemic species are woody plants

(McGlone, 1985). Wardle (1991) defined about 50 of the woody endemic species in

16 families as ‘divaricates’. The high percentage of endemic species is partly caused

by the high degree of isolation of species into distinctive habitats with harsh climates.

The plant endemism is strongly related to the species but not family level, and the

amount of generic endemism is small. Wardle (1963) and Burrows (1965) also argue

that recent disruptions by glacial periods and rapid climate change affected the

dispersibility of plants and the degree of endemism. Offshore islands north of New
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Zealand represent the same pattern of endemism, with woody rather than herbaceous

plants more often being endemic. McGlone et al. (2001) list endemic vascular plants

by habitat types and find a 98% endemism in forest and scrub habitats and 93%

endemism in alpine areas. By grouping the endemic species as plant types, 100%

endemism is found for trees and 81% for shrubs in the wetlands of New Zealand

(Johnson & Brooke, 1989).

Tall mountains with diverse topography, steep climate gradients and strong regional

habitats, as found in particular at the South Island, provide optimal environments for

specialised trees and shrubs. Large populations can be maintained in small areas and

over a variety of community structures. The genus Carmichaelia is a good example.

The shrubs are characterised by photosynthetic stems and a xeromorphic growth form.

Adaptations to drought and high radiation loads as well as cold and exposed sites

allow this genus a patchy distribution in small areas of specific habitats scattered

across the landscape (Heenan, 1997). McGlone & Webb (1981) also assign divaricate

and semi-divaricate shrubs as adapted to wind-exposed, cold and dry environments.

The term “divaricate” plant in New Zealand defines loosely a group of some 60

species of shrubs, small trees, and tree juveniles that characteristically have small

well-separated leaves and often widely branched, interlacing stems (Figure 1.1). The

interlaced stems are of different age and order. This growth form has developed

independently in at least 26 taxa in New Zealand (Wilson & Galloway, 1993).

Microphylly (sensu Tomlinson, 1978), which is more commonly found in young

heteroblastic species, as well as a trend towards short shoots and rarity of terminal

flowers, are common for woody plants with a divaricate habit. Flowers are often

lateral situated on short shoots, therefore the architecturally important axes of the

shrubs are not determined by flower buds (Tomlinson, 1978).

Kelly (1994) published a summary of architectural definitions of divaricates and a

multitude of measurements regarding shoot architecture traits comparing divaricate

and non-divaricate growth forms. The interlacing of branches is caused by reduced

apical growth associated with a continued growth of lateral branches. Straight

branches can grow at widely divergent angles, often 90° or more, or reduced angles

(<90?) bending downwards or sideways in directions away from the main stems.
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Outer branches have longer internodes with very few and small leaves, a trend which

increases with the degree of divarication (Greenwood & Atkinson, 1989). Species like

Corokia cotoneaster have a high number of short-shoots, transformations between

long shoots and short shoots are seen and specification between both is sometimes

limited (Tomlinson, 1978). Strong plagiotropy (expressing rhythmic growth and

therefore an effective spacing of branches with the branch angles of 90?; Tomlinson,

1978) is initially assumed for Coprosma species. Terminal growing points would

branch after flowering, but that is not found in mature divaricate shrubs (Tomlinson,

1978). Often the stems of divaricating plants are very tough and therefore difficult to

break, compared to those of their non-divaricating relatives (Greenwood & Atkinson,

1989; Bond et al., 2004). Cockayne (1912) describes divaricate branches as thin and

wiry. The bifurcation ratio is small but in the range of most trees (Tomlinson, 1978).

In heteroblastic species the leaf area can increase up to one hundred-fold with

reaching adolescence. Some divaricates like Aristotelia fruticosa define their

branching pattern by died-back axes. On the other hand, Discaria toumatou has spines

on the lateral axes (Tomlinson, 1978).

1.5m

Figure 1.1: Growth form of Corokia cotoneaster at Cass.



5

Most of the divaricate taxa have large-leaved relatives with wide branch angles

(Philipson, 1963). Divaricating plants are also found in other countries, notably in

xeric environments. They occur spineless in New Zealand, although Coprosma

quadrifida appears with short spiny branchlets and reduced numbers of leaves on the

outer branches in Tasmania and Eastern Australia (Greenwood & Atkinson, 1977).

Tucker (1974) listed 53 divaricating species for California and Arizona, of which 44

had spiny branches or leaves. Depending on definition, 10% of New Zealand’s woody

flora are characterised as divaricating plants, and widely distributed throughout New

Zealand (McGlone & Clarkson, 1993). Greenwood & Atkinson (1977) listed 54

species of plants native to New Zealand considered to be divaricating. These species

belong to 20 genera; represent 16 families of angiosperms and 1 of gymnosperms

(Greenwood & Atkinson, 1989). No country apart from New Zealand has anything

close to a tenth of the woody flora as spineless, small-leaved divaricating shrubs. As

Greenwood and Atkinson (1977) and Tomlinson (1978) have stated, New Zealand has

an unusually high concentration of divaricating plants, and nowhere else do they play

such an important ecological role in the vegetation. Divaricate shrubs are found in a

wide variety of habitats, such as coastal areas, marshlands, wetlands, sub-alpine and

alpine as well as mountain habitats. Several species are found in open land, others in

forest and forest margins. In these habitats, they withstand harsh conditions such as

frost combined with high light loads, drought, wind, salt concentrations, high altitudes

etc. (Wardle, 1963).

Attempts to explain the evolution of divaricate shrub plants in New Zealand have

generated two main theories, the moa-browsing theory and the climate theory (see

below). As Tomlinson (1978) argues, the branching of divaricates can be caused by

sequential branching, meaning genetically determined, or reiterative branching, and

therefore environmentally caused. Environmental factors could be climate influences

as well as browsing animals. The evolution of New Zealand’s flora is unique, because

it is marked by a close relationship between long-distance dispersal of seeds and the

co-evolution between plants and a mammal-free fauna. Divaricate plants only reach

such high frequency in New Zealand and are represented in many different genera and

families. Therefore, they are not only an important component in the ecosystem, but it

would be of major importance to investigate factors which lead to such prominence in

New Zealand.
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1.2.1    Moa Browsing

Greenwood & Atkinson proposed in 1977 that the divaricating shrub form developed

as a protection against moa-browsing. They pointed out that there are several

divaricating plant species, which are often, or always, found on the mainland. But

those species have non-divaricating populations on offshore islands, which lacked

moa in the past. Before Polynesian colonization about 1000 years ago, flightless birds

were prominent in the avifauna of New Zealand. Ratite birds might have been present

in New Zealand since the Cretaceous (Fleming, 1975). Together with a few species of

smaller birds, moa were the only browsing vertebrates in New Zealand prior to the

arrival of man (Greenwood & Atkinson, 1977). The highly interlaced branches with

wide branch angles as well as small leaves are argued to restrict or prevent browsing,

which could go hand in hand with the change in leaf size and shape in mature shrubs

and trees, which reached over a height moa could access. Divaricating plants might

also recover quickly from damage because of their multiple growing points.

This hypothesis has had some acceptance because of the unusually high concentration

of divaricate plants in New Zealand and their importance in ecological systems. It

became less popular as a result of the discovery of subfossil moa gizzards containing

twigs, leaves and seeds from a number of divaricate plants (Burrows, 1980a). It is

assumed, that the moa sheared the twigs off with sharp-edged bills and strong facial

musculature and ground them up in their large gizzards with up to 500 gizzard stones

(Burrows, 1980b). Burrows et al. (1981) found up to 90% of the volume of the plant

material in the gizzard was presented by short pieces of twigs of small diameter.

Leaves, fruits and seeds were present, but barely reached 5% of the volume.

Bond et al. (2004) presented divaricate shrubs to African and Australian ratite birds

on the premise that their feeding patterns would be similar to that of the extinct moa.

They hypothesised that the divaricate growth form would prevent or minimize

browsing of those birds on leaves and twigs. Bond et al. (2004) showed that leaf size

is not a singular criterion to prevent browsing. The tensile strength as well as elasticity

of branches were as important as the distances between leaves and the actual leaf

sizes. The results were verified by feeding heteroblastic species of different ages to

the same animals. However, these findings do not take into account the difference in



7

build between moa, emu and ostrich. The mandible of a moa is much stronger built

and probably had more powerful tendons and muscles attached (Holdaway, pers.

comm.). So the findings of less biomass removal on divaricate shrubs by emus and

ostriches do not necessarily show a preventative mechanism against moa feeding.

Additionally, moa gizzards contained large numbers of gizzard stones to help to break

down roughage and high percentages of twigs were found in those gizzards (Burrows,

1980a+b). Gizzards of emu and ostrich also contain stones for better digestion (Bond

et al., 2004).

New Zealand also has a high proportion of trees (200 tree species; Cockayne, 1912)

with heteroblastic forms (Darrow et al., 2001). Heteroblastic plants show juvenile

forms that differ from the adult tree form; therefore different vegetative phenotypes

are displayed during ontogeny (Day, 1998). The transition of divaricating juveniles to

non-divaricating adult plants often occurs above the reach of the tallest moa and

therefore is often argued as a protection against moa-browsing (Greenwood &

Atkinson, 1977 and 1989; Mitchell, 1980). On the contrary, it is also hypothesised as

a response to changed light environment (see next section).

McQueen (2000) compared divaricates in New Zealand with divaricates in Patagonia,

because there are many southern genera in common between New Zealand and Chile.

In Patagonia he found a lower number of species with wide-angle branches and lesser

interlacing of branches, but also an increase in divarication with decreasing

precipation. While divaricates are common in New Zealand forests (33 species of 53

are able to survive in a forest), in Patagonia divaricates are only found in open

country. All except two divaricate species are spiny in Patagonia. In New Zealand,

only Discaria toumatou is spiny in dry habitats, but spineless and with leaves in moist

areas (Cockayne, 1967). Such a difference also suggests that the prominence of spines

of Patagonian divaricates and of many other shrubs is a response to coevolution with

indigenous browsing mammals. The two non-spiny Patagonian species are apparently

non-palatable as are the plants of the Andean forest and adjacent scrubs. McQueen

(2000) summarises that New Zealand’s divaricates are today limited to semi-arid

areas, which were forested in the pre-human past. Therefore the divaricating growth

habit is seen as a response to moa-browsing but, as in Patagonia, this adaptation also

enables shrubs to survive in harsh habitats (McQueen, 2000).
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The limitation of browsing on spiny shrubs by large mammals was shown by Cooper

& Owen-Smith in 1986. Spines restricted the mammals in bite size and bite rate.

Cooper & Ginnett (1998) also showed that spines are a defence against small

mammals by reducing their mobility within the canopy and their efficiency of feeding.

Gutierrez et al. (1997) determined herbivory by small mammals on the vegetation in a

Chilean Mediterranean community and in semiarid sites. This study showed that small

mammals can significantly change the plant community, directly by browsing and

changes in seed distribution, but also indirectly by physical disturbance and chemical

modifications of the soil.

McGlone & Clarkson published in 1993 a theory speculating about a lower risk of

herbivory attack by modifying plant appearance, such as dark leaf colours and dead

looking branches. It is assumed as a form of mimicry to unpalatable or dead plants

and plant parts, respectively. However, McGlone & Clarkson (1993) acknowledge

that darker leaf colours are possible adaptations to balance heat and protect from ultra-

violet radiation or are an answer to frost damage (see next section).

1.2.2    Environmental Conditions

That so many unrelated plant families show the same parallel trend towards

divarication could indicate environmental conditions peculiar to New Zealand. Diels

(1897) was the first to attribute the origin of divaricate shrubs to climatic conditions.

He interpreted the structure of the branches as an adaptation to windy and xeric

climates. The branch structure was suggested to reduce transpiration and to keep the

moisture in the middle of the shrub where the majority of the leaves are. Cockayne

(1912) considered the divaricate habit as a xerophytic growth form resulting from

adaptation processes to an earlier “steppe-climate period”, when conditions were more

windy and drier than at present. Rattenbury (1962) considered the divaricate habit as

an adaptation to drier or cooler conditions in the Pleistocene. He suggested that the

compact nature of the growth form, with leaves confined mostly to the inner shoots,

act as an effective windbreak. Wardle (1963) pointed out that there was scarcely any

development of a distinctive xeric flora adapted to areas of New Zealand which

experience dry climates at present. He suggested that the divaricate growth form was

an adaptation to still-existing conditions such as those that occur in drier forests or
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shrub communities. Greenwood and Atkinson (1989) disregarded drought and

desiccation as evolutionary forces for the divaricating habit, because approximately

30% of the divaricate species are more or less restricted to areas with apparently

adequate water supply. Greenwood & Atkinson (1977) pointed out that divaricating

species might be restrained by competition with their non-divaricate congeners. Fewer

divaricate species are found in areas of higher rainfall, but high densities are reached

in drier habitats. Greenwood & Atkinson (1977) also draw attention to the increase in

divarication with increasing sun exposure. For example, Pittosporum divaricatum

features only semi-divaricate habits within the forest but divaricate habits in open

habitats. Greenwood & Atkinson (1977) assumed that, through shading, divarication

is less pronounced due to insufficient carbohydrate production. Day (1998)

hypothesised that the mature stage of divaricate shrubs was lost, because the light

capturing capability as normally seen in shade grown species was no longer required

in open habitats and became too expensive in structural respects.

McQueen (2000) suggested that divarication evolved as a microclimatic shield and

evolved to aid leaves in light harvesting. Lloyd (1985) argues that heteroblasty occurs

in 11 of 67 divaricate species. Obviously, the juvenile and divaricate form loosens

after the plants have deep, well-established root systems and their foliage is well

above the height of damaging ground frost. The divaricating juvenile form may enable

forest trees to act as colonisers in the forest margin (McGlone & Webb, 1981).

Divaricate growth forms could have functioned as wind protection and refugia areas

of possible pollinators.

McGlone & Webb (1981) argued that divaricating plants are adapted to occur in non-

forest and forest margin habitats, which emerged during glacial periods of the

Pleistocene. The main function of the divaricating form would be to protect growing

points and leaves from wind abrasion, desiccation and frost damage. Also, a

favourable microclimate would be maintained inside the shrub and this may permit

higher rates of photosynthesis during periods of unfavourable environment. The

densely branched structure may reduce transpiration of the leaves by providing a

relatively moist interior to the bush. This adaptation could enable divaricating plants

to thrive in areas marginal for forest (McGlone & Webb, 1981). This has been

interpreted as showing that New Zealand has not evolved a true mountain vegetation
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and/ or as showing that environmental conditions in the New Zealand mountains are

somehow different from those prevailing in the North Temperate Zone (Wardle,

1963). It is suggested that this vegetation arose during the harsh, near-treeless glacial

periods of the Pleistocene.

The last Glaciation which ended 14,000 years ago, gave much colder temperatures,

with an annual temperature of around 6?C or even lower. Now, annual temperatures

vary between 10?C in the South Island and 16?C in the North Island. New Zealand’s

landscape was covered with shrubs or grassland; the climate became more variable

with stronger winds, and more frequent drought and frost events. In general, New

Zealand trees are more frost-sensitive than tree species grown in more continental

climate, as frost normally only occurs at night (McGlone & Webb, 1981), and might

be expected to have juvenile forms that are more frost resistant than their mature

forms (Darrow et al., 2001). Divaricating small-leaved juvenile forms are slow-

growing despite the fact that growth in thickness is sacrificed in favour of growth in

length, but their xeromorphy enables them to survive on drier sites. The development

of more or less mesomorphic foliage in the adult trees is thought to be connected with

the development of larger, deeper and more efficient root systems (Wardle, 1963).

1.2.3    Alternative Hypotheses

A non-adaptive explanation for the divaricate flora was proposed by Went (1971),

who suggested that a particular chromosome segment carrying the genes controlling

divarication was transferred asexually between families. There is little evidence so far

to support this idea. Tucker (1974) pointed out the difficulty of assuming that any

given taxon would carry all the genes controlling the divaricate habit on one segment

of one chromosome. Greenwood & Atkinson’s (1977) examination of these plants

shows that the interlaced branch system has evolved in more than one way. Thus,

assuming Went was correct; one would have to invoke the transfer of several different

chromosome segments between unrelated families. It is important to differentiate

between so called “sequential branching”, which is an architectural model and

“reiterative branching” caused by environmental damage like storm or browsing

animals (Tomlinson, 1978; Hallé et.al., 1978).
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1.2.4    Empirical Research to Date

Anatomy and Morphology

The theory that the divaricating habit developed as a response to past climates was

published in several research papers. Diels (1897) and Cockayne (1912) began with

descriptions of morphology and their possible relationship to drier habits. Diels

referred to some divaricates as descendants of a forest flora and accentuated their

xeromorphic characteristics, which he associated with a reduction in transpiration. He

also noted that there were hardly any reductions in leaf size and number with

anatomical changes in leaves of New Zealand’s plants of xeric habitats, whereas it is

well described for Australian species in dry areas (Diels, 1897). Transpiration

reduction via reduction in leaf size is only ultimately successful if the total leaf area

per plant also is reduced. Small leaves have a thin boundary layer and therefore lose

more water per unit leaf area than larger and thicker leaves (Grace, 1983). Cockayne

related the divaricate growth form primarily to a wind adaptation, but also to a

xeromorphic adaptation to low soil moisture. Maximov (1931) was the first who

attempted to prove reduced transpiration experimentally. He found low rates of

cuticular transpiration for plants grown under drought stress, but the same

xeromorphic plants showed higher transpiration rates than mesomorphic plants under

well-watered conditions.

Water Loss

By comparing the water relations of a divaricate shrub, some heteroblastic and several

homoblastic species in New Zealand, Darrow et al. (2002) suggested that the

divaricating habit produces a microclimate that characterises the divaricate as a water

spender. They found that Coprosma rotundifolia had relatively high rates of water

loss whereas heteroblastic trees tend to conserve water more in their mature than in

their juvenile stages. Farquhar et al. (1980) linked more negative d13C values to plants

with open stomata and justified it with the discrimination against heavier 13C under

unlimited carbon dioxide supply. Darrow et al. (2002) also investigated the

relationship of water loss and d13C values. They found heteroblastic species with high

water contents had less negative values of d13C. Darrow et al. (2002) observed that in

young heteroblastic and divaricate forms, the losses of water content were greater than
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in their mature forms. The divaricate Coprosma propinqua demonstrated higher

transpiration rates than a hybrid of C. propinqua and C. robusta. Their data also

showed that species with the largest leaves experienced the lowest water lost rates per

unit dry weight and leaf area. In an investigation of juvenile and adult desert shrubs,

Donovan & Ehleringer (1992) showed that the juvenile forms had a greater rate of

photosynthesis but also greater water loss, carbon discrimination and poorer water use

efficiency than mature plants of the same species.

Species of the American Continent

New Zealand has a remarkably high number of divaricate species in numerous

families and very different habitats. But other parts of the world also have divaricate

shrub species, mostly growing in arid and semi-arid environments. Two sub-shrub

species (Hymenoclea salsola and Ambrosia dumosa, both Asteraceae) growing in a

warm desert in western North America were analyzed by Comstock (2000). He

examined the relationship between hydraulic architecture, gas exchange and the

responses to environmental conditions these species grow in. Populations from the

south (semi-arid) showed higher leaf-specific hydraulic conductance than populations

of both species from the north (intermountain), as well as plants growing at higher

temperatures but not as a response to the relative humidity. Comstock (2000) found

no correlation between hydraulic conductance and root: shoot ratio, but a negative

correlation of hydraulic conductance to total leaf biomass. A strong response of

stomatal closure to decreasing ambient humidity was registered for both species,

which limited transpiration rates at higher leaf-to-air vapour pressure deficits. The

main difference between the observed species was the biomass allocation pattern. In a

preferred growing habitat, H. sasola invests greatly in allocation into a tap root, and

leaf-bearing twigs, which function dually as organs of transport and photosynthesis. In

the southern populations, where the leaf-specific hydraulic conductance was highest,

twigs contributed around half of the photosynthetic surface. Interestingly, no change

in the whole-canopy gas exchange rate per unit canopy biomass was seen, but

Comstock & Ehleringer (1988) found a much lower photosynthetic rate in twigs

compared to leaves of H. sasola. A. dumosa had greater allocation into leaves under

preferred microclimates. Both species in Comstock’s study had a lack of apical

dominance and a limited branch lifespan. Frequent renewal of the canopy occurred via

basal suckers.
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In 1994, Franco et al. published gas exchange data of the xerophytic Larrea tridentata

(creosote bush), an evergreen desert shrub growing in the arid southwest of the United

States, with respect to soil and plant water characteristics during the growing season.

Maximal net photosynthesis was found together with sufficient water supply and least

negative predawn xylem water potentials in early summer. Predawn xylem water

potential also influenced stomatal conductance, which overall seemed to determine

rates of carbon gain and water loss in L. tridentata. The plants maintained a positive

carbon balance possibly by using soil water from deeper layers. Remaining active in

periods of drought helped the plant to react rapidly to sudden rain. Mooney et al.

(1978) measured a seasonal difference in light saturated photosynthesis depending on

temperature for the same species. Stomatal conductance was found to be scarcely

affected by the temperature change in creosote bush.

Frost Tolerance

The advantage of a divaricate growth form may lie in creating a sheltered interior with

lower wind speeds, higher humidity and slightly higher temperatures (McGlone &

Webb, 1981). These conditions would bring higher photosynthetic rates as well as

greater stomatal opening, as found by Darrow et al. (2002). McGlone & Webb (1981)

published the idea that the outer branches of divaricate shrubs have a self-shading

function. They assumed that this comes with a high cost to the plants because the

inner leaves receive a reduced quantity of sunlight. McGlone & Webb (1981) also

considered the divaricating structure of leafless branches on the outside as a “frost-

screen” to protect the inner leaves from the damaging effects of frost. They observed

divaricate shrubs with frozen leaves on the outside, whereas in the interior the leaves

were frost-free. Therefore, the inner leaves were protected against frost instead of

frost tolerant.

Kelly & Ogle’s (1990) measurements of several climate parameters in the interior and

exterior of divaricate shrubs could not prove the assumption of a sheltered

environment in the inside of divaricate shrubs during their winter measurements. The

temperature range showed that there is only sometimes an effect of position on

temperature within divaricate plants. However, this effect was inconsistent and small,

even contradicting the hypothesis that the interior should experience higher



14

temperatures due to its sheltered position. A weak relationship between wind speed

and frost was recorded (Kelly & Ogle’s climate data from May and June 1989; see

also Howell et al., 2002). Also a small difference in specific humidity between the

interior and exterior of divaricate shrubs was found. Frost had a highly significant

effect on more outer leaves than leaves from the inside of divaricate shrubs. Bannister

& Lee (1989) found that temperatures below -9?C caused leaf damage in C.

propinqua.

Kelly & Ogle (1990) presented a temperature difference of 0.5°C or less between

young outer and inner parts of Coprosma propinqua and were also able to

demonstrate that those plants had more frost-damaged leaves on the exterior than

inside the shrub. Darrow et al. (2001) investigated the frost resistance of heteroblastic

trees of different ages. Because of the morphological change between juvenile and

adult trees, a change in the acclimatisation to cold air was hypothesised. Juvenile

forms, which were closer to the ground, and therefore to cold air, were expected to be

more frost resistant. Darrow et al. (2001) found that there was no uniformity in the

frost resistance of juvenile heteroblastic trees, and populations of different

environments differed depending on the frost the species experienced in their habitat.

Bannister & Lee (1989) investigated the frost resistance of the fruits and leaves of 8

Coprosma species by exposing them to cold in a freezer for 8 hours and reporting a

change in leaf and fruit colour. They observed different levels of freezing resistance,

but showed that the non-divaricate C. robusta was the least frost resistant. Bannister et

al. (1995) compared several Pittosporum species and found the greatest frost

resistance in the divaricate P. obcordatum, which had a greater capacity for frost

hardening than the observed tree species. In comparing seedlings and mature plants of

Pittosporum, the homoblastic P. eugenioides seedlings appeared to have the greatest

frost. Dwyer et al. (1995) showed a decrease of frost resistance in saplings of P.

eugenioides by application of gibberellins. Horrell et al. (1990) caused a reversion in

mature heteroblastic trees of New Zealand to the juvenile form with an application of

gibberellin.

Howell et al. (2002) studied the influence of frost events on three species of divaricate

shrubs (Aristotelia fruticosa, Coprosma propinqua and Corokia cotoneaster). The



15

self-shading growth form was assumed to protect leaves in the interior from cold-

induced photoinhibition. Photoinhibition demonstrates reversible and irreversible

damage to the photosystem II by excessive excitation energy (see Section 3.1). By

pruning the outer shield of ‘leafless’ stems and exposing them to the winter climate,

short- and long-term decreases in maximum photosynthetic capacity and

photochemical efficiency were observed. Protecting the artificially exposed leaves

with a shade cloth screen reduced photoinhibition and therefore maximized carbon

fixation. The species investigated in this study varied markedly in the extent to which

they experienced photoinhibition and in the extent of recovery.

1.3 General Aims

This thesis will increase the knowledge about plant adaptations to the combination of

high light loads and drought in summer and also will provide a comparison between

divaricate and non-divaricate congeners. As described in Section 1.2, the evolution of

divaricate shrubs and their non-divaricate congeners in New Zealand is still hotly

debated. My study will test whether there is any evidence for the climatic theory of

the evolution of the divaricate growth form and determine if this is a likely

explanation for the evolution of this morphological type. I proposed that in dry

conditions the self-shaded leaves of divaricate shrubs are less likely to be influenced

by the potentially photoinhibitory effects of high photon flux densities (PFDs) than

non-divaricate plants. Thus, my investigation was based on the premise that the

combination of drought, high PFDs and high temperature initiates stress reactions

with different intensities between divaricate and non-divaricate plants.

An overall hypothesis guiding this research was that the self-shading growth form of

divaricate shrubs is a protection against high PFDs for their internal leaves in

particular during drought. When the temperatures are very high and soil water

potential is very low, it is particularly important to be able to photosynthesise with

high water use efficiency.

Divaricate shrubs have very small leaves, which should reduce the transpiration

surface. I hypothesised that the stomatal closure of divaricate shrubs is much less

sensitive to drought conditions than that of non-divaricate shrubs. The internal CO2
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concentration should therefore be constant over short periods of water shortage.

Under dry conditions the divaricate shrubs are hypothesised to be able to keep the

photosynthetic rate constant.

Divaricate and non-divaricate leaves could also be different in their morphological

adaptation (leaf size, shape, thickness and boundary layer) and their spectral

characters (absorption, transmission and reflection). Their physiological reactions are

also likely to be very different. My proposed conceptual model in Figure 1 shows the

typical reactions in photosynthetically active plants under dry conditions and high

irradiances. Established mechanistic relations found in the literature are shown with

full coloured arrow lines; hypothetical relationships have dashed connections.

Lower soil water potentials also influence photosynthetic light reactions. I

hypothesised that in dry conditions shaded leaves and leaves of divaricate shrubs

(self-shaded) show a lesser reduction in their ratio of variable fluorescence to

maximal fluorescence ratio (Fv/Fm ratio) than sun leaves. The electron flux at the inner

side of photosystem II, the water oxidation site, can be inhibited. The chlorophyll a-

fluorescence decreases because of the change in the redox-states of quencher Q. Fv

and Fm are heavily quenched under water stress, so the activity of photosystem II can

be deactivated.

In the summer, along with reduced water availability, higher PFDs and temperatures

are also stress factors for the plants. An increase in photoprotective pigment contents,

such as xanthophyll cycle pigments, and a decrease in pigments in the epoxidated

state show a reaction to excessive irradiance. Additionally, an increase in the contents

of antioxidants, such as ascorbate, glutathione and ? -tocopherol, indicates a protective

reaction against high PFDs. I hypothesised that divaricate shrubs, with their self-

shaded leaves should have lower contents of photoprotective pigments or antioxidants

than their congeneric non-divaricates.
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Figure 1.2: Conceptual model of plant responses to summer conditions.

Symbols: colour…  hypotheses for divaricate plants, colour…  hypotheses for non-divaricate plants,
? …   low amount or descrease, ? …  high amount or increase, const…  no change or constant,          …  as
found in the literature,               …  hypothesised in this study

Soil water availability ? Photon Flux Density? ,
Temperature ?

Water potential of
plant ?  const
Stomata closure ?
const,
Transpiration ?
const
 CO2
concentration in
leaves ?  const

Chlorophyll a
fluorescence ?
const
Photochemical
quenching ?  const

Chlorophyll a:b ratio
const ?
Xanthophyll cycle
pigments const ?
? -Carotene const ?
a-Tocopherol const

Net photosynthesis ?  ?
Photosynthetic carbon fixation ?  ?

Non-radiative dissipation of excess light energy ?
Electron cycling around photosystem I and II ?

Photon damage or photoinhibition ?  ?

Long-term morphological adaptations:
- deep-rooting to access water from lower

soil layers
- changing in leaf size, shape, absorption,

transmission and reflection
- self-shading of leaves or survival rate of

shade leaves becomes higher than of sun
leaves

Xeric growth form and distribution in dry areas
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1.4 Thesis outline

To investigate the combination of drought stress and high PFDs on divaricate shrubs

in summer conditions and to relate their acclimatisation to the non-divaricate

congeners, my study included three major experimental parts.

In Section 2.1, the experimental trial and field conditions are described. All the plant

species selected were grown under different water availabilities in the field and in the

glasshouse trial. In the field, two genera were used to estimate shoot water potentials

of divaricate shrubs in different habitats (Section 2.2). In the glasshouse, all shoot

water potentials of the investigated divaricate shrubs were evaluated and compared

with the leaf water potential of non-divaricates.

Environmental stress conditions can cause photoinhibition in leaves. To investigate

the different acclimatisation spans of divaricate and non-divaricate leaves to drought

and high light, the fluorescence of these leaves was measured with a Mini-Pam and

the Fv/Fm ratios compared (Section 3.1). Photoprotective pigments such as carotenoids

and antioxidants like a-tocopherol prevent the damaging effects of reactive oxygen

species, which are increasingly synthesized under high PFD in the chloroplasts. The

different concentrations of photoprotective pigments and a-tocopherol in divaricate

and non-divaricate leaves are presented in Section 3.2.

The gas exchange of leaves is highly dependent on the environmental conditions in

which the plants are grown. Stomata are very sensitive to changes in the water status

and CO2 and O2 concentrations of leaves and the whole plant. Therefore,

photosynthetic rates and daytime respiration values of divaricate and non-divaricate

leaves were measured with a LICOR 6400 system, and results from the glasshouse

trial were compared with the field experiment (Chapter 4).

All findings are summarised in Chapter 5 and discussed in detail with relation to

different adaptations of growth forms to stress conditions found in summer.

In 2003, additional measurements of all methods described above were conducted

between divaricate, hybrid and non-divaricate Corokia plants (Appendix A1). These
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comparisons became necessary as the plants which were purchased as C. cotoneaster

in 2002 were identified as morphological hybrids between C. cotoneaster and C.

buddleioides. It was essential to determine if the hybrid plants would express a

physiological acclimatisation similar to their divaricate congeners, and therefore

whether they were suitable as divaricate model plants.
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2.         EXPERIMENTAL DESIGN

2.1 Glasshouse and Field Set Up

2.1.1    Choice of Species

The genera Corokia and Coprosma were chosen to represent divaricate and non-

divaricate species from the Canterbury region. Divaricate shrubs of both genera are

found in alpine and sub-alpine areas in Canterbury, as well as along the coastline and

the Port Hills. The ubiquity of these plants in the local area provided natural

populations for field studies as well as the purchase of nursery specimens for

glasshouse trials. In both the field and the glasshouse, Corokia cotoneaster and

Coprosma propinqua were used as representatives of the divaricate growth form. In

addition, non-divaricate Corokia buddleioides and Coprosma robusta were used in the

glasshouse set up. An intermediate hybrid of Corokia buddleioides x cotoneaster was

accidentally purchased and used in the first year of the glasshouse trial (Section

2.1.2). The outstanding morphological differences in leaf forms between divaricate,

non-divaricate and intermediate hybrid leaves of Corokia are shown in Figure 2.1.

The leaves of the divaricate and non-divaricate Coprosma plants are shown in Figure

2.2.

The genus Coprosma is closely related to Coffea, both representatives of the family

Rubiaceae, found in the tropics and subtropics with some extension to temperate

regions. More than 50 species of Coprosma are found in New Zealand and nearly 30

of them show the divaricate growth form (Wilson & Galloway, 1993). Allan (1961)

describes over 90 Coprosma species in the Southern Pacific with 45 endemic in New

Zealand. Most of the divaricate Coprosmas are found in Canterbury and Westland.

Opposite leaves and branches as well as stipules on young shoots are a common

characteristic. Small, unisexual flowers on different plants are pollinated by wind

(Wilson & Galloway, 1993). The authors also point out that the divaricate species are

presented in a huge growth variety in the field within a species, especially by

comparison of sun and shade grown plants (e.g. open habitat versus forest vegetation)

different degrees of divarication are found.
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C. propinqua can reaches 3 to 6 m in height (Allan, 1961), but is sometimes found

with a depressed or prostrate growth. Normally, branches are highly interlaced with

wide branching angles, hairless with dark grey bark (Wilson & Galloway, 1993).

Leaves are 7 to 16 mm long and 2 to 5 mm wide and hairless (Allan, 1961). Natural

hybrids between C. propinqua and C. robusta are found and the intermediate growth

form varies highly (Wilson & Galloway, 1993). C. robusta is a large-leaved non-

divaricate which grows up to 6 m tall. The branches and branchlets are spreading

evenly. The leaf size varies between 7 and 12 cm length and 3 to 5 cm width (Allan,

1961). C. robusta is found in forest habitats as well as in scrubland, in particular on

alluvial soils. The distribution of C. propinqua is much broader; this divaricate

Coprosma is found in costal areas, scrubland, forest, swamps as well as bogs, lowland

and rocky and gravel habitats throughout New Zealand.

Allan (1961) assigned Corokia to the family of Cornaceae, Wilson & Galloway

(1993) to the Escalloniaceae. Cornaceae includes around 15 genera, which are mostly

distributed in the northern hemisphere. The Escalloniaceae are distributed in the

southern hemisphere, including around 17 genera.

Corokia cotoneaster is a divaricate shrub with prominent zigzag branches, which are

highly interlaced. Young branches appear nearly white, due to a cover of the

tomentum. Older branches have dark bark (Wilson & Galloway, 1993). The alternate

leaves vary in size, between 2 and 15 mm length and 2 to 10 mm width (Allan, 1961),

and are spoon-shaped. Shaded leaves are usually larger than sun-exposed ones

(Wilson & Galloway, 1993). When C. cotoneaster and C. buddleioides grow in the

same habitat in New Zealand, hybrids appear. C. cotoneaster and C. buddleioides

grow up to 3 m heigh, both are much-branched (Allan, 1961). C. buddleioides is a

non-divaricate, leaves reach 5-15 cm of length and are 1-3 cm wide. Contrary to the

divaricate congener, C. buddleioides leaves are broad-lanceolate. Non-divaricate

Corokia spp. are distributed throughout the coastline and in the lowland forest and

forest margins. Divaricate Corokia spp. are found in lowland scrubland, river-flats

and rocky habitats.
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Figure 2.1: Shoot Structure of Corokia cotoneaster (left), Corokia hybrid and C. buddleioides (right).
Shoots are between 12 and 14 cm long.

Figure 2.2: Shoot Structure of Coprosma propinqua (left) and C. robusta (right). The shoot of C.
propinqua is approximately 6 cm, the shoot of C. robusta about 14 cm long.
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2.1.2    Field Set Up

Shoot water potential, leaf chlorophyll fluorescence and leaf gas exchange of the

divaricate species C. cotoneaster and C. propinqua were measured in natural and

manipulated field conditions at the Cass field site, 600m above sea level (Figure 2.3

and 2.4).

Figure 2.3: Map of New Zealand (http://www.maptown.com/geos/newzealand.html, edited)

Figure 2.4: Map of the Location of the Field Site at Cass (43?  02’ S, 171?  45’ E, map: nzms 260 series,
K 34, edited).

Field site

Cass
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At Cass these two species of divaricate shrubs grow naturally under varying

conditions of water availability. Both C. cotoneaster and C. propinqua grow on a N-

facing slope and in a streambed. The N-facing slope is relatively dry and exposed to

high PFDs. Plants in the streambed experience greater soil moisture availability than

plants growing on the N-facing slope. Light levels were also manipulated in these

field plants. Four plants of each species on the N-facing slope and in the streambed

were allowed to grow under natural light, four others of each species experienced

increased PFDs on inner leaves by canopy manipulation. To expose inner leaves to

the PFD of the exterior; outer branches were bent forwards and fixed with string and

pegs close to the ground. Additionally four shrubs of each species were covered by

shade cloth suspended above the canopy to provide a 25% reduction in sunlight

(Figure 2.5).

The divaricate shrubs at the Cass field station were evaluated and adapted to their

experimental set up 3 months before the first summer measurements started in

2001/02.

Schematic of growing conditions in the field:

Exposed to Light (EL)

Streambed

Sun Light (HL)

Streambed

Shaded from Light (LL)

Streambed

Exposed to Light (EL)

N-facing Slope*

Sun Light (HL)

N-facing Slope*

Shaded from Light (LL)

N-facing Slope*

* below half the plants plastics covered the ground in 2002/03

Following a wetter than average summer in 2001/02, in summer of 2002/03 plastic

covers on the ground were installed for two plants of each species on the N-facing

slope to increase drought stress by intercepting rainfall for those shrubs (Figure 2.6).

These plastic sheets were 2 x 3 m rectangles, pegged tightly to the ground.

Shoot water potential and leaf chlorophyll fluorescence were measured predawn, noon

and evening in November 2001 + January 2002 and January + February/ March

2002/03 (referred as summer 2001/02 and 2002/03). Gas exchange measurements
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were performed during the day for summer 2002/03 only. During both summer

seasons leaves for biochemical analysis (Section 3.2) were collected.

Figure 2.5: Photo showing experimental field set up at Cass in 2001/02. Photo was made by
approaching the field site from NNW.

Figure 2.6: Photo showing experimental field set up at Cass in 2002/03. Manipulation of light
environment using shade cloth and rainfall input using plastic sheeting can be seen in the mid- ground.
Photo was made by approaching the field site from the NE.
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2.1.3    Glasshouse Experiment

For the glasshouse experiments, Coprosma propinqua and Coprosma robusta were

sourced from the Motukarara Nursery (Ridge Rd, Christchurch). Both species were

from cuttings taken from plants on Banks Peninsula. Corokia buddleioides was

purchased from Trees for Canterbury (261 Opawa Rd, Christchurch). Putative

Corokia cotoneaster plants came from Ardmore Nurseries, Auckland (230 Clevedon-

Takanini Rd), but were determined as C. cotoneaster x C. buddleioides hybrids. All

these plants were purchased in winter 2001. In 2003 true C. cotoneaster were sourced

from Wai-ora Nursery (48 Watsons Rd, Christchurch), and these plants were grown

for at least six months under the treatment conditions prior to measurements being

recorded. All plants were grown in 20 litre pots filled with standard University of

Canterbury potting mix with slow release fertiliser. It is a pre-made all bark potting

mix with 3 to 4 month and 8 to 9 month “Nutricote”, pH balanced with elements of

nitrogen, phosphorus and potassium. The temperature in the glasshouse was set for

21ºC; it varied in summer between 10-30ºC and in winter between 8-23ºC. When

necessary, plants were sprayed to kill scale insects using a mineral oil with an

insecticide (“Attack”).

Two treatments were used in a factorial design in the glasshouse study, to give a total

of four treatment combinations. The light regime was manipulated by either leaving

the pots exposed to full light on the bench (sun light) or by covering the plants with

shade cloth suspended on wooden frames, reducing available light by 25% (shaded) to

75% of natural light. The watering regime consisted of two different treatments: the

water stressed plants received 200 ml every second day (15% of field capacity, data

not shown) and the well-watered plants receiving 500 ml (90% of field capacity)

every second day.

The plants for the glasshouse trial were purchased in winter 2001 and adapted to the

experimental conditions described below for 3 to 4 months before the first

measurements were carried out.
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Schematic of growing conditions in the glasshouse:

Sun Light (HL)

Well-Watered

Sun Light (HL)

Water Stressed

Shaded (LL)

Well-Watered

Shaded (LL)

Water Stressed

Shoot and leaf water potential and leaf chlorophyll fluorescence were measured

predawn, noon and evening during summer in 2002. After the initial analysis of these

data the rate of watering of the water stressed plants was decreased to 200 millilitres

every third day and measurements recorded following a 2 months acclimatisation

period. Gas exchange measurements were performed during the day in the summer of

2003 only. Measurements for all Corokia taxa were recorded using the above methods

during 2003, after the correct C. cotoneaster plants had been sourced. During both

summers (referred as 2002 and 2003) leaves for biochemical analysis (Section 3.2)

were collected from the glasshouse plants.

2.1.4    Climate Data

The University of Canterbury Cass field station is situated 22 km east of the main

divine of the Southern Alps (43?  02’ S, 171?  45’ E). The area is dominated by the

open grasslands of the Waimakairi basin. Situated 105 km west of Christchurch,

subalpine and alpine habitats with abundant divaricate species are found. In this area

the winters are usually frosty and even in summer periods of snow cover can occur.

Around 300 m west of the field site is a weather station, which recorded

meteorological parameters such as soil moisture (CS615 Water Content

Reflectometer, Campbell Scientific) at different soil depths, wind speeds (Pulse

Output Anemometer A101, Vector Instruments), rainfall (Hydrological Services TB3

raingauge) and photon flux density (LICOR Li190SB quantum sensor) at appropriate

time intervals, and recorded them to a computer system into the department. The

averages for PFD, wind speed, air temperature, ground temperature, relative humidity

in the air and soil moisture for the years 2001/02 and 2002/03 are shown in Figures

2.7 and 2.8.
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Figure 2.7: Means for PFD (light intensity), wind speed, air temperature (Air temp), ground
temperature (Ground temp), relative humidity in air (Rel humidity) and soil moisture at Cass in July to
December 2001 and January to July 2002. Means are averages over month from hourly measurements.
All measurements were done from a climate weather station on a 14 m tall tower, except ground
temperature, which was measured just above ground and soil moisture, measured at 10 cm depth. Data
for October and November 2001 are missing for the soil moisture due to technical difficulties (marked
as ‘NA’).
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Figure 2.8: Means for PFD (light intensity), wind speed, air temperature (Air temp), ground
temperature (Ground temp), relative humidity in air (Rel humidity) and soil moisture at Cass in July to
December 2002 and January to July 2003. Means are averages over month from hourly measurements.
All measurements were done from a climate weather station on a 14 m tall tower, except ground
temperature, which was measured just above ground and soil moisture, measured at 10 cm depth.
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The two summer seasons varied considerably from each other. PFDs for November

2001 and January 2002 varied between 440 and 500 µmol sec-1 m-2, whereas they

were between 400 and 570 µmol sec-1 m-2 in the period from January to March 2003.

The relative humidity in the air in the season of 2001/02 was around 80 %, in the

season of 2002/03 averaged at 67%. The air temperature differed only by 1 °C

between both seasons. The ground temperature in the season of 2001/02 averaged for

November to January at 14°C. In season 2002/03 the average ground temperature of

January to March was 16°C. The soil moisture at a depth of 10 cm was in season

2001/02 at 0.25 %, in 2002/03 at 0.15 % on average. Summarising those data, the

season of 2001/02 was slightly colder and moister than the season of 2002/03.

2.1.5    Statistics

All analyses were performed using S-Plus version 4.5 (Mathsoft, Cambridge, MA,

USA). The difference in responses between treatments was evaluated using a two way

ANOVA with factors such as ‘Month’ (November01 + January 02 in season 2001/02,

January03 + February/ March03 in season 2002/03), ‘Light level’ (inner leaves

exposed, sun light, shaded), ‘Water availability’ (streambed, N-facing slope) and

‘Genus’ (Corokia, Coprosma) as factors for the field trials in 2001/02 and 2002/03.

The factors for the glasshouse trial in 2002 were ‘Month’ (March, June), ‘Light level’

(sun light; shaded), ‘Water availability’ (well-watered, water stressed), ‘Genus’

(Corokia, Coprosma), ‘Habit’ (divaricate, non-divaricate) and in 2003 ‘Light level’

(sun light, shaded), ‘Water availability’ (well-watered, water stressed), ‘Habit’

(divaricate, hybrid, non-divaricate). The glasshouse trial included divaricate Corokia

cotoneaster and Coprosma propinqua as well as non-divaricate Corokia buddleioides

and Coprosma robusta. The field study included only C. cotoneaster and C.

propinqua. All interactions of the factors for the field trial and the glasshouse

experiment are presented too. Due to the normal distribution of the response variable,

no transformation was employed. For significant factors where there were greater than

two levels of the treatment, a multiple comparison test was used to determine between

which levels of the treatment the significance lay. All presented graphs present result

means with the standard deviation; ‘NA’ indicates data were missing and ‘#’ indicates

an insufficient number of data (n<3).
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2.2 Water Potentials

This project aims to determine the photosynthetic reactions of divaricate shrubs to

drought conditions, compared to their non-divaricate congeners. In this section I

present data on water potentials to ensure that the various field and glasshouse

treatments did result in different water status of the experimental plants.

2.2.1      Introduction

Water stress affects leaf water potential, net photosynthesis, and leaf conductance due

to stomatal closure during drought conditions. The internal CO2 concentration is thus

also lower during drought. Drought stress can be found in plants with, for example,

intense evaporation, in saline or frozen soils. The accumulation of solutes in leaves or

roots has the effect of maintaining tissue turgor (Willert et al., 1995).

At a given leaf temperature, the partial pressure of water vapour inside a leaf is in

equilibrium with the saturated vapour pressure of the atmosphere (Farquhar et al.,

1978). The resistance to water loss is the total of stomatal and cuticular resistances.

As the stomatal resistance changes, the rate of transpiration also varies, which in turn

affects the leaf temperature through the energy balance of the leaf (Farquhar et al.,

1980a).

Divaricate shrubs have very small leaves, which are situated in the inner parts of the

shrub. The outer branch canopy is assumed to reduce radiation loads (‘self-shading’)

and to keep the moisture in the interior of the shrub, which reduces transpiration

(Kelly & Ogle, 1990 and McGlone & Webb, 1981). Therefore, divaricate shrubs that

may be adapted to drought conditions should be able to maintain their stomata open

and photosynthesize during the summer. If turgor maintenance is possible over a wide

range of soil water potentials, this would allow the plant to remain photosynthetically

active, and therefore maintain a positive carbon balance during summer drought.
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Aim of the Study

The aim of this section was to ensure a difference in the water availability between

plants in the streambed and the N-facing slope in the field set up (Section 2.1.2) and

the well-watered and water stressed plants in the glasshouse (Section 2.1.3). Lower

water potentials and therefore significant treatment effects were hypothesised between

the different months. The measurements of water potentials in plants under different

light and water treatments were made to ensure the different responses of all plants to

high light versus shaded conditions as well as to test if lower water potential values

were found in plants with reduced water supply. The genera were hypothesised to

show similar responses to the light and water treatments, whereas the different growth

forms were hypothesised to vary substantially in response. The ‘self-shading’

divaricate growth form was hypothesised to reduce water loss and to maintain a stable

water status in divaricate plants during the day (Chapter 1) and therefore I tested if

divaricate shoots have less negative water potentials than non-divaricate leaves.

Diurnal changes in water potential were expected to be more prominent in non-

divaricate leaves due to higher transpirational water loss.

2.2.2    Materials and Methods

Water potential was measured for leaves of non-divaricate plants. Due to the small

leaf size, divaricate plants had shoot water potential recorded (Chapter 2.1). Shoot

water potential was calculated from at least 3 photosynthetic leaves on a branchlet not

longer than 20 mm. All water potential measurements were carried out with a

Scholander pressure chamber (PMS Instruments Co., Corvallis, Oregon, USA). To

avoid water loss after the collection of either leaves or shoots, samples were stored in

plastic bags with moist filter paper and kept on ice. All measurements were performed

within 10 minutes of collection.

In spring 2002/03, plastic covers were installed in the field on the ground under some

of the plants grown on the N-facing slope. Plants from the two genera and all three

light level treatments were used. These plastic covers were intended to reduce the

available precipitation in a 2 x 3 m area surrounding the shrub. The plastic cover did

not influence the water potentials of the leaves significantly and therefore data are not

shown. The plants with ground covers were used in the presented data in the same
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way as plants without ground covers. Gravimetric measurements to determine soil

moisture (by weight of unit water per unit dried soil sample) did not show any

significant differences between plants with or without ground covers on the N-facing

slope (data not shown). This may have been because the summer had very low rainfall

(Section 2.1.4).

2.2.3    Results

Cass Field Experiment 2001/02

Four shrubs of each species were measured in each treatment combination during

summer, following pre-treatment measurements carried out in spring. The water

availability was significantly influenced by the location of the plants, either in the

streambed with supposed high water availability or on the N-faced slope with

supposed lower water availability. An overview for the measurements recorded in

spring and summer of 2001/02 is given in Figure 2.9 for C. cotoneaster and in Figure

2.10 for C. propinqua. In the light and watering treatments, both species showed a

diurnal adaptation to changing water availability.

C. cotoneaster (Figure 2.9) shows even less negative water potentials in January than

in spring, especially predawn and in the evening. Only at noon was mild drought

stress experienced and all plants displayed a fast recovery in the evening. The water

potentials were lower for plants that grew in the streambed compared to plants on the

supposedly drier N-facing slope. The recovery to the predawn water potential values

of shaded plants was slower than for plants under normal light or exposed conditions.

C. propinqua (Figure 2.10) did not exhibit a uniform response to increased rainfall in

January. Interestingly, in January the water potentials at noon and in the evening for

exposed plants grown in the streambed were less negative than for plants from the

same location but grown under normal light or shade cloth.

All measurements of water potential predawn, noon and evening show significant

effects of water availability and genus (Table 2.1). Of interest was the lack of a

significant month* light level interaction (the changes in water potential between

spring and summer in the different light treatments) for the water potential

measurements taken at noon. Predawn and evening measurements did show a
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Figure 2.9: Water potential for Corokia cotoneaster shoots at Cass at (a) predawn, (b) noon and (c)
evening measurements taken during summer 2001/02 in a streambed and on a N-facing slope and under
three different light treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n = 4].
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Figure 2.10: Water potential for Coprosma propinqua shoots at Cass at (a) predawn, (b) noon and (c)
evening measurements taken during summer 2001/02 in a streambed and on a N-facing slope and under
three different light treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n = 4].
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Table 2.1: Analysis of variance table for shoot water potential at the Cass field site, (a) predawn, (b) 
noon and (c) evening measurements taken during November 2001 and January 2002. Month, light 
level (natural daylight, shaded and exposed plants), water availability (streambed and N-facing 
slope) and genus (Corokia cotoneaster and Coprosma propinqua) as treatments [significant results 
in bold]. 
a Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 2.436684 2.436684 29.95 0.000 
Light level 2 0.292122 0.146061 1.80 0.175 
Water availability 1 2.728043 2.728043 33.53 0.000 
Genus 1 2.077709 2.077709 25.53 0.000 
Month*Light level 2 0.700409 0.350205 4.30 0.018 
Month*Water availability 1 0.035091 0.035091 0.43 0.514 
Light level*Water availability 2 0.073916 0.036958 0.45 0.637 
Month*Genus 1 1.249252 1.249252 15.35 0.000 
Light level*Genus 2 0.785997 0.392998 4.83 0.011 
Water availability*Genus 1 0.007416 0.007416 0.09 0.764 
Month*Light level*Water availability 2 0.325384 0.162692 1.99 0.144 
Month*Light level*Genus 2 0.918886 0.459443 5.65 0.006 
Month*Water availability*Genus 1 0.172597 0.172597 2.12 0.150 
Light level*Water availability*Genus 2 0.544606 0.272303 3.35 0.042 
Month*Light level*Water 
availability*Genus 

2 0.048893 0.024446 0.30 0.742 

Residuals 62 5.045000 0.081371   
 
b Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 0.127223 0.127223 1.51 0.224 
Light level 2 0.156507 0.078253 0.93 0.401 
Water availability 1 3.086576 3.086576 36.61 0.000 
Genus 1 2.352765 2.352765 27.91 0.000 
Month*Light level 2 0.012833 0.006417 0.08 0.927 
Month*Water availability 1 1.042390 1.042390 12.36 0.001 
Light level*Water availability 2 0.038926 0.019463 0.23 0.795 
Month*Genus 1 0.044421 0.044421 0.53 0.471 
Light level*Genus 2 0.107281 0.053640 0.64 0.533 
Water availability*Genus 1 0.446062 0.446062 5.29 0.025 
Month*Light level*Water availability 2 0.059580 0.029790 0.35 0.704 
Month*Light level*Genus 2 1.091435 0.545718 6.47 0.003 
Month*Water availability*Genus 1 0.021766 0.021766 0.26 0.613 
Light level*Water availability*Genus 2 0.453127 0.226563 2.69 0.076 
Month*Light level*Water 
availability*Genus 

2 0.449219 0.224610 2.66 0.078 

Residuals 61 5.143125 0.084314   
 
c Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 0.587603 0.587603 11.86 0.001 
Light level 2 0.008066 0.004033 0.08 0.922 
Water availability 1 1.698342 1.698342 34.28 0.000 
Genus 1 1.109264 1.109264 22.39 0.000 
Month*Light level 2 0.314587 0.157294 3.17 0.048 
Month*Water availability 1 1.179363 1.179363 23.80 0.000 
Light level*Water availability 2 0.053790 0.026895 0.54 0.584 
Month*Genus 1 0.041782 0.041782 0.84 0.362 
Light level*Genus 2 0.051308 0.025654 0.52 0.598 
Water availability*Genus 1 0.168296 0.168296 3.40 0.070 
Month*Light level*Water availability 2 0.220417 0.110209 2.22 0.116 
Month*Light level*Genus 2 0.163327 0.081663 1.65 0.200 
Month*Water availability*Genus 1 0.021039 0.021039 0.42 0.517 
Light level*Water availability*Genus 2 0.167971 0.083985 1.70 0.192 
Month*Light level*Water 2 0.024165 0.012083 0.24 0.784 



37

significant difference in the month* light level interaction. This may have been due to

the weather conditions during January, which were unusually cold, cloudy and wet

(climate data for 2001-2003 are presented in Section 2.1.4).

Cass Field Experiment 2002/03

Due to the unusually wet summer of 2001/02, the water potential data from the field

site at Cass show that the shrubs experienced more drought stress in November than

in January. Therefore, all measurements were repeated in January and March 2003.

The summer of 2002/03 was warmer and humidity and soil moisture were lower than

in 2001/02 (Section 2.1.4). As shown in Figures 2.11 and 2.12, diurnal water

potentials of C. cotoneaster and C. propinqua show adaptation. Compared to the wet

summer of 2001/02, the measurements at noon in the dry summer of 2002/03

produced lower water potential values for all plants. As was found in 2001/02, plants

in the supposedly drier locations showed less negative water potentials than the plants

grown in the streambed (Figure 2.11 and 2.12). Plants with exposed inner shoots

showed the slowest recovery rate; the evening water potential values were still much

lower than the predawn values. C. cotoneaster plants with exposed inner parts had the

lowest water potentials at noon and recovered slowly in the evening. C. propinqua

showed a similar pattern even if it was not as pronounced.

Table 2.2 summarises the results of the Analysis of Variance. There were significant

to highly significant differences between the plants growing in the streambed and

those on the N-facing slope. The change to the drier and hotter season is particularly

evident at noon, with significant differences between spring and summer and between

light level and water availability. Different strategies to cope with these

environmental conditions are indicated by significant effects of genus and month*

light level* genus.
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Figure 2.11: Water potential measurements for Corokia cotoneaster at (a) predawn, (b) noon and (c)
evening in summer 2002/03 at Cass in a streambed and on a N-facing slope and under 3 different light
treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n = 4].



39

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
stream bed slope stream bed slope

W
at

er
 P

ot
en

tia
l [

M
P

a]

January March

a

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

W
at

er
 P

ot
en

tia
l [

M
P

a]

b

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

W
at

er
 P

ot
en

tia
l [

M
P

a]

EL HL LL c

#

Figure 2.12: Water potential measurements for Coprosma propinqua at (a) predawn, (b) noon and (c)
evening in summer 2002/03 at Cass in a streambed and on a N-facing slope and under 3 different light
treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n = 4].
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Table 2.2: Analysis of variance table for shoot water potential at the Cass field site, (a) predawn, (b) 
noon and (c) evening measurements taken during January and March 2003. Month, light level (natural 
daylight, shaded and exposed plants), water availability (streambed and N-facing slope) and genus 
(Corokia cotoneaster and Coprosma propinqua) as treatments [significant results in bold]. 
a Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 0.014821 0.0148209 0.32 0.572 
Light level 2 0.002897 0.0014486 0.03 0.969 
Water availability 1 0.800142 0.8001415 17.41 0.000 
Genus 1 0.073643 0.0736430 1.60 0.211 
Month*Light level 2 0.171034 0.0855171 1.86 0.165 
Month*Water availability 1 0.019770 0.0197696 0.43 0.515 
Light level*Water availability 2 0.147613 0.0738065 1.61 0.210 
Month*Genus 1 0.016825 0.0168248 0.37 0.548 
Light level*Genus 2 0.011266 0.0056330 0.12 0.885 
Water availability*Genus 1 0.000204 0.0002040 0.01 0.947 
Month*Light level*Water availability 2 0.121691 0.0608453 1.32 0.274 
Month*Light level*Genus 2 0.014356 0.0071778 0.16 0.856 
Month*Water availability*Genus 1 0.710656 0.7106558 15.46 0.000 
Light level*Water availability*Genus 2 0.397837 0.1989183 4.33 0.018 
Month*Light level*Water availability*Genus 2 0.127800 0.0638999 1.39 0.257 
Residuals 57 2.620250 0.0459693   
 
b Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 1.303508 1.303508 20.81 0.000 
Light level 2 0.654268 0.327134 5.22 0.008 
Water availability 1 2.508929 2.508929 40.06 0.000 
Genus 1 1.779657 1.779657 28.41 0.000 
Month*Light level 2 2.161469 1.080734 17.25 0.000 
Month*Water availability 1 0.045896 0.045896 0.73 0.396 
Light level*Water availability 2 0.069126 0.034563 0.55 0.579 
Month*Genus 1 0.021528 0.021528 0.34 0.560 
Light level*Genus 2 0.147056 0.073528 1.17 0.316 
Water availability*Genus 1 0.143064 0.143064 2.28 0.136 
Month*Light level*Water availability 2 0.225157 0.112578 1.80 0.175 
Month*Light level*Genus 2 1.206347 0.603173 9.63 0.000 
Month*Water availability*Genus 1 0.000586 0.000586 0.01 0.923 
Light level*Water availability*Genus 2 0.197100 0.098550 1.57 0.216 
Month*Light level*Water availability*Genus 2 0.179705 0.089852 1.43 0.247 
Residuals 58 3.632850 0.062635   
 
c Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 0.706126 0.706126 21.61 0.000 
Light level 2 0.035412 0.017706 0.54 0.584 
Water availability 1 2.564452 2.564452 78.49 0.000 
Genus 1 2.587972 2.587972 79.21 0.000 
Month*Light level 2 0.088286 0.044143 1.35 0.266 
Month*Water availability 1 0.001785 0.001785 0.05 0.816 
Light level*Water availability 2 0.141493 0.070747 2.17 0.123 
Month*Genus 1 0.110839 0.110839 3.39 0.070 
Light level*Genus 2 0.054163 0.027082 0.83 0.441 
Water availability*Genus 1 0.282972 0.282972 8.66 0.005 
Month*Light level*Water availability 2 0.170027 0.085014 2.60 0.082 
Month*Light level*Genus 2 0.063670 0.031835 0.97 0.383 
Month*Water availability*Genus 1 0.012256 0.012256 0.38 0.542 
Light level*Water availability*Genus 2 0.038912 0.019456 0.60 0.554 
Month*Light level*Water availability*Genus 2 0.019364 0.009682 0.30 0.745 
Residuals 68 2.221833 0.032674   
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Glasshouse 2002

As mentioned in Section 2.2.1, the glasshouse trial included divaricate and non-

divaricate congeners with two light and watering levels. All species established a

diurnal pattern of water potential under different water and light conditions. The

drought stress was increased after the measurements in March, but the water potential

values were not greatly lower in June than in March (Figure 2.13 and 2.14).

C. buddleioides (non-divaricate) showed a lower water potential than C. cotoneaster

(divaricate) for both levels of water availability (Figure 2.13). All Corokia plants

grown under high light conditions had more negative water potentials than shaded

Corokia spp. in both well-watered and water stress treatments, especially at noon. In

contrast to the field results, the genus Coprosma exhibited significantly lower water

potentials for all measurements in a day. Coprosma leaves and shoots had lower water

potentials in June, but the response to different light regimes was not uniform (Figure

2.14). In March divaricate and non-divaricate Coprosma spp. expressed different

reaction patterns to drought during the day; in June the difference was less obvious. In

March, water stressed Coprosma shoots and leaves had lower water potentials than

shoots without predawn water limitation. During the day water potentials decreased

proportionally and in the evening, water stressed plants expressed nearly twice as low

water potential values as well-watered shoots and leaves. Generally, it was similar in

June. But by comparison of divaricate Coprosma shoots under high light in June

values were not as low as in March, whereas the non-divarcate Coprosma leaves

under high light expressed the lowest water potential values in June.

For all measurements during March and June, the effects of water availability, genus,

water availability* genus and genus* habit were significant or highly significant

(Table 2.3). The water potential was significantly lower in plants under lower water

availability. In contrast to my hypothesis, habit did not show a consistent effect and

had only a significant effect on the evening measurements. The adaptation to different

water availabilities for the two genera is demonstrated by the significant effect of the

genus* habit interaction, all Coprosma species show low water potentials and

divaricate Coprosma shoots reached the lowest water potential values (Figure 2.14).
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Figure 2.13: Water potential for Corokia cotoneaster (Div) and C. buddleioides (Non-Div),
measurements taken at (a) predawn, (b) noon and (c) evening in the glasshouse, 2002. Under well-
watered and water stressed conditions and two different light treatments (HL = sun light, LL = shaded)
[n = 4].
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Figure 2.14: Water potential for Coprosma robusta (Div) and C. propinqua (Non-Div), measurements
taken at (a) predawn, (b) noon and (c) evening in the glasshouse, 2002. Under well-watered and water
stressed conditions and two different light treatments (HL = sun light, LL = shaded) [n = 4].
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Table 2.3: Analysis of variance table for water potential in the glasshouse, (a) predawn, (b) noon and 
(c) evening measurements during March and June 2002. Month, light level (100% vs 75% of natural 
daylight), water availability (200 mls every 2 days and 50 mls every 3 days) and genus and habit 
(Corokia cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as 
treatments. Measurements recorded from shoots of Corokia cotoneaster and Coprosma propinqua; 
leaves of Corokia buddleioides and Coprosma robusta. [significant results in bold]. 
a Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 0.527508 0.527508 36.33 0.000 
Light level 1 0.008809 0.008809 0.61 0.438 
Water availability 1 1.524261 1.524261 104.97 0.000 
Genus 1 0.729505 0.729505 50.24 0.000 
Habit 1 0.033662 0.033662 2.32 0.131 
Month*Light level 1 0.004252 0.004252 0.29 0.590 
Month*Water availability 1 0.340145 0.340145 23.42 0.000 
Light level*Water availability 1 0.001317 0.001317 0.09 0.764 
Month*Genus 1 0.620564 0.620564 42.74 0.000 
Light level*Genus 1 0.478082 0.478082 32.92 0.000 
Water availability*Genus 1 0.684390 0.684390 47.13 0.000 
Month*Habit 1 0.004212 0.004212 0.29 0.592 
Light level*Habit 1 0.307980 0.307980 21.21 0.000 
Water availability*Habit 1 0.001930 0.001930 0.13 0.716 
Genus*Habit 1 2.168133 2.168133 149.31 0.000 
Month*Light level*Water availability 1 0.001759 0.001759 0.12 0.729 
Month*Light level*Genus 1 0.035262 0.035262 2.43 0.123 
Month*Water availability*Genus 1 0.428730 0.428730 29.52 0.000 
Light level*Water availability*Genus 1 0.001827 0.001827 0.13 0.727 
Month*Light level*Habit 1 0.188247 0.188247 12.96 0.001 
Month*Water availability*Habit 1 0.178689 0.178689 12.31 0.001 
Light level*Water availability*Habit 1 0.052910 0.052910 3.64 0.060 
Month*Genus*Habit 1 0.027549 0.027549 1.90 0.172 
Light level*Genus*Habit 1 0.264410 0.264410 18.21 0.000 
Water availability*Genus*Habit 1 0.050946 0.050946 3.51 0.064 
Month*Light level*Water availability* 
Genus 

1 0.068117 0.068117 4.69 0.033 

Month*Light level*Water availability* 
Habit 

1 0.333457 0.333457 22.96 0.000 

Month*Light level*Genus*Habit 1 0.333414 0.333414 22.96 0.000 
Month*Water availability*Genus*Habit 1 0.080992 0.080992 5.58 0.020 
Light level*Water availability*Genus*Habit 1 0.049697 0.049697 3.42 0.068 
Month*Light level*Water availability* 
Genus*Habit 

1 0.314650 0.314650 21.67 0.000 

Residuals 87 1.263333 0.014521   
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b  Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 0.532023 0.532023 15.91 0.000 
Light level 1 1.298317 1.298317 38.83 0.000 
Water availability 1 1.257647 1.257647 37.61 0.000 
Genus 1 0.260419 0.260419 7.79 0.007 
Habit 1 0.001759 0.001759 0.05 0.819 
Month*Light level 1 0.181725 0.181725 5.43 0.022 
Month*Water availability 1 0.083534 0.083534 2.50 0.118 
Light level*Water availability  1 0.002445 0.002445 0.07 0.788 
Month*Genus 1 0.093152 0.093152 2.79 0.099 
Light level*Genus 1 0.034376 0.034376 1.03 0.314 
Water availability*Genus 1 1.940009 1.940009 58.01 0.000 
Month*Habit 1 0.231223 0.231223 6.91 0.010 
Light level*Habit 1 0.106252 0.106252 3.18 0.079 
Water availability*Habit 1 0.215867 0.215867 6.46 0.013 
Genus*Habit 1 3.945732 3.945732 117.99 0.000 
Month*Light level*Water availability 1 0.311839 0.311839 9.32 0.003 
Month*Light level*Genus 1 0.072271 0.072271 2.16 0.146 
Month*Water availability*Genus 1 0.000006 0.000006 0.00 0.989 
Light level*Water availability*Genus 1 0.000144 0.000144 0.00 0.948 
Month*Light level*Habit 1 0.490484 0.490484 14.67 0.000 
Month*Water availability*Habit 1 0.000210 0.000210 0.01 0.937 
Light level*Water availability*Habit 1 0.002780 0.002780 0.08 0.774 
Month*Genus*Habit 1 0.014518 0.014518 0.43 0.512 
Light level*Genus*Habit 1 1.079224 1.079224 32.27 0.000 
Water availability*Genus*Habit 1 0.212841 0.212841 6.36 0.014 
Month*Light level*Water availability* 
Genus 

1 0.286443 0.286443 8.57 0.005 

Month*Light level*Water availability* 
Habit 

1 0.217701 0.217701 6.51 0.013 

Month*Light level*Genus*Habit 1 0.662931 0.662931 19.82 0.000 
Month*Water availability*Genus*Habit  1 0.114312 0.114312 3.42 0.068 
Light level*Water 
availability*Genus*Habit 

1 0.040802 0.040802 1.22 0.273 

Month*Light level*Water availability* 
Genus*Habit 

1 0.333613 0.333613 9.98 0.002 

Residuals 78 2.608333 0.033440   
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c Df Sum of Sq Mean Sq F Value Pr(F) 
Month 1 0.021130 0.021130 1.05 0.308 
Light level 1 0.029571 0.029571 1.47 0.229 
Water availability 1 4.875477 4.875477 242.79 0.000 
Genus 1 1.483476 1.483476 73.88 0.000 
Habit 1 0.128455 0.128455 6.40 0.013 
Month*Light level 1 0.001738 0.001738 0.09 0.769 
Month*Water availability 1 0.022197 0.022197 1.11 0.296 
Light level*Water availability 1 0.357883 0.357883 17.82 0.000 
Month*Genus 1 0.000219 0.000219 0.01 0.917 
Light level*Genus 1 0.147055 0.147055 7.32 0.008 
Water availability*Genus 1 2.322045 2.322045 115.63 0.000 
Month*Habit 1 0.074059 0.074059 3.69 0.058 
Light level*Habit 1 0.256190 0.256190 12.76 0.001 
Water availability*Habit 1 0.157926 0.157926 7.86 0.006 
Genus*Habit  1 1.405273 1.405273 69.98 0.000 
Month*Light level*Water availability 1 0.075190 0.075190 3.74 0.056 
Month*Light level*Genus 1 0.111061 0.111061 5.53 0.021 
Month*Water availability*Genus 1 0.005440 0.005440 0.27 0.604 
Light level*Water availability*Genus 1 0.000885 0.000885 0.04 0.834 
Month*Light level*Habit 1  0.224801 0.224801 11.19 0.001 
Month*Water availability*Habit 1 0.119326 0.119326 5.94 0.017 
Light level*Water availability*Habit 1 0.145258 0.145258 7.23 0.009 
Month*Genus*Habit 1 0.110319 0.110319 5.49 0.021 
Light level*Genus*Habit 1 0.597980 0.597980 29.78 0.000 
Water availability*Genus*Habit 1 0.010425 0.010425 0.52 0.473 
Month*Light level*Water 
availability*Genus 

1 0.048488 0.048488 2.41 0.124 

Month*Light level* 
Water availability*Habit 

1 0.371207 0.371207 18.49 0.000 

Month*Light level*Genus*Habit 1 0.788261 0.788261 39.25 0.000 
Month*Water availability*Genus*Habit 1 0.208856  0.208856 10.40 0.002 
Light level*Water availability*Genus* 
Habit 

1 0.153332 0.153332 7.64 0.007 

Month*Light level*Water availability* 
Genus*Habit 

1 1.017593 1.017593 50.67 0.000 

Residuals 85 1.706875 0.020081   
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Summary

The measured water potential values reflected different adaptations of the plants to

given treatments. Water availabilities can directly influence the water status of the

plants, but variations in light levels can also be important.

In the field, the lowest values for water potential were recorded in the plants grown in

the streambed; which was in contrast to the hypothesis that it would be the habitat

with the better water supply. Possible reasons for this finding will be discussed in

following sections. The finding that the streambed plants had lower water potentials

than the plants on the N-facing slope will change the conceptual model in Section 1.3

(Figure 5.1). I hypothesised that the values for fluorescence, pigment and a-

tocopherol concentrations and gas exchange parameters in the streambed plants would

show less sings of stress than for the plants on the N-facing slope (Figure 1.2).

Because the plants on the N-facing slope had less negative water potentials than those

in the streambed, this hypothesis does not hold and the findings should be interpreted

with this in mind. Evaluating the two genera, Corokia expressed lower water potential

values than Coprosma. Interestingly and in contrast to my hypothesis, the two genera

responded significantly differently in their water potential values to the light and

water treatments.

In the experimental trial, plants under water limitation showed the lowest water

potentials. Plants that were not shaded also had lower water potentials than shaded

plants, except for some Coprosma plants. Also, non-divaricate Corokia leaves had

lower water potential readings than divaricate Corokia shoots. In contrast to my

hypothesis, habit had only significant effects on water potential measurements in the

evening. No consistent effect of the divaricate growth form on the water status was

found and Coprosma shoots often showed responses contrary my hypothesis (see

Section 2.2.1). The two genera responded differently to the water treatment, shown in

the genus* habit interaction, in contrast to my hypothesis.
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2.2.4    Discussion

In summer, along with reduced water availability, high PFDs and temperatures are

important stress factors for plants. An overall hypothesis guiding this research was

that divaricate shrubs use their ‘self-shading’ growth form to protect their internal

leaves against high radiation loads during drought. They also have very small leaves,

which reduce the transpiration surface. When the temperatures are very high and soil

water potential is very low, it is particularly important to be able to photosynthesize

with high water use efficiency. Stomata respond to several environmental conditions,

for example CO2 concentration, PFDs, and water potential differences between soil

and atmosphere. At midday plants are most vulnerable to water loss. The plants

investigated showed diurnal patterns, due to the stomatal reaction protecting the

leaves against high water lost at noon and recovering from that water loss in the

evening and during the night.

The field experiments tested the different adaptations of C. cotoneaster and C.

propinqua to naturally different water availabilities and artificially varied light. A

strong and significant effect of genus was found. In contrast to my hypothesis, the

field plants had lower water potential values at the streambed than at the N-facing

slope. This could be due to a delayed stomata closure under water-limitation in the

plants of the streambed compared to plants from the more wind exposed N-facing

slope, or different rooting depths or root: shoot ratios at sites developed in response to

the previous history of limited water availability.

In the glasshouse trial all plants responded significantly to the water availability

treatment. My hypothesis that divaricate shoots would display higher water potentials

than their non-divaricate congeners due to the ‘self-shading’ growth and therefore that

divaricates would use water more conservatively due to their crown structure could

not entirely be supported via water potential measurements. Divaricate Corokia shoots

had higher water potential values than non-divaricate leaves, but it was not true for the

findings on Coprosma leaves and shoots. The differences between the different genera

were greater than any differences between the habits. Crown structure and leaf shape

varied remarkably between the two genera (Chapter 2.1.1). Not only are the branches

of Coprosma thinner in diameter and in younger stages hairy, but the leaves are more



49

lanceolate, whereas Corokia has thick zigzag branches and spoon-shaped leaves.

Small differences in morphological adaptations like this can have remarkable effects

in physiological reactions. Jones & Rawson (1979) have shown that in addition to

physiological processes being differently sensitive to leaf water deficits, plants are

also differently sensitive to the rate of development of leaf water deficits. Studies

have demonstrated the occurrence of osmotic adjustment due to solute accumulation

in bulk leaf tissue in response to slowly developing leaf water deficits (Hsiao et al.

1976, Jones & Turner 1978). This suggested that this process may be responsible for

the lower sensitivity of leaf conductance to leaf water potential in field-grown plants

compared to small container-grown plants (Kanemasu & Tanner 1969, Thomas et al.

1976).

Water stress, like many other environmental and edaphic stresses, can predispose the

primary photosynthetic reactions of chlorophyll-bearing tissues to damage by excess

light. Drought avoidance is defined as the extent to which high plant water potentials

are maintained in the presence of environmental drought (Hall & Schulze, 1980).

Therefore, the findings in the water potential differences between given water

availabilities and light levels as well as the comparison of divaricate and non-

divaricate shrubs is continued with relation to the findings in the fluorescence

measurements (Section 3.1), pigment and antioxidant concentrations (Section 3.2) as

well as the response measured in the gas exchange of the leaves investigated (Chapter

4).
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3.         PHOTOCHEMISTRY

3.1 Fluorescence

To test the hypothesis that divaricates avoid photoinhibition by ‘self-shading’ their

leaves, the Fv/Fm ratios of divaricate leaves in the field, and divaricate and non-

divaricate leaves in the glasshouse, were recorded during summer.

3.1.1 Introduction

During summer months illumination with natural sun light can cause light stress in

plants, because it easily reaches over-saturating intensities. Unshaded and/ or

unprotected plants show decreased rates of photosynthesis, accompanied by decreases

in quantum yield (Ögren & Rosenqvist, 1991). Exposure over longer periods of time

can cause serious damage, which can lead to the death of the leaf. This phenomenon

of stress is called photoinhibition and can be found in sun plants as well as in shade

plants, which suddenly experience increases in sunlight (Chow, 1994; Lovelock et al.,

1994). Water stress also increases photoinhibition. Variable water potentials in plants

influence their photosynthetic light reactions, leading to an inactivation of

photosystem II (PSII) and therefore to a reduction in the ratio of variable fluorescence

to maximum fluorescence (Fv/Fm) (Leipner, 2004).

Photoinhibiton is defined as a deterioration of the photosynthetic functioning of

photosystem II due to excessive light (Osmond, 1994). Photoinhibition is the

destructive consequence of oversaturation of the photosynthetic apparatus by light,

caused by light absorption by chlorophyll. All stress factors which lead to the

inhibition of the biochemical process of photosynthesis increase photoinhibition

massively, for example stomatal closure during drought conditions or deactivation of

enzymes by heat or cold (Mohr & Schopfer, 1995).

Direct photodamage to PSII or photoprotection can cause photoinhibition.

Photoprotection is a diversion of excessive excitation energy away from PSII, with the

excitation energy mostly being thermally dissipated (Osmond, 1994). If

photochemistry and heat dissipation are low, chlorophyll fluorescence is high and
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reflects changes in photochemical efficiency and heat dissipation (Fracheboud, 2001).

Such fluorescence induction kinetics are used as an indicator of possible damage to or

obstruction of, the whole photosynthesis apparatus by environmental stress (Ball et

al., 1994).

Mechanism

Two mechanisms can attenuate the photoinhibitory decline in the potential quantum

yield of the CO2 uptake caused by a reduced photochemical efficiency in PSII. Firstly

[I], over-excitation of PSII reaction centers can be prevented by reduced absorption or

by additional thermal dissipation of excitation energy, in particular in alliance with an

active xanthophyll cycle. Second [II], a cycle of inactive and damaged PSII reaction

centers, which can be repaired and re-activated (Long et al., 1994).

I. Thermal energy dissipation from PSII antennae and/or reaction centers is the

fastest response to excessive light in leaves, which coincides with the development of

a trans-thylakoid ? pH gradient. A decline in quantum efficiency of PSII has also been

associated with changes in the trans-thylakoid ? pH gradient. The mechanism itself is

still uncertain, but it may include an aggregation of the light harvesting complexes of

PSII (LHC II) to increase the heat dissipation of the antenna. The pH change might be

caused by the reversible inactivation of PSII reaction centers, including a loss of

calcium and increased thermal dissipation in the reaction centers (Long et al., 1994).

Also it is possible that this may act synergistically, with an increase in activity of the

xanthophyll cycle, with zeaxanthin increasingly dissipating heat (Long et al., 1994;

Demmig et al., 1987). In this mechanism di-epoxide violaxanthin converts to epoxide-

free zeaxanthin via mono-epoxide antheraxanthin using a pH optimum of 5.2 and a

de-epoxidase transforming ascorbate to dehydroascorbate and oxidising glutathione.

Zeaxanthin can be recycled via epoxidase and NADPH usage in the dark, with a pH

optimum of 7.5 (Hager, 1975, 1980). Osmond (1994) refers to this mechanism as

dynamic photoinhibition, which is only present when light is excessive. It potentially

affects the carbon assimilation of the leaf.

II. PSII reaction centres are reversibly inactivated by overexcitation.

Overexcitation also produces non-functional reaction centers with damaged D1

polypeptides, resulting from reversibly inactive PSII centers or from a pool of
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functional complexes. Damaged D1 can be exchanged with newly synthesized D1 by

a temperature-sensitive serine protease following the migration of the PSII complex

into the stomatal non-appressed thylakoids. After restoration, the PSII reaction centres

migrate back and regain photochemical competence. The amount of D1 damage, the

migration rate of PSII reaction centres, the decomposition of damaged D1, and the

rate of synthesis of new D1 determine the extent of photoinhibition (Long et al.,

1994).

D1 is situated in PSII, forming a heteromer with D2, and has a rapid turnover, even in

plants growing under low light. It holds donor and acceptor sites for the electron

transport and has a close proximity to oxidants, which are able to form highly reactive

radicals. An example is the quinone acceptor QA in its reduced state, which transfers

P680 in a triplet excited state (3Chl*). P680 can generate singlet oxygen radicals (1O2) by

reaction with molecular oxygen, inhibiting the electron transport from the water-

splitting complex to the P680 reaction centers and therefore inactivating the electron

transport. The conversion of inactive PSII reaction centers to non-functional PSII

reaction centers depends on the presence of molecular oxygen, inhibiting the donation

of electrons from the water-splitting complex to the PSII reaction centers, causing

polypeptide damage. Inactive PSII can recover without the replacement of D1,

following the accumulation of photoinhibited reaction centers in the thylakoids.

Inactive PSII reaction centers also are potential quenchers of excessive light by

converting absorbed energy into thermal dissipation (Long et al., 1994). Here, D1

synthesis is required, except under low temperatures. The mechanism is seen as a

possible protection system for remaining active PSII because of increased thermal

dissipation. Long et al. (1994) defines it as stress-induced photoinhibition, which

exhibits more prolonged reductions in quantum efficiency.

Osmond (1994) and Osmond & Grace (1995) define two types of photoinhibition:

dynamic and chronic. Dynamic photoinhibition occurs in sun plants and is represented

by a trans-thylakoid ? pH gradient, and high xanthophyll cycle activity and heat

dissipation, as described above. It is marked by a decreased Fv/Fm ratio and a decrease

in F0 (ground fluorescence). There are no changes in the potential quantum yield of

CO2. Öquist & Malmberg (1989) and Öquist et al. (1992) define this as stress-induced

photoinhibition. Chronic photoinhibition occurs in shade plants when exposed to high
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light and is defined by D1 damage and thermal dissipation. An increase in Fv/Fm with

a decrease in F0 and a declining quantum yield of CO2 occurs during this process

(Osmond, 1994).

Photoinhibition can occur from very high PFDs alone, or from lower PFDs in

combination with other limiting conditions such as water stress or frost. A reduction

in the fluorescence kinetics at midday is defined as diurnal photoinhibition, if a full

recovery occurs within the same day. It is correlated with an increased accumulation

of zeaxanthin and therefore increased heat dissipation (Long et al., 1994).

Diurnal (diurnal decline in maximum quantum yield in CO2 uptake with complete

recovery in hours, Long et al., 1994) and stress-induced photoinhibition (long-term

decline with days till recovery, Long et al., 1994) overlap in their implications.

Although diurnal photoinhibition is a short-term effect, it can influence the fitness and

survival of species in the long-term as shown by Ball et al. (1991) and Ball (1993).

Raven’s (1989, 1993) cost-benefit analysis estimates only little energetic investment

is necessary in plants for protective mechanisms and repair of D1 compared to

photoinhibitory effects on the plants. Therefore, species that have an increased

capacity for D1 repair should have an increased carbon gain. Sun-grown species have

high xanthophyll cycle activity to avoid damage to PSII and therefore costs of

decreased potential carbon gain. Long et al. (1994) presents two experiments to

support this. In the first example, Zea genotypes from higher altitudes possessed a

greater resistance to chilling-dependent photoinhibition than genotypes from lower

altitudes. The second example showed that Cyperus longans had higher rates of

recovery in northern than southern habits.

Through avoidance and restriction of damage, the xanthophyll cycle is a substantial

mechanism for preventing photoinhibition. Often, high xanthophyll cycle activity is

coupled with an increased ability to synthesize D1 under high light. Shade plants have

a low capacity to dissipate heat via the xanthophyll cycle. Also, D1 repair can decline

under low temperatures. Pinus sylvestris needles have shown a complete loss of their

photosynthetic activity without the loss of functional D1 polymers when temperatures

were below freezing and a incomplete recovery in spring (Ottander & Öquist, 1991).
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Fluorescence Parameters

During light absorption in chlorophyll, electrons are raised from their ground state to

an excited state. The energy difference between the ground state and the first level of

chlorophyll molecule excitation equates to the energy of a red light photon. Therefore,

in the following de-excitation, a small amount of excitation energy, 3-5% in vivo, is

dissipated as red fluorescence, which is an alternative pathway to prime

photochemistry and heat dissipation (Lawlor, 1990). Due to the heat dissipation being

coincident with the chlorophyll fluorescence, the wavelength shifts towards infrared -

the so-called Stoke’s shift (Bolhar-Nordenkampf & Öquist, 1993).

Kautsky & Hirsch (1934) were the first to expose dark-adapted leaves to UV-A or

blue light, and record the emitted red fluorescence. They interpreted these

fluorescence kinetics as the initialisation of photosynthesis. The mechanism for this is

the absorption of light by chlorophyll in the reaction centres, where the primary

photochemical phase of photosynthesis is initiated. Excess radiation is re-emitted as

fluorescence or heat. Shade plants can use up to 97% of the absorbed photons in

photochemical processes. The residual energy is dissipated as 2.5% heat and 0.5% red

fluorescence. If the amount of radiation produced by fluorescence is high, the

quantum gain of photosynthesis is small. Carbon fixation requires light-activation,

whereas the electron transport starts in milliseconds upon illumination. Therefore, the

fluorescence yield reaches a steady state value after a transient rise in the lag phase

before carbon fixation starts (Kautsky & Hirsch, 1931). This phenomenon of the

fluorescence induction kinetic is called the KAUTSKY- effect. It describes a

characteristic change of the measurable signal of fluorescence, which appears if dark-

adapted leaves are exposed to light. An analysis of this fluorescence provides an

overview of the photosynthetic electron transport processes and an assessment of the

instantaneous activity condition of the photosynthetic apparatus (Leipner, 2004).

One of the most widely used fluorescence parameters is the ratio of Fv/Fm, measured

during a dark to light transition in dark-adapted leaves (Ball et al., 1994). The

minimal fluorescence yield, F0, is observed when all reaction centres are open, and the

maximal fluorescence yield Fm, is observed when all reaction centres are closed. The

difference between F0 and Fm is called the variable fluorescence Fv (Bolhar-

Nordenkampf & Öquist, 1993).
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After an application of a saturating light pulse to a dark-adapted leaf, fluorescence

rises from the ground state value (F0) to a maximum value (Fm). The first electron

acceptor of the photosystem II (QA) becomes fully reduced. To determine the

maximum quantum efficiency of photosystem II, the ratio of Fv/Fm=(Fm-F0)/Fm is

used. Maximum quantum gain ? max, or maximum efficiency of transport of the

initiation energy from the antenna complexes in open PSII-reaction centres (RC), is

calculated as ? max=Fv/Fm=(Fm-F0)/Fm (Pörs et al., 2001). Healthy plant material has a

Fv/Fm ratio close to 0.8, independent of the plant species investigated (Ball et al.,

1994). With an efficiency in photosynthesis at about 80%, the Fv/Fm ratio for healthy

unstressed plants rarely exceed 0.85 (Demmig & Björkman, 1987). Lower values

indicate a damage of the photosystem II reaction centres, so called photoinhibition,

which is found in plants under stress conditions. The repair system of PSII tolerates

only a certain amount of inactive PSII. When this is exceeded an irreversible

inhibition of PSII can be detected as a decrease in Fv/Fm (Lovelock et al., 1994).

Usually, Fm decreases and F0 increases, caused by a parting of the LHC of PSII from

the PSII core. Stress- induced damage to the D1 protein or reduced repair activity on

the D1 protein reduce the Fv/Fm ratio too. The repair of PSII RC is temperature-

dependent, and D1 protein repair is light- enhanced (Long et al., 1994).

As described above high light can damage the PSII reaction centers by inactivating

the D1 protein during phosphorylation, resulting in its degradation, leaving the PSII

center inactive. The dark fluorescence F0 increases with increasing temperature

exposure. The rate of energy trapped in PSII centers is reduced (Havaux, 1993), due

to physical dissociation of the light harvesting complexes from the PSII core due to

heat damage (Armond et al., 1980). Exposure of shade-grown plants to full sunlight

results in an abrupt decrease in the chlorophyll fluorescence parameter Fv/Fm, which is

a useful indicator of photoinhibition. Additionally, sun leaves are more sensitive in

their fluorescence kinetics to drought conditions than shaded leaves. The electron flux

at the inner side of photosystem II, the water oxidation site, can be inhibited under

water stress. The chlorophyll a- fluorescence decreases, because of the change in the

redox-states of quencher Q. Fm and Fv are heavily quenched under water stress, and

the activity of photosystem II can be deactivated (Ludlow & Powles, 1988).
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Mooney et al. (1978) found that when the desert shrub, Larrea divaricata, was

subjected to water stress, the photon yield was reduced by approximately the same

degree as was the light-saturated photosynthetic rate. In contrast, well-watered L.

divaricata plants used in experiments by Lovelock et al. (1994), showed no tendency

towards photoinhibition following 3 weeks exposure to full sunlight. Demmig et al.

(1987) linked increased zeaxanthin concentrations and increased fluorescence

parameters, such as Fv/Fm, under high light influence on species of Populus, Hedera

and Monstera. Zeaxanthin acts as a protector against excessive irradiation, which is

thermally dissipated. In 1989, Demmig-Adams et al. reported midday depression in

the rate of CO2 assimilation in water-stressed leaves of a sclerophyllous shrub in

summer. The chlorophyll fluorescence parameter Fv/Fm was decreased, whereas the

zeaxanthin concentration increased. Kitajima & Butler (1975) showed quenching in F0

and Fm coupled with increased thermal dissipation of excitation energy via chloroplast

antennae. Zeaxanthin mediates this process through de-excitation of excited

chlorophyll (Demmig-Adams, 1990).

The Fv/Fm ratio represents the maximum quantum yield for PSII and increases with

decreasing photochemistry (Cotton, 1998). Therefore, changes in Fv/Fm are well

correlated with changes in the quantum efficiencies of CO2 fixation or O2 evolution

(Ögren & Sjörström, 1990), Lamontagne et al. (2000) found a close linear relationship

between Fv/Fm and the rate of CO2 assimilation in the leaf. In the experiments of

Ögren & Sjöström (1990) and Ögren & Rosenqvist (1991), photoinhibitory effects

shown in gas exchange measurements and expressed by a decreased quantum yield of

electron transport were compared to photoinhibitory effects shown in fluorescence

measurements and therefore Fv/Fm ratios. Their findings suggested less

photoinhibition when measured by the Fv/Fm readings than by the electron transport

readings. The magnitude of photoinhibition depended strongly on the average air

temperature. As Fv/Fm can be measured much more rapidly and easily than quantum

yields of CO2 fixation or O2 evolution, it has emerged as an important shorthand

parameter for assessment of photoinhibition in leaves (Ball et al., 1994).

Environmental stresses affect chlorophyll fluorescence as well as the CO2 uptake and

photosynthetic rate in plants growing under water deficits (Björkman et al., 1981;

Björkman & Powles, 1984) or variable temperatures (Ludlow & Powles, 1988).
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Aim of the Study

Leaves of divaricate shrubs are thought to be self-shaded and water-conservative

(Chapter 1). Therefore their fluorescence parameters, particularly Fv/Fm, were

expected to be less influenced by lower water availabilities than the Fv/Fm ratios of

leaves of non-divaricate shrubs. As seen above, shade-adapted leaves are less

sensitive in their photoinhibitory response to water deficits and the higher PFDs of

summer. Therefore, I wished to determine if leaves of divaricate shrubs express less

signs of photoinhibition than their non-divaricate congeners in stressful light and

water treatments.

In the field experiment, Fv/Fm was measured in November 2001 and January 2002 as

well as in January 2003 and February/ March 2003. In each year, data for both months

were compared against each other. As the summer progresses, light and water stress

increase and I hypothesised that ‘Month’ would significantly influence the

measurements, I also aimed to determine if there was a decrease in Fv/Fm seen in the

later months. In the field and in the glasshouse experiments, plants experienced

different light and water availabilities. Increased light increases photoinhibition and

therefore exposed leaves were hypothesised to show lower Fv/Fm ratios than shaded or

‘self-shaded’ leaves. Therefore, leaves in the shade and divaricate leaves were

examined to determine whether their Fv/Fm ratios remained constant rather than show

photoinhibitory effects. Water stress also decreases the Fv/Fm ratio, well-watered

plants and plants which use water conservatory display no or lesser decreases in the

Fv/Fm ratio. In the field and in the glasshouse, plants under good water availability and

divaricate plants were assumed to have Fv/Fm ratios close to 0.8, whereas plants under

mild drought and non-divaricate plants in particular were hypothesised to show

photoinhibitory effects. Significant interactions were hypothesised for light level*

water availability in the field trial, as plants with exposed leaves and under mild

drought were expected to have much lower Fv/Fm ratios than shaded plants with a

good water supply. It was also examined if it would be true for the plants in the

glasshouse experiment. Additionally I predicted that in the glasshouse the interactions

of light level* habit, water availability* habit and light level* water availability* habit

would present significant differences. I hypothesised that divaricates in sun light or

divaricates under water stressed conditions or in the combination of both treatments

display higher Fv/Fm ratios than their non-divaricate congeners.
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3.1.2 Material and Methods

Experimental plants in field and glasshouse setups were given different light and

water treatments (Section 2.1.2 and 2.1.3) and Fv/Fm ratios of their leaves were

determined during the summer in 2001/02 and 2002/03 in the field and in 2002 in the

glasshouse (Section 3.1.2) predawn, noon and evening. As described above, the Fv/Fm

ratio can be used as a measure of photoinhibitory effects in leaves.

To estimate photoinhibition in divaricate and non-divaricate leaves grown under

different water and light treatments (Section 2.1.2 and 2.1.3), the leaf chlorophyll

fluorescence was measured in a quenching analysis of modulated fluorescence by the

saturation pulse method. With a Portable Chlorophyll Fluorometer (Mini-Pam, Heinz

Walz GmbH, Effeltrich, Germany) rapid light curves were estimated after leaves were

dark adapted for twenty minutes (Fracheboud & Leipner, 2003) predawn, noon and in

the evening. Measurements were taken on divaricate leaves in the field in 2001/02 and

2002/03 and divaricate and non-divaricate shrubs under controlled glasshouse

conditions (Bolhar-Nordenkampf & Öquist 1993, Schreiber et al., 1994) in 2002 and

2003. Fv/Fm was calculated by the Software WinControl V1.60 (Heinz Walz GmbH,

Effeltrich, Germany).
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3.1.3 Results

Cass 2001/02

At the field site in summer 2001/02 measurements of the Fv/Fm ratio (Section 3.1.2)

were combined with measurements of water potential (Section 2.2). Figure 3.1.1

shows the results for predawn, noon and evening measurements on leaves of Corokia

cotoneaster, Figure 3.1.2 shows it for Coprosma propinqua in the given treatments

(Section 2.1.2).

The ANOVA analysis for the Fv/Fm ratios in the field experiment in summer 2001/02

displayed significant effects for genus predawn, noon and evening (Table A2.1). C.

cotoneaster always showed slightly higher Fv/Fm values than C. propinqua (Figure

3.1.1 and 3.1.2). Diurnal changes in the Fv/Fm ratio were obvious in C. cotoneaster

leaves in January and in C. propinqua leaves in November and January. These leaves

showed high Fv/Fm ratios predawn, followed by a midday depression and a recovery

in Fv/Fm towards the predawn values in the evening (Figure 3.1.1 and 3.1.2). Predawn

Fv/Fm was significantly influenced by water availability (Table A2.1). The plants on

the N-facing slope had lower Fv/Fm ratios than plants in the streambed, even though

the plants on the N-facing slope showed less negative water potentials than the plants

in the streambed (Section 2.2.3). The measurements at noon and in the evening also

showed highly significant effects of light level (exposed interior, sun light or shaded)

and of month (November 2001 versus January 2002) (Table A2.1). For the two genera

(Figure 3.1.1 and 3.1.2), the highest Fv/Fm ratios were found in shaded leaves,

whereas most of the exposed interior leaves had low Fv/Fm ratios. Leaves of shrubs

under natural light showed intermediate Fv/Fm ratios compared to shaded or exposed

leaves. C. cotoneaster leaves displayed only minor differences in the Fv/Fm ratio under

different water availabilities, in contrast to C. propinqua which expressed lower Fv/Fm

ratios for plants on the N-facing slope (Figure 3.1.1 and 3.1.2).

These differences were consistent but small, possibly due to heavy rainfall during that

particular summer (Section 2.2.4). Therefore, in the next summer the experiment was

repeated.
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Figure 3.1.1: Photochemical efficiency of PS II (Fv/Fm) for Corokia cotoneaster shoots at (a) predawn,
(b) noon and (c) evening in 2001/02 at Cass, grown in a streambed and on a N-facing slope and under 3
different light treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n=4].
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Figure 3.1.2: Photochemical efficiency of PS II (Fv/Fm) for Coprosma propinqua shoots at (a) predawn,
(b) noon and (c) evening in 2001/02 at Cass, grown in a streambed and on a N-facing slope and under 3
different light treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n=4].
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Cass 2002/03

Fv/Fm measurements were performed in January and February/ March of 2003. As

found in the ANOVA analysis in summer 2001/02, genus had a significant to highly

significant effect on the Fv/Fm readings predawn, noon and in the evening (Table

A2.2). In this drier summer (Section 2.1.4), C. cotoneaster and C. propinqua showed

more prominent diurnal changes in the Fv/Fm ratios in all treatments (Figure 3.1.3 and

3.1.4) than in the previous year. The measurements at noon and in the evening also

displayed significant effects on light level and water availability (Table A2.2). Only

shaded C. propinqua leaves did not show a big difference between the noon values

versus predawn and evening (Figure 3.1.4). C. propinqua plants on the N-facing slope

were not able to recover the predawn values of Fv/Fm in the February/ March 2003

measurements (Figure 3.1.4). As seen in the previous year, the Fv/Fm ratios were

mostly lowest in exposed leaves and highest in shaded leaves of the two genera

(Figure 3.1.3 and 3.1.4). Leaves in the streambed had lower Fv/Fm ratios in January,

but leaves on the N-facing slope had lower Fv/Fm values in February/ March 2003 for

all light treatments and in the two genera (Figure 3.1.3 and 3.1.4). A significant effect

on month was only found for the measurements at noon (Table A2.2).

Comparing both field seasons

Comparing both seasons (Figure 3.1.1-3.1.4), the Fv/Fm ratios were influenced by the

treatments given to the plants as well as by genus. A difference between genera was

not hypothesised, but C. cotoneaster displayed higher Fv/Fm values than C. propinqua

in spring and summer (Figure 3.1.1-3.1.4). As hypothesised, Fv/Fm was slightly but

significantly higher in both seasons for plants growing under the shade cloths (Table

A2.1 and A2.2). At noon, plants with exposed leaves had the lowest Fv/Fm values

(Figure 3.1.1-3.1.4). Water availability had significant effects on predawn

measurements in 2001/02 and on noon and evening measurements in 2002/03 (Table

A2.1 and A2.2). Season of 2001/02 showed higher soil moisture and relative humidity

than season 2002/03 (Figure 2.7 and 2.8). Predawn water potentials were similar in

both measurement periods, but water potentials at noon were more negative in season

2002/03 (Section 2.2.3). Evening water potentials of the shoots in 2001/02 were

slightly more negative than the ones in 2002/03. These differences in the moisture in

the air and soil and therefore the water availability for
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Figure 3.1.3: Photochemical efficiency of PSII (Fv/Fm) for Corokia cotoneaster at (a) predawn, (b)
noon and (c) evening in 2002/03 at Cass, grown in a streambed and on a N-facing slope and in 3
different light treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n=4].
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Figure 3.1.4: Photochemical efficiency of PSII (Fv/Fm) for Coprosma propinqua at (a) predawn, (b)
noon and (c) evening in 2003 at Cass, grown in a streambed and on a N-facing slope and in 3 different
light treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n=4].
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the plants could also have affected the Fv/Fm ratios in the leaves and therefore could

account for the different responses seen in 2001/02 and 2002/03.

Glasshouse 2002

Chlorophyll fluorescence was measured in the glasshouse in March and June in 2002.

The level of drought stress was increased from March to June for those plants

growing under suppressed water availability (Section 2.1.3). The Fv/Fm ratio was

determined at the same time as water potential was measured (Section 2.2). The

results for the predawn, noon and evening measurements for divaricate and non-

divaricate Corokia spp. are shown in Figure 3.1.5, and for divaricate and non-

divaricate Coprosma spp. in Figure 3.1.6. Due to the increased drought treatment in

June (Section 2.1.3), month exhibited a highly significant effect on Fv/Fm ratios

predawn, noon and in the evening (Table A2.3). Also, a significant effect of genus on

Fv/Fm was found for all measurements (Table A2.3). In the field and glasshouse

measurements, a genus effect was not hypothesised, but a more prominent difference

between the divaricate and non-divaricate growth form was to be tested. But in both

experiments, Corokia showed significantly different responses than Coprosma.

In contrast to the field measurements, diurnal changes were not as prominent in the

glasshouse plants. Mostly, the midday depression in the Fv/Fm ratio were very small

and some leaves even expressed slightly higher values at noon than predawn or in the

evening (Figure 3.1.5 and 3.1.6). This is in contrast to my hypothesis that the change

in light intensity would at least cause photoinhibitory effects at noon, particularly in

non-divaricate leaves. In the evening, highly significant effects of habit were found

(Table A2.3). This indicates different recovery rates from photoinhibitory effects in

the different growth forms. A significant effect of genus* habit was found in the

evening measurements, whereas significant interactions of water availability* genus*

habit were displayed predawn, noon and in the evening (Table A2.3). When

comparing divaricate and non-divaricate leaves of Corokia, different patterns in the

fluorescence response to the treatments were displayed (Figure 3.1.5 and 3.1.6). Well-

watered divaricate Corokia (C. cotoneaster) leaves had slightly lower Fv/Fm ratios

than nondivaricate Corokia (C. buddleioides) leaves, except for high light

measurements in March (Figure 3.1.5). In contrast, I hypothesised that the divaricate

growth form would display higher Fv/Fm ratios (Section 3.1.1).
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Figure 3.1.5: Photochemical efficiency of PS II (Fv/Fm) in the Glasshouse at (a) predawn, (b) noon and
(c) evening in 2002 for Corokia cotoneaster (Div) and Corokia buddleioides (Non-Div) in well-
watered and water stressed conditions and two different light treatments (HL = sun light, LL = shaded)
[n=4].
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Figure 3.1.6: Photochemical efficiency of PS II (Fv/Fm) in the Glasshouse at (a) predawn, (b) noon and
(c) evening in 2002 for Coprosma propinqua (Div) and Coprosma robusta (Non-Div) in well-watered
and water stressed conditions and two different light treatments (HL = sun light, LL = shaded) [n=4].
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Water stressed divaricate and non-divaricate Corokia leaves had higher Fv/Fm values

under high light than in the shade (Figure 3.1.5). I hypothesised in Section 3.1.1 that

divaricate plants would use water more conservatively than their non-divaricate

congeners and therefore display higher Fv/Fm ratios. Only divaricate Corokia leaves

under water stress generally expressed higher Fv/Fm ratios than their non-divaricate

congeners (Figure 3.1.5). These results were found predawn, noon and in the evening

in March and June 2002 (Figure 3.1.5). Divaricate Coprosma leaves showed similar

or lower Fv/Fm ratios when compared with their non-divaricate congener leaves in the

same water and light treatment in March and June (Figure 3.1.6), contrary to my

hypothesis. In particular in March, shaded non-divaricate Coprosma leaves had higher

Fv/Fm ratios than divaricate Coprosma leaves (Figure 3.1.6). All these effects were

displayed by small but consistent differences in the Fv/Fm ratios.

3.1.4    Discussion

The fluorescence parameter and the Fv/Fm ratio in particular, were observed for

divaricate shrubs in the field (Section 2.1.2 and 3.1.2) as well as for divaricate and

non-divaricate shrubs in the glasshouse (Section 2.1.3 and 3.1.2). Overall, Fv/Fm

showed very small but consistent treatment effects. Summarizing the results for Fv/Fm

measurements, it seems that the genus had a more important impact on Fv/Fm than the

growth habit, in contrast to my hypothesis (Section 3.1.1). Divaricate leaves were

hypothesised to maintain high Fv/Fm ratios during summer drought due to their self-

shading and water conserving growth form. A less pronounced diurnal photoinhibition

(Long et al., 1994) was also hypothesised to be seen in divaricate than non-divaricate

leaves. In this study, diurnal changes in Fv/Fm were only seen in the field experiment,

where only divaricate leaves were measured. Even under increased drought stress

(Section 2.2.3) the non-divaricate plants in the glasshouse did not show the

hypothesised depression of Fv/Fm during the course of the day.

Higher Fv/Fm values for shaded than exposed leaves or leaves under natural light were found in the

field in 2001/02 and 2002/03. In the glasshouse, divaricate and non-divaricate leaves of Coprosma

showed lower Fv/Fm ratios in the shade than under natural light. Corokia leaves in the glasshouse did

not display a uniform response to shading. Sometimes the Fv/Fm ratios were higher under natural light

than in the shade. A reason for the different response to the light treatment could be the different age of

the plants used in the field and in the glasshouse. The field plants were fully mature shrubs - grown to
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an average height of 1.5 m - with their typical growth form fully developed. In the glasshouse, relative

young plants had to be used and the divaricate shrubs had not yet developed their ‘shelf-shading’

growth form. Also, the glasshouse plants might been affected in their physiological reactions by high

numbers of aphids (Section 2.1.3).

The water availability had significant effects on predawn Fv/Fm in 2001/02 and on

Fv/Fm at noon and in the evening in 2002/03. In 2001/02, lower predawn values of

Fv/Fm were shown in plants on the N-facing slope than in the streambed. In contrast in

2002/03, the streambed plants displayed lower Fv/Fm values than plants on the N-

facing slope. The summer of 2001/02 was unusually wet, whereas the summer of

2002/03 was drier (Section 2.1.4). That could have affected not only the water

potential measurements as seen in Section 2.2.4, but also the outcome of the

fluorescence parameter. In the glasshouse, Coprosma plants under water stress

showed higher predawn Fv/Fm values than the well-watered plants. The drought stress

applied in the field and in the glasshouse was not sufficient to cause wilting, but it was

distinct enough from the environment of the well-watered plants to produce

significant results in the interaction terms (water availability* genus* habit). Taken

together, the field experiments of this study support the hypothesis that Fv/Fm

decreases under drought conditions and over-saturating light exposure. The

comparison of the divaricate versus non-divaricate habit in the glasshouse was

inconclusive. More detailed measurements in the glasshouse, comparing divaricate

and non-divaricate species in light and drought conditions such as used in the field,

generating the more negative water potentials that were found in the field might have

better tested this hypothesis. Also, a comparison of divaricate and non-divaricate

plants growing in their natural habitats and in more extreme climatic conditions, for

example in salt marshland gradients, would benefit my study as it could present a

more detailed picture of photoinhibitory effects and their recovery in divaricate and

non-divaricate plants during the day, the season and during the year.

Howell et al. (2002) investigated frost- induced photoinhibition in divaricate

Aristotelia, Coprosma and Corokia species in the same field area at Cass as my study.

Inner parts of their shrubs were exposed to the outer micro-climate by clipping the

outer branches away. The investigated leaves showed a reduction in Fv/Fm during frost

events, whereas neither the control leaves nor artificially shaded inner leaves of
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clipped shrubs showed a similar reduction in Fv/Fm. Howell et al. (2002) also found

that Corokia and Aristotelia exhibited a larger decline in Fv/Fm values after frost

events and slower recovery of Fv/Fm values than Coprosma. The summer

measurements in my study did not find similar results for drought-induced

photoinhibition. In the field, Coprosma propinqua plants experienced similar midday

depressions to Corokia cotoneaster in 2001/02 and 2002/03. Only in 2002/03, C.

propinqua plants grown on the N-facing slope displayed a slower recovery rate for

Fv/Fm values than C. propinqua plants grown in the streambed or any C. cotoneaster

plants. In the glasshouse, divaricate and non-divaricate leaves did not show signs of

diurnal photoinhibition.

Howell et al. (2002) also found incomplete recovery from diurnal photoinhibition in

C. propinqua after frost in their field experiment. Their investigations showed that

cold-induced photoinhibition decreases in the interior of the shrubs as with increasing

branch cover the PFDs decrease. My summer study only measured interior leaves of

divaricate shrubs and not a gradient of decreasing PFDs towards the inner of the

shrubs and the correlated decrease in Fv/Fm ratio. Ögren (1988) found an increase of

10-20% of photoinhibition in sun-exposed willow leaves, when comparing shaded,

peripheral and sun exposed positions. He estimated that willow leaves are affected by

photoinhibition for up to a third of the days of the growing season and recovery

periods can last up to 6 hours after a diurnal decline in Fv/Fm. In my study, the

evening measurements, which were hypothesised to show a recovery from lower

midday Fv/Fm values towards the higher predawn values, were recorded

approximately eight hours after the midday measurements. This was assumed to be a

sufficient time period, but it is possible that C. propinqua leaves require a longer

recovery period. In a laboratory study Ögren & Rosenqvist (1991) compared the

reaction of several willow species to moderate and high light. They found lower

photoinhibition in sun-leaves as well as higher photochemical quenching and faster

recovery periods for given stages of photoinhibition. The amount of photoinhibiton

was inversely related to the amount of photochemical quenching.

The same species used in the investigations of Howell et al. (2002) showed predawn

cold-induced photoinhibition, but that study did not investigate the diurnal course of

Fv/Fm. Judging by the relative decreases seen in Fv/Fm, these divaricate plants seem to
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be more influenced by frost events in winter than mild drought in summer. It would

be worth investigating further by comparing these results to Fv/Fm data of divaricate

and non-divaricate plants from higher altitudes as well as coastline or marshland

conditions throughout the year. It is possible that divaricate and non-divaricate plants

experience photoinhibitory events under different climatic conditions and in different

seasons, which could influence their survival and distribution in certain habitats.

Lovelock et al. (1994) exposed shade-grown rainforest species to full sunlight and

measured abrupt decreases in Fv/Fm. In their field study, shade-grown species

expressed higher amounts of photoinhibition after exposure to full sunlight than

species which inhabit unshaded forest gaps. The originally shade-grown species were

found with Fv/Fm values below 0.65 at the midday depression whereas the more sun-

tolerating species ranged between 0.64 and 0.75. Plants in shade had Fv/Fm values

above 0.76. Recovery to the original midday Fv/Fm values over 0.75 was

accomplished by most species after 20 days in the new light environment.

Interestingly, well-watered plants did not show declines in their chlorophyll

fluorescence after they were moved to the new environment. Lovelock et al. (1994)

investigated other environmental stress factors to determine the influence of

photoinhibition on mortality of seedlings. Species growing in rainforest gaps

responded to higher light levels by altering their leaf angles, counterpart species

growing in the shade did not show this behaviour. The change of leaf orientation may

also have positively influenced the water use efficiency of photosynthesis, and

increasing maximum photosynthetic rates. Alocasia macrorrhiza plants, transferred

from the shade to full sun positions, were able to adapt their photosynthetic capacity

to the new environment, but full acclimation was only accomplished after new leaves

developed (Sims & Pearcy, 1991). My study found similar Fv/Fm values for the

shaded and ‘self-shaded’ leaves of divaricate shrubs in the field and glasshouse

experiments as seen in Lovelock et al. (1994). Exposed leaves of divaricate shrubs

had lower Fv/Fm values independent of water availability. The differences in Fv/Fm

between divaricate and non-divaricate leaves in the glasshouse were not as

pronounced as hypothesised and surprisingly, genus had a statistically influence on

Fv/Fm. As discussed before, it could be related to the young age of these shrubs, the

sheltered environment of the glasshouse or the infestation with herbivorous insects,

such as scale insects (Section 2.1.3).
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Holly et al. (1994) investigated cold-induced photoinhibition on Eucalyptus seedlings.

The seedlings grew under different shelters, which provided either different

percentages of shade or a rise above ambient air temperature. All seedlings exhibited

a predawn Fv/Fm depression during winter, the extent depending on the shade

provided, and recovery in spring. Unsheltered plants expressed the lowest Fv/Fm

values around 0.48, those with shade cloth shelters varied between 0.58 and 0.77.

Different growth parameter were measured and related to the treatments given. Shade

cloth reducing the PFD by 50% gave the highest protection from cold-induced

photoinhibition and the greatest stem elongation. The plants in this summer study

were either unshaded, exposed or shaded by 25% via shade cloth (Section 2.1.2 and

2.1.3). In the field, the lowest Fv/Fm values of 0.67 were found in exposed leaves of

Corokia shrubs in the streambed in January 2002/03. Shaded leaves had Fv/Fm values

of 0.75 to 0.84 during the midday depression. Shading the plants to 25% might have

been not sufficient to see big enough differences compared to unshaded plants, as

most plants are over-saturated with sunlight at midday in summer (Horn, 1971).

Howell et al. (2002) used 32% shading and the Fv/Fm values of those shaded Corokia

and Coprosma leaves were below 0.7. Exposed leaves of these species were lower

than 0.6 after frost events in winter 1998.

The Fv/Fm ratio can be reduced either by an increase in F0, which indicates an

inactivation of PSII, or a decrease in Fm, indicating increased non-photochemical

quenching with the xanthophyll cycle involved (Laing et al., 1995). Therefore, in this

study the two genera probably possess different recovery rates for inactivated PSII or

different capacities for non-photochemical quenching. Leaves grown under different

light conditions vary in their composition of photoprotective pigments, particularly

xanthophyll cycle pigments. As seen in Section 3.1.1, zeaxanthin can increase its heat

dissipation under high light conditions and prevent damaging effects of

photoinhibitory events. Differences in photoprotective pigments are presented in

Section 3.2 and the interaction of non-photochemical quenching and the contents of

xanthophylls cycle pigments will be discussed in Chapter 5.
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3.2 Pigment and a-Tocopherol Composition

Excessive radiation loads and water stress lead to the plant increasing photoprotective

pigment and antioxidant levels in leaves. The divaricate growth form was

hypothesised to reduce the influence of high light and drought. This part of my study

tested the hypothesis that divaricate leaves have lower concentrations of

photoprotective pigments and a-tocopherol than their non-divaricate congeners.

3.2.1 Introduction

Plants respond to a wide range of biotic and abiotic stress factors. Abiotic stresses like

high light loads, heat and drought reduce plant growth and productivity (Lawlor,

2002). CO2 assimilation can be reduced because of reductions in stomatal

conductance as well as in concentrations and activity of enzymes of the

photosynthetic carbon reduction cycle under adverse conditions (Cornic, 2000; Parry

et al., 2002). Concentrations of photo-protective pigments and a-tocopherol increase

in leaves with increased sun exposure, but also with an increase in other stress factors

plants are exposed to, such as heat, drought or frost. Also, combined stress factors like

heat, high light and drought can trigger losses of chlorophyll in chloroplasts (Wingler

et al., 1999; Havaux & Tardy, 1999). This disrupts the absorption of light and thermal

dissipation of heat, which normally protects the photosynthetic apparatus (Demming-

Adams & Adams, 1996). High light loads stimulate the accumulation of photo-

protective pigments, such as antheraxanthin, zeaxanthin or ß-carotene, and

antioxidants, such as a-tocopherol in leaves (Foyer et al., 2001). Tausz et al. (2001)

investigated a multitude of stresses and the complex biochemical responses of 12

variables of Pinus ponderosa trees, growing naturally under different levels of

drought and altitude as well as human-made pollution. Needles of sun and shade

positions from the year of the study were compared with leaves of the previous year.

Summarizing the analysis in four different components, they were able to indicate

which variables of stress were responsible for high antioxidant defences or low

amounts of chlorophyll.
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Leaves in Sun and Shade

Schulze et al. (2004) described that both within a plant and between plants of different

light environments sun and shade leaves are formed. Leaves in sunny conditions have

large mesophyll cells with thick cell walls and the number of cell layers is up to 3-fold

that of shade leaves. Chloroplasts in sun leaves have a lower number of light

harvesting complexes (chlorophyll- protein complexes in the antenna) per electron

transport chain, but a high number of acceptors for the electron transport. The amount

of plastoquinone is especially high in sun leaves and therefore the electron transport is

up to 30-times faster than in shade leaves (Lawlor, 1990). Those sun-exposed leaves

show high concentrations of cytochrome b/f-complexes, ATP-synthase, plastocyanins,

ferredoxins and carbon-fixing enzymes (Anderson et al., 1995). Shade leaves will

show a reduced number of mesophyll layers and lower chlorophyll content per leaf

area (Lichtenthaler et al., 1981). The efficiency of light absorption under low light

conditions is enhanced by an increased size of the antenna system. The amount of

chlorophyll a and chlorophyll b per chloroplast volume is four to five times higher

than in sun leaves, the number of light harvest complexes (LHC) is higher, whereas

the number of photosystem I and II is lower (Lichtenthaler et al., 1981).

Changes in light conditions, cold stress and increasing age of leaves drive changes in

the contents of pigments and antioxidants (Garcia-Plazaola et al., 1999a+b, 2000).

Constant shade will change leaf anatomy, morphology and physiology compared to

leaves growing under sunny conditions. For example, sun-adapted beech leaves show

high amounts of ascorbate, tocopherol, glutathione, ß-carotene and xanthophyll cycle

pigments (Garcia-Plazaola & Becerril, 2000). Tausz et al. (2003) showed that the

biochemical analysis of photoprotective pigments and antioxidants is a successful tool

to investigate stress factors that plants are exposed to in their habitats. To cope with a

high number of samples at satisfying high accuracy, the analysis via HPLC system

was recommended. A higher level of non-photochemical quenching (qNP) is achieved

by an up to 12-fold greater increase in the de-epoxidation status in sun leaves, which

is the ratio between de-epoxidised and epoxidised xanthophyll pigments of the

violaxanthin cycle [(antheraxanthin + zeaxanthin) / (violaxanthin + antheraxanthin +

zeaxanthin)]. Also the chlorophyll a:b ratio is higher, which indicates a higher ratio of

PS I to PSII or a lower ratio of LHC to reaction centres (RC). In contrast, shade leaves

have higher photosynthetic efficiencies Garcia-Plazaola & Becerril, 2000).
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Oxidative Stress

Chloroplasts become damaged if excessive excitation energy irradiates leaves and the

excitation energy is higher than the requirement for the photosynthetic metabolism to

produce NADPH + H+ and ATP. If many chlorophyll molecules surrounding the

reaction centers are in an excited state, more chlorophyll in a triplet state is produced.

The excitation energy can be carried to oxygen and singlet oxygen is produced. This

is highly reactive and oxidizes organic molecules. Damage to proteins, lipids and

pigments can result, which decreases photosynthetic capacity and causes photo-

bleaching. Reactive anions evolve with excessive excitation, if there is not an

adequate amount of NADP+ to redirect them (non-cyclic phosphorylation; Arnon et

al., 1957). Excessive electrons are transported from photosystem I to oxygen; ATP

and NAPDH+ are produced (Richter, 1998). When the non-cyclic electron flow is

interrupted, electrons will only be transferred from PSI over cytochrome b6 back to

plastoquinone (cyclic phosphorylation; Arnon et al., 1954). This process is combined

with ATP synthesis only as plastoquinone transports protons into the thylakoid lumen.

Non-cyclic and cyclic phosphorylations probably do not occur independently. The

pseudo-cyclic phosphorylation uses both photosystems to transfer electrons to

molecular oxygen without redirecting it by NADP+ (Allen, 2002).

Environmental stresses such as high air temperatures, high PFD and low rainfall can

result in an increase of the amount of activated oxygen species (AOS) and therefore

oxidative stress. Under these conditions antioxidative defences and photo-protection

mechanisms are needed in plants (Smirnoff, 1993; Pastori & Foyer, 2002). In phases

where water is limited, an increased amount and activity of antioxidants is

recognisable due to the stress-induced higher accumulation of active oxygen species

(Pastori et al., 2000).

Although AOS are important for intra- and inter-cellular signalling (Foyer & Noctor,

1999), an accumulation can cause damage, for example in the chloroplast membrane

(Asada, 1999). Chloroplasts are protected from oxidative damage by the mechanisms

of the xanthophyll cycle, photorespiration and changes in metabolic activities

(Demmig-Adams, 1996; Osmond et al., 1997), as well as by enzymatic and non-

enzymatic antioxidants (Smirnoff, 1995; Foyer et al., 1994; Asada 1999). In particular
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tocopherols and carotenoids play an important role in antioxidative protection

(Havaux, 1998; Munné-Bosch & Alegre, 2002).

Pigment Composition

Bungard et al. (1997) showed higher concentrations of xanthophyll cycle pigments, ß-

carotene and lutein on a chlorophyll basis in leaves of Clematis vitalba, grown under

high light. The Fv/Fm ratio was slightly lower in those sun leaves. Neither the amount

of photosynthetically active pigments nor the Fv/Fm ratio was influenced by nitrogen

supply. Section 3.1.1 describes the definition and mechanism of Osmond’s (1994) so-

called dynamic photoinhibition and preventive mechanisms in leaves. Carotenoids

and xanthoplyll cycle pigments in particular are able to vary the amount of thermal

dissipation and to adapt synergistically the activity of the xanthophyll cycle to

existing light conditions. Under high light, less excitation energy is absorbed and

excessive excitation energy is dissipated as heat via increased aggregations of LHCs

in the antenna (Osmond, 1994). This process is related to changes in the trans-

thylakoid pH gradient. A decline in quantum efficiency of PSII during high light

events is also related to trans-thylakoid pH changes. The xanthophyll cycle activity is

associated with an increased ability to synthesise D1 (polypeptide, integrated in

membrane and with chinone acceptor centre QB) under high light, which is involved

in the recycling of inactivated PSII proteins (Osmond et al., 1999).

Carotenoids are essential components of all pigment-protein complexes in the

photosynthetic apparatus. They are involved in light harvesting and photo-oxidation

as well as structuring in antenna and reaction centres (Jahns et al., 1998). Carotenoids

also counteract against oxidative stress in plastids by reacting with triple oxygen. In

the core complexes in photosystem II, ß-carotene quenches singlet oxygen and

chlorophylls with excessive excitation energy (Young et al., 1997). During the

reactions of carotenoids with these reactive oxygen species triplet carotenoids are

formed. The excessive excitation energy of the reactive oxygen species and excited

chlorophyll are passed to the carotenoids via p-electron system. That is only possible

if the excited chlorophyll molecules are very close to the carotenoids. Triplet

carotenoid dissipates the excessive energy via heat dissipation and returns to ground

energy state. Only molecules with 9 or more double bonds are able to achieve that

transformation (Lawlor, 1990). In the xanthophyll cycle, and with a high proton
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gradient, plants are able to adapt to high light conditions for short times. Zeaxanthin is

synthesised from violaxanthin via the reaction of a de-epoxidase in the lumen and

under oxidation of ascorbate. The de-epoxidase enzyme is situated in the thylakoid

lumen and activated by light and low pH (Asada, 1999). Violaxanthin is regenerated

via zeaxanthin-epoxidase under lower PFDs and in the presence of oxygen and

NADPH (Demmig-Adams et al., 1996). Therefore, this reaction cycle regulates the

amount of NADPH and also the redox state of the chloroplasts via epoxidation

(Krinksy, 1978).

Antioxidant Composition

As well as carotenoids, antioxidants prevent membranes and therefore plastids from

light-induced damage. Tappel (1962) and Kunert & Ederer (1985) localised the

highest concentrations of hydrophilic and lipophilic antioxidants in chloroplasts.

There, those components inhibit or reduce damage by reactive oxygen species. In the

stroma, hydrophilic antioxidants, e.g. ascorbate and glutathione, react with reactive

oxygen species (Polle & Rennenberg, 1994). Tocopherols and carotenoids are

lipophilic antioxidants which prevent damage to the thylakoid membrane. Additional

functions of tocopherols are maintaining membrane stability and to some extent,

participation in intracellular signalling and in the cyclic electron transport around

photosystem II (Munné-Bosch & Falk, 2004).

Tocopherols are phenolic substances, which are synthesized in plastids of higher

plants. The most common and strongest anti-oxidant tocopherol is a-tocopherol

(Chevolleau et al., 1993). The highest concentration of a-tocopherol is found in the

envelopes of chloroplasts and the osmiophilic plastoglobuli in the stroma of plastids.

It is an effective protection against peroxidation in vivo and operates synergistically

with vitamin C (Kunert & Ederer, 1985).

a-Tocopherol has four major functions, according to Smirnoff (1995): (1) it protects

against singlet oxygen, superoxides and hydroxyl radicals, (2) it physically quenches

singlet oxygen during energy transfer, (3) it is involved in protection reactions against

lipid oxidation via reduction of lipid radicals, and (4) it stabilizes membranes

biophysically via the binding of poly-unsaturated fatty acids. a-tocopherol is

composed of a chinon-like circlet with a lipophil prenyl chain on one side. The circlet
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becomes oxidized by radical oxygen, and the regeneration occurs through a reaction

with ascorbate (Asada, 1996). With the prenyl chain on its side it is able to tie itself

into lipid membranes and therefore protects thylakoid membranes from oxidation and

damage (Polle & Rennenberg, 1994).

But tocopherol seems not only to be involved in antioxidant defence mechanisms,

which can affect photosynthesis. Research by Munné-Bosch & Alegre (2002, 2003)

and Munné-Bosch (2005) indicates a regulative role for jasmonic acid (growth

inhibitor, senescence promoter) in leaves, and therefore in plant development and

response. By regulation of lipid peroxidation, a-tocopherol regulates the amounts of

lipid hydroperoxides, and therefore the jasmonic acid synthesis which depends on

them (Schaller, 2001). Munné-Bosch & Peñuelas (2003) showed a dependency

between concentrations of salicylic acid and a-tocopherol in water-limited plants.

That implies that regulatory elements and antioxidants adjust the redox state of

chloroplasts and therefore the whole cell depending on environmental stress factors

(Munné-Bosch & Falk, 2004).

Schupp & Rennenberg (1988) investigated diurnal changes in the glutathione

(antioxidant in chloroplasts) contents of spruce needles (Picea abies L.). They

observed light-dependent responses with the highest concentrations at noon.

Increasing concentrations were found with PFDs as low as 100 µmol m-2 s-1. These

diurnal changes were observed on plants growing in maximum day temperatures of

either +22 ºC or -4.5 ºC. Similar diurnal light-dependent changes were observed for

ascorbate (antioxidant, in redoxreaction with glutathione in chloroplast to reduce

reactive oxygen species), confirmed by Wildi & Lütz (1996). Light- and/ or

temperature- dependent diurnal rhythms were observed for ascorbic acid, glutathione,

photo-protective pigments and, in some cases, tocopherols. Concentrations of ascorbic

acid were lowest when temperature were lowest (Schupp & Rennenberg, 1988). For

a-tocopherol a day and night rhythm was found, although the authors were not able to

confirm whether it was light- or temperature-dependent. That might be due to the

rapid turnovers of a-tocopherol in the plants, which are very sensitive to slight

environmental changes. Wildi & Lütz (1996) found the total amounts of antioxidants

increased as altitude increased and therefore chilling stress, short vegetation period

and high irradiation increased too. Polle & Rennenberg (1992) also found altitude-
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dependent increases in ascorbate and glutathione as well as seasonal and age-

dependent changes in those compounds. Munné-Bosch & Alegre (2003) compared the

contents of antioxidative operating carnosic acid in combination to the amounts of a-

tocopherol and ascorbate in rosemary, stage and carnosic acid-free lemon balm. Under

drought stress, all species had increased amounts of a-tocopherol and ascorbate, with

lemon balm chloroplasts reaching the highest values.

Drought Stress

Not only high light loads and high temperatures lead to an increase in active oxygen

species and therefore oxidative stress. Drought stress is also very important in this

regard. Photoprotective pigments such as carotenoids and antioxidants like

tocopherols function against the damaging effects of molecules with excessive energy

(Ramachandra Reddy et al., 2004). Decreased water supply or increased transpiration

can trigger drought stress in plants. As shown by Havaux & Tardy (1999), a loss in

chlorophyll is possible, but at the same time changed light absorption and increased

thermal dissipation protect the photosynthetic apparatus. Peltzer et al. (2002)

investigated leaves of water limited plants and recognised changes in chlorophyll

photochemistry and observed increased amounts of active oxygen species.

Photosynthetic electron transport is disturbed which leads to further formations of

superoxide radicals. Ladjal et al. (2000) found significant losses of pigments and

disorganisation of thylakoid membranes under drought. The accumulation of free

radicals can harm DNA and amino acids, and cause protein oxidation and lipid

peroxidation (Asada, 1999), which under high levels of stress can cause cell death.

Cell detoxification can occur via enzymatic or non-enzymatic reactions. As pointed

out by Pastori et al. (2000) the amount and degree of activity of antioxidants is highly

variable between species and even the same species under different drought stress

situations. Foyer et al. (1994) reported stress tolerance in plants, which over-produced

enzymes like superoxide dismutase. Woody plants have shown less pronounced

responses in their antioxidative working enzymes, which was argued as gradual

adjustment to the habitat and therefore acclimation to it (Kronfuß et al., 1998).
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Aim of the Study

Divaricate shrubs posses an extraordinary growth form (Chapter 1), which is

supposed to ‘self-shade’ the interior of the plant. Not only is the exterior of divaricate

shrubs marked by the highly interlaced branches, but also the very small leaves are

often concentrated in the interior. It is assumed that this growth form offers protection

against browsing (Section 1.2.1) or climatic stressful times and influences (Section

1.2.2). Growing under these sheltered conditions, I hypothesised that divaricate leaves

would require less protection against high light and/ or mild drought influences than

their non-divaricate congeners in summer.

As described above, pigments and antioxidants give good indications of stress in

leaves. Therefore, the concentrations of the pigments violaxanthin, antheraxanthin,

zeaxanthin (xanthophyll cycle pigments), neoxanthin, lutein, chlorophyll a,

chlorophyll b and ? -carotene as well as the antioxidant a-tocopherol were analysed in

divaricate leaves of the field trial and divaricate and non-divaricate leaves in the

glasshouse experiment via HPLC (Section 3.2.2). The concentrations of

photoprotective pigments (xanthophyll cycle pigments, chlorophyll a, chlorophyll b

and ? -carotene) and the antioxidant a-tocopherol were thought to be low in divaricate

leaves due to their ‘self-shading’ growth form. Therefore, I investigated whether un-

shaded and unprotected non-divaricate leaves express higher levels of xanthophyll

cycle pigments, ß-carotene and a-tocopherol then their divaricate congeners. Plants

under mild drought are also under stress and therefore I hypothesised that a lesser

water availability increases the concentrations of photoprotective pigments and the

antioxidant a-tocopherol, as they reduce reactive oxygen species evolved under stress

conditions in the chloroplasts.

In the field, Corokia cotoneaster and Coprosma propinqua grow naturally under

different water availabilities, and their light levels were manipulated to provide

another factor in the experiment (Section 2.1.2). Pigment and antioxidant

concentrations of leaves in all treatments were estimated (Section 3.2.2) to compare

the adaptation abilities of both divaricate genera to drought stress and high light loads.

Exposing the interior of divaricates to full sunlight could diminish the ‘self-shading’

effect. These leaves would now experience high light conditions and I wished to
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investigate if they had increased concentrations of photo-protective pigments and a-

tocopherol.

In a glasshouse experiment, divaricate and non-divaricate plants of similar age and

origin were grown under two different light and water treatments (Section 2.1.3).

Again, leaf samples of all plants under each treatment were taken and the

concentrations of pigments and the antioxidant a-tocopherol were analysed (Section

3.2.2). Here, the different growth forms of divaricate and non-divaricate shrubs were

evaluated for their different responses in the concentrations of photoprotective

pigments and a-tocopherol. Due to their different growth forms and leaf sizes, I

hypothesised that divaricate leaves have lower concentrations of photoprotective

pigments and a-tocopherol than their non-divaricate congeners under sun light and

well-watered conditions. The shade treatment should lower these concentrations in

both growth forms, but I hypothesised to see a bigger decrease in non-divaricate

leaves as they have not been shaded or ‘self-shaded’ in the other light treatment. As

argued before, mild drought increases the concentrations of photoprotective pigments

and a-tocopherol and therefore an increase should be seen in all plants. As previously

described, divaricate shrubs are thought to use water more conservatively and

therefore, increases in the concentrations of photoprotective pigments and a-

tocopherol were predicted to be less prominent than in non-divaricate leaves.

3.2.2    Materials and Methods

Up to 500 mg of fresh leaf material was collected during the summer from plants at

the Cass field site (2001/02, 2002/03) and the glasshouse (2002, 2003). The material

was weighed and immediately frozen in liquid nitrogen, and stored at -80°C until the

analysis was carried out.

Each sample was initially ground in liquid nitrogen, followed by grinding in 100%

acetonitrile. The resulting solution was quantitatively transferred to a centrifuge tube

and spun at 5000 g for 6 min. Two ml of supernatant were passed through a 0.45 µm

syringe filter into HPLC injection vials (Bungard et al., 1997). All samples were

analysed within six hours of extraction in a Reverse Phase-HPLC system from Waters

(Milford, MA, USA), equipped with a Waters 996 photodiode array detector, a
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Waters 474 fluorescence detector  and an autosampler. The HPLC system contained a

C18 radial compression column (Waters Nova-Pak, 4 µm particle size; 8 mm internal

diameter x 100 mm length) preceded by a Waters Nova-Pak C18 guard column. Both

were equilibrated prior to injection with 100% solvent A (acetonitrile-methanol

85:15).

The analysis cycle, with a sample injection volume of 40 µl, consisted of an initial run

of 100% solvent A for 18 minutes to elute all xanthophylls. Following this was a 1

minute transition to solvent B (methanol-ethyl acetate 68:32), which was then run for

3.5 minutes to elute chlorophylls a and b. A 3 minute transition to solvent C (ethyl

acetate-hexane 50:50) was followed by 0.5 minutes of solvent C to elute ß-carotene. A

final concentration change to solvent A was done over 2.5 minutes and solvent A run

for another 2 minutes before the next run was automatically initiated. The solvent

flow was 1.0 ml min-1 for solvent A and B and 2.0 ml min-1 for solvent C (Bungard et

al., 1997).

Pigment retention times were determined by absorption at 445 nm (HPLC software:

Millenium® Software version 2.00, Millipore, Milford, Massachusetts, USA).

Separated pigments were identified by their retention times and spectra by comparing

with spectra of pigment standards as in Bungard et al. (1997, 1999). The de-

epoxidation status was calculated as shown in Bungard et al. (1997) as

[(antheraxanthin + zeaxanthin) / (violaxanthin + antheraxanthin + zeaxanthin)*100].

a-Tocopherol was quantified in the same samples extracted for pigment analysis using

the same HPLC separation technique. a-Tocopherol was detected after HPLC

separation using a fluorometer. The fluorescence detector offers up to 10- fold more

sensitive detection of a-tocopherol in the samples than the PDA detector would

achieve (Garcia-Plazaola & Becerril, 1999). An excitation wavelength of 295 nm and

an emission wavelength of 325 nm produced a retention time of 21 min for a-

tocopherol. The recalculation for each sample concentration of a-tocopherol was

performed via a calibration curve produced from a serial dilution of a-tocopherol

stock (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) [Hansen, 2002 and

2003].
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Technical difficulties

The extraction of all samples was performed using acetonitrile rather than acetone as

described in the literature (Hansen et al., 2002 and 2003). Using acetonitrile is more

work intensive, as acetone helps to break membranes and solubilises pigments. In this

case however, difficulties with clear peaks and resolution of initial acetone extracts

were experienced. The usage of acetonitrile was able to overcome these difficulties

without any further changes in the method necessary. Further technical difficulties

were experienced with the quality of de-gasing solutions, automated sample

transportation, flow rate adjustment and the consistency of the light source. As the

HPLC is set up to shut itself off when problems occur, many samples were lost when

the cooling of the sample chamber stopped following internal errors.

3.2.3    Results

All results of the pigment and a-tocopherol analysis were divided by total chlorophyll

content, leaf area and fresh weight basis. Calculating the pigment and a-tocopherol

concentrations on unit leaf area and unit fresh weight depends on the anatomical-

morphological differences of the divaricate and non-divaricate leaves, whereas the

relation to total chlorophyll is independent of it. These three measures were included

to allow comparison to the literature. Due to the high number of ANOVA tables, the

statistical results were placed in the Appendix Section A2, but key findings are in the

paragraphs below. The statistical results for the pigment and a-tocopherol analysis for

the field experiment were shown in Table A2.4 to A2.12 on a total chlorophyll basis,

in Table A2.13 to A2.24 on a leaf area basis and in Table A2.25 to A2.36 on a fresh

weight basis. The glasshouse results were displayed in Table A2.37 to A2.44 on a

total chlorophyll basis, in Table A2.45 to A2.55 on a leaf area basis and in Table

A2.56 to A2.66 on a fresh weight basis.

Numerous instrumentation issues (Section 3.2.2) marked the process of analysing the

pigment and antioxidant concentrations of samples from the field and the glasshouse.

As a result, many samples were lost and the statistical analyses were difficult. The

following graphs show the mean results, missing data were marked with ‘NA’ and

columns, which resulted from one data point only, were marked with ‘#’.
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Cass 2002/03

Samples for the analysis of pigment and antioxidant concentrations of divaricate

leaves grown under field conditions were taken in summer 2001/02 and 2002/03

(Section 2.1.2 and 3.2.2). Due to instrumentation issues (Section 3.2.2), the analysis

of samples taken from the field in 2001/02 was impossible and therefore data are

presented for the 2002/03 season only.

Pigment Concentrations

The de-epoxidation state symbolizes the ratio of epoxidised to de-epoxidised

xanthophylls of the violaxanthin cycle (Section 3.2.2). Significant effects for different

light levels were demonstrated for antheraxanthin and zeaxanthin on a total

chlorophyll basis as well as for pigments in the de-epoxidation state (Table A2.5 to

A2.7), confirming my hypothesis of higher concentrations of both photoprotective

pigments in leaves grown under high light conditions. The graphs for violaxanthin,

antheraxanthin and zeaxanthin per total chlorophyll (Figure 3.2.1) show higher

concentrations of those pigments for Corokia under exposed and natural light

conditions. Violaxanthin per total chlorophyll, leaf area basis and unit fresh weight

was significantly higher in plants in the streambed than on the N-facing slope. The

graph for the pigments in the de-epoxidation state shows that shaded plants have

significantly lower values (Figure 3.2.2) as hypothesised in Section 3.2.1. Calculating

the same pigments on a leaf area basis, significantly higher amounts of antheraxanthin

and zeaxanthin were found for plants growing exposed to light and under natural light

(Table A2.14 and A2.15 and Figure 3.2.3). The amounts of violaxanthin,

antheraxanthin and zeaxanthin per unit fresh weight did not show as many significant

treatment effects as when calculated on a total chlorophyll content or leaf area basis

(Table A2.25 to A2.27and Figure 3.2.4).

Violaxanthin concentrations per unit total chlorophyll were highest in exposed leaves

of Corokia, grown in a streambed. The lowest amounts were found in leaves of

Corokia grown under natural light on the N-facing slope (Figure 3.2.1a). Water

availability, genus and the light level* water availability interaction demonstrated

significant effects on the amounts of violaxanthin per unit total chlorophyll (Table

A2.4). The graph 3.2.3a revealed high amounts of violaxanthin per leaf area in
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Corokias, growing in the streambed and with exposed leaves as well as leaves under

natural light. Even in the shade, the concentrations were still high. Genus exhibited

significant effects on violaxanthin concentrations per unit leaf area (Table A2.13).

Violaxanthin per unit leaf area also displayed significant effects for the interaction of

light level* water availability* genus. Significantly higher values of violaxanthin per

unit fresh weight (Table A2.25) were found in Corokia under shaded conditions in the

streambed. Differing water availability results in significant effects on the amount of

violaxanthin per unit fresh weight found in the two genera (Figure 3.2.4).

Antheraxanthin per unit total chlorophyll (Figure 3.2.1b) also reached the highest

values in Corokia with exposed interior leaves, but these were growing on the N-

facing slope. Table A2.5 displayed the significant effects of light level on the

antheraxanhtin concentration per unit total chlorophyll. On a leaf area basis,

antheraxanthin concentrations were higher for all plants with exposed interior leaves

and under natural light (Figure 3.2.3b), marking a significant effect of light level

(Table A2.14). Comparison on a fresh weight basis did not reveal any significant

effects (Table A2.26; Figure 3.2.4b).

The amounts of zeaxanthin per total chlorophyll were generally high (Figure 3.2.1c),

except for plants in shaded conditions. Significantly higher concentrations were found

for Coprosma growing in the streambed. Antheraxanthin, zeaxanthin and the

pigments in the de-epoxidation state showed significant effects for the light level

when referred on total chlorophyll basis (Table A2.5 to A2.7). Corokia and Coprosma

had high amounts of de-epoxidated xanthophylls, when growing under natural light or

when the interior was exposed to full sunlight. Shaded plants expressed lower

amounts of de-epoxidised xanthophylls regardless of the water supply for the plants.

Corokia leaves showed very high concentrations of zeaxanthin, except under shaded

conditions (Figure 3.2.1c, 3.2.3c and 3.2.4c). Coprosma had only very high

concentrations of zeaxanthin for interior leaves when exposed to exterior radiation

loads. Light level had a significant effect on zeaxanthin per unit leaf area and per unit

fresh weight (Table A2.15 and A2.27). Coprosma had the highest zeaxanthin

concentration per fresh weight when growing in the streambed and under exposed

conditions and natural light (Figure 3.2.4c).
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Figure 3.2.1: Concentrations of (a) violaxanthin, (b) antheraxanthin and (c) zeaxanthin per unit total
chlorophyll for Corokia cotoneaster and Coprosma propinqua in 2002/03 at Cass, grown in a
streambed and on a N-facing slope and under 3 different light treatments (EL = inner canopy exposed,
HL = sun light, LL = shaded) [n = 4].
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Figure 3.2.2: Concentration of pigments in the de-epoxidation state for Corokia cotoneaster and
Coprosma propinqua in 2002/03 at Cass, grown in a streambed and on an N-facing slope and under 3
different light treatments (EL = inner canopy exposed, HL = sun light, LL = shaded) [n = 4].
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Figure 3.2.3: Concentrations of (a) violaxanthin, (b) antheraxanthin and (c) zeaxanthin per unit leaf
area for Corokia cotoneaster and Coprosma propinqua in 2002/03 at Cass, grown in a streambed and
on a N-facing slope and under 3 different light treatments (EL = inner canopy exposed, HL = sun light,
LL = shaded) [n = 4].
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Neoxanthin per leaf area was significantly higher in Coprosma, with significant

effects also found for the interaction of light level* water availability* genus (Table

A2.16). The significant effects for genus and for the interaction of light level* water

availability* genus was also found for the correlation of neoxanthin per fresh weight

(Table A2.28). For this reference a significant difference between the given light

treatments was also shown. Lutein per unit total chlorophyll showed significantly

higher amounts for unshaded plants (Table A2.9). When compared on a leaf area and

fresh weight basis, lutein was significantly different between the two genera (Table

A2.17 and A2.29).

The relation of chlorophyll a, chlorophyll b and chlorophyll a+b to the leaf area

showed significantly different adaptations between the different light treatments

(Table A2.18 to A2.20 and Figure 3.2.5). Chlorophyll a per unit leaf area was also

significantly different between the two genera (Table A2.18). Concentrations of

chlorophyll a and chlorophyll b per unit leaf area were lower for plants growing on

the N-facing slope than for plants in the streambed, in particular for plants under

natural light and with exposed interiors (Figure 3.2.5a and 3.2.5b). When compared

on a fresh weight basis chlorophyll b and chlorophyll a+b showed significant

responses to the three applied light treatments (Table A2.31 and A2.32). For

chlorophyll a, chlorophyll b and chlorophyll a+b the interaction of light level* water

availability* genus was significant (Table A2.30 to A2.32). The ratio of chlorophyll a

to b was significantly different for genus (Table A2.33 and Figure 3.2.6). The graphs

for chlorophyll a and chlorophyll b per fresh weight (Figure 3.2.7) show the lowest

values for plants grown under shading and drought conditions. Chlorophyll a and

chlorophyll b concentration per fresh weight were high for Corokia plants growing in

the streambed, exposed to exterior light or under natural light as well as for shaded

plants on the N-facing slope. Coprosma had the highest concentrations of chlorophyll

a and chlorophyll b in the shade, when grown in the streambed.
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Leaves of the genera Corokia and Coprosma differed significantly in their ß-carotene

concentrations per unit total chlorophyll (Table A2.10). The highest ß-carotene per

total chlorophyll concentrations were found in plants with exposed interiors in the

streambed (Figure 3.2.8). Exposed Corokia leaves had the lowest ß-carotene per total

chlorophyll concentration, when grown on the N-facing slope. The amount of light

penetrating the leaf and the water availability to the plants significantly influenced the

amounts of ß-carotene in the leaves. On a leaf area basis ß-carotene displayed

significant responses to light treatment and genus (Table A2.22). Concentrations of ß-

carotene per leaf area were also higher for plants growing in the streambed, but

especially high for the Corokia plants underneath the shade cloth. The amount of ß-

carotene per unit fresh weight differed significantly for the two genera (Table A2.34).

In contrast to my hypothesis that the concentration of photoprotective pigments would

be low in the shade and in divaricate leaves, Corokia and Coprosma showed high

concentrations of ß-carotene in the shade, especially when growing in the streambed.

Corokia also had high values for plants under natural light and growing in the

streambed. In contrast, Coprosma leaves displayed the highest concentration in

exposed leaves and growing in the streambed.
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a-Tocopherol Analysis

Significant effects of genus were shown by relating the a-tocopherol samples of

2001/02 and 2002/03 to total chlorophyll as well as leaf area and fresh weight (Table

A2.11 and A2.12; A2.23 and A2.24; A2.35 and A2.36). Water availability also had a

significant effect on samples taken in 2002/03 for a-tocopherol on a leaf area and a

fresh weight basis. Comparing the graphs for a-tocopherol in 2001/02 and 2002/03

(Figure 3.2.9 and 3.2.10), the plants show the same patterns of response in both years

when referred on a fresh weight basis (Figure 3.2.9c and 3.2.10c). When compared on

total chlorophyll basis (Figure 3.2.9a and 3.2.10a) and on leaf area basis (Figure

3.2.9b and 3.2.10b), the response was reversed in particular for plants with exposed

canopies. Here, Corokia in the streambed had higher concentrations of a-tocopherol

than Coprosma in 2001/02. All other data showed the highest a-tocopherol

concentrations in Coprosma, where it remained high even for leaves under the shade

cloth.



95

0

0.2

0.4

0.6

0.8

1

[m
m

ol
 m

ol-1
]

streambed slope
a

0

5

10

15

[µ
m

o
l m

-2
]

b

0

100

200

300

400

500

600

EL HL LL EL HL LL

[n
m

ol
 g-1

]

c

C. cotoneaster C. propinqua

Figure 3.2.9: Concentrations of a-tocopherol (a) per unit total chlorophyll, (b) per unit leaf area and (c)
per unit fresh weight for Corokia cotoneaster and Coprosma propinqua in 2001/02 at Cass, grown in a
streambed and on a N-facing slope and under 3 different light treatments (EL = inner canopy exposed,
HL = sun light, LL = shaded) [n = 4].



96

0.0

0.2

0.4

0.6

0.8

1.0

[m
m

ol
 m

ol-1
]

streambed slope
a

0

5

10

15

[µ
m

ol
 m

-2
]

b

0

100

200

300

400

500

600

EL HL LL EL HL LL

[n
m

ol
 g-1

]

C. cotoneaster C. propinqua

Figure 3.2.10: Concentrations of a-tocopherol (a) per unit total chlorophyll, (b) per unit leaf area and
(c) per unit fresh weight for Corokia cotoneaster and Coprosma propinqua in 2002/03 at Cass, grown
in a streambed and on a N-facing slope and under 3 different light treatments (EL = inner canopy
exposed, HL = sun light, LL = shaded) [n = 4].



97

Glasshouse 2002

In 2002 samples for pigment and antioxidant analysis were taken from divaricate and

non-divaricate species, grown under different light and water treatments (Section

2.1.3). Due to the difficulties experienced during the HPLC analysis (Section 3.2.2),

there were no usable results for the divaricate Corokia and Coprosma leaves grown

under well-watered conditions in the shade. The missing data are marked as ‘NA’.

Pigment Compositions

The amounts of the photo-protective pigments of the xanthophyll cycle, expressed on

a total chlorophyll basis, were not significantly different in any given treatments or for

any species in the glasshouse trial of 2002 (Table A2.37 to A2.39). Also, the pigments

in the de-epoxidated state did not differ significantly (Table A2.40). This is in contrast

to my hypotheses that divaricate leaves would have lower concentration of de-

epoxidised pigments than non-divaricate leaves and that leaves under high light would

have higher concentrations of xanthophylls cycle pigments than shaded leaves.

Violaxanthin per unit total chlorophyll showed values in a close range of 20 to 40

mmol mol-1 for most of the samples (Figure 3.2.11a). The values for antheraxanthin

and zeaxanthin per unit total chlorophyll (Figure 3.2.11b and 3.2.11c) were generally

very low, only non-divaricate Coprosma leaves in high light had highly increased

amounts of both pigments.

By examining the violaxanthin concentration per unit leaf area, significant differences

for the different water availabilities, genus, habits and the interaction of genus* habit

were identified (Table A2.45). In Figure 3.2.14a, the divaricate Coprosma leaves

reached the highest violaxanthin concentrations, in particular under water-stressed

conditions. Here, C. propinqua had nearly eight times higher values than C.

cotoneaster. All Corokia plants had similar values, but divaricates had the highest

amounts in drought and shaded conditions. The non-divaricate habit appeared to have

slightly higher values when the plants were well- watered. The concentrations of

antheraxanthin per unit leaf area were significantly different between Corokia and

Coprosma (Table A2.46). Coprosma plants reach higher amounts, water-stressed

divaricates particularly (Figure 3.2.12b). Zeaxanthin concentrations were not

significantly different in this trial (Table A2.47, Figure 3.2.14c).
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Violaxanthin on a fresh weight basis showed statistically significant effects on the

interaction of light level* water availability, light level* habit and genus* habit effects

(Table A2.56). The highest values were observed for the non-divaricate Coprosma

plants under low light and water-stressed conditions (Figure 3.2.13a). Divaricate

Corokias generally had higher concentrations of violaxanthin per unit fresh weight

than the non-divaricate Corokias, especially under high light loads. Neither

antheraxanthin nor zeaxanthin displayed significant differences on a fresh weight

basis (Table A2.57 and A2.58).

Neoxanthin did not differ significantly between treatments when compared on a total

chlorophyll, leaf area or fresh weight basis (Table A2.41, A2.48 and A2.59). The only

significant effects for pigment concentrations per unit total chlorophyll in the

glasshouse trial were found for concentrations of lutein (Table A2.42) for water

availability, genus and habit. Lutein per unit leaf area was significantly different for

the Corokia versus Coprosma genus and divaricate versus non-divaricate habit as well

as their interaction term (Table A2.49). The divaricate Coprosma leaves had higher

concentrations of lutein per unit leaf area (not shown). Lutein concentrations

expressed on a fresh weight basis showed statistically significant effects for light

level* water availability, light level* habit and genus* habit interactions (Table

A2.60). In the shade and under drought conditions, C. robusta reached the highest

concentrations of lutein per unit fresh weight (Figure 3.2.14).

When compared on a leaf area basis, pigment concentrations displayed significant

effects for genus, habit and the genus* habit interaction for chlorophyll a, chlorophyll

b, chlorophyll a+b (Table A2.50 to A2.52). Significant effects of genus were also

found for the chlorophyll a:b ratio (Table A2.53). Graphs for chlorophyll a,

chlorophyll b and chlorophyll a+b per unit leaf area showed high amounts of those

pigments in leaves of divaricate Coprosma plants (Figure 3.2.15). Under shade and

drought stressed conditions, divaricate Corokia leaves also showed increased amounts

of chlorophyll a and chlorophyll b. The chlorophyll a:b ratio was around 2.7 in

Coprosma and around 2.3 in Corokia (Figure 3.2.16). The lowest chlorophyll a:b ratio

for divaricates was expressed by shaded Corokias in drought conditions. Non-

divaricate Corokias had the lowest chlorophyll a:b ratio under high and natural light

and well-watered conditions. Chlorophyll a, chlorophyll b and chlorophyll a+b



101

0

50

100

150

200

[n
m

ol
 g

-1
]

Div Non-Div a

NA NA

#

# #

0

5

10

15

20

25

30

[n
m

ol
 g

-1
]

b

NA NA#
#

#

0

2

4

6

8

10

12

14

16

well-
watered

water-
stressed

well-
watered

water-
stressed

well-
watered

water-
stressed

well-
watered

water-
stressed

[n
m

ol
 g

-1
]

HL LL HL LL

Corok ia Coprosma

c

NA NA

#

# #
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concentrations on a fresh weight basis showed significant effects for the interactions

of light level* habit and genus* habit (Table A2.61 to A2.63). The non-divaricate

Coprosma had its highest values for chlorophyll a, chlorophyll b and chlorophyll a+b

per fresh weight in shaded and drought conditions (Figure 3.2.17).

The concentration of ß-carotene per unit total chlorophyll was almost significant for

the different water treatments given (Table A2.43). It was significantly different

between the two genera. Coprosma had the higher concentrations of ß-carotene per

unit total chlorophyll (Figure 3.2.18a). Divaricate Coprosma leaves displayed the

highest values in shaded and well-watered conditions, whereas the non-divaricate

Coprosma leaves expressed the highest values under high light and sufficient water

supply. Genus, habit and the interaction of genus* habit effects were significant for

concentrations of ß-carotene per unit leaf area (Table A2.54). Divaricate Coprosma

leaves had high amounts of this photo-protective pigment (Figure 3.2.18b).

Significant effects on concentrations of ß-carotene per unit fresh weight (Table

A2.65) were found for the interactions of light level* water availability, light level*

habit and genus* habit. The interaction of water availability* genus* habit also

influenced ß-carotene per unit fresh weight. Overall, C. robusta had its highest values

of ß-carotene per fresh weight under shaded and water stressed conditions
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(Figure 3.2.18c). The non-divaricate C. robusta showed the highest ß-carotene per

fresh weight concentrations in the shade and under drought.

a-Tocopherol Concentrations

Leaf samples used to estimate the a-tocopherol content of all plants grown in the

glasshouse were taken in the late afternoons of summer in 2002. Habit showed

significant effects on a-tocopherol content per unit total chlorophyll, with light level

close to significant (Table A2.44). In all light and watering treatments, divaricates had

higher concentrations of a-tocopherol per unit total chlorophyll (Figure 3.2.19a), in

contrast to my hypothesis that non-divaricate leaves would have higher a-tocopherol

concentrations than divaricate leaves. On a leaf area basis, a-tocopherol was

significantly affected by light level, water availability, genus and habit (Table A2.55).

The difference between the amounts of a-tocopherol per unit leaf area for divaricates

versus non-divaricates was particularly prominent (Figure 3.2.19). Coprosma

propinqua had the highest values overall. a-tocopherol per unit fresh weight was

significantly affected
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by water availability (Table A2.66). Divaricates and non-divaricates possessed higher

a-tocopherol concentrations per unit fresh weight under well-watered conditions than

under drought-stressed ones (Figure 3.2.19c). Only Coprosma robusta plants

expressed rather high amount of a-tocopherol per fresh weight when grown in high

light and under water-stress.

Summary of Results

Summarising the field trial and experimental set up, the experimental plants possessed

higher concentrations of photoprotective pigments under high light conditions than in

the shade. Also, drier habitats increased the concentrations of photoprotective

pigments. In contrast to my hypothesis, divaricate leaves had at least similar

concentrations of photoprotective pigments and a-tocopherol as non-divaricate leaves.

Only antheraxanthin and zeaxanthin concentrations were significantly higher in non-

divaricate leaves. The pigment concentrations found in the field were higher than the

concentrations found in the glasshouse, in particular for de-epoxidised xanthophylls.

In the field experiment, pigment concentrations of Corokia and Coprosma were

compared to sites of good and poor water availabilities and different light levels

imposed in them (Section 2.1.2). As hypothesised, the installed light treatment had

significant effects on the concentration of antheraxanthin, zeaxanthin, pigments in the

de-epoxidation state as well as on chlorophyll a and chlorophyll b. All pigments of the

xanthophyll cycle reached their highest concentrations in leaves grown in natural light

or when interior leaves were exposed to exterior radiation loads. The naturally

existing difference in water availability had significant effects only on the

concentrations of violaxanthin and a-tocopherol, contrary to my hypothesis (Section

3.2.1). A significant effect of genus was found on nearly all pigments. The ratio of

chlorophyll a:b was significantly different between Corokia and Coprosma.

Concentrations of ß-carotene were increased in exposed leaves, but also in plants of

the streambed. a-tocopherol was also higher in plants growing in the streambed

compared to plants grown on the N-facing slope when calculated on unit total

chlorophyll or unit fresh weight. When displayed on leaf area basis, the leaves of the

N-facing slope expressed higher a-tocopherol values than the leaves from plants of
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the streambed. A significant effect of genus was found for a-tocopherol by reference

on total chlorophyll, leaf area and fresh weight basis.

Experimental plants were also grown under different water and light treatments in the

glasshouse (Section 2.1.3). Significant effects of light level were only determined for

the content of a-tocopherol. The water availability showed significant effects on the

concentrations of ß-carotene per unit total chlorophyll and a-tocopherol per unit leaf

area and fresh weight only. Most pigment concentrations and the content of a-

tocopherol (calculated on unit leaf area) were significantly affected by genus and

habit as well as the interaction of genus* habit. The interaction of light level* water

availability significantly influenced the concentrations of violaxanthin, lutein and ß-

carotene when calculated on unit fresh weight. The light level* habit interaction had

significant effects on the concentrations of violaxanthin, lutein, chlorophyll a,

chlorophyll b (calculated on unit fresh weight) and a-tocopherol (per unit leaf area).

Antheraxanthin displayed its highest concentrations in non-divaricate leaves in high

light. Divaricate leaves had higher concentrations of lutein, shaded Coprosma leaves

showed the highest values. The concentrations of chlorophyll a and chlorophyll b

were highest in divaricate leaves of Coprosma. The ratio of chlorophyll a:b expressed

the lowest values in shaded Corokia leaves under water-stressed conditions. Per unit

fresh weight, Corokia cotoneaster possessed the highest concentrations of ß-carotene

in high light and under drought, whereas Coprosma robusta had its highest

concentrations in shaded and well-watered conditions. a-tocopherol concentrations

were greatest in divaricate leaves, but also showed increases in high light and in well-

watered plants.
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3.2.4    Discussion

During the summer months, divaricate and non-divaricate plants were exposed to a

wide variety of stress factors. This research investigated the combination of high light

loads and drought stress and the biochemical response of leaves of two genera which

both express different growth forms in closely related species. Response patterns of

pigment and a-tocopherol concentrations towards different light and water

availabilities were examined for two divaricate species in an alpine field experiment

(Section 2.1.2), and for divaricate and non-divaricate leaves under experimental

conditions (Section 2.1.3). On the basis of their unique growth forms, divaricate

leaves are seen as ‘self-shaded’, whereas their non-divaricate congeners receive high

radiation loads in ‘unprotected’ leaves. In Section 3.2.1, I hypothesised that divaricate

leaves would display lower concentrations of photoprotective pigments and a-

tocopherol than their non-divaricate congeners due to their unique growth form. The

divaricate habit was hypothesised to provide shade to interior leaves and therefore

lower the stress of high light and drought to these leaves.

Result Evaluation

During the summer months leaf samples from the field trial and the glasshouse

experiment were taken from all divaricates and non-divaricates in the late afternoon.

In the field experiment, the light treatment had significant effects on antheraxanthin,

zeaxanthin, pigments in the de-epoxidation state, chlorophyll a and chlorophyll b.

Interestingly, the light treatment applied to the glasshouse plants had significant

effects only on the content of a-tocopherol, but not on the photoprotective pigments.

That result contrasts my hypothesis and the results found in the literature (Section

3.2.1). Concentrations of these pigments differ significantly between shade and sun

leaves (Lichtenthaler et al., 1981). Photoprotective pigments should have appeared in

higher concentrations in high light situations such as in the sunny positions in the

glasshouse as well as in sun light positions and in exposed leaves in the field.

Additional drought stress was thought to increase the concentrations of the

xanthophyll cycle pigments and a-tocopherol in particular, because of the

hypothesised increase in contents of reactive oxygen species in the chloroplasts of

these stressed plants. As discussed before (Section 2.2.4 and 3.1.4), it is possible that

the shading in the glasshouse was not sufficient enough to embrace big differences in
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the physiological response of divaricate or non-divaricate leaves. The light level*

habit interaction was significantly affecting violaxanthin, chlorophyll a, chlorophyll b

and a-tocopherol concentrations in plants in the glasshouse.

The different water availabilities of the streambed and N-facing slope in the field

experiment affected the concentrations of violaxanthin and a-tocopherol significantly.

In the glasshouse experiment, the concentrations of ß-carotene and a-tocopherol were

significantly affected by the water treatments. Garcia-Plazaola & Becerril (2000)

compared beech seedlings (Fagus sylvatica L.) from different regions and their ability

to adapt to water limited habitats. Initially, the differences in pigment and antioxidant

concentrations were significant, but diminished with the age of the leaves. Cotyledons

expressed the highest concentrations of antioxidants and de-epoxidised xanthophylls,

implying increased requirements for protection against photo-oxidative damage.

Short-term experiments by Tausz et al. (2001) showed decreases in maximal stomatal

conductance in Pinus canarienis seedlings in mild drought conditions, when

compared with irrigated plants. Higher concentrations of de-epoxidised xanthophylls

were found in unshaded needles of seedlings under drought conditions. ß-carotene and

a-tocopherol concentrations did not differ with drought exposure. In this present study

species displayed a response of ß-carotene as photoprotective pigment and a-

tocopherol as antioxidant towards increasing light and drought stress. In particular,

drier habitats (streambed, see Section 2.2.4) increase the amount of photoprotective

pigments such as xanthophyll cycle pigments and ß-carotene in leaves in the field

experiment. Peñuelas et al. (2004) have also pointed to the significance of

photoprotective mechanisms for plants growing under drought. They determined

amounts of photoprotective and antioxidative substances in irrigated and non-irrigated

plants. There was no photo- or oxidative damage found (Peñuelas et al., 2004), even

with a decrease of the net photosynthetic rate and stomatal conductance by 90%.

Amounts of zeaxanthin and a-tocopherol increased threefold, but ß-carotene

decreased to 50%. There was no significant effect between irrigated and non-irrigated

plants in respect to maximum efficiency of photosystem II. Peñuelas et al. (2004)

summarised their findings as photoprotective mechanisms avoiding photoinhibition in

mediterranean plants under summer drought.
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A significant effect of genus was found for most pigments and the a-tocopherol

concentrations in the field and glasshouse trial. Also, in the glasshouse experiment a

significant effect of habit and genus* habit on pigments and a-tocopherol

concentrations was found. I hypothesised to find a difference in pigment

concentrations and a-tocopherol between different habits, because the divaricate and

non-divaricate growth forms were assumed to adapt differently to high light and

drought conditions found in summer months. The divaricate growth form was

hypothesised to provide an advantage by sheltering and ‘self-shading’ its leaves

(Section 3.2.1). In contrast to my hypothesis, ß-carotene and a-tocopherol

concentrations per leaf area basis were significantly higher in divaricate than non-

divaricate leaves. Also in contrast to my hypothesis, the difference in pigment and a-

tocopherol concentrations in the response to the light and water treatments was greater

for each species than for the growth forms.

Technical Difficulties

Unfortunately, large numbers of samples were lost during the HPLC analysis due to

technical difficulties (Section 3.2.2). Choosing the right samples for the analysis of

pigments and antioxidants was difficult for divaricate plants. The largest apparently

functional leaves are situated in the middle of the shrub with a dense branch structure

around. Difficulties arose from the hard to determine leaf age, because divaricate

plants are semi-deciduous. To harvest 0.5g of leaf material for the analysis via the

HPLC system (Section 3.2.2), a substantial number of leaves had to be picked from

each sample site. Therefore, it was not possible to mark new leaves before the

experiment or to distinguish between leaves of different ages in any other practical

way. Altogether, it made it not only challenging to reach leaf samples in sufficient

numbers in a given sample area, but also to judge age and amount of senescence or

photobleaching per sample taken. It is possible that in some samples, and in particular

for samples from the field trial, aged leaves or leaves with unusually high amounts of

stress signs were included. This may partly explain the high variability in the pigment

and antioxidant concentrations.

Öquist et al. (1978) analysed seasonal changes in chlorophyll concentrations in Pinus

sylvestris. They found that chlorophyll was synthesized in spring and reached its

maximum concentrations in summer. During the synthesis of chlorophyll, the
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chlorophyll a:b ratio also increases up to a maximum in summer. In autumn the

chlorophyll decreases and yellowing of the leaves results from relative increases in

carotenoids in the needles. Seasonal changes in pigments of the xanthophyll cycle

were described for Pinus sylvestris by Ottander et al. (1995). Total xanthophyll

concentrations and amounts of de-epoxidised xanthophylls increased from April

through September, but decreased in the winter months. Even fully developed leaves

are influenced by radiation; post-expansional acclimatisation can be induced by

internal and external factors affecting leaves. Considering the seasonal changes in the

pigment compositions it is possible that response of divaricate leaves to light and

drought are blurred due to the collection of leaves of different age.

Tegischer et al. (2002) compared needles of different ages of Norway spruce in

respect to the amounts of photoprotective pigments and antioxidants and their

biomasses. Second year needles contained higher concentrations of chlorophyll, de-

epoxidised xanthophyll cycle pigments and a-tocopherol per biomass as well as per

leaf area than leaves of the recent year. With increasing tree age, the amounts of

chlorophyll and a-tocopherol per leaf area declined, but increased or did not change

when compared on a mass basis. Due to the difficulties to determine the age or stage

of senescence of divaricate leaves, inaccuracies in the determination of pigment and

a-tocopherol concentrations could have occurred and influenced the statistical

analyses in my study. Tausz et al. (1996) characterized losses in chlorophylls,

xanthophylls, and carotenes with increased needle ages. Electron-microscopically

determined reductions in the thylakoid membranes were associated with decreased a-

carotene/ ß-carotene ratios. Higher amounts of neoxanthin were found in needles with

lightened plastoglobuli. As argued above, it was not possible to determine the exact

age of divaricate leaves. In Section 3.2.3, high neoxanthin concentrations per leaf area

basis were shown for divaricate Coprosma leaves in the field and glasshouse trial. A

relationship between decreased chlorophyll, xanthophyll or ß-carotene concentrations

and increased neoxanthin concentrations could not be established due to the

experimental layout of my study. The accurate determination of the time when

divaricate leaves shed would be of advantage for further predictions.
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Response to Light

In summer, along with reduced water availability, higher PFDs and temperatures are

also stress factors for the plants. An increase in photoprotective pigment

concentrations, such as xanthophyll cycle pigments and a decrease in pigments in the

de-epoxidated state show a reaction to excessive PFD. Additionally, an increase in the

concentrations of antioxidants, such as ? -tocopherol, indicates a protective reaction

against high PFDs. Divaricate shrubs, with self-shaded leaves were hypothesised to

not have high concentrations of photoprotective pigments or antioxidants compared to

concentrations found in non-divaricate leaves.

In high light conditions, antheraxanthin and zeaxanthin, developed via de-epoxidase

reaction from violaxanthin, dissipate excessive excitation energy (Lawlor, 1990).

During times of low light availabilities, violaxanthin is recycled (Section 3.2.1). Field-

grown divaricate Corokia and Coprosma leaves displayed an increase in the

concentrations of xanthophyll cycle pigments in response to natural light or high light

exposure. Significant effects of light level were found on antheraxanthin, zeaxanthin

and the pigments in the de-epoxidation state, whereas violaxanthin was significantly

affected by the water availability. Therefore, both divaricate genera expressed forms

of photoprotection via the xanthophyll cycle in response to increasing light, even with

good water supply. The water availability provoked different responses in the

concentrations of the xanthophyll cycle pigments for Corokia versus Coprosma. In

the glasshouse, concentrations of the xanthophyll cycle pigments violaxanthin and

antheraxanthin varied between genera. Violaxanthin concentrations differed in

response to water availability and habit. High light and good water supply decreased

the amounts of violaxanthin found in divaricate and non-divaricate plants. The highest

antheraxanthin concentrations were detected in non-divaricate leaves under high light.

Obviously, in all plants, mechanisms of photoprotection increased under high light

conditions. However, the increase of xanthophyll cycle pigments was higher in non-

divaricate leaves than divaricate leaves under similar growing conditions. This is

consistent with the hypothesis that divaricate leaves have a better protection against

high light loads due to their ‘self-shading’ growth form. In particular when the

pigment concentrations were calculated on a fresh weight basis, non-divaricate leaves

had high concentrations of antheraxanthin and zeaxanthin. By comparison to the
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concentrations found in divaricate leaves in the field, the glasshouse grown non-

divaricate leaves had only very small concentrations of xanthophyll cycle pigments.

Analysis of pigment concentrations of divaricate and non-divaricate plants grown

under natural conditions would provide a better test of my hypothesis.

Normally, concentrations of neoxanthin and lutein do not differ with light exposure,

because both pigments have structural functions (Logan et al., 1998). Yamamoto &

Bassi (1996) argued that lutein is to be found in the minor and bulk LHCs of

photosystem II. In my study some differences (light level, genera) in the

concentrations of neoxanthin and lutein between treatments and divaricate and non-

divaricate leaves were found. So far, it is not clear why the concentrations of

neoxanthin and lutein changed with different light treatments and between the species.

Outer antennae have more neoxanthin in photosystem II and lutein in photosystem I

and II compared to the core complexes (Yamamoto & Bassi, 1996). In Coprosma

leaves, not only high amounts of neoxanthin and lutein but also a higher chlorophyll

a:b ratio were found. This correlation implies increased concentrations of LHC-bound

chlorophyll compared to core complex chlorophyll in Coprosma. Typically, leaves

under shaded conditions have a bigger antennae size, which enhances the efficiency of

photon absorption. In self-shaded leaves it was predicted that more shade

characteristics in the pigment concentrations would be found (Section 3.2.2). An

increase in the antennae size could be interpreted in that respect. In contrast, a higher

chlorophyll a:b ratio was found in sun leaves, whereas shade leaves have lower ratios.

The amount of chlorophyll a and chlorophyll b per chloroplast volume was eminently

higher in shade leaves than in sun leaves. A large amount of the total chlorophyll is

located in the chlorophyll b rich light harvesting complexes (Section 3.2.1).

Therefore, the ratio of chlorophyll a:b should be lower in self-shading leaves than in

sun leaves.

Pigment characteristics also indicate particular structural features of the

photosynthetic apparatus. Garcia-Plazaola et al. (2000) showed acclimation patterns

for Fagus sylvatica L. in a vertical light gradient, where the highest chlorophyll a:b

ratios were reached in sun leaves. In shade leaves, the amount of chlorophyll in the

antennae compared to the reaction centers is higher. Lichtenthaler et al. (1981)

investigated the adaptation of Fagus sylvatica L. leaves in the sun and shade. In their
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study, the ratios for chlorophyll a:b were much higher that those of Garcia-Plazaola et

al. (2000) and in this present study. Neither group described experimental light

conditions and this makes it hard to relate their findings to each other or my study. In

the field, chlorophyll a and chlorophyll b concentrations decreased in water-limited

habitats as well as under natural light conditions and exposed leaves compared to

shaded leaves. Significant effects were displayed on light level and genus. The

glasshouse set up showed concentrations of chlorophyll a and chlorophyll b were

highest in divaricate leaves of Coprosma, significant effects were found on water

availability, genus, habit and genus* habit. Anderson et al. (1988) argued that the

photosynthetic apparatus and therefore the light-harvesting antennae of the

photosystems, components of the electron transport chain and the ATP synthase

change in respond to varying light quality and quantity. These changes affect

thylakoid membrane organisation as well as photosynthetic capacity. Further,

morphological differences between sun- and shade-adapted leaves also occur. Shaded

plants have larger chloroplasts with greater areas of thylakoid membranes and more

thylakoids per granum. Qualitatively, the amount of total chlorophyll associated with

LHC II increases, whereas the number of photosystem I LHC complexes decreases.

With increased sun light, the amount of P680 can increase by up to 70% (Chow &

Anderson, 1987). Chlorophyll b is located in the outer antennae of both photosystems

and is enriched in photosystem II versus photosystem I (Yamamoto & Bassi, 1996). In

my study, higher concentrations of chlorophyll b could be attributed to higher

concentrations of LHC bound chlorophyll to the total chlorophyll in Coprosmas.

The ratio of chlorophyll a:b was significantly affected by genus in the field

experiment. In the glasshouse trial, chlorophyll a:b ratio was also significantly

affected by genus with water-limited and shaded Corokia leaves expressing the lowest

ratios of 2.3. The higher ratios of 2.7 were expressed by C. propinqua. Greater ratios

of chlorophyll a:b are normally expressed in leaves acclimated to high PFDs

compared to leaves grown in shaded positions. Therefore, the hypothesis that ‘self-

shaded’ divaricate leaves would have lower chlorophyll a:b ratios was not supported.

Johnson et al. (1993) could not reveal a close relationship between the chlorophyll a:b

ratio and growth PFD. A higher ratio of photosystem II to photosystem I could

explain the high chlorophyll a:b ratios. As seen above, increased antennae sizes

indicate shade leaf responses, but the increased chlorophyll a:b contradicts these
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responses. Kelly & Ogle (1990) measured a variety of microclimatic factors in

different areas in divaricate shrubs and compared them to the outside climate.

Although most of the measured parameters showed only small differences, some were

significant. Therefore, it is possible that the self-shading of divaricate shrubs gives

these leaves some protection but is not efficient enough to formulate true ‘shade leaf’

characteristics. The pigment composition of Coprosma leaves is similar to that found

in shade- adapted leaves. Higher LHC chlorophyll to core complex chlorophyll

concentrations could explain most of the pigment characteristics of Coprosma versus

Corokia. That suggests a higher contribution of outer antennae chlorophyll to total

chlorophyll in the photosynthetic apparatus of Coprosma leaves, indicating shade

characteristics. Genetically determined differences in the response to light by

chloroplasts can be as important as specific structural features in Coprosma shrubs as

chloroplasts can be exposed to different internal radiation environments in the

mesophyll.

Carotenoids are essential components of pigment-protein-complexes. They have

functions in the light harvesting complexes, are structurally required in the antenna

and reaction centers and protect against photo-oxidation. ß-carotene quenches singulet

oxygen in the core complexes of photosystem II and dissipates excessive excitation

energy (Section 3.2.1). In the field experiment, significant effects of genus and the

interaction of light level* genus on the ß-carotene concentration were found.

Concentrations of ß-carotene were highest in the interior leaves of divaricate plants,

exposed to outside radiation loads, supporting my hypothesis that increased ß-

carotene concentrations should be found in plants under high light stress. Oddly,

higher quantities of ß-carotene were also found in plants grown in the streambed. In

contrast to my hypothesis, the streambed was the site with lower water availability

(Section 2.2.4). In the glasshouse, concentrations of ß-carotene were significantly

affected by water availability and genus. Corokia cotoneaster possessed the highest

concentrations of ß-carotene per unit fresh weight in high light and under drought,

whereas Coprosma robusta expressed the highest concentrations in shaded and well-

watered conditions. Carotenoids have photoprotective functions in the chloroplasts.

Their contents are generally correlated to the amount of excessive excitation energy

that has to be thermally dissipated (Osmond, 1994). High growth PFD results in

higher demands of xanthophyll cycle pigments and ß-carotene to meet the greater
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necessity of photoprotection. In the field and glasshouse trial, divaricate and non-

divaricate leaves displayed an increase in ß-carotene with increasing light exposure as

well as water-limiting conditions. In contrast to my hypothesis (Section 3.2.2) that the

self-shading growth form of divaricate leaves reduces high light loads and therefore

divaricate leaves would have low concentrations of photoprotective pigments,

significantly higher concentrations of ß-carotene per leaf area basis were found in

divaricate leaves than non-divaricate leaves. But, the highest concentrations were

found in exposed divaricate leaves, which lost their self-shading branch layer due to

the experimental set up. Drought stress also increased the amounts of ß-carotene and

therefore photoprotective response in leaves of plants in the glasshouse trial. That

finding is in accord with results of Smirnoff (1993), Pastori et al. (2000) and Pastori

& Foyer (2002), who found high amounts of photoprotective pigments and

antioxidants in plants under water-limited conditions, due to stress-induced higher

accumulations of active oxygen species.

Demmig-Adams (1994) investigated pigment compositions of sun-loving and shade-

tolerant species under their natural light environment. The sun-exposed species had

higher concentrations of carotenoids and therefore thermal dissipation. By reversing

the light conditions, shade-acclimated plants adapted to the new PFD conditions with

increased concentrations of xanthophyll cycle pigments, in particular antheraxanthin

and zeaxanthin. Xanthophyll cycle pigments and ß-carotene concentrations increase

with increasing light exposure (Grace & Logan, 1996). The present study supports

their photoprotective role in Corokia and Coprosma species under different light

treatments. The relation of de-epoxidated xanthophylls to the sum of the xanthophyll

cycle pigments, the de-epoxidation state, shows higher values in sun-exposed leaves

than in shaded leaves. A high epoxidation state shows that the photon absorption is

higher than energy conversion in the dark reactions (Lawlor, 1990).

Response of Antioxidants to Light

a-Tocopherol is not only stabilizing membranes biophysically by binding poly-

unsaturated fatty acids in the membranes, but also protects membranes against singlet

oxygen and lipid peroxidation (Section 3.2.1). Expression of antioxidant systems

generally increases with the light consumption (Logan et al., 1998). The highest

concentrations of hydrophilic and lipophilic antioxidants are found in chloroplasts,
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where they prevent damage to structural components and membranes by active

oxygen species (Tappel, 1962 and Kunert & Ederer, 1985). This correlates with the

function of dissipating excessive excitation energy. For plants under similar radiation

loads, the amount of antioxidants also depends on other external stress factors

(Garcia-Plazaola et al., 1999). Mehlhorn et al. (1986) showed increased antioxidant

concentrations for conifers under elevated ozone and sulphur dioxide treatments/

concentrations. The concentration of a-tocopherol per total chlorophyll increases with

increased light exposure, which reflected an increased load of active oxygen species

(Garcia-Plazaola et al., 2000). In my study, the two genera responded to given

treatments in the field but displayed different a-tocopherol concentrations. A clear

difference was seen between plants growing in the streambed and plants grown on the

N-facing slope. In contrast to my hypothesis that water- limited plants on the N-facing

slope would show increased antioxidant concentrations, the two genera had high

amounts of a-tocopherol in the streambed, where the water supply was hypothesised

not to be limited, but where more negative shoot water potentials were found. This

effect of low water potentials was even more pronounced in the lower rainfall year

(2002/03). The plants grown in the glasshouse expressed high concentrations of a-

tocopherol in high light, but also under good water supply. The highest concentrations

were found in divaricate leaves. Significant effects of light level, water availability,

genus and habit in particular were found in the glasshouse trial when related on leaf

area basis. Overall, divaricate and non-divaricate leaves both showed increased

antioxidant concentrations under stress conditions. The difference between the genera

was more pronounced than between divaricate and non-divaricate habits.

As argued in other studies (Hansen et al., 2003), a-tocopherol is not only an

antioxidant, but also accumulates in the cell. Kunert & Ederer (1985) showed

increased a-tocopherol concentrations in Fagus sylvatica and Abies alba with

increasing age of needles and leaves. a-Tocopherol is stored in plastoglobuli of the

chloroplast stroma. The large storage pools can sometimes over rite seasonal changes.

In the case of the semi-deciduous divaricate leaves, the higher concentrations could

reflect an accumulation rather than an active antioxidant defence mechanism.

Lichtenthaler et al. (1981) showed that a-tocopherol accumulation could result from

storing excessive prenylquinones, mainly a-tocopherol and reduced plastochinones, in

plastoglobuli in aged leaves. Ontogenetically, old leaves sometimes exhibit relatively
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high amounts of a-tocopherol. Therefore, a photo-protective reaction or

acclimatisation to stress factors via a-tocopherol concentration can be masked by

these stored amounts in the leaves. Only small concentrations of a-tocopherol could

be localised in thylakoids. Whether or not the stored a-tocopherol is involved in

photoprotective reactions against reactive oxygen species in leaf cells is not always

clear. More research is necessary to identify the reasons for a-tocopherol

accumulation in mature leaves. I did not investigate the component of the a-

tocopherol occurrence, but used the whole leaf to determine a-tocopherol

concentrations. An extraction method which could divide the plastoglobuli storage

pool from the rest would be desirable.

Ellenberg (1986) found a connection between increased a-tocopherol concentrations

and leaves growing under water shortages. It is usually explained with an increased

shortage of water in sun versus shade leaves, but also with a higher possibility of

understorey trees to face water restrictions relative to mature trees. I found significant

effects of water availability on the a-tocopherol concentration in the field and in the

glasshouse experiment. Unlike Ellenberg, I investigated only interior leaves of

divaricate shrubs, which were supposed to be self-shaded. The non-divaricate shrubs

of the glasshouse trial were equally exposed to sun or shade treatments, they were too

young to develop a crown structure, which could have affected the a-tocopherol

concentration as argued by Ellenberg. As seen in Section 3.2.1, divaricate shrubs are

argued to be developed from understorey trees. I used mature shrubs in the field,

which were not shaded by other vegetation. Therefore, it is not possible to refute or

verify Ellenberg’s argumentation with my study.

Conclusions

An adjustment in the pigment compositions in response to light and water regime was

expressed for all species. The original assumption that the ‘self-shading’ growth form

of divaricates would reduce the amount of required photoprotection, expressed by an

increase of photoprotective operating pigments, was not completely verified. As seen

for the xanthophyll cycle pigments divaricate and non-divaricate leaves showed a

response to increasing light, and in the glasshouse non-divaricate leaves had the

highest concentrations of de-epoxidised pigments. But compared to the concentrations

of de-epoxidised pigments found in divaricate leaves in the field, all concentrations in
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the glasshouse experiment were substantially lower. The increased concentrations of

neoxanthin and lutein indicate increased antennae sizes in divaricate leaves, which

were normally found in shade leaves. The chlorophyll a:b ratio was highest in

divaricate Coprosma leaves and the concentrations of ß-carotene were increased in

divaricate leaves, indicating sun leaf characteristics. The concentrations of the

antioxidant a-tocopherol were high in divaricate leaves, in contrast to their

hypothesised ‘self-shading’ and therefore protecting characteristics. As discussed

above, the ‘self-shading’ of divaricate leaves might not be sufficient to characterise

these leaves as shade leaves and additional photoprotective adaptations to high light

loads might be found. The glasshouse trial also had the disadvantage that all plants

grew in pots. That limits water supply and root growth and could have had influences

on the growth of those shrubs stems and leaves, even when the pot size was regularly

up-sized. Niinemets et al. (2003) and Garcia-Plazaola et al. (2004) found slower

responses in antioxidant and xanthophyll cycle compositions in plants grown under

natural conditions than of plants in the growth chambers. As growth chambers and

glasshouses give the opportunity to optimise experimental set ups, plants are also

removed from a multitude of environmental factors, such as wind, rain or browsing

animals. Therefore, results from experimental set up measurements have to be taken

in careful consideration and might not always reflect the natural response of plants to

the treatment applied.

In my study, all plants under reduced sun light were covered by shade cloth, which

reduced the sun light by 25%. The leaf samples for divaricate shrubs were taken from

the interior of these plants. As argued by McGlone & Webb (1981), the divaricate

growth form provides already kind of ‘self-shading’ for interior leaves. In this context

it is possible that the shading applied in the field and experimental set ups was not

sufficient to evoke drastic changes in the pigment and antioxidant compositions of

divaricate leaves. The exposure of interior leaves of divaricate shrubs in the field

experiment showed clearly that these exposed leaves had increased concentrations of

photoprotective pigments such as the xanthophyll cycle pigments, and here the

pigments in the de-epoxidised state in particular as well as concentrations of ß-

carotene. The a-tocopherol concentrations also increased in these exposed leaves

compared to leaves under natural light or shade cloth.
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The growth form of divaricate shrubs has been hypothesised to be a ‘self-shading’

mechanism for the leaves in the interior of these plants (McGlone & Webb, 1981).

Therefore, it was hypothesised in my study that these leaves would receive less

excessive radiation loads from the summer sun. In contrast, McGlone & Webb (1981)

argued that the evolution of divarivate shrubs started in understorey plants exposed to

shaded conditions. This could be argued in two directions [(1) and (2)].

(1) The divaricate leaves are genetically determined as understorey leaves, which are

already adapted to shade conditions and therefore do not show dramatic changes to

further shading. The concentrations of photoprotection would be low in such shaded

leaves. Anderson et al. (1988) argued that on the forest floor PFD is the sum of two

different components. About 40% of the total PFD is diffuse radiation, primarily of

far red light. Up to 60% of the total PFD is recorded in sun flecks, with high PFDs

over a short time period. Therefore, the photosynthetic apparatus has to adapt to use

the PFD most effectively but also has to resist damaging effects as well as short- and

long-term changes in light quality and quantity (Anderson & Osmond, 1987). Under

low PFDs, light- harvesting is maximised by having the larger PS II photosynthetic

units, less chlorophyll a-proteins and fewer P680 units.

2) The divaricate shrub could be thought of as an already stressed plant, because the

shading canopy trees were removed as a consequence of human arrival in New

Zealand. Consequently, these plants have experienced higher light loads for a long

time. Therefore we would expect them to show low or only minor increases in the

amount of photoprotective pigments or antioxidants after the interior of the field plant

was exposed to the exterior light conditions. Under high light loads the damaging

effects of photoinhibition have to be avoided. Photosystem II antennae are smaller,

more photosystem II reaction centres are accumulated and the photosystem II

photosynthetic units are smaller but more frequent (Anderson & Osmond, 1987).

My field study did find low concentrations of photoprotective pigments and a-

tocopherol in shaded divaricate plants and increased concentrations in exposed

divaricate leaves, whereas the plants under natural light had a high content of

photoprotective pigments and a-tocopherol. The low concentrations of

photoprotective pigments and a-tocopherol in the shaded leaves would support the
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assumption of McGlone & Webb (1981) and classify divaricate shrubs as understorey

plants. The high concentrations of chlorophyll a and chlorophyll b as well as

chlorophyll a:b ratio in all divaricate leaves indicate characteristics opposite of sun

leaves. Also, the rather high concentration of photoprotective pigments and a-

tocopherol in unchanged plants disapproved the understorey origin of divaricate

shrubs. It could be argued that those former shade or understorey plants are in the

process of adapting to human-made high light conditions, but the transition is far from

completion yet due to the short elapsed time in evolutionary terms.
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4. PHOTOSYNTHESIS AND RESPIRATION

Divaricate shrubs were hypothesised to avoid photoinhibition and the costs of

photoprotection via their ‘self-shading’ growth form. Therefore it was hypothesised

that divaricate plants have a higher carbon gain than their non-divaricate congeners,

which lack this adaptation. This part of my study observed the influence of summer

drought and high light loads on the daytime respiration, quantum efficiency and

maximum photosynthetic rate of divaricate and non-divaricate leaves to test this

hypothesis.

4.1 Introduction

The leaves of higher plants have mechanisms to prevent damage from high radiation

loads, such as adaptable amounts of photoprotective pigments and antioxidants as

well as thermal dissipation of excessive excitation energy. High light loads do not

only cause photoinhibition and therefore damage to photosystem II but also reduce

quantum efficiency of leaf photosynthesis (Osmond, 1994). Powles & Björkmann

(1982) showed that the light-saturated rate of photosynthesis is also affected by

photoinhibition. Björkman & Powles (1984) found quenched variable fluorescence

(Fv) as well as reduced electron transport activity in isolated chloroplast membranes in

water stressed Nerium oleander leaves. They showed that inhibited photon yield and

inhibited CO2 uptake were effects of photoinhibition and effects of water stress, which

they found to be at least partly dependent on each other. Ludlow & Powles (1988)

found that water stress induces photoinhibition and therefore reduces growth and

grain yield.

Biomass production of terrestrial plants is a compromise between photosynthesis and

transpiration, often limited by water availability. Photosynthesis is measured by CO2

uptake, production of organic material and oxygen release. CO2 uptake defines the

rate of the Calvin cycle, whereas oxygen release reflects the non-cyclic electron

transport. The respiratory metabolism of a plant, characterized by O2 uptake and CO2

release, interacts with the photosynthetic metabolism. It is dependent on light and

temperature as well as the CO2 concentration of the ambient air. This present study

investigated the gas exchange parameters, such as daytime respiration and
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photosynthetic rates of leaves with contrasting leaf sizes and plant growth forms

grown under different light and water availabilities. Different leaf sizes and therefore

boundary layers should cause different stomatal behaviour, which would be reflected

by differences in the internal CO2 concentrations and finally in different CO2 uptake

and carbon gain under water limitations or high PFDs.

Stomatal Behaviour

The response of photosynthetically active tissue to micro- and macroclimate is often

measured by the response of the stomata to environmental changes. CO2 and water

share the same pathway for their diffusion into and out of the plant tissue via stomata

(Geber & Dawson, 1997). Jarvis (1980) showed a direct relationship between low leaf

water potential and stomatal closure, which also reduces carbon gain (Farquhar &

Sharkey, 1982; Schulze, 1986). A negative feedback response among stomatal

conductance, internal CO2 concentration as well as PFD was found by Raschke et al.

(1978). Raschke (1975) and Wong et al. (1979) hypothesised a constant internal CO2

concentration, maintained by stomatal control and reaction, involving a response to

carbon fixation rate and the metabolites of carbon fixation. Lange et al. (1971) found

changes in stomatal conductance are directly related to changes in atmospheric

humidity, whereas Barrs (1973) could not show a relationship between the two. In a

turgid plant, the size of the stomatal aperture and hence stomatal conductance regulate

the rate of photosynthesis. Water vapour diffusion is linearly related to stomatal

conductance and therefore transpiration is restricted by low stomatal conductance.

The balance between CO2 assimilation and respiratory water loss is defined as water-

use efficiency (Mohr & Schopfer, 1995). Stomatal limitations result in a lower actual

photosynthetic rate. The maximum photosynthetic rate occurs when the stomata are

fully open. Changes in temperature, CO2 concentration and atmospheric water are

sensitively registered and jointly determine stomatal behaviour (Farquhar & Wong,

1984; Ball & Farquhar, 1984; Ball et al., 1987).

Other environmental factors such as light, vapour pressure deficit, molar fraction of

CO2 and air temperature influence stomatal conductance. Lowered water loss under

conditions of low soil moisture and high vapour pressure deficits via stomatal control

is crucial for plant tissue (Mielke et al., 2000). Also, changes in wind speed determine

the boundary layer conditions, energy balance and evapotranspiration of the canopy
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and soil surface. Cheeseman (1991) argued that stomatal patchiness, meaning number

of stomata, their distribution and relative conductance, is one of the most vital

response factors in plants. As shown by Geber & Dawson (1997), genetic lines with

larger leaves showed both higher specific leaf weight due to greater leaf thickness,

and increases in mesophyll resistance. That limits maximum photosynthetic rate by

limiting the CO2 influx to the site of carboxylation, even when those leaves have high

stomatal densities (Nobel, 1991).

The internal water balance or degree of water saturation of plant tissue is determined

by the relative rates of water uptake and transpiration and is more important to plant

growth than the absolute rate of water uptake or transpiration (Kramer, 1937).

Changes in evaporation also alter the leaf temperature through the energy balance of

the leaf and stomatal conductance and vice versa (Farquhar et al., 1980a).

Biochemistry

Photosynthesis of C3 plants is driven by two main regulation mechanisms, electron

transport capacity (Kirschbaum & Farquhar, 1984) and Calvin cycle biochemistry, in

particular the concentration and activity of ribulose-1,5-bisphosphate carboxylase

(Rubisco) and the regeneration of ribulose-1,5-bisphosphate (Farquhar & Caemmerer,

1982). The photosynthetic biochemistry is directly affected by temperature, in

particular in the kinetic properties of the carboxylation reaction and ribulose-1,5-

bisphosphate regeneration, which are affected by the solubility of CO2 and O2 and

Rubisco affinity for CO2 and O2 (Farquhar & Caemmerer, 1982; Long, 1991). The

demand for assimilates influences the rate of photosynthesis as well as the

concentration of accumulated assimilates, such as starch and/ or sucrose; so called

source-sink regulation similar to the end-product inhibition of biochemical reactions

(Neales, 1968). Azcon-Bieto (1983) observed a decrease in photosynthesis at high

carbohydrate concentrations resulting from impaired functioning of the Calvin Cycle.

Edwards & Walker (1983) also found reduced quantum yields with declined

concentrations of NADPH and ATP, which depended on the concentrations of

inorganic phosphate in the chloroplasts. The movement of inorganic phosphate,

released out of sucrose synthesis, influences the oppositional movement of the triose

phosphate, which is produced in the Calvin Cycle (Fitter & Hay, 1987). Triose

phosphate is synthesized to starch in the chloroplasts, or after transport to the cytosol,
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to sucrose. Farrar (1993) modelled the feedback inhibition between starch and sucrose

production and their inverse relationship via inorganic phosphate and the

concentrations of ATP. Lower ATP concentrations also lowers the rate of ribulose-

1,5-bisphosphate regeneration and therefore the carbon fixation rate.

Internal CO2 concentration limits Rubisco activity and therefore is one of the major

limitations to carbon fixation. At high internal CO2 concentrations, photosynthesis can

be limited by the regeneration rate of ribulose-1,5-bisphosphate. As Farquhar &

Sharkey (1982) argue, C3 plants should operate at an internal CO2 concentration

which co-limits the consumption and regeneration of ribulose-1,5-bisphosphate.

Geber & Dawson (1997) showed a strong correlation between stomatal conductance

and biochemistry in genetic lines of Polygonum arenastrum. High transpiration rates

were positively related to high biochemical activities (high activities of Rubisco and a

high electron transport capacity).

Environmental Influences

Considering the whole plant, the rates of carbon fixation have to be in balance with

assimilate production and utilisation. Powles (1984) and Ludlow (1987) found that

plants have the ability to avoid or at least tolerate water stress as they are able to avoid

or tolerate photoinhibition. Björkman & Powles (1984) showed that water stress

affects photosynthesis and growth long before photoinhibitory effects take place.

Björkman et al. (1980) found correlations between high light and water stress

affecting the photosynthesis of sclerophyllous Nerium oleander, but water stress on its

own reduced the photosynthetic rate and electron transport similarly. Water-stressed

leaves of sclerophyllous shrubs showed midday depressions in carbon assimilation in

the study of Demming-Adams et al. (1989), and Mooney et al. (1977) showed

decreased photon yield and light-saturated photosynthetic rates in the desert shrub

Larrea divaricate under water stress. The internal CO2 concentration did not affect the

measurements of Mooney et al. (1977), as measurements under limited and saturated

CO2 concentrations obtained the same results. Boyer (1971) found the photosynthesis

in sunflower leaves under severe water stress insensitive to changes in the leaf

temperature and external CO2 concentration, in particular under high light. Lowering

water potentials led to stomatal closure, which decreased the photosynthetic rate.
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Plant tissue shows two types of respiration. Dark respiration involves different ways

of substrate oxidation, such as glycolysis or the tricarboxylic acid cycle. It includes

the oxidation of NADH and FADH2. Photorespiration produces CO2 in the

photorespiratory carbon oxidation cycle, in which ribulose-1,5-bisphosphate is

oxygenated (Ögren, 1984). McCree (1970) related respiration linearly to total

photosynthesis, reporting up to 25% of the total photosynthetic production in plant dry

weight to be respired in the canopy.

Assimilates produced in plants are allocated to different structural components, such

as leaves, stems, roots and seeds. Also, allocation varies with changing demands

during plant development. Larcher (1995) divided plants into two groups, depending

on their photosynthetic production and growth. Annual plants are characterized by a

high photosynthetic capacity and a high proportion of photosynthetically active tissue

and plant mass. They are also characterized by small leaf sizes, high stomatal

conductance and low water use efficiency (Geber & Dawson, 1997). Biennial and

perennial plants adopt a more conservative strategy, with a lower net rate of

photosynthesis, and therefore growth. In contrast to the annual plants, which invest

most of their carbon to produce photosynthetically active leaves, perennial plants can

accumulate large storage pools to survive periods of unfavourable conditions, such as

drier or colder periods. Wilson (1988) showed a growth and allocation response in

plants under limiting resources. It was shown that increasing the relative mass of the

plant component that reduced the stress factor could offset the negative effects.

Increased root: shoot ratios were observed by Rufty (1984) in plants on nutrient-poor

soils or under water stress, whereas decreased root: shoot ratios were observed in

plants under low light.

Interspecific variation in taxa with shorter life spans are found, often with higher gas

exchange rates and higher organic nitrogen per leaf area (Evans, 1989) as well as

increased biochemical capacities to regulate photosynthesis than in slow-growing

plants (Wullschleger, 1993). So far, genetic differences in photosynthetic rates of the

same species have been assigned to changes in the concentration and activity of

Rubisco (Caemmerer & Farquhar, 1981). Geber & Dawson (1997) showed in genetic

lines with high gas exchange rates, plants with small leaves and early flowering also

had high biochemical capacity with respect to Rubisco activity and electron transport.
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They also correlated limitations on photosynthesis by stomatal closure to low

photosynthetic rates and low intercellular CO2 concentrations as well as late flowering

and larger leaf sizes. Geber & Dawson (1997) also found evidence that slower plant

development and maturation is related to longer life span and a lower gas exchange

rate to a relative tolerance to drought stress. Givinish (1979) and Nobel (1991) argued

that smaller leaves should be functionally favoured in areas of water restriction, as the

lesser leaf area also reduces the transpiration surface and keeps a lower average

temperature. Turnbull et al. (2002) showed a positive relationship between higher leaf

photosynthesis and habitats with naturally greater water supply in Acer, whereas

Quercus was able to maintain low transpiration rates and a high photosynthetic rate in

drier habitats. In contrast, Grossnickle et al. (2004) could not find a relationship

between gas exchange and long-term water use efficiency as a response to

environmental conditions. Geber & Dawson (1997) argued that the transition from

stress avoidance towards stress tolerance is linked not only with the transition from

short-lived towards long-lived species, but also with gas exchange rates. Fast

metabolisms are correlated with fast adaptations in biochemical activity rates and

therefore stress avoidance.

Schwinning et al. (2002) investigated the gas exchange rates of shrubs grown in arid

zones and their seasonal use of large and rare rain events. Interestingly, the three

species investigated used the additional water differently, which was partly due to

different zones of water uptake via roots, but all showed increased gas exchange rates

after rain events. An increase in the rate of photosynthesis up to 4-fold was seen in

Hilaria jamesii, accompanied by a 2.7-fold increase in water use efficiency after a

summer rain. Following a rain event in spring, gas exchange rates in this species

increased about four fold.

Kemp et al. (1997) showed different capacities of water uptake, which also varied in

their capacity to extract water from certain soil layers. They also showed that the rate

of extraction was independent of the soil layer from which the water was extracted. In

the study of Schwinning et al. (2002), shrubs used a third of the transpirational water

from the rainwater of lower soil layers, additional to the water uptake from deeper soil

layers, whereas grasses of the same vegetation zone used only deeper soil layer water.

Similarities can also be found between low night temperatures and photosynthesis
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under water stress, which was slowly applied to grapevines (Flexas et al., 1999).

Water stress induced by chilling and drought can enhance O2 uptake and rates of

electron flow, whereas the CO2 exchange rate decreases towards zero in stressed

leaves.

Aim of the Study

Overall, my study investigated the influence of the combination of physiological

drought, high PFDs and high temperatures on divaricate and non-divaricate plants

during summer in a field trial and glasshouse experiment.

High PFD's above the optimum of a plant species negatively affect photosynthesis and

induce photoinhibition (Chapter 3). Photoinhibition is usually reversible and plants

are capable of light acclimatisation by the expression of resistance mechanisms.

Water stress affects leaf water potential as well as net photosynthesis and leaf

conductance because of stomatal closure during drought. Internal CO2 concentration

is lowered during drought. Predawn water potential and leaf gas exchange are variable

with rainfall and water content of the soil and therefore vary seasonally. Kramer &

Boyer (1995) showed that the water equilibrium between plant and soil is well

indicated by the predawn leaf water potential. As seen above, terrestrial plants can be

limited by stomatal behaviour as well as leaf biochemical capacity. Geber & Dawson

(1997) indicate in their study on Polygonum arenastrum that changes in biochemistry

are related to changes in stomatal characteristics and vice versa.

This part of the study determined the photosynthetic reactions of divaricate and non-

divaricate leaves to different light and water availabilities. Previous studies have

investigated the single factors of drought or high light loads, but the combination of

them and their relation to different growth forms of related species has not been

previously studied. The species investigated are not only closely related, but can also

form natural hybrids. The most interesting feature of them though, is their contrasting

growth forms (Chapter 1). The divaricate species are often found under more extreme

climatic conditions than their non-divaricate congeners. The differences in water and

radiation loads between the divaricate and non-divaricate habitats make these species

an ideal model system to test whether the divaricate growth form is an adaptation

which provides benefits in conditions of drought and high irradiation. Additionally,
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the combination of field experimentation and glasshouse trials (Section 2.1) gave my

study added breadth. This made it possible to observe and study divaricate and non-

divaricate plants, grown from known sources and habitats, under customized and

well-defined conditions.

The experiments described in this chapter were guided by a series of hypotheses. The

small leaf area of divaricate shrubs was hypothesised to assist these plants to maintain

tissue turgor pressure even with increasing water vapour deficit and therefore

increased evaporation rates in summer. The daytime respiration rate in divaricate

leaves should not increase dramatically under high temperatures or PFD, because of

the much smaller leaf surface and self-shaded growth form, which was hypothesised

to reduce temperature increases in the leaves. Avoiding stomatal closure, when

temperatures are high and air humidity and/ or soil moisture low, should keep the

internal CO2 concentration more constant and therefore the photosynthetic rate should

be buffered, hence high maximum photosynthetic rates should be found. Therefore,

divaricate leaves were hypothesised to have higher quantum efficiencies, as shaded

have higher quantum efficiencies than sun leaves (Tognetti et al., 1997) and

reductions in maximum photosynthetic rates should also be seen in reductions in the

quantum efficiency (Ball et al., 1994). Water stress should decrease the quantum

efficiency, in particular in non-divaricate leaves. A higher maximum photosynthetic

rate and therefore more positive carbon balance even during summer droughts could

be expected from divaricate leaves than from non-divaricate leaves.
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4.2 Materials and Methods

Leaves of divaricate shrubs growing at the sub-alpine field station at Cass (Section

2.1.2) were used for gas exchange measurements and these were compared to gas

exchange measurements on leaves of divaricate and non-divaricate shrubs grown in

the glasshouse (Section 2.1.3).

Gas exchange parameters were determined using a portable Infrared Gas Analyser

(IRGA; LI-6400, LI-COR, Lincoln, Nebraska, USA). Light response curves for

divaricate and non-divaricate leaves were recorded between 10:00 am and 8:00 pm in

summer. PFD was started with 2000 µmol photons m-2 s-1 and then reduced in steps

down to 0 µmol photons m-2 s-1 (2000, 1500, 1250, 1000, 500, 200, 100, 75, 50, 25, 0

µmol photons m-2 s-1) using a red/ blue light source. The last measurement was used

to estimate the daytime dark respiration rate after the shoot was equilibrated in the

dark for at least 10 minutes. Constant air flow rates of 500 ml min-1 and a chamber

temperature of 20 °C were programmed. A constant CO2 concentration in the

chamber was adjusted to 360 ppm in the leaf chamber.

Non-divaricate leaves were large enough to fill the 3 x 2 cm cuvette, whereas

divaricate leaves are much smaller, having leaf areas between 1.8 and 3.2 cm2 (data

not shown). To calculate the light response curves for leaves of divaricate species, a

section of a branch with a satisfactory amount of leaves for one measurement was

used. The leaves were removed afterwards to determine the actual leaf area, and to

allow the determination of the rate of gas exchange of the stem alone. Stem light

response curves were recorded 20 minutes after the leaves were removed, and these

values were used to calculate the actual divaricate leaf gas exchange rate.

From the light response curves following parameters were calculated: daytime

respiration (Rd) as described above; quantum efficiency (QE) and maximum

photosynthetic rate (Amax). These were calculated using the ‘Photosynthesis Assistant’

software (Dundee Scientific, Dundee, UK). Amax were determined by single readings

of each leaf’s light response curve in the ‘Photosynthesis Assistant’ software, QE by

linear regression of the slope of light response curve.
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4.3 Results

Cass 2003

At the University field station light response curves were estimated for leaves of

divaricate Corokia cotoneaster and Coprosma propinqua plants in the summer of

2002/03 (Section 4.2). The light response curves for C. cotoneaster and C. propinqua

were very similarly shaped. Rd of both species was around 0.7 µmol CO2 m-2s-1 and

Amax reached up to 8 to 9 µmol CO2 m-2s-1, the parameters extracted from the light

response curves are shown in Figures 4.1.

The divaricate species show no major differences in their respiration rates between the

streambed and the N-facing slope habitats (Figure 4.1.a). Originally, the streambed

was assumed to provide a better water availability to the plants then the N-facing

slope, but lower water potentials were found in plants in the streambed than on the N-

facing slope (Section 2.2.4). Only shaded plants of both species respired more on the

N-facing slope. Corokia leaves under natural light had higher respiration rates than

leaves which were exposed to the exterior climate. The ANOVA analysis (Table 4.1)

showed only one close to significant effect for the light levels to which the leaves

were exposed.

QEs (Figure 4.1.b) of both species reached average values between 0.03 and 0.04.

Leaves of Corokia had higher QEs under natural light and under shaded conditions

than the exposed leaves, supporting the hypothesis that shaded or ‘self-shaded’ leaves

have higher QEs. Shaded Corokia leaves had the highest values on the N-facing slope,

whereas in the streambed shaded Corokia leaves showed the lowest QE. In contrast to

my hypothesis (Section 4.1), leaves of Coprosma plants did not show big differences

in QEs, with only the shaded plants on the slope reaching QEs over 0.04. The

different water availabilities at the streambed and the N-facing slope had significant

effects on the QEs of the two species and the light level* water availability

combination (Table 4.2). In contrast to my original hypothesis, QE was low in shaded

divaricates in the streambed. Here, in contrast to my original hypothesis, plants
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Figure 4.1 Gas exchange measurements in season 2002/03 at Cass for (a) daytime respiration (Rd), (b)
quantum efficiency (QE) and (c) for maximum photosynthetic rate (Amax) for Corokia cotoneaster and
Coprosma propinqua, grown in a stream bed and on a slope and under 3 different light treatments (EL=
inner canopy exposed, HL= sun light, LL= shaded).
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Table 4.1 Analysis of variance table for respiration measurements at the Cass field site, taken in March
2003. Light level (natural daylight, shaded and exposed plants), water availability (streambed and
slope) and genus (Corokia cotoneaster and Coprosma propinqua) as treatments [significant results in
bold,].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 1.33924 0.6696181 3.0406 0.056
Water availability 1 0.46449 0.4644858 2.1091 0.152
Genus 1 0.03315 0.0331496 0.1505 0.700
Light level*Water availability 2 1.13240 0.5662012 2.5710 0.086
Light level*Genus 2 0.40611 0.2030559 0.9220 0.404
Water availability*Genus 1 0.12990 0.1299033 0.5899 0.446
Light level*Water availability*Genus 2 0.28158 0.1407902 0.6393 0.532
Residuals 54 11.89209 0.2202239

Table 4.2 Analysis of variance table for measurements of QE at the Cass field site, taken in March
2003. Light level (natural daylight, shaded and exposed plants), water availability (streambed and
slope) and genus (Corokia cotoneaster and Coprosma propinqua) as treatments [significant results in
bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 0.00022675 0.000113377 0.5749 0.566
Water availability 1 0.00182653 0.001826526 9.2620 0.004
Genus 1 0.00002972 0.000029721 0.1507 0.699
Light level*Water availability 2 0.00173368 0.000866841 4.3956 0.017
Light level*Genus 2 0.00040110 0.000200548 1.0169 0.368
Water availability*Genus 1 0.00004488 0.000044883 0.2276 0.635
Light level*Water availability*Genus 2 0.00008450 0.000042249 0.2142 0.808
Residuals 55 0.01084633 0.000197206

Table 4.3 Analysis of variance table for measurements of Amax at the Cass field site, taken in March
2003. Light level (natural daylight, shaded and exposed plants), water availability (streambed and
slope) and genus (Corokia cotoneaster and Coprosma propinqua) as treatments [significant results in
bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 39.2222 19.61109 1.1944 0.311
Water availability 1 80.3199 80.31986 4.8917 0.031
Genus 1 2.8104 2.81044 0.1712 0.681
Light level*Water availability 2 129.7309 64.86545 3.9505 0.025
Light level*Genus 2 66.2777 33.13885 2.0182 0.143
Water availability*Genus 1 25.0897 25.08970 1.5280 0.222
Light level*Water availability*Genus 2 7.4455 3.72277 0.2267 0.798
Residuals 55 903.0819 16.41967
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showed lower water potentials, which also influenced the gas exchange parameters of

these plants.

The highest Amax (Figure 4.1c) of 13 µmol CO2 m-2 s-1 was reached by shaded

Coprosma leaves on the N-facing slope, and 12 µmol CO2 m-2 s-1 by Corokia leaves

under natural light in the streambed. Shaded streambed plants of the two genera had

the lowest values for Amax, between 5 and 6 µmol CO2 m-2 s-1. Water availability and

light level* water availability had significant effects on photosynthetic capacity

(Table 4.3). In contrast to my hypothesis that the small leaf area should support

constant photosynthetic rates even under stress, low water potentials and differing

light levels led to lower Amax than in plants under sun light and with less negative

water potentials.

Glasshouse 2002

In a glasshouse environment, light response curves of divaricate and non-divaricate

leaves were recorded in summer 2001/02 (Section 4.2). Comparing the light response

curves, both divaricate species showed a decreased CO2 uptake when exposed to over

500 µmol photons m-2 s-1 (data not shown). Higher PFDs decreased their

photosynthetic rates further. In general, the leaves of Coprosma plants had lower

photosynthetic rates than Corokia leaves. Divaricate Coprosma leaves showed the

biggest reduction in the photosynthetic rate under high PFDs. This is in contrast to my

hypothesis that the small leaves and ‘self-shading’ growth form of divaricates would

enable these leaves to a constantly high photosynthetic rate even under stress

conditions (Section 4.1).

From the light response curves parameters such as Rd, QE and Amax were calculated

(Figure 4.2). Rd (Figure 4.2a) of divaricate leaves was higher than Rd of non-

divaricate leaves in all treatments and in the two genera, which was in contrast to my

hypothesis that the small divaricate leaves would display lower respiration rates than

the large non-divaricate leaves. The highest respiration rates were found under high

light conditions. The ANOVA analysis (Table 4.4) showed significant effects for the

different light levels and habits.
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Figure 4.2 Gas exchange measurements for (a) daytime respiration (Rd), (b)quantum efficiency (QE)
and (c) maximum photosynthetic rate (Amax) in well-watered and water stressed conditions and two
different light treatments (HL= sun light, LL= shaded) in the Glasshouse, summer 2001/02. Corokia
cotoneaster (Div) and Corokia buddleioides (Non-Div) were investigated as well as Coprosma
propinqua (Div) and Coprosma robusta (Non-Div).
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Table 4.4 Analysis of variance table for respiration measurements in the glasshouse, taken in June
2002. Light level (100% vs 75% of natural daylight), water availability (200 mls every 2 days and
50mls every 3 days), genus and habit (Corokia cotoneaster, Coprosma propinqua, Corokia buddleioide
and Coprosma robusta) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 2.16872 2.168724 7.2033 0.009
Water availability 1 0.05481 0.054811 0.1821 0.671
Genus 1 0.00414 0.004144 0.0138 0.907
Habit 1 4.92211 4.922114 16.349 0.0001
Light level*Water availability 1 0.09635 0.096345 0.3200 0.573
Light level*Genus 1 0.01629 0.016287 0.0541 0.817
Water availability*Genus 1 0.16033 0.160333 0.5325 0.467
Light level*Habit 1 0.31921 0.319205 1.0602 0.306
Water availability*Habit 1 0.45048 0.450482 1.4963 0.224
Genus*Habit 1 0.06913 0.069133 0.2296 0.633
Light level*Water availability*Genus 1 0.02496 0.024957 0.0829 0.774
Light level*Water availability*Habit 1 0.31062 0.310622 1.0317 0.312
Light level*Genus*Habit 1 0.09679 0.096789 0.3215 0.572
Water availability*Genus*Habit 1 0.41981 0.419815 1.3944 0.241
Light level*Water availability*Genus*Habit 1 0.21018 0.210177 0.6981 0.406
Residuals 95 28.60177 0.301071

Table 4.5 Analysis of variance table for measurements of quantum efficiency (QE) in the glasshouse,
taken in June 2002. Light level (100% vs 75% of natural daylight), water availability (200 mls every 2
days and 50mls every 3 days), genus and habit (Corokia cotoneaster, Coprosma propinqua, Corokia
buddleioide and Coprosma robusta) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.00163891 0.001638911 3.5543 0.062
Water availability 1 0.00066691 0.000666914 1.4464 0.232
Genus 1 0.00012714 0.000127143 0.2757 0.601
Habit 1 0.00168585 0.001685848 3.6561 0.059
Light level*Water availability 1 0.00002849 0.000028485 0.0618 0.804
Light level*Genus 1 0.00052043 0.000520432 1.1287 0.291
Water availability*Genus 1 0.00020847 0.000208471 0.4521 0.503
Light level*Habit 1 0.00013561 0.000135607 0.2941 0.589
Water availability*Habit 1 0.00182636 0.001826359 3.9609 0.049
Genus*Habit 1 0.00088956 0.000889562 1.9292 0.168
Light level*Water availability*Genus 1 0.00038242 0.000382425 0.8294 0.365
Light level*Water availability*Habit 1 0.00093139 0.000931386 2.0199 0.158
Light level*Genus*Habit 1 0.00120492 0.001204925 2.6132 0.109
Water availability*Genus*Habit 1 0.00013483 0.000134827 0.2924 0.590
Light level*Water
availability*Genus*Habit

1 0.00089608 0.000896083 1.9434 0.167

Residuals 98 0.04518793 0.000461101
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Table 4.6 Analysis of variance table for measurements of maximum photosynthetic rate (Amax) in the
glasshouse, taken in June 2002. Light level (100% vs 75% of natural daylight), water availability (200
mls every 2 days and 50mls every 3 days), genus and habit (Corokia cotoneaster, Coprosma
propinqua, Corokia buddleioide and Coprosma robusta) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 6.8545 6.8545 1.1902 0.278
Water availability 1 122.9067 122.9067 21.341 0.000
Genus 1 18.8979 18.8979 3.2813 0.073
Habit 1 22.4302 22.4302 3.8946 0.051
Light level*Water availability 1 13.8637 13.8637 2.4072 0.124
Light level*Genus 1 3.8123 3.8123 0.6619 0.418
Water availability*Genus 1 2.5667 2.5667 0.4457 0.506
Light level*Habit 1 0.0316 0.0316 0.0055 0.941
Water availability*Habit 1 0.4229 0.4229 0.0734 0.787
Genus*Habit 1 2.5312 2.5312 0.4395 0.509
Light level*Water availability*Genus 1 1.6169 1.6169 0.2807 0.597
Light level*Water availability*Habit 1 9.2273 9.2273 1.6022 0.209
Light level*Genus*Habit 1 1.5244 1.5244 0.2647 0.608
Water availability*Genus*Habit 1 30.0958 30.0958 5.2256 0.024
Light level*Water availability*Genus*Habit 1 0.6732 0.6732 0.1169 0.733
Residuals 98 564.4141 5.7593

QE (Figure 4.2b) was lowest in leaves of Coprosma propinqua, except for the plants

under shade cloth and water-stressed conditions, where QE reached its highest value

of 0.08. In general, water stressed leaves of divaricate species had lower quantum

efficiencies than water stressed non-divaricate congeners, in contrast to my hypothesis

(Section 4.1). This difference was most pronounced in the Coprosma species.

Divaricate Coprosma leaves under high light and well-watered conditions showed the

lowest quantum efficiency, approaching 0.03. The water availability* habit interaction

had significant effects on the quantum efficiencies (Table 4.5).

As shown in Figure 4.2c, Amax of divaricate and non-divaricate leaves were reached at

different PFDs. In Figure 4.2c it becomes obvious that water stressed Coprosma

leaves under sun light had the lowest Amax of 2.4 CO2 m-2 s-1 for divaricate and 1.7

CO2 m-2 s-1 for non-divaricate leaves, respectively. Divaricate Coprosma leaves had

higher Amax than non-divaricate leaves, except for the shaded, water-stressed

divaricate leaves of Coprosma. Similarly, in Corokia, divaricate leaves exhibited

higher Amax than their non-divaricate congeners. This supports my hypothesis that

divaricate leaves maintain higher photosynthetic rates than their non-divaricate

congeners under stress conditions. Water-stressed C. cotoneaster leaves reached

photosynthetic rates of about 5 µmol CO2 m-2 s-1, whereas in the same environment C.
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buddleioides only reached 2.5 µmol CO2 m-2 s-1. Well-watered divaricate Coprosma

leaves had the highest Amax of 7 µmol CO2 m-2 s-1. Significant effects for the Amax

were found for water availability and water availability* genus* habit (Table 4.6) This

supports my hypotheses that water stress would influence the photosynthetic rate and

that divaricate leaves would maintain higher photosynthetic rates under water stressed

conditions than their non-divaricate congeners (Section 4.1).

Further Results

All plants in the field experiment at Cass displayed a significant effect of water

availability on the transpiration rates (E) measured at 0, 100 and 2000 µmol photons

m-2 s-1. The plants on the N-facing slope had higher E’s than the plants growing in the

streambed. A significant effect of the interaction of water availability* genus at 500

and 2000 µmol photons m-2 s-1 was also founed. Coprosma plants on the N-facing

slope had the highest E, followed by Corokia plants on the N-facing slope. The lowest

E were found in Coprosma plants in the streambed. Stomatal conductance (gs) was

significantly influenced by water availability, the higher values for gs were displayed

by plants grown on the N-facing slope. The interaction of light level* water

availability, light level* genus, water availability *genus and light level* water

availability *genus had also a significant effect on gs. As seen for the transpiration

data, Coprosma plants grown on the N-facing slope had the highest values, whereas

Coprosma plants in the streambed showed the lowest values of gs.

The plants grown in the glasshouse showed significant effects of light level, water

availability, habit, genus* habit and water availability* genus* habit on the

transpiration rate of all investigated plants. Plants with good water availability had

higher transpiration rates than plants under water stress. As seen in the field

experiment, Coprosma plants had the highest values for transpiration rate, especially

the divaricate Coprosma leaves in particular. gs was significantly influenced by light

level, water availability, habit, light level* water availability and water availability*

genus* habit. The highest values for gs were found in divaricate Coprosma leaves

grown under good water availability, the lowest values for gs were found in leaves of

non-divaricate Coprosma leaves under water stress.
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Summary of the Results

In contrast to my hypothesis that divaricate leaves would show lower Rd rates than

non-divaricate leaves, high Rd rates were found in divaricate leaves in the field and

glasshouse experiment. The quantum efficiencies of divaricate leaves in the field were

lower than the quantum efficiencies of divaricate and non-divaricate leaves in the

glasshouse. As hypothesised, high Amax were found in divaricate leaves in the field

and in the glasshouse experiment, but both growth forms had higher photosynthetic

rates under well-watered conditions than under water stress.

The field experiment showed significant effects of the different water availabilities

and a significant interaction between light level and water availability for QE and

Amax. This is in contrast to my hypothesis that divaricate leaves would maintain high

photosynthetic rates in particular under stressful conditions. Both species of divaricate

shrubs expressed acclimatisation patterns to the given light treatments as well as to the

different water availabilities they grew in. Respiration rates were high in Corokia

leaves under high light, but these leaves also expressed high quantum efficiencies and

Amax. Shaded plants on the N-facing slope in particular, had high quantum

efficiencies. Leaves of divaricate Coprosma plants had the highest quantum

efficiencies and the highest Amax under shade and when growing on the N-facing

slope.

The glasshouse experiment showed significant effects of light level and habit for Rd.

As mentioned above, the highest respiration rates were found in divaricate leaves, in

contrast to my hypothesis (Section 4.1). Divaricate leaves showed higher respiration

rates than non-divaricate leaves in all treatments, but in sun light in particular. QE was

significantly influenced by the water availability* habit interaction. Non-divaricate

leaves of the two genera generally showed higher quantum efficiencies than divaricate

leaves, in particular under well-watered conditions. Amax were significantly influenced

by water availability as well as the interaction of water availability* genus* habit.

Amax were mostly higher in divaricate leaves of the two genera, but they reached Amax

at PFDs of 500 µmol photons m-2 s-1 and below.
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4.4 Discussion

Divaricate shrubs are characterized by a unique growth form and nowhere else in the

world do they reach such a high percentage of the flora as in New Zealand. As

described in Chapter 1, divaricate shrubs have been hypothesised to use their growth

form as a ‘self-shading’ mechanism to protect their leaves in the interior from high

radiation loads and transpirational water loss (McGlone & Webb, 1981). It was also

hypothesised that internal CO2 concentration should remain relatively constant over

short periods of dry soil and air. Partly shaded or ‘self-shaded’ leaves still receive a

satisfactory photon flux density (Kelly, 1990) to maintain a high photosynthetic

capacity and a positive carbon gain, but the investments in photo-protective

mechanisms should be less. Therefore photosynthetic rates were thought to stay

constantly high in leaves of divaricates over the summer period, which was observed

by taking light response curves with an infrared gas analyser (Section 4.2).

Stem Photosynthesis

Howell et al. (2002) discussed the possibility that the stems of divaricate shrubs might

contribute to carbon gain via photosynthetic reactions. They found positive rates of

photosynthesis on stems of Aristotelia even when most leaves were lost. As shown in

previous studies, such as Bossard & Rejmanek (1992), branches can contribute to the

photosynthetic carbon gain, but the major contribution is still made by leaves (Nilsen

1992). In my study, the light response curves of divaricate leaves were first taken

from branchlets with leaves and then compared with light response curves of the same

branchlet without leaves (Section 4.2). The evaluation of the light response curves of

branchlets without leaves showed that almost all branchlets showed net release of CO2

at all PFDs (data not shown). There was presumably some photosynthesis offsetting

respiration in the stems, but the amount of this must be small. Therefore, the

suggestion of Howell et al. (2002) that there would be some gain in photosynthesis

via stems of Corokia and Coprosma was not supported by my findings. Stems of the

divaricate shrubs of Corokia and Coprosma in my study did not contribute to the net

carbon gain via photosynthesis. The finding of Howell et al. (2002) that the stems of

Aristotelia fruticosa are photosynthetic was not further investigated here. The role of

stems of other divaricate shrubs in photosynthetic carbon gain is still unclear. It seems
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possible that in semi-descidious divaricate shrubs, like Discaria toumatou and

Plagianthus divaricatus, stems could have a more pronounced role in photosynthesis.

Daytime Respiration

Similar or slightly lower values were found for Rd in C. cotoneaster and C. propinqua

in my field study in comparison to those found by Howell et al. (2002) at the same

field site. Respiration was high on all plants on the N-facing slope, and in that habitat

was highest in leaves under natural light. That result is in contrast to the finding in

Section 2.2.4, where it was shown that the plants on the N-facing slope maintained

higher water potentials than the plants growing in the putatively wetter streambed.

The values for Rd in the glasshouse trial were comparable with the values found in the

field, reaching maximal values of 1.2 µmol CO2 m-2 s-1 to 1.4 µmol CO2 m-2 s-1.

Leaves of non-divaricate plants in the glasshouse trial showed Rd rates between 0.38

µmol CO2 m-2 s-1 and 0.75 µmol CO2 m-2 s-1. As seen in the study of Howell et al.

(2002), the Rd values vary considerably. Even though my study used a longer

adaptation period to estimate the Rd rate after recording the light response curve

(Section 4.2), this method seems not ideal. The statistical analyses showed in

particular for the glasshouse trial significant effects of light and habit on the Rd rate.

Raven (1989) compared the co-occurrence of photoinhibition and its avoidance and

repair mechanisms in differently light adapted Oxalis leaves and an increase in

respiration rates in those leaves at the same time. Depending on the frequency and

intensity of sunflecks, avoidance or repair mechanisms were favourable.

Quantum Efficiency

The values of QE were similar to Howell et al. (2002). Generally, QE’s were higher

in the glasshouse trial than in the field experiment: Divaricate leaves had values

between 0.029 and 0.076, non-divaricates between 0.040 and 0.061. The field

experiment of Howell et al. (2002) showed values between 0.012 and 0.029 for

divaricate Corokia and Coprosma leaves. Corokia leaves had slightly higher values in

my study and varied under different water availabilities. Under shaded conditions in

particular, QE of C. cotoneaster in the streambed was lower than the published values

of Howell et al. (2002), whereas the values from plants on the N-facing slope were

much higher. Comparing divaricate and non-divaricate leaves, higher QE’s were

found in non-divaricate leaves in my study. That was in contrast to my hypothesis
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(Section 4.1). Tognetti et al. (1997) reported that shade leaves normally have higher

QEs than sun leaves, which was not seen as clearly in my study in the ‘self-shaded’

leaves. In the field, only the shaded leaves on the N-facing slope showed higher QE’s

than the unshaded leaves. Howell et al. (2002) found reduced Amax in plants under

high light, but no correlation between the light treatment and respiration or QE in C.

cotoneaster. In the glasshouse trial QE was strongly influenced by water availability*

habit. Divaricate leaves under water-stressed conditions had higher QE’s than well-

watered ones, in particular in the shade. I hypothesised that water stress would

decrease QE, whereas shade would increase QE. Non-divaricate leaves of the two

genera and divaricate Coprosma leaves had the same or higher QE’s in the shade

when water-stressed. Also there was no correlation between low QE’s and reduced

Amax in the glasshouse study, in contrast to findings of Ball et al. (1994). The lowest

Amax were found in water-stressed plants in the glasshouse, but these plants did not

necessarily express the lowest QE’s. Only shaded field plants in the streambed

showed a correlation between low QE’s and reduced Amax, indicating photoinhibitory

effects under water stress in divaricate plants.

Photosynthetic Rate

Interestingly, the same divarivate species reached considerably higher values of Amax

in the field than in the glasshouse in all treatments. The values seen in the glasshouse

trial seem rather low and there are several possible reasons for that. By comparison,

the plants used in the glasshouse trial were considerably younger and had limited root

development due to the pot size. The characteristic divaricate growth form was just

developing in the glasshouse plants and no complete self-shading of the interior

leaves was established. Incomplete shading of the interior leaves could increase stress

in these young leaves and therefore reduce the proposed benefits of the divaricate

habit and induce photoinhibitory effects. This could have had considerable influence

on the actual effect of the light treatments and therefore the gas exchange

measurements. In particular divaricate Coprosma leaves had higher Amax in the shade

treatment, indicating that these young plants have higher carbon gain when they are

less exposed. The higher carbon gain in shaded positions could have vital influences

on the growth of these shrubs. Interestingly, interior leaves which were exposed to the

exterior climate in the field experiment, showed respiration rates as well as quantum

efficiencies and Amax which were at levels intermediate between leaves under sun
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light and shaded leaves. As seen in both divaricate species in the glasshouse trial, Rd

was higher and QE lower under high light. That could indicate that divaricate leaves

experience photoinhibitory effects under high light (which is exacerbated under

additional mild drought), which could have negative consequences on carbon gain and

growth on young plants in particular. Also, regular insecticide usage was necessary in

the glasshouse, due to repeated infestations by scale insects and aphids (Section

2.1.3). The glasshouse plants were also sheltered from the influence of wind, which

affects gas exchange via CO2 diffusion rates and leaf temperature because of

boundary-layer effects. These factors can influence the respiration rate and

photosynthetic rate of leaves (Lawlor, 1990).

As mentioned in Section 4.3, divaricate leaves in the glasshouse showed reduced

photosynthetic rates when exposed to PFDs above 500 µmol photons m-2 s-1. That

could indicate photoinhibitory effects in divaricate leaves, which were exposed to

PFDs above 500 µmol photons m-2 s-1. Water stress additionally decreased the

photosynthetic rates of divaricate leaves, in contrast to my hypothesis (Section 4.1).

As in divaricate leaves, water stress decreased the photosynthetic rates in non-

divaricate leaves. Howell et al. (2002) showed lower Amax in leaves exposed to

exterior radiation loads than in shaded interior leaves. They argued that the exposed

leaves experienced photoinhibitory effects, higher photosynthetic rates were found in

shaded leaves. In my study, photosynthetic rates of shaded divaricate leaves dropped

considerably when the light intensity exceeded 500 µmol photons m-2 s-1, indicating

an over-saturation with light. That finding is consistent with Horn (1971), who

showed that leaves of a variety of higher plants are light-saturated, even when

exposed to intensities as low as at 20% of full sun light. Howell et al. (2002) also

calculated a positive net carbon balance for foliage exposed to PFDs greater than 500

? mol photons m-2 s-1. Higher PFDs induce photoinhibitory effects, which can reduce

photosynthesis (Powles, 1984). In my field experiment, no reduced photosynthetic

rates for PFDs over 500 µmol photons m-2 s-1 were found. That could suggest that

only young divaricate plants (as used in the glasshouse experiment) experience

photoinhibitory effects when PFDs rise above 500 µmol photons m-2 s-1 and that in

older plants the leaves become protected from high PFDs as well as from

photoinhibitory effects as soon as their ‘self-shading’ growth form is fully developed.
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Findings supporting this hypothesis were that the Amax of shaded leaves of divaricate

shrubs grown on the N-facing slope (less negative water potentials) in the field were

higher than the unshaded leaves.

Amax estimated in my study were considerably higher for C. cotoneaster and C.

propinqua than found by Howell et al. (2002). In my study the values of Amax varied

between 4.7 µmol CO2 m-2 s-1 and 13.4 µmol CO2 m-2 s-1 for divaricate leaves in the

field. With one exception (Figure 4.2), the exposed leaves had higher Amax than

shaded leaves of the same species in the same water treatment. The values of Amax

estimated in the field were comparable with published values, such as Prider & Facelli

(2004) observing chenopod shrubs in arid habitats (Atriplex vesicaria, Enchylaena

tomentosa, Rhagodia spinescens). In the glasshouse, the values for Amax of divaricate

Corokia and Coprosma leaves were between 2.4 µmol CO2 m-2 s-1 and 7.1 µmol CO2

m-2 s-1, respectively. Non-divaricate leaves showed values between 1.7 µmol CO2 m-2

s-1 and 6.4 µmol CO2 m-2 s-1. Howell et al. (2002) found values between 1.9 µmol CO2

m-2 s-1 and 3.9 µmol CO2 m-2 s-1. Amax in my study were not influenced by light level

alone: neither the shading nor the exposing of leaves showed significant effects on the

photosynthetic rates of those leaves, but the light level* water availability interaction

had significant effects on Amax. Plants on the N-facing slope and under natural light or

shading expressed higher photosynthetic rates than plants in the streambed. This is in

contrast to the findings of Howell et al. (2002), who found reductions in Amax for

leaves of A. fruticosa and C. cotoneaster under high light and cold temperatures. In

the same study, no reductions of Amax were found for exposed C. propinqua. In the

glasshouse the water availability and the water availability* genus* habit interaction

influenced the response in Amax, supporting my hypothesis of high Amax in divaricate

leaves even under stressful conditions. Interestingly, low photosynthetic rates did not

linearly correlate with high Rd rates or quantum efficiencies in divaricate and non-

divaricate leaves.

Although the divaricate leaves in the field study showed reasonable high values in

their Amax, it is hard to argue that divaricate leaves have higher photosynthetic rates

than non-divaricate leaves. Amax was close to significant for habit. Unfortunately, in

my study no non-divaricate leaves were available in the field experiment, where

divaricate leaves not only showed high photosynthetic rates but also a lesser decrease
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in their photosynthetic rate at high PFDs. This is, of course, because the non-

divaricate congeners do not naturally occur in the Cass area (Chapter 1). Due to the

difficulties in the glasshouse trial, the absence of non-divaricate plants in the field

trial, and the different age of the plants in the glasshouse and field experiment, it is

difficult to synthesise all findings in a satisfactory manner. Further investigations in a

habitat with a natural occurrence of divaricate and non-divaricate plants together

would be favourable.

Impacts of Drought Stress

Grossnickle et al. (2004) investigated variations in the gas exchange rate of different

red cedar (Thuja plicata) populations under summer conditions. Although a variety of

responses to a regional precipitation gradient were detected, there was a better

relationship to foliar conductance than net photosynthesis of the population.

Inconsistency was found in gas exchange measurements as well as in foliage carbon

isotope measurements. This present study found significant effects of water

availability on QE, Amax, E and gs in the field, supporting the hypothesis (Section 4.1)

that divaricate leaves can maintain constantly high photosynthetic rates when

transpiration rates increase. In the glasshouse experiment, water availability had a

significant effect on Amax, E and gs. Water stress reduced Amax, E and gs of divaricate

and non-divaricate leaves, which was hypothesised for non-divaricate leaves only. In

divaricate leaves E and gs were higher than in non-divaricate leaves, which is in

contrast to the hypotheses (Section 4.1). I hypothesised a decrease in Amax and an

increase in E and gs in non-divaricate leaves under water stressed conditions, but not

in divaricate leaves. Different responses to mild drought conditions were found in

divaricate and non-divaricate plants, but plants of the two genera also varied in their

response to given water treatments.

Summary of the Discussion

As discussed before (Chapter 1), most leaves of divaricate shrubs are situated in the

interior of the shrub and are therefore at least partly shaded (Greenwood & Atkinson,

1977; McGlone & Webb, 1981). Therefore, the balance of carbon gain from interior

and exterior leaves in divaricates is more heavily weighted toward interior leaves. At

the whole-plant level, carbon gain may also be enhanced by the fact that the costs of

photoinhibition and photoprotection would be reduced by the reduced number of
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leaves on the outside of the canopy. My study was undertaken to investigate two

related hypotheses:

(1). That divaricate leaves would have a reduced transpiration surface and therefore

could avoid stomatal closure during summer drought periods. High internal CO2

concentrations would allow the divaricate leaves more constant photosynthetic rates

and a more positive carbon balance under these adverse conditions. The results

actually show a less uniform result than predicted. Not only were the values of Rd, E

and gs of divaricate leaves high in the field, but also higher than the non-divaricate

leaves in the glasshouse trial. Therefore this hypothesis was not supported.

(2). That the divaricate growth form mitigates the potentially photoinhibitory impacts

of high light loads in combination with drought. In contrast to this hypothesis,

divaricate leaves had higher Rd and E rates as well as gs and lower quantum

efficiencies than non-divaricate leaves. Divaricate leaves showed a decrease in their

photosynthetic rate when the light intensity exceeded 500 µmol photons m-2 s-1 in the

glasshouse but not in the field trial. Amax were higher in the field than in the

glasshouse experiment. In the glasshouse, Amax of divaricate leaves were higher than

in non-divaricate leaves, supporting the hypothesis above.

The difference in the carbon balance of divaricate and non-divaricate leaves under

summer drought conditions was not calculated in my study. However, observing the

gas exchange parameters only, the hypothesised advantages of the divaricate growth

form under summer drought and high light loads could only be shown for Amax. The

interaction of all measured parameters with the divaricate and non-divaricate growth

forms will be discussed in Chapter 5.

Divaricate shrubs have been shown to compensate for the costs of self-shading by

avoiding cold-induced photoinhibition and by higher carbon fixation rates per day in

those ‘self-shaded’ leaves (Howell et al., 2002). Unfortunately, the picture in relation

to water stress is not as clear. The balance between costs of photoinhibition and

photoprotection versus costs of ‘self-shading’ are still not fully understood nor

calculated. As seen in my study and the study of Howell et al. (2002), light does reach

deeply into the interior of divaricate shrubs and is substantially used for positive
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carbon gain; the photosynthetic rates found in the glasshouse experiment are at least

comparable with those of their non-divaricate congeners.

In a post-doctoral project R. Christian (unpublished data) estimated biomass

allocation of divaricate and non-divaricate species in a detailed growth analysis. On

average, the leaf area index of non-divaricate species was found to be twice as high as

in divaricate shrubs. Also, over 50% of the biomass of divaricate shrubs was allocated

in stems, whereas non-divaricates only invested around 30% of their carbon gain in

stems. Preliminary carbon allocation calculations by Christian (unpublished data)

showed that divaricate leaves would need a two-fold higher net photosynthesis per

unit leaf area to accomplish the same carbon gain for those structural components. My

study did not show such high photosynthetic rates in divaricate leaves in the

glasshouse or in the field study. So far, it is still arguable as to the extent to which cost

of photoprotection and photoinhibition are outweighed by the structural costs of ‘self-

shading’.
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5. GENERAL DISCUSSION

The main hypothesis of my study was that the morphological structures and

physiological mechanisms of divaricate shrubs (Figure 1.2) allow them to maximize

their photosynthetic production by minimizing the damaging effects of high light

loads and mild drought. This idea was tested with a field trial (Section 2.1.2) and a

glasshouse experiment (Section 2.1.3). Due to the results in this study, the conceptual

model was adapted accordingly (Figure 5.1). As found in the literature, summer

climates with high PFDs and high temperature reduce the water availability in the soil

(soil humidity sensor readings, Section 2.1.4). The water potential in plants in the

field and glasshouse was more reduced in non-divaricate plants, than in divaricate

plants, but a strong genus effect was also found. In contrast to the hypothesis of this

study (Section 1.3), transpiration was lower in non-divaricate than in divaricate plants.

Reduced water potential and increased transpiration had a negative influence on the

net photosynthesis of divaricate and non-divaricate plants (Figure 5.1). In Figure 1.2

only a negative result for non-divaricate plants was hypothesised. As hypothesised,

high PFDs increased the amount of photoprotective pigements and ? -tocopherol, but

in contrast to the hypothesis of this study, divaricate plants also showed high

concentrations. Additionally, photoinhibitory events were found in divaricate and

non-divaricate plants under high PFDs and different water availabilities, but the

genera difference was greater than the difference between the contrasting growth

forms, which is in contrast to the conceptual model (Figure 1.2). Additionally, the

hypothesised connections between low water potentials, high fluorescence and high

amounts of xanthophyll cycle pigments could not been shown in either growth form,

probably due to the strong genus effect. These results do not support the conclusion,

found in Howell et al. (2002), that the ‘self-shading’ growth form reduces

photoinhibition or protects interior divaricate leaves from photodamage. Hypotheses

that the divaricate growth form evolved as an adaptation to xeric climates (Figure 1.2)

were not explicitly supported in this study (Figure 5.1) due to the greater difference

between the two genera than divaricate and non-divaricate growth forms.
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Figure 5.1: Model of plant responses to summer conditions.

Symbols: colour…  results found for divaricate plants, colour…  results found for non-divaricate plants,
? …   low amount or descrease, ? …  high amount or increase, const…  no change or constant, ?  …
inconsistent, G…  strong Genus effect found,          …  as found in the literature,            …  hypothesised
in this study,           …  found in this study,      … not found in this study

Soil water availability ? Photon Flux Density ? ,
Temperature ?

Water potential of
plant ?  ? ?  G
Stomata closure,
Transpiration ?  ?
 CO2
concentration in
leaves ?

Chlorophyll a
fluorescence ?  ?  ?  G
Photochemical
quenching ?

Chlorophyll a:b ratio
const ?  G
Xanthophyll cycle
pigments ?  ?  G
? -Carotene ? ?  ?  G
? -Tocopherol ? ?  ?  G

Net photosynthesis ?  ?  G
Photosynthetic carbon fixation ?

Non-radiative dissipation of excess light energy ?
Electron cycling around photosystem I and II ?

Photon damage or photoinhibition ?

Long-term morphological adaptations:
- deep-rooting to access water from lower

soil layers
- changing in leaf size, shape, absorption,

transmission and reflectance
- self-shading of leaves or survival rate of

shade leaves becomes higher than of sun
leaves

Xeric growth form and distribution in dry areas
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5.1       Environmental Factors Influencing Photoinhibiton

The degree to which leaves experience photoinhibition is influenced by environmental

factors, such as light loads, temperature, water availability, soil fertility, phenotype

(sun or shade leaves, angle of leaves), and physiological factors (such as carbon

metabolism). When plants already experience high light intensities, any additional

stress or stresses will increase the amount of photoinhibition (Krause, 1988; Long et

al., 1994). Plant defence mechanisms against photoinhibition can be on different

levels, such as morphological (e.g. leaf angle, thick cuticle), metabolic (e.g. pH

gradient, thermal dissipation), biophysical (e.g. fluorescence or heat emission) and

biochemical (e.g. accumulation of formate). There are several different definitions of

photoinhibition in the literature (Section 3.1). Powles (1984) described

photoinhibition as damage to the photosynthetic apparatus, with photodestruction

making photosynthesising pigments non-functional. Photo-oxidation is visible as a

bleaching of the leaves and it can cause cell death or death of the entire leaf. Photo-

oxidation first becomes visible as a decrease in photosynthetic activity, but does not

change the content of pigments in the leaves (Powles, 1984; Long et al., 1994). Long

et al. (1994) included reductions in photosynthetic efficiency, which are slow and

reversible, in the definition of photoinhibition. These reductions depend on radiation

loads received. The production of dry matter and therefore growth will be reduced due

to a partial loss in the capacity to use radiant energy for photosynthesis. In my study

the definition of Long et al. (1994) was used.

Osmond (1987, 1994) showed reduced photosynthetic rates over longer periods of

time caused by high light, but a positive carbon balance was kept in sun plants. High

light leaves have higher photosynthetic capacities adjusted to higher light loads than

shade leaves or ‘self-shaded’ leaves (Turnbull et al., 1993). But the danger of

damaging effects via photoinhibition is higher in leaves, which are exposed to high

radiation loads, which then can reduce the net carbon assimilation. Further field

research is needed to understand the adaptations of high light leaves and their

response to high light loads and the acclimatisation of shade leaves, which were

newly exposed to high-light conditions.

Long et al. (1994) specify that the rate of thermal dissipation and xanthophyll de-

epoxidation are both increased when diurnal photoinhibition occurs. Even with a
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recovery span of a few hours, diurnal photoinhibition can affect plants negatively.

Long et al. (1994) highlighted that such recovery times might be still too short to

avoid significant losses in potential carbon gain of up to 10%. Species with no

photosynthetic down-regulation and extra carbon gain are proposed to have an

increased capacity for repair mechanisms (Long et al., 1993). Zea genotypes from

habitats of high altitudes, where the potential for chilling-dependent photoinhibition

was greatest, expressed the highest resistance towards photoinhibition. The same

findings were observed for C4 grasses of Cyperus longus in northern versus southern

Europe (Gravett & Long, 1990). The lower sensitivity towards photoinhibitory events

correlated with a higher recovery rate from photoinhibitory events, implying increased

repair ability. It is arguable, whether the plants in my study were not experiencing

enough drought-stress to express photoinhibiton or alternatively avoided a down-

regulation via other mechanisms, such as a higher activity of the xanthophyll cycle.

Obviously, the divaricate and non-divaricate plants in the glasshouse expressed no

sign of diurnal photoinhibition. The divaricate plants in the field showed diurnal

changes in Fv/Fm values, but the midday depressions were rather small and short-

lived.

As seen above, the divaricate shrubs are influenced by frost events in winter (Howell

et al., 2002), but apparently rather little by drought in summer. So far, there has been

no comparison of the survival of divaricate and non-divaricate seedlings in a sub-

alpine area after winter. Knowledge about different growth rates in plants of a

divaricate growth form versus an open architecture as seen in non-divaricate shrubs

would have enriched the predictions of my study. R. Christian et al. (unpubl.)

investigated architectural traits in divaricate and non-divaricate shrubs grown on a

lowland experimental site.

The influence of excessive light on rainforest understorey plants experiencing

sunflecks was observed via Fv/Fm and xanthophyll cycle activity estimation by

Watling et al. (1997). Short exposure to high light resulted in rapid, large decreases in

photochemical quenching, more open PSII centres compared to the plants not exposed

to high light, as well as slow and continuing declines in quantum yields, detected by

Fv/Fm decreases. The decline in Fv/Fm persisted for up to 90 minutes after a sunfleck.

Light saturation points for the plants investigated by Watling et al. (1997) were below
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500 µmol quanta m-2 s-1. The conversion of violaxanthin to antheraxanthin and

zeaxanthin was fast and occurred continuously during exposure to sunflecks, with

recovery periods of up to an hour. So far, the effect of sunflecks occurring in the

interior of divaricate shrubs has not been investigated. Nevertheless, the field

experiment showed fast recoveries in most plants after the midday decrease of Fv/Fm.

As Watling et al. (1997) found for their understorey plants, the ‘self-shaded’

divaricate shrubs in the field displayed reduced photosynthetic rates while exposed to

PFDs above 500 µmol quanta m-2 s-1. The concentrations of photoprotective pigments

such as antheraxanthin and zeaxanthin in my study plants were also high under high

light and in experimentally exposed leaves (Section 3.2.4). This could indicate a high

number of sunflecks occurring in the interior of divaricate shrubs or an insufficient

‘self-shading’ of leaves by the divaricate growth form and therefore a lesser

prevention of photodamage in divaricate shrubs than hypothesised.

High Light and High Temperature

In summer, high temperatures and high radiation loads often occur at the same time.

When temperatures rise above optimum, decreases in photosynthesis occur first

reversibly, but above a critical temperature irreversibly (Berry & Björkman, 1980).

Several Eucalyptus species showed a 30% reduction in Fv/Fm under high light and

high temperatures; the leaves with the highest exposure to sunlight had a reduction up

to 40% (Ögren & Evan, 1992). In my study all plants displayed decreases in their

water potentials and Fv/Fm ratios under high light conditions at noon. In contrast to my

hypothesis (Figure 1.2), increased concentrations of photoprotective pigments were

found in divaricate leaves in the field, as well as high concentrations of a-tocopherol

in divaricate leaves in the glasshouse. The results of the fluorescence measurements

did not indicate drastic differences between divaricate and non-divaricate growth

forms. The reduction of the sunlight by 25% provoked different water potentials and

Fv/Fm ratios between Corokia and Coprosma, but the different growth forms were

only significantly different in the evening measurements. Genus had significant

effects on water potential and Fv/Fm predawn, noon and in the evening in the field and

glasshouse experiments (Figure 5.1). That genus had a significant effect but growth

habit generally did not in these summer measurements provides no support for the

notion that the divaricate growth form gives general benefits as a mechanism to offset

the effects of high light and high temperature. It would appear that the physiological
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responses of these plants had evolved prior to the split between the divaricate and

non-divaricate growth forms. This supports the hypothesis that divaricates are of a

very recent origin (Went 1971).

Leaf and air temperatures are likely to vary within the canopies of plants. Jifon &

Syvertsen (2003) found a temperature difference of up to 9?C when they compared

the inner and outer canopy of grapefruit trees (Citrus paradisi). Jifon & Syvertsen

(2003) argued that xanthophyll cycle pigments helped protect sun leaves from the

reversible photoinhibitory effects of excessive radiation and temperatures. Shaded

leaves had less pronounced photoinhibition and maintained higher CO2 assimilation

rates, thought to be due to the reduction in direct sun light and higher quantities of

diffuse light received in the inner canopy. The air temperature in the canopy of

divaricate shrubs has been shown to have only minor variation (Kelly & Ogle 1990),

but no further investigations of this were carried out in my study under different light

and water exposures. Howell et al. (2002) showed gradual changes in Fv/Fm within the

canopy; the inner leaves displaying the lowest amount of photoinhibition. Based on

this, my study only investigated the interior leaves of mature divaricate shrubs. High

light intensities and/ or mild drought provoked photoinhibitory events in all plants,

and were manifested in higher concentrations of photoprotective pigments or lowered

Fv/Fm ratios, from which most plants recovered in the evening. In agreement with my

original hypothesis, the leaves of young non-divaricate plants in the glasshouse trial

expressed higher concentrations of photoprotective pigments and a-tocopherol than

young divaricate leaves. However, in contrast to this, mature divaricate leaves in the

field trial had the highest concentrations of photoprotective pigments (Figure 5.1). It

could be concluded that the leaves of mature divaricate shrubs in the field experiment

recovered from photoinhibition and possible oxidative stress via photoprotective

pigments and a-tocopherol.

Obviously, the high concentrations of photoprotective pigments and a-tocopherol

provided some protection against photoinhibitory events in divaricates with the

mature ‘self-shading’ growth form. However, the pigments were not enough to avoid

photoinhibition completely as seen in the decreases of Fv/Fm at noon, the high daytime

respiration rates and low quantum efficiencies. Therefore, the hypothesis that the
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‘self-shading’ divaricate habit would provide the advantage of avoiding

photoinhibition (Section 1.3 and 3.1.1) was not supported by these experimental

findings (Section 3.1.3). This conclusion was further reinforced by the differences

between genera being more pronounced than the differences between the divaricate

and non-divaricate growth forms (Figure 5.1).

High Light and Water Stress

It is often assumed that drought stress occurs together with heat stress, but high light

conditions also lead to water deficits. Taiz & Zeiger (1998) describe the effects of

water stress on stomatal closure and photosynthetic activity in leaves. The closure of

stomata also affects the availability of CO2. The combined occurrence of water

deficits, high light and high temperatures in summer increases the potential for the

occurrence of photoinhibition and photo-oxidation (Powles, 1984).

Effects of the combination of high light and drought were observed by Gauhl (1979).

Sun-adapted Solanum dulcamara plants did show signs of photoinhibition under

water restricted conditions, but photosynthesised well under well-irrigated conditions.

Plants grown in the shade showed severe effects of photoinhibition when transferred

to full sunlight and the photoinhibitory effects increased with increasing water deficit.

Osmond (1983) argues that these effects could be affected by nutritional stress and, by

implication by water stress. Nutritional aspects were not investigated in this study, but

might have an important role in the distribution of divaricate versus non-divaricate

plants (see below).

The present study showed decreases in water potential, Fv/Fm ratios and maximum

photosynthetic rates in divaricate plants in the field and divaricate and non-divaricate

plants in the glasshouse during the summer months (Figure 5.1). Dowton (1983) also

found a decrease in grapevine leaf fluorescence when the plants experienced water

stress over short temporal scales. Drought stresses applied over longer temporal scales

did not initiate losses in variable or minimal fluorescence, due to the maintenance of

turgor via osmotic adjustments, until the point where the leaves were morphologically

damaged. As discussed above, fluorescence measurements in the present study did not

show prominent differences between the different light or water treatments. This

could be due in part to mildness of the stress applied or to the long adaptation time
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given before the measurements were recorded (three months in both the field and the

glasshouse). This long term adaptation might have diminished mild heat or high light

effects as the plants adapted to the changed environment.

In contrast to my hypothesis that divaricate leaves should maintain high

photosynthetic rates in adverse conditions, the lowest maximum photosynthetic rates

were found in divaricate leaves under shade in the streambed in the field; and under

sunlight and water stressed conditions in the glasshouse (Section 4.3). Summarising

the findings, divaricate leaves do not show a consistent avoidance of photoinhibition.

Also, strong genera effects were found in these investigations, whereas the growth

form only displayed significant effects in terms of water potential and a-tocopherol

concentrations. Divaricate leaves showed the highest a-tocopherol concentrations,

indicating active mechanisms of photoprotection. In contrast to my hypothesis (Figure

1.2), divaricate leaves obviously are not protected against high light and drought

stress solely by their ‘self-shading’ and water-conserving growth form (Figure 5.1).

The costs of photoprotection by physiological mechanisms were still incurred by

divaricate plants. This finding does not support the hypothesis that the evolution of

the divaricate growth form was an adaptation to habitats with high radiation loads and

seasonal drought conditions.

As discussed by Anderson & Osmond (1987), leaves acclimated to shade have a

higher susceptibility to photoinhibition when exposed to high light. In contrast, the

carbon gain is higher in shaded leaves than in sun exposed leaves, because less

photoprotection is needed and fewer photoinhibitory events occur. In Quercus ilex

and Q. coccifera (Valladares et al., 2004) lower carbon gain was found in leaves in

high light. Obviously, the shaded parts of the crown make an important contribution

to whole-plant carbon gain, in particular because these Mediterranean shrubs have a

low leaf area index. The divaricate leaves used in the present study have very small

leaf areas compared to non-divaricate leaves (Section 2.1). Additionally, the

calculations of R. Christian (unpublished data) of the costs to maintain the branch

layer, which is typical for divaricate shrubs, showed that divaricate leaves would need

to have nearly twice the photosynthetic rates per unit area of non-divaricate leaves to

match their whole-plant carbon gain. Although divaricate leaves had higher maximum

photosynthetic rates than non-divaricate leaves in the glasshouse and the highest
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maximum photosynthetic rates in the field, the difference did not approach this

magnitude. Also, inner leaves which were exposed to the exterior climate showed the

most pronounced decreases in most parameters (consistent with Kelly & Ogle, 1990,

and Howell et al., 2002), indicating that ‘self-shading’ increases the susceptibility to

photoinhibitory events in the event that incident light suddenly increases. Howell et

al. (2002) found cold-induced photoinhibition in exposed leaves of three divaricate

shrub species and most leaves showed no recovery from these photoinhibitory events,

concluding that the ‘self-shading’ growth of divaricate shrubs prevent photodamage.

This study investigated two divaricate species and their susceptibility to drought-

induced photoinhibition in leaves under different sun exposures during the day.

Although photoinhibitory events were found in exposed leaves, the results were

inconclusive, as there was a greater difference in photoinhibitory events between

genera than growth forms. From both results of the gas exchange measurements and

pigment analyses there seems to be little evidence that the ‘self-shading’ growth form

of divaricate shrubs is an adaptation to prevent photodamage.

High Light and Low Temperatures

Low temperatures have adverse effects on the metabolic functions of plants and

photosynthesis is often the first influenced. The combination of high light intensities

and low temperatures are especially damaging and often result in photo-oxidative

damage to long-term exposed leaves (Hendrey et al., 1987). In contrast, low

temperatures which only occur at night have little or no effect on photosynthesis and

the PSII complex in particular (Ottander et al., 1995).

My study did not investigate low temperature effects, although the divaricate plants in

the sub-alpine and alpine areas can experience sudden temperature reductions for

hours or days even during the summer. For testing the evolutionary hypotheses for the

effect of the divaricate growth form on photosynthesis, it may be particularly

important to collect data concerning photosynthetic responses and the amount of cold-

induced photoinhibition seen in these plants during such low temperature events.

Additionally, it could be interesting to determine the length of the recovery period

after such events and if photosynthetic carbon gain would be influenced. All these

factors could help us to understand why divaricate plants are found in adverse habitats

and non-divaricate plants are not (McGlone & Webb, 1981 and McGlone, 1985). It
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could verify or refute assumptions made in the past (Chapter 1) or even lead to new

insights and theories of how and why the divaricate growth form developed in New

Zealand. Divaricate leaves which experienced atypical high light loads in the

experimental set up of Howell et al. (2002), displayed the highest reductions in the

photochemical efficiency of PSII, and had only partial recovery, compared to shaded

or control plants. Also, the light response curves of those exposed leaves showed

reduced photosynthetic rates, with reductions in maximum photosynthetic rates of up

to 50%. Increased shading by branches in the interior not only decreased the amount

of light but also the amount of photoinhibition, as measured by chlorophyll

fluorescence.

Biochemical Adaptation

Secondary compounds are known to play important roles in the adaptation of species

in different habitats. So far, no research has been undertaken on divaricate plants and

their biochemical adaptation to adverse environments. Dungan et al. (2003) compared

the photosynthetic response to different seasonal and temperature conditions in two

New Zealand plants with contrasting leaf phenologies. In spring and summer,

maximum rates of carboxylation and electron transport were more than 60% higher

than in autumn/ winter and were significantly related to leaf nitrogen concentration

per area in both leaf phenologies. Investigations of the nutrient supply in the different

habitats of divaricate and non-divaricate shrubs as well as a comparison of the

possible different usages of biochemical resources, such as nitrogen or potassium

formate, would help to understand the distribution of divaricate and non-divaricate

plants in different niches. Nitrogen may be a good predictor of the photosynthetic

capacity in leaves because high leaf nitrogen concentrations have been correlated with

high photosynthetic rates and dry matter accumulation (Evan, 1989). Potassium

formate is known to reduce oxidative damage to photosystems by scavenging radicals

and supplying CO2 which may also be an important factor (Shiraishi et al., 2000). The

observation of enzyme activities under different stress situations in divaricate versus

non-divaricate leaves would give further insights into their adaptation to certain

habitats and into the evolutionary development of divaricate and non-divaricate

shrubs.
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Morphological Adaptation

To use morphological adaptations to reduce the risk of photoinhibition, the total area

of exposed chloroplasts has to be reduced. This can be achieved by moving and

aggregating chloroplasts inside the cells (Long et al., 1994), or changing the angle of

the whole leaf to the sun and therefore changing the amount of light absorbed

(Powles, 1984; Long et al., 1994). The divaricate growth form was hypothesised to

prevent photoinhibitory events through its self-shading growth form as well as by

locating most of the small leaves in the shaded interior. As seen in my study, and in

the study of Howell et al. (2002), photoinhibitory events occur in divaricate leaves

even when they are ‘self-shaded’. But both studies also found an increase in

photoinhibition, when the outer branch layer was removed and interior leaves were

exposed to exterior climate. This could indicate that the ‘self-shading’ branch layer on

the outside of divaricate shrubs reduces photoinhibition to some extent. In contrast,

both studies found that increased stress also increased the amount of photoinhibition,

measured by a decrease in Fv/Fm. Conversely, divaricate leaves often displayed fast

recoveries from these photoinhibitory events. Although the divaricate growth form did

show high maximum photosynthetic rates, photoinhibitory events were often observed

in divaricate and non-divaricate shrubs as a response to stressful treatments. These

findings do not support the hypothesis that the ‘self-shading’ growth form of

divaricate plants would decrease the frequency of photoinhibitory events.

5.2       Climate versus Moa Browsing Theories

Two main theories for the evolution of divaricate shrubs have been proposed to date.

Environmental conditions provide an alternative to the theory of moa browsing as

selective pressures for the development and distribution of divaricate shrubs. In this

study, environmental conditions such as high radiation loads and mild drought were

used to observe different adaptations of divaricate and non-divaricate leaves, such as

water potentials of leaves and shoots, photochemistry through chlorophyll

fluorescence measurements, pigment and a-tocopherol concentrations and gas

exchange parameters. My hypothesis was that the evolution of divaricate shrubs was

driven by adaptations to adverse environmental conditions, such as high radiation

loads and/ or seasonal drought. As seen in Section 5.1, this hypothesis was not
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generally supported by measurements of the Fv/Fm ratio and the concentrations of

photoprotective pigments and a-tocopherol.

Greenwood & Atkinson proposed in 1977 that the evolution of divaricate shrubs was

a response to repetitive moa browsing. In an attempt to test this idea, Bond et al.

(2004) observed emus and ostriches feeding on divaricate shrubs. Although the ratites

did not preferentially browse divaricates, feeding was possible on this growth form.

Given the stronger bone structure and therefore higher potential shear force of a moa

bill (R. Holdaway, pers. comm.); the divaricate growth form obviously did not

completely obliviate browsing on this species (see also Burrows 1980a, 1980b,

Burrows et al., 1981). Additionally, the divaricate growth form is also found in other

parts of the world. In Patagonia, spiny divaricates can be found in open habitats with

low precipitation (McQueen, 2000). Cooper & Ginnet (1998) found limitations in

browsing on the foliage of spiny woody plants compared to spineless species by large

mammals. In contrast, small herbivores were able to manoeuvre around the spines,

and no limitation in their browsing was found. Furthermore, their browsing had

significant effects on the plant community (Gutierrez et al., 1997).

Divaricate shrubs of New Zealand, which are mostly spineless, are often found in

open habitats where lizards are found. Lord & Marshall (2001) found a significant

relationship between the occurrence of small fruits in pale colours, shrub-like growth

forms, open habitats, and higher altitudes. A possibility could be that the evolution of

divaricate shrubs in New Zealand is also influenced by limitations to seed dispersal

and the presence or absence of seed dispersers.

Divaricate shrubs were hypothesised to use their outer branch layer as a form of

umbrella (pers. comm., M. Turnbull) to shade their inner leaves and protect them from

a harsh exterior climate. It was argued as either an advantage in past glacial periods or

to more recent conditions, providing protection against high light, frost, or drought;

subsequently reducing photoinhibitory events (Chapter 1). Therefore, shaded or ‘self-

shaded’ leaves, which were hypothesised to avoid the costs of photoinhibition and

photoprotection, should therefore maintain higher carbon gains than sun leaves during

periods of adverse conditions. As described in Chapter 4, the balance between the

benefits to carbon gain by avoiding photoinhibition versus the costs of
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photoprotection to develop and maintain such branch umbrellas as found in divaricate

shrubs is only starting to be investigated. The data from the present study do not

support this hypothesis because of the observed high daytime respiration rates and

low quantum efficiencies. McGlone & Webb (1981) argued that the costs for the

establishment of the divaricate habit would be great. In contrast, the reduced light

quantity in the interior would allow the majority of the leaves to photosynthesise

without the costs of photoinhibition and/ or photoprotection throughout the year. This

was hypothesised to be a benefit to the divaricate growth form, as net carbon gain

under this scenario should be higher. The higher maximum photosynthetic rates

observed in divaricate leaves support this notion. In contrast, the same leaves had

higher daytime respiration rates and often lower quantum efficiencies than their non-

divaricate congeners. Also, the decreases in water potential and Fv/Fm seen in

divaricate leaves tends to negate a benefit of divaricates in high light and drought in

summer. Howell et al. (2002) did find cold-induced photoinhibition in divaricate

leaves in the field, which suggests a winter, but not necessarily a year-round, benefit

in the carbon gain in divaricate versus non-divaricate leaves.

Differences in energy dissipation via the xanthophyll cycle have previously been

investigated for several species in understorey and fully exposed light conditions by

Demmig-Adams et al. (1995). Shaded leaves reached much higher concentrations of

antheraxanthin and zeaxanthin than sun leaves after a short exposure to high light.

The plants used in my glasshouse trial were still very young and the divaricate shrubs

had not completely developed their typical growth form. In contrast, the plants in the

field experiment were mature divaricates, and these displayed the highest

concentrations of photoprotective pigments and vitamin in my study. It could be

possible that the ‘self-shading’ of divaricate leaves is not substantial enough and

therefore, high light events do occur during the day in the interior of divaricate shrubs.

This hypothesis would be supported by my findings of photoinhibitory events in

experimentally unchanged interior leaves and the high concentrations of

photoprotective pigments and a-tocopherol. Again, it does not support my main

hypothesis that divaricate shrubs could have evolved as an adaptation to high

radiation and drought.
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The differences between divaricate and non-divaricate leaf responses to different light

and water treatments in this study were mostly consistent but small. To support my

hypothesis that the divaricate habit evolved to protect interior leaves from

photoinhibitory events and the costs of photoprotection (Figure 1.2), substantial

differences reflecting strong evolutionary pressure would have been expected. In

contrast, the main differences were found mostly between the genera of Corokia and

Coprosma (Figure 5.1). This tends to indicate that the divaricate growth form

developed independently and after these genera developed the physiological

characteristics required for photoprotection. It also indicates that the divaricate habit

is not uniquely suited to the habitats in which divaricates are found at present, even

though their evolution is of recent origin. It would be interesting to compare estimates

of the time of divergence of divaricate and non-divaricate species within the different

genera, most likely by using molecular-clock measurements. If it could be shown that

the divaricate species all diverged from their non-divaricate congeners synchronously,

it would be interesting to try to correlate this with historical climatic events. If it could

be shown that speciation within different genera might have co-occurred with major

climate events, such as glaciations or warming of the mean temperatures, this could be

good evidence for the climate theory. This could reveal that these genera evolved the

divaricate form in response to the same climatic conditions. Although this would

indicate that climate played an important role in the evolution of this growth form, it

would still remain unclear what the ultimate selection pressure was. A change in

climate may also alter, for example, herbivore (moa) abundance, so that the actual

selection pressure was not climate per se.
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APPENDICIE’S

A1 Comparison between Corokia Divaricate, Non-Divaricate and Intermediate

Hybrids in a Glasshouse trial in 2003

This appendix section describes an attempt to determine physiological differences

between hybrid plants of Corokia cotoneaster x buddleioides and the divaricate C.

cotoneaster (Figure 2.4) and non-divariate C. buddeioides. The intermediate hybrid

plants were purchased as putative divaricate (C. cotoneaster) plants and used in the

glasshouse experiments in 2002. After recognition of more intermediate

morphological traits of the hybrid plants, non-hybrid divaricate plants were purchased

(Section 2.1.3). Comparative measurements of all three taxa were performed to

determine the differences in the physiological response of divaricate and hybrid

versus non-divaricate leaves. It was expected that the most pronounced difference

would be found between divaricate and non-divaricate leaves, whereas the

intermediate hybrid with its relatively small leaves would have a physiological

response to the treatments close to those for the divaricate leaves and therefore could

be regarded as comparable to divaricate plants for the purposes of statistical analysis

of the glasshouse experiments.

The physiological response of the divaricate C. cotoneaster, non-divaricate C.

buddleioides and intermediate hybrid C. cotoneaster x buddleioides leaves were

compared in the glasshouse experiment in 2003 (Section 2.1.3). Water potential

measurements (Section 2.2) and fluorescence measurements (Section 3.1) were

carried out in January and December 2003. Analysis of pigments and vitamin E

(Section 3.2) and gas exchange measurements (Chapter 4) were carried out in

December 2003. All plants were grown for at least six months under the treatments

described in Section 2.1.3. Due to insect infestation in the glasshouse, some young

plants did not survive until the measurements were taken. When only one plant or

result was available for a certain treatment combination, data are marked as ‘#’ in the

graphs.



166

Response to Drought

The three Corokia taxa, including divaricate, intermediate hybrid and non-divaricate

shrubs, were measured and compared for their water potential values. The non-

divaricate leaves were measured directly in the Scholander pressure chamber,

divaricate and hybrid water potentials were taken from small shoots with at least 3

healthy leaves on them. It was expected that divaricate and non-divaricate shrubs

would possess different water usage patterns due to their varying growth forms. The

divaricate growth form was hypothesised to prevent water losses via transpiration due

to the self-shading growth form (Chapter 1). Therefore, the divaricate shoots were

predicted to have less negative water potentials at noon, when transpiration in plants

is highest. Additionally, the recovery in the evening towards the predawn water

potential values should be more complete in divaricate leave because of their water

conserving growth form. The non-divaricate leaves should express the lowest water

potential values at noon, as they have the largest leaf area (Section 2.1.3) and

therefore a large transpiration surface with high potential water loss in high

temperatures. The intermediate hybrid had a leaf area intermediate between the non-

divaricate and the divaricate, although the number of leaves per branch was more

similar to non-divaricate than divaricate plants. An intermediate response between the

divaricate and non-divaricate plants was expected in these plants. A water potential

response to the light and water treatments close to the response seen for divaricate

shoots would support the inclusion of the hybrid plants in for the analysis for

divaricate leaves.

In January, measurements were made predawn, noon and evening (Figure A1.1); and

in December predawn only (Figure A1.2). In January (Figure A1.1a), plants under

water stressed conditions had low predawn water potentials. All habits under water

stress conditions had lower water potentials at noon (Figure A1.1b) and did not re-

establish predawn water potential values in the evening measurements compared to

well-watered plants. Interestingly, the intermediate hybrid under water stressed

conditions had low values at noon, but did not recover as well as the divaricate or

non-divaricate plants in the evening (Figure A1.1c). Divaricate leaves displayed lower

predawn water potential under water stressed conditions than under well-watered

conditions.
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Figure A1.1 Water potential measurements for Corokia cotoneaster (Div), Corokia hybrid (Hybrid)
and Corokia buddleioides (Non-Div); measurements taken at (a) predawn, (b) noon, and (c) evening, in
the glasshouse, January 2003. Recorded under well-watered and water stressed conditions, and two
different light treatments (HL = sun light, LL = shaded) [n = 4].
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Figure A1.2 Water potential measurements for Corokia cotoneaster (Div), Corokia hybrid (Hybrid)
and Corokia buddleioides (Non-Div); measurements taken predawn in the glasshouse, December 2003.
Recorded under well-watered and water stressed conditions, and two different light treatments (HL =
sun light, LL = shaded) [n = 4].

At noon, divaricate shoots had the lowest water potentials of the three growth forms,

but had a faster recovery towards predawn water potential values in the evening than

non-divaricate or hybrid leaves. During December, the divaricate and non-divaricate

plants had the lowest water potentials, whereas the hybrid plants had less negative

water potentials. In the ANOVA, habit had a significant effect at the noon and

evening measurements in January, and also for the predawn measurements in

December (Table A3.1). The interaction of water availability* habit had significant

effects on all measurements taken in January. Under mild drought (water stressed) all

plants expressed significantly lower water potentials than under well watered

conditions.

In January, the water potential values of divaricate shoots in the evening were not as

negative as those of the hybrid or non-divaricate plants under water stressed

conditions in both light treatments. The water potential values in December were

more negative than in January. This is likely due to hotter days with less overcast

skies in December than in January. Possibly, transpiration was less extensive in
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January as less PFDs would reduce light and temperature stress. This could also

indicate a more economical use of available water sources in divaricate leaves in

diffuse light, which could be caused by their unique self-shading and water

conserving growth form. The comparison between divaricate, non-divaricate and

hybrid Corokias showed that although divaricates and non-divaricates respond

differently to the treatments, the fastest response to changed water potentials was

shown by divaricate shoots. As shown in Figure 2.1, the hybrid morphology is closer

to the non-divaricate growth form than the divaricate growth form. Under well-

watered conditions, the least negative water potential values were seen during the day

in the hybrid shoots. In water stressed conditions, the noon measurements show low

values for hybrid shoots, and in the evening these shoots still expressed the most

negative water potential values. The hybrid leaf and stem traits could offer some

protection against water loss at noon, but did not support the recovery toward

predawn values better than non-divaricate leaf and growth traits.

Fluorescence

Fv/Fm was measured for divaricate, intermediate hybrid and non-divaricate Corokia

leaves. As described in Section 3.1.2, chlorophyll fluorescence was estimated at the

same time as shoot and leaf water potentials. In January, Fv/Fm was measured

predawn, noon and in the evening, and in December predawn only. As argued in

Section 3.1, Fv/Fm is influenced by light intensity, and over-saturation can induce

photoinhibition. Healthy plants have Fv/Fm ratios around 0.8. As the light load

changes during the day, the amount of emitted fluorescence and therefore Fv/Fm

changes in leaves. As seen before, water shortages can also increase photoinhibition

due to the inactivation of PSII, which also reduces Fv/Fm. Therefore, leaves which are

exposed to high light and mild drought stress should display decreased Fv/Fm values,

in particular at noon, when light intensities are highest. Non-divaricate leaves are

without a sheltered outer branch layer, in contrast to divaricate leaves. The large non-

divaricate leaves were hypothesised to express low predawn Fv/Fm values, a

substantial decrease in Fv/Fm at noon and an incomplete recovery of the Fv/Fm towards

predawn values in the evening measurements. The ‘self-shading’ and water

conserving growth form should protect the small divaricate leaves against

photoinhibitory events and the Fv/Fm ratio should remain high during the day. The
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small leaves of the intermediate hybrid were expected to express similar Fv/Fm values

as divaricate leaves during the day.

In all leaves, diurnal changes in Fv/Fm were found (Figure A1.3), indicating

photoinhibitory effects to some extent. In particular, hybrid leaves in the shade

showed low values in well-watered conditions. The better recovery of the Fv/Fm

values towards the predawn values in divaricate leaves indicates a potential advantage

of the self-shading and water conserving growth form. A faster recovery from

photoinhibitory effects could either indicate a lesser amount of inactivated PSII or a

faster re-activation of inactivated PSII via the mechanisms described in Section 3.1.1

(D1 repair, thermal dissipation of energy via xanthophyll cycle). Significant effects of

habit were only found for the evening measurements in January. Divaricate and non-

divaricate leaves showed a similar response to the light and water treatments, whereas

the hybrid leaves responded differently. The intermediate hybrid displayed the lowest

Fv/Fm values under shade and well-watered conditions in the evening. In December,

the predawn Fv/Fm values of the hybrid leaves were comparable with those of

divaricate leaves when observed under water stressed conditions, but comparable with

non-divaricate leaves when observed under well-watered conditions.

In summary, a significant effect of habit on the Fv/Fm values were only found in the

evening, where the hybrid leaves showed a response different from divaricate and

non-divaricate leaves. The interactions of light level* habit, water availability* habit

and light level* water availability* habit had also significant effects on the Fv/Fm

ratios. This inconsistent response of the hybrid leaves made it hard to include the

hybrid plants in the analysis of divaricate leaves in this experiment. The small leaf

size alone was obviously not sufficient for hybrid plants to express the higher Fv/Fm

values in the more adverse treatments, as seen in the divaricate leaves. The shelter by

branches on the outside of the plant might have had a positive influence on the water

and light conditions received by the interior divaricate leaves, explaining the

discrepancy between the results for the hybrids and divaricates.
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Figure A1.3 Photochemical efficiency of PS II (Fv/Fm) in the Glasshouse at (a) predawn, (b) noon and
(c) evening in January 2003 for Corokia cotoneaster (Div), a Corokia hybrid (Hybrid) and Corokia
buddleioides (Non-Div.) in well-watered and water stressed conditions and two different light
treatments (HL = sun light, LL=shaded) [n = 4].
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Figure A1.4 Photochemical efficiency of PS II (Fv/Fm) in the Glasshouse predawn in December 2003
for Corokia cotoneaster (Div), a Corokia hybrid (Hybrid) and Corokia buddleioides (Non-Div.) in
well-watered and water stressed conditions and two different light treatments (HL = sun light,
LL=shaded) [n = 4].

Pigment and ? -Tocopherol Compositions

In December 2003, leaf samples for pigment and ? -tocopherol analysis were taken

from C. cotoneaster, the C. cotoneaster x buddleioides hybrid and C. buddleioides.

Due to technical difficulties during the HPLC analysis (Section 3.2.2) samples were

lost and there was insufficient replication to interpret the effect of light level on the

pigment composition, but there were enough samples for the analysis of ? -tocopherol.

As demonstrated in Section 3.2.1, the amounts of photoprotective pigments increase

with increasing light intensities, air temperature and water stress. Divaricate leaves

were hypothesised to use water conservatively and shade their interior leaves via their

highly interlaced branches on the outer crown (Chapter 1). This could offer these

interior leaves enough protection against high light loads and therefore high amounts

of photoprotective pigments and antioxidants such as ? -tocopherol would not be

required in the same levels as in the unshaded non-divaricate leaves. As mentioned

above, the intermediate hybrid was hypothesised to respond in a manner similar to

divaricate leaves, and therefore concentrations of photoprotective pigments and the
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antioxidant ? -tocopherol were expected to be similar to the values in divaricate leaves

or at least intermediate to the values of divaricate and non-divaricate leaves.

The concentrations of violaxanthin, antheraxanthin and zeaxanthin per unit total

chlorophyll were higher in divaricate leaves than in hybrid and non-divaricate leaves

(Figure A1.5). The relation of violaxanthin, antheraxanthin and zeaxanthin to unit leaf

area produced an even more striking pattern (Figure A1.6). The relation of each single

pigment and ? -tocopherol on a leaf area basis showed that there were higher

concentrations for all pigments and for ? -tocopherol in divaricate leaves (examples

shown in Figures A1.6, A1.12). Relating pigment concentration to leaf fresh weight

also showed that divaricates had the highest relative amounts of violaxanthin,

antheraxanthin and zeaxanthin (Figure A1.7). Hybrid and non-divaricate leaves

showed similar concentrations in violaxanthin, antheraxanthin and zeaxanthin, which

were substantially lower than in the divaricate leaves (Figures A1.5 to A1.7).

As discussed in Section 3.2, neoxanthin and lutein have structural functions and

therefore normally do not vary greatly in their concentrations. As seen in Section

3.2.3 and 3.2.4, this study found differences in the concentrations between the growth

forms. The highest concentrations of neoxanthin and lutein were found in divaricate

leaves, only the concentration of neoxanthin per unit fresh weight was shown (Figure

A1.8). The concentrations for hybrid and non-divaricate leaves were similar for

neoxanthin and lutein per unit total chlorophyll, leaf area and fresh weight (data only

shown for neoxanthin per unit fresh weight, Figure A1.8).

The concentrations of chlorophyll a, chlorophyll b and chlorophyll a+b per unit fresh

weight were highest in divaricate leaves (Figure A1.9). Again, the concentrations for

chlorophyll a, chlorophyll b and chlorophyll a+b in hybrid and non-divaricate leaves

were similar and substantially lower than in the divaricate leaves. The chlorophyll a:b

ratio was found to be around 3.0 in the divaricate and the non-divaricate leaves,

whereas the intermediate hybrid leaves exhibited a ratio of 2.7 (Figure A1.10).

As was found for violaxanthin, antheraxanthin and zeaxanthin, chlorophyll a and

chlorophyll b, the ? -carotene concentrations were highest in divaricate leaves.
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Figure A1.5 Contents of (a) violaxanthin, (b) antheraxanthin and (c) zeaxanthin per unit total
chlorophyll in the Glasshouse in 2003 for divaricate (Div), intermediate hybrid (Hybrid) and non-
divaricate leaves (Non-Div) in well-watered and water stressed conditions [n = 4].
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Div) in well-watered and water stressed conditions [n = 4].
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Figure A1.7 Contents of (a) violaxanthin, (b) antheraxanthin and (c) zeaxanthin per unit fresh weight in
the Glasshouse in 2003 for divaricate (Div), intermediate hybrid (Hybrid) and non-divaricate leaves
(Non-Div) in well-watered and water stressed conditions [n = 4].
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Figure A1.8 Contents of neoxanthin per unit fresh weight in the Glasshouse in 2003 for divaricate
(Div), intermediate hybrid (Hybrid) and non-divaricate (Non-Div) in well-watered and water-stressed
conditions [n = 4].

When calculated on a fresh weight basis (Figure A1.11), ? -carotene concentrations in

hybrid leaves were more similar to non-divaricate than to divaricate leaves.

The concentrations of ? -tocopherol per unit total chlorophyll, leaf area and fresh

weight are displayed in Figure A1.12. The content of ? -tocopherol was still high in

divaricate leaves, but when calculated per unit of total chlorophyll and fresh weight,

intermediate hybrid and non-divaricate leaves displayed higher concentrations. The

content of ? -tocopherol per unit total chlorophyll was highest in non-divaricate leaves

under high light and well-watered conditions. In this treatment, hybrid leaves

displayed their lowest concentrations per unit leaf area and fresh weight. When related

to total chlorophyll, the lowest ? -tocopherol concentrations in all growth forms were

found for plants in shaded conditions.

The ANOVA analysis of the pigment and ? -tocopherol concentrations were presented

per unit total chlorophyll (Table A3.3 to A3.10), unit leaf area (Table A3.11 to A3.21)

and unit fresh weight (Table A3.22 to A3.32). The relation to unit total chlorophyll

displayed significant effects of habit on the concentrations of violaxanthin,

neoxanthin, ? -carotene and ? -tocopherol (Table A3.3, A3.7, A3.9 and A3.10).
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Figure A1.9 Contents of (a) chlorophyll a, (b) chlorophyll b and (c) chlorophyll a+b per unit fresh
weight in the Glasshouse in 2003 for divaricate (Div), intermediate hybrid (Hybrid) and non-divaricate
leaves (Non-Div) in well-watered and water stressed conditions [n = 4].
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Figure A1.10 Ratio of chlorophyll a:b in the Glasshouse in 2003 for divaricate (Div), intermediate
hybrid (Hybrid) and non-divaricate (Non-Div) in well-watered and water-stressed conditions [n = 4].

The ? -tocopherol concentrations were also significantly affected by light level, light

level* habit and water availability* habit (A3.10). The relation to unit leaf area

showed significant effects of habit for all pigments and ? -tocopherol (A3.11 to

A3.21), which was also significantly affected by light level and light level* habit

(A3.20 and A3.21). The relation to unit fresh weight also displayed significant effects

of habit for all pigments, except for antheraxanthin (A3.22, A3.24 to A3.31). ? -

Tocopherol per unit fresh weight was significantly affected by light level, light level*

habit and water availability* habit (A3.30 and A3.31). For all pigment analyses,

divaricate leaves showed the highest concentrations, whereas hybrid and non-

divaricate leaves had similarly low concentrations. This result is in contrast to my

hypothesis that divaricate and hybrid leaves would have similar pigment

concentrations. The concentrations of ? -tocopherol per unit leaf area displayed the

same result. However, the hybrid leaves had significantly different responses to the

water and light treatments as seen in the ? -tocopherol concentration per unit

chlorophyll or per unit fresh weight. Due to technical difficulties, samples were lost

and the pigment analysis for light level became impossible; only samples of shaded

leaves were analysed. The water availability and the interaction of water availability*

habit did not significantly affect any pigment concentrations per unit total chlorophyll,

leaf area or fresh weight (A3.3 to A3.31).
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Figure A1.11 Contents of ß-carotene per unit fresh weight in the Glasshouse in 2003 for divaricate
(Div), intermediate hybrid (Hybrid) and non-divaricate leaves (Non-Div) in well-watered and water
stressed conditions [n = 4].

Divaricate leaves, which were expected to have low contents of photoprotective

pigments due to their self-shading growth form, expressed high concentrations of

xanthophyll cycle pigments, chlorophyll a and chlorophyll b, a high chlorophyll a:b

ratio and high concentrations of ? -carotene and ? -tocopherol. All those pigments have

at least to some extent photoprotective functions (Section 3.2.1) and concentrations

are usually highest in leaves with full sun exposure. ? -Tocopherol functions as an

antioxidant in plant cells, and concentrations normally increase as radiation loads

increase. Therefore, the analysis of the pigment and antioxidant contents in divaricate

leaves brought results contradicting the hypothesis that shading, and here in particular

‘self-shading’, reduces the concentration of photoprotective pigments. As discussed in

chapters 2 to 4, the degree of ‘self-shading’ in divaricate plants in the glasshouse was

not as great as seen in fully-grown plants of the experimental species, or in other

species, such as in beech (Fagus sylvatica; Hansen et al., 2002b). The plants were still

very young and the typical crown structure not fully developed, which could have

influenced the results. Comparing the ? -tocopherol concentrations in high light and

shaded plants, nearly all samples expressed higher concentrations of ? -tocopherol in

high light. In the shade, divaricate leaves had much lower concentrations of vitamin E

than hybrid or non-divaricate leaves. Here, there is some indication that divaricate

plants have a lower requirement for photoprotection than the other growth forms.
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Figure A1.12 Contents of ? -tocopherol per unit (a) total chlorophyll, (b) leaf area and (c) fresh weight
in the Glasshouse in 2003 for divaricate (Div), intermediate hybrid (Hybrid) and non-divaricate leaves
(Non-Div) in well-watered and water stressed conditions and two different light treatments (HL = sun
light, LL=shaded) [n = 4].
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Lower water availability decreased the concentrations ? -tocopherol in divaricate

leaves in particular. The naturally unshaded leaves of the intermediate hybrid and the

non-divaricate plants displayed much lower concentrations of all the analysed

pigments and of ? -tocopherol. The concentrations of each pigment and ? -tocopherol

were similar in hybrid and non-divaricate leaves. Therefore, the hybrid leaf trait did

not represent divaricate leaf traits and should not be used for modelling the response

of divaricate leaves in regard to pigment and antioxidant concentrations.

Gas Exchange

In 2003, light response curves were determined for leaves of the divaricate Corokia

cotoneaster, the non-divaricate Corokia buddleioides and a hybrid of both of them.

Parameters, such as daytime respiration (Rd), quantum efficiency (QE) and maximum

photosynthetic rate (Amax) were subsequently calculated from these light response

curves (Section 4.2). Chapter 4 described in detail the influence of water deficit and

high light load on plants and divaricate and non-divaricate leaves in particular. As

argued by R. Christian (pers. comm.), divaricate leaves should have a much higher

photosynthetic rate than non-divaricates to produce a positive carbon gain at the

whole-plant level, due to the costs of the greater biomass of branches required to form

the typical ‘self-shading’ growth form. The photosynthetic rates of divaricate,

intermediate hybrid and non-divaricate leaves were compared to test the hypothesis

that non-divaricate leaves have lower photosynthetic rates due to them being

unshaded, and therefore more susceptible to photoinhibition under high light and

under water stress. Also, these measurements of photosynthetic rates further test the

hypothesis that the intermediate hybrid is functionally similar to the divaricate form.

Comparable values for Rd, QE and Amax in divaricate and hybrid leaves were

expected, whereas a contrasting picture between divaricate and non-divaricate leaves

was expected to emerge. High Rd, low QE and low photosynthetic rates in unshaded

non-divaricate leaves would lead to a lower carbon gain under adverse environmental

conditions.

Daytime respiration, shown in Figure A1.13a, displayed a pronounced difference in

the response to water treatments between leaves of divaricate and hybrid plants versus
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Figure A1.13 Gas exchange measurements in the Glasshouse, summer 2003 for (a) daytime respiration
(Rd), (b) quantum efficiency (QE) and (c) maximum photosynthetic rate (Amax) in well-watered and
water stressed conditions and two different light treatments (HL = sun light, LL = shaded) for Corokia
cotoneaster (Div), a Corokia hybrid (Hybrid) and Corokia buddleioides (Non-Div.).
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non-divaricate plants. Divaricate and hybrid leaves had Rd’s between 1.2 and 3.3

µmol CO2 m-2 s-1. The non-divaricate leaves had Rd’s between 0.37 and 0.5 µmol CO2

m-2 s-1. In well-watered conditions, the leaves of divaricate and hybrid plants show

higher Rd’s than under water-stressed conditions. The non-divaricate leaves did not

show variations in different water treatments. The divaricate Corokia had the highest

Rd’s. Significant effects of water availability and habit on Rd’s were found (Table

A3.33). The hybrid leaves displayed values which were similar to the values for

divaricate leaves.

QE was highest, around 0.06 (Figure A1.13b), in divaricate leaves in all treatments.

Leaves of the hybrid did not show variations in QE, with the values around 0.04. Non-

divaricate leaves had high QEs in well-watered conditions, around 0.05. However in

water-stressed conditions they reached values around 0.03. Habit was found to have

significant effects on QE (Table A3.34). The values of QE of the true divaricate

leaves were higher than for the intermediate hybrid and non-divaricate leaves.

In contrast to my findings in the glasshouse experiment in 2002, C. cotoneaster

expressed a high CO2 uptake (photosynthetic rate) over the range of light intensities

investigated. The highest value of 13 µmol CO2 m-2 s-1 for Amax in divaricate Corokia

leaves was found under shade and water stressed conditions (Figure A1.13c). The

lowest value of 7 µmol CO2 m-2 s-1 was recorded under natural light and water

stressed conditions. Hybrid leaves showed their highest Amax of 9 µmol CO2 m-2 s-1 in

high light and well-watered conditions, but reached only 1 µmol CO2 m-2 s-1 under

water-stressed conditions. The non-divaricate leaves expressed Amax in all treatments,

and reached only 3.5 µmol CO2 m-2 s-1 in well-watered and shaded conditions. The

ANOVA analysis showed significant effects of habit and light level* water

availability on maximum photosynthetic rate (Table A3.35). Amax was highest in

divaricate leaves in all treatments and lowest in non-divaricate leaves, the hybrid

leaves expressed intermediate values. Therefore, it seems that the ‘self-shading’ and

water conserving growth form of the divaricate shrubs was better able to maintain a

high photosynthetic rate under the experimental conditions than the hybrid or non-

divaricate plants. The hybrid, therefore, was not found to be equivalent to the

divaricate form.
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It has been clearly shown that hybrid leaves are not a suitable model for divariacte

leaves, as is shown by the different responses of the hybrid leaves seen in Rd, QE and

Amax.

The transpiration rates (E) were significantly effected by habit, light level* water

availability, light level* habit and water availability* habit. Plants grown under good

water availability had higher E than plants grown under water stress divaricate and

non-divaricate leaves in particular. The hybrid leaves showed higher E than divaricate

leaves, non-divaricate leaves had the lowest E. In contrast to divaricate and non-

divaricate leaves, hybrid leaves showed the highest E when grown under water stress.

Habit and water availability* habit had a significant effect on stomatal conductance

(gs). Plants under good water availability had higher values of gs than plants under

water stress, hybrid plants had the highest and non-divaricate plants the lowest values.

Overall, hybrid plants grown under water stress showed the highest values of gs, the

lowest values were found in non-divaricate plants grown under water stress.

Summary

Divaricate shrubs have interesting features in their architecture as well as in their

physiological response to different light and water availabilities. As discussed above,

the divaricate growth form maintains less negative water potentials under water

stressed conditions than hybrid or non-divaricate leaves predawn and in the evening,

but can express very low water potentials at noon. This greater diurnal change of

water potentials in divaricate leaves than in non-divarciate or hybrid leaves could

indicate a higher drought tolerance than shown in non-divaricate or hybrid leaves. The

water potential values of hybrid and non-divaricate leaves were often closer to each

other than divaricate to hybrid leaves. The fluorescence parameter Fv/Fm of divaricate,

hybrid and non-divaricate plants was more influenced by light and water treatments

than by the leaf trait. Only for the evening measurements, were significant effects of

habit on Fv/Fm found.

The concentrations of photoprotective pigments were hypothesised to be lowest in

divaricate leaves, caused by their self-shading growth form, which also should have

been water conserving. In contrast to these predictions, the highest pigment and ? -
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tocopherol concentrations were found in divaricate leaves, with only minor

differences between hybrid and non-divaricate leaves. Pigment concentrations were

not affected by water availability. Determinations of light level effects were only

possible for ? -tocopherol, and here the lowest concentrations of ? -tocopherol were

found in shaded divaricate leaves as it was hypothesised. Also, water stressed

conditions tended to reduce the concentrations of ? -tocopherol in divaricate leaves in

particular. The findings for ? -tocopherol supported the hypothesis that the divaricate

growth form reduces the amount of photoprotection via self-shading and water

conservation.

High Rd’s were found in divaricate leaves and in hybrid leaves. All leaf traits showed

the lowest Rd under water stressed conditions. Low Rd and Amax in shade and water

stressed conditions were hypothesised for divaricate leaves and the results supported

this hypothesis. The divaricate ‘self-shading’ growth form, combined with particularly

small leaves, seems to be advantageous in these conditions. In contrast to my

predictions, the hybrid leaves did not mimic the divaricate behaviour for all gas

exchange parameters. Rd and QE values in certain treatments were similar, but Amax

of hybrid leaves were closer to non-divaricate than divaricate leaves.

Although the use of hybrid plants as a model for divaricates was shown to be possible

for some parameters, the two were not equivalent for all parameters. The young age of

plants and problems with insect infestation could have had a negative influence on

this result. Measurements on older, more mature plants would possibly provide a

better comparison, particularly on plants in the field where both growth forms occur

naturally.
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A2 Anova Tables of Field Data 2001-2003 and Glasshouse Data 2002

Table A2.1 Analysis of variance table for Fv/Fm at the Cass field site, (a) predawn, (b) noon and (c)
evening measurements taken during November 2001 and January 2002. Month, light level (natural
daylight, shaded and exposed plants), water availability (streambed and N-facing slope) and genus
(Corokia cotoneaster and Coprosma propinqua) as treatments [significant results in bold].
a Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.0116163 0.01161633 3.63 0.061
Light level 2 0.0185221 0.00926104 2.89 0.062
Water availability 1 0.0230288 0.02302879 7.20 0.009
Genus 1 0.0274033 0.02740326 8.56 0.005
Month*Light level 2 0.0088606 0.00443030 1.38 0.257
Month*Water availability 1 0.0105005 0.01050051 3.28 0.074
Light level*Water availability 2 0.0009790 0.00048952 0.15 0.858
Month*Genus 1 0.0040000 0.00400003 1.25 0.267
Light level*Genus 2 0.0063282 0.00316411 0.99 0.377
Water availability*Genus 1 0.0021733 0.00217331 0.68 0.413
Month*Light level*Water availability 2 0.0174429 0.00872147 2.73 0.072
Month*Light level*Genus 2 0.0019205 0.00096025 0.30 0.742
Month*Water availability*Genus 1 0.0182285 0.01822851 5.70 0.020
Light level*Water availability*Genus 2 0.0089595 0.00447975 1.40 0.253
Month*Light level*Water
availability*Genus

2 0.0153964 0.00769821 2.41 0.098

Residuals 71 0.2271754 0.00319965

b Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.02080612 0.02080612 24.38 0.000
Light level 2 0.01692470 0.00846235 9.92 0.000
Water availability 1 0.00024265 0.00024265 0.28 0.596
Genus 1 0.03077842 0.03077842 36.07 0.000
Month*Light level 2 0.00250358 0.00125179 1.47 0.238
Month*Water availability 1 0.00000273 0.00000273 0.00 0.955
Light level*Water availability 2 0.00066675 0.00033338 0.39 0.678
Month*Genus 1 0.00158039 0.00158039 1.85 0.178
Light level*Genus 2 0.00299398 0.00149699 1.75 0.181
Water availability*Genus 1 0.00003198 0.00003198 0.04 0.847
Month*Light level*Water availability 2 0.00078066 0.00039033 0.46 0.635
Month*Light level*Genus 2 0.00206764 0.00103382 1.21 0.304
Month*Water availability*Genus 1 0.00214849 0.00214849 2.52 0.117
Light level*Water availability*Genus 2 0.00129367 0.00064683 0.76 0.472
Month*Light level*Water
availability*Genus

2 0.00135986 0.00067993 0.80 0.455

Residuals 71 0.06059167 0.00085340
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c Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.01078776 0.01078776 10.37 0.002
Light level 2 0.02390181 0.01195090 11.48 0.000
Water availability 1 0.00338558 0.00338558 3.25 0.076
Genus 1 0.03273933 0.03273933 31.5 0.000
Month*Light level 2 0.00317074 0.00158537 1.52 0.225
Month*Water availability 1 0.00005008 0.00005008 0.05 0.827
Light level*Water availability 2 0.00002357 0.00001178 0.01 0.989
Month*Genus 1 0.00026292 0.00026292 0.25 0.617
Light level*Genus 2 0.00374913 0.00187456 1.80 0.173
Water availability*Genus 1 0.00151890 0.00151890 1.46 0.231
Month*Light level*Water availability 2 0.00089195 0.00044597 0.43 0.653
Month*Light level*Genus 2 0.00275427 0.00137714 1.32 0.273
Month*Water availability*Genus 1 0.00434323 0.00434323 4.17 0.045
Light level*Water availability*Genus 2 0.00229631 0.00114815 1.10 0.338
Month*Light level*Water
availability*Genus

2 0.00350234 0.00175117 1.68 0.193

Residuals 70 0.07284933 0.00104070
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Table A2.2 Analysis of variance table for Fv/Fm at the Cass field site, (a) predawn, (b) noon and (c)
evening measurements taken during January and March 2003. Month, light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].
a D

f
Sum of Sq Mean Sq F Value Pr(F)

Month 1 0.00158640 0.001586400 1.83 0.180
Light level 2 0.00022085 0.000110427 0.13 0.881
Water availability 1 0.00048568 0.000485682 0.56 0.457
Genus 1 0.00644023 0.006440230 7.44 0.008
Month*Light level 2 0.00074323 0.000371613 0.43 0.653
Month*Water availability 1 0.00279008 0.002790081 3.22 0.077
Light level*Water availability 2 0.00118653 0.000593263 0.69 0.508
Month*Genus 1 0.00013080 0.000130801 0.15 0.699
Light level*Genus 2 0.00024609 0.000123043 0.14 0.868
Water availability*Genus 1 0.00011009 0.000110090 0.13 0.722
Month*Light level*Water availability 2 0.00075953 0.000379764 0.44 0.647
Month*Light level*Genus 2 0.00071793 0.000358967 0.41 0.662
Month*Water availability*Genus 1 0.00111000 0.001110000 1.28 0.262
Light level*Water availability*Genus 2 0.00038577 0.000192884 0.22 0.801
Month*Light level*Water
availability*Genus

2 0.00036601 0.000183004 0.21 0.810

Residuals 69 0.05975519 0.000866017

b Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.01410261 0.01410261 15.39 0.001
Light level 2 0.01332947 0.00666474 7.28 0.001
Water availability 1 0.04510070 0.04510070 49.23 0.000
Genus 1 0.00493034 0.00493034 5.38 0.023
Month*Light level 2 0.00058489 0.00029245 0.32 0.728
Month*Water availability 1 0.01910637 0.01910637 20.86 0.000
Light level*Water availability 2 0.00456795 0.00228397 2.49 0.090
Month*Genus 1 0.00003826 0.00003826 0.04 0.839
Light level*Genus 2 0.00789023 0.00394512 4.31 0.017
Water availability*Genus 1 0.00035386 0.00035386 0.39 0.536
Month*Light level*Water availability 2 0.00080840 0.00040420 0.44 0.645
Month*Light level*Genus 2 0.00457979 0.00228989 2.50 0.089
Month*Water availability*Genus 1 0.00005314 0.00005314 0.06 0.810
Light level*Water availability*Genus 2 0.00517621 0.00258810 2.83 0.066
Month*Light level*Water
availability*Genus

2 0.00173352 0.00086676 0.95 0.393

Residuals 71 0.06504225 0.00091609
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c Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.000056691 0.000056691 0.46 0.502
Light level 2 0.002127137 0.001063569 8.54 0.001
Water availability 1 0.000575590 0.000575590 4.62 0.035
Genus 1 0.007500350 0.007500350 60.22 0.000
Month*Light level 2 0.000185071 0.000092535 0.74 0.480
Month*Water availability 1 0.004313337 0.004313337 34.63 0.000
Light level*Water availability 2 0.001168416 0.000584208 4.69 0.012
Month*Genus 1 0.000317784 0.000317784 2.55 0.115
Light level*Genus 2 0.000728015 0.000364007 2.92 0.060
Water availability*Genus 1 0.000000491 0.000000491 0.00 0.950
Month*Light level*Water availability 2 0.000089368 0.000044684 0.36 0.700
Month*Light level*Genus 2 0.000390410 0.000195205 1.57 0.216
Month*Water availability*Genus 1 0.000249758 0.000249758 2.01 0.161
Light level*Water availability*Genus 2 0.000095807 0.000047904 0.38 0.682
Month*Light level*Water
availability*Genus

2 0.000033774 0.000016887 0.14 0.873

Residuals 70 0.008718479 0.000124550
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Table A2.3 Analysis of variance table for Fv/Fm in the glasshouse, (a) predawn, (b) noon and (c)
evening measurements during March and June 2002. Month, light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments.
Measurements recorded from shoots of Corokia cotoneaster and Coprosma propinqua; leaves of
Corokia buddleioides and Coprosma robusta. [significant results in bold].
a Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.002714364 0.002714364 42.66 0.000
Light level 1 0.000023211 0.000023211 0.36 0.547
Water availability 1 0.000417522 0.000417522 6.56 0.012
Genus 1 0.000667455 0.000667455 10.49 0.002
Habit 1 0.000089309 0.000089309 1.40 0.239
Month*Light level 1 0.001210837 0.001210837 19.03 0.000
Month*Water availability 1 0.000057571 0.000057571 0.91 0.344
Light level*Water availability 1 0.000398556 0.000398556 6.26 0.014
Month*Genus 1 0.000059881 0.000059881 0.94 0.335
Light level*Genus 1 0.000006085 0.000006085 0.10 0.758
Water availability* Genus 1 0.001046789 0.001046789 16.45 0.000
Month*Habit 1 0.000245867 0.000245867 3.86 0.052
Light level*Habit 1 0.000212879 0.000212879 3.35 0.071
Water availability*Habit 1 0.000008204 0.000008204 0.13 0.720
Genus*Habit 1 0.000169991 0.000169991 2.67 0.106
Month*Light level*Water availability 1 0.000007907 0.000007907 0.12 0.7250
Month*Light level*Genus 1 0.000058163 0.000058163 0.91 0.342
Month*Water availability*Genus 1 0.000094882 0.000094882 1.49 0.225
Light level*Water availability*Genus 1 0.000009421 0.000009421 0.15 0.701
Month*Light level*Habit 1 0.000022995 0.000022995 0.36 0.549
Month*Water availability*Habit 1 0.000000622 0.000000622 0.01 0.921
Light level*Water availability*Habit 1 0.000036369 0.000036369 0.57 0.452
Month*Genus*Habit 1 0.000004966 0.000004966 0.08 0.781
Light level*Genus*Habit 1 0.000001475 0.000001475 0.02 0.879
Water availability* Genus* Habit 1 0.000971656 0.000971656 15.27 0.000
Month*Light level*Water
availability*Genus

1 0.000016095 0.000016095 0.25 0.616

Month*Light level*Water
availability*Habit

1 0.000009088 0.000009088 0.14 0.706

Month*Light level*Genus*Habit 1 0.000249053 0.000249053 3.92 0.051
Month*Water availability*Genus*Habit 1 0.000031319 0.000031319 0.49 0.485
Light level*Water
availability*Genus*Habit

1 0.000096996 0.000096996 1.53 0.220

Month*Light level*Water
availability*Genus*Habit

1 0.000000021 0.000000021 0.00 0.986

Residuals 92 0.005853250 0.000063622
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b Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.00189760 0.001897596 16.26 0.000
Light level 1 0.00002984 0.000029844 0.26 0.614
Water availability 1 0.00001412 0.000014124 0.12 0.729
Genus 1 0.00233665 0.002336653 20.03 0.000
Habit 1 0.00039320 0.000393198 3.37 0.070
Month*Light level 1 0.00003563 0.000035630 0.31 0.582
Month*Water availability 1 0.00005648 0.000056482 0.48 0.488
Light level*Water availability 1 0.00002852 0.000028515 0.24 0.622
Month*Genus 1 0.00065157 0.000651565 5.58 0.020
Light level*Genus 1 0.00001372 0.000013724 0.12 0.732
Water availability*Genus 1 0.00002177 0.000021769 0.19 0.667
Month*Habit 1 0.00023838 0.000238378 2.04 0.156
Light level*Habit 1 0.00003896 0.000038964 0.33 0.565
Water availability*Habit 1 0.00000020 0.000000203 0.00 0.967
Genus*Habit 1 0.00007666 0.000076660 0.66 0.420
Month*Light level*Water availability 1 0.00010470 0.000104705 0.90 0.346
Month*Light level*Genus 1 0.00000003 0.000000031 0.00 0.987
Month*Water availability*Genus 1 0.00015670 0.000156696 1.34 0.250
Light level*Water availability*Genus 1 0.00040459 0.000404592 3.47 0.066
Month*Light level*Habit 1 0.00021801 0.000218015 1.87 0.175
Month*Water availability*Habit 1 0.00000002 0.000000017 0.00 0.990
Light level*Water availability*Habit 1 0.00004291 0.000042909 0.37 0.546
Month*Genus*Habit 1 0.00002901 0.000029007 0.25 0.619
Light level*Genus*Habit 1 0.00027612 0.000276116 2.37 0.127
Water availability* Genus*Habit 1 0.00128919 0.001289186 11.05 0.001
Month*Light level*Water
availability*Genus

1 0.00002354 0.000023542 0.20 0.654

Month*Light level*Water
availability*Habit

1 0.00003639 0.000036387 0.31 0.578

Month*Light level*Genus*Habit 1 0.00024721 0.000247210 2.12 0.149
Month*Water availability*Genus*Habit 1 0.00001441 0.000014408 0.12 0.726
Light level*Water
availability*Genus*Habit

1 0.00004145 0.000041450 0.36 0.553

Month*Light level*Water
availability*Genus*Habit

1 0.00013400 0.000134001 1.15 0.287

Residuals 92 0.01073542 0.000116689
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c Df Sum of Sq Mean Sq F Value Pr(F)
Month 1 0.000500262 0.000500262 4.85 0.030
Light level 1 0.000020351 0.000020351 0.20 0.658
Water availability 1 0.000248753 0.000248753 2.41 0.124
Genus 1 0.003030518 0.003030518 29.37 0.000
Habit 1 0.001265018 0.001265018 12.26 0.001
Month*Light level 1 0.001390049 0.001390049 13.47 0.000
Month*Water availability 1 0.001194682 0.001194682 11.58 0.001
Light level*Water availability 1 0.000113278 0.000113278 1.10 0.298
Month*Genus 1 0.000018569 0.000018569 0.18 0.672
Light level*Genus 1 0.000312996 0.000312996 3.03 0.085
Water availability*Genus 1 0.000102293 0.000102293 0.99 0.322
Month*Habit 1 0.000000143 0.000000143 0.00 0.970
Light level*Habit 1 0.000007944 0.000007944 0.08 0.782
Water availability*Habit 1 0.000013918 0.000013918 0.14 0.714
Genus*Habit 1 0.001669726 0.001669726 16.18 0.000
Month*Light level*Water availability 1 0.000067820 0.000067820 0.66 0.420
Month*Light level*Genus 1 0.000031185 0.000031185 0.30 0.584
Month*Water availability*Genus 1 0.000048455 0.000048455 0.47 0.495
Light level*Water availability*Genus 1 0.000342098 0.000342098 3.32 0.072
Month*Light level*Habit 1 0.000951797 0.000951797 9.22 0.003
Month*Water availability*Habit 1 0.000169746 0.000169746 1.65 0.203
Light level*Water availability*Habit 1 0.000665283 0.000665283 6.45 0.013
Month*Genus*Habit 1 0.000245688 0.000245688 2.38 0.126
Light level*Genus*Habit 1 0.000093023 0.000093023 0.90 0.345
Water availability* Genus*Habit 1 0.001037534 0.001037534 10.05 0.002
Month*Light level*Water
availability*Genus

1 0.000001416 0.000001416 0.01 0.907

Month*Light level*Water
availability*Habit

1 0.000106226 0.000106226 1.03 0.313

Month*Light level*Genus*Habit 1 0.000056089 0.000056089 0.54 0.463
Month*Water availability*Genus*Habit 1 0.000253835 0.000253835 2.46 0.120
Light level*Water
availability*Genus*Habit

1 0.000013432 0.000013432 0.13 0.719

Month*Light level*Water
availability*Genus*Habit

1 0.000006915 0.000006915 0.07 0.796

Residuals 91 0.009390667 0.000103194
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Table A2.4 Analysis of variance table for the pigment Violaxanthin in mmol per mol total
Chlorophyll, samples taken at the Cass field site during late afternoon in March 2003. Light level
(natural daylight, shaded and exposed plants), water availability (streambed and N-facing slope) and
genus (Corokia cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 167.7220 83.8610 1.87 0.186
Water availability 1 301.4358 301.4358 6.73 0.020
Genus 1 723.2145 723.2145 16.14 0.001
Light level*Water availability 2 544.7336 272.3668 6.08 0.011
Light level*Genus 2 220.6615 110.3308 2.46 0.117
Water availability*Genus 1 238.9681 238.9681 5.33 0.035
Light level*Water
availability*Genus

2 309.4638 154.7319 3.45 0.057

Residuals 16 716.9332 44.8083

Table A2.5 Analysis of variance table for the pigment Antheraxanthin in mmol per mol total
Chlorophyl , samples taken at the Cass field site during late afternoon in March 2003. Light level
(natural daylight, shaded and exposed plants), water availability (streambed and N-facing slope) and
genus (Corokia cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 707.2548 353.6274 10.72 0.001
Water availability 1 50.0529 50.0529 1.52 0.236
Genus 1 119.2319 119.2319 3.61 0.075
Light level*Water availability 2 43.9469 21.9734 0.67 0.527
Light level*Genus 2 113.8501 56.9250 1.73 0.210
Water availability*Genus 1 96.0904 96.0904 2.91 0.107
Light level*Water
availability*Genus

2 172.4628 86.2314 2.61 0.104

Residuals 16 527.7845 32.9865

Table A2.6 Analysis of variance table for the pigment Zeaxanthin in mmol per mol total Chlorophyll,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 3002.937 1501.468 11.77 0.001
Water availability 1 449.378 449.378 3.52 0.079
Genus 1 270.444 270.444 2.12 0.165
Light level*Water availability 2 1088.467 544.233 4.27 0.033
Light level*Genus 2 22.376 11.188 0.09 0.917
Water availability*Genus 1 781.758 781.758 6.13 0.025
Light level*Water
availability*Genus

2 815.905 407.952 3.20 0.068

Residuals 16 2041.869 127.617
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Table A2.7 Analysis of variance table for the pigments in the Deepoxidation state in mmol per mol
sum Xanthophyll cycle pigments, samples taken at the Cass field site during late afternoon in March
2003. Light level (natural daylight, shaded and exposed plants), water availability (streambed and N-
facing slope) and genus (Corokia cotoneaster and Coprosma propinqua) as treatments [significant
results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 4162.879 2081.440 10.91 0.001
Water availability 1 7.768 7.768 0.04 0.843
Genus 1 1171.298 1171.298 6.13 0.025
Light level*Water availability 2 1464.718 732.359 3.84 0.043
Light level*Genus 2 80.582 40.291 0.21 0.812
Water availability*Genus 1 535.320 535.320 2.81 0.1132
Light level*Water
availability*Genus

2 583.193 291.596 1.53 0.247

Residuals 16 3052.584 190.787

Table A2.8 Analysis of variance table for the pigment Neoxanthin in mmol per mol total Chlorophyll,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 59.6820 29.84100 0.76 0.484
Water availability 1 0.4981 0.49813 0.01 0.912
Genus 1 32.5673 32.56732 0.83 0.376
Light level*Water availability 2 45.6108 22.80540 0.58 0.572
Light level*Genus 2 52.4498 26.22489 0.67 0.527
Water availability*Genus 1 12.8043 12.80431 0.33 0.576
Light level*Water
availability*Genus

2 53.2687 26.63433 0.68 0.522

Residuals 17 670.5317 39.44304

Table A2.9 Analysis of variance table for the pigment Lutein in mmol per mol total Chlorophyll,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 1704.338 852.1689 4.99 0.021
Water availability 1 6.206 6.2064 0.04 0.851
Genus 1 26.458 26.4579 0.16 0.699
Light level*Water availability 2 219.716 109.8581 0.64 0.539
Light level*Genus 2 62.650 31.3251 0.18 0.834
Water availability*Genus 1 21.614 21.6140 0.13 0.727
Light level*Water
availability*Genus

2 364.947 182.4735 1.07 0.367

Residuals 16 2733.597 170.8498
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Table A2.10 Analysis of variance table for the pigment ß-carotene in mmol per mol total Chlorophyll,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 510.87 255.435 0.539330 0.5877768
Water availability 1 4.63 4.625 0.009766 0.9218257
Genus 1 2804.06 2804.061 5.920534 0.0200605
Light level*Water availability 2 810.18 405.091 0.855316 0.4336072
Light level*Genus 2 3915.20 1957.601 4.133307 0.0242143
Water availability*Genus 1 468.71 468.708 0.989636 0.3264713
Light level*Water
availability*Genus

2 1253.56 626.778 1.323387 0.2788731

Residuals 36 17050.18 473.616

Table A2.11 Analysis of variance table for vitamin E in mol per mol total Chlorophyll, samples taken
at the Cass field site during late afternoon in February 2002. Light level (natural daylight, shaded and
exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster and
Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 0.011 0.0056 0.15 0.862
Water availability 1 0.048 0.0477 1.27 0.267
Genus 1 0.229 0.2289 6.10 0.018
Light level*Water availability 2 0.131 0.0654 1.74 0.189
Light level*Genus 2 0.031 0.0153 0.41 0.668
Water availability*Genus 1 0.023 0.0229 0.61 0.439
Light level*Water
availability*Genus

2 0.106 0.0530 1.41 0.257

Residuals 38 1.426 0.0375

Table A2.12 Analysis of variance table for vitamin E in mol per mol total Chlorophyll, samples taken
at the Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded and
exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster and
Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 0.0225 0.01126 0.73 0.488
Water availability 1 0.0242 0.02422 1.58 0.218
Genus 1 0.0260 0.02600 1.69 0.202
Light level*Water availability 2 0.0016 0.00082 0.05 0.948
Light level*Genus 2 0.0030 0.00150 0.10 0.907
Water availability*Genus 1 0.0396 0.03960 2.58 0.118
Light level*Water
availability*Genus

2 0.0091 0.00454 0.30 0.746

Residuals 34 0.5229 0.01538



197

Table A2.13 Analysis of variance table for the pigment Violaxanthin in µmol per m-2 leaf area,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 4225.46 2112.73 2.63 0.103
Water availability 1 3774.23 3774.23 4.69 0.046
Genus 1 17647.13 17647.13 21.94 0.000
Light level*Water availability 2 7552.61 3776.31 4.69 0.025
Light level*Genus 2 3920.30 1960.15 2.44 0.119
Water availability*Genus 1 4425.49 4425.49 5.50 0.032
Light level*Water
availability*Genus

2 9327.77 4663.88 5.80 0.013

Residuals 16 12871.34 804.46

Table A2.14 Analysis of variance table for the pigment Antheraxanthin in µmol per m-2 leaf area,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 3406.699 1703.349 5.05 0.020
Water availability 1 297.838 297.838 0.88 0.362
Genus 1 96.585 96.585 0.29 0.600
Light level*Water availability 2 290.305 145.152 0.43 0.658
Light level*Genus 2 498.516 249.258 0.74 0.494
Water availability*Genus 1 313.538 313.538 0.93 0.350
Light level*Water
availability*Genus

2 804.681 402.340 1.19 0.329

Residuals 16 5402.048 337.628

Table A2.15 Analysis of variance table for the pigment Zeaxanthin in µmol per m-2 leaf area, samples
taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded
and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster
and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 19863.10 9931.552 9.53 0.002
Water availability 1 3422.03 422.030 3.28 0.089
Genus 1 969.09 969.094 0.93 0.349
Light level*Water availability 2 7450.34 3725.171 3.58 0.052
Light level*Genus 2 444.83 222.413 0.21 0.810
Water availability*Genus 1 3002.39 3002.393 2.88 0.109
Light level*Water
availability*Genus

2 4516.65 2258.327 2.17 0.147

Residuals 16 16673.79 1042.112
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Table A2.16 Analysis of variance table for the pigment Neoxanthin in µmol per m-2 leaf area, samples
taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded
and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster
and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 13566.8 6783.41 0.88 0.435
Water availability 1 72.6 72.57 0.01 0.924
Genus 1 43186.7 43186.67 5.58 0.031
Light level*Water availability 2 6878.5 3439.27 0.44 0.649
Light level*Genus 2 28045.3 14022.67 1.81 0.195
Water availability*Genus 1 11364.3 11364.26 1.47 0.243
Light level*Water
availability*Genus

2 10107.4 5053.69 0.65 0.534

Residuals 16 123858.9 7741.18

Table A2.17 Analysis of variance table for the pigment Lutein in µmol per m-2 leaf area, samples
taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded
and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster
and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 13566.8 6783.41 0.88 0.435
Water availability 1 72.6 72.57 0.01 0.924
Genus 1 43186.7 43186.67 5.58 0.031
Light level*Water availability 2 6878.5 3439.27 0.44 0.649
Light level*Genus 2 28045.3 14022.67 1.81 0.195
Water availability*Genus 1 11364.3 11364.26 1.47 0.243
Light level*Water
availability*Genus

2 10107.4 5053.69 0.65 0.534

Residuals 16 123858.9 7741.18

Table A2.18 Analysis of variance table for the pigment Chlorophyll a in µmol per m-2 leaf area,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 983859 491929.4 3.83 0.044
Water availability 1 143 143.0 0.00 0.974
Genus 1 891683 891683.0 6.93 0.018
Light level*Water availability 2 63223 31611.4 0.25 0.785
Light level*Genus 2 384412 192206.2 1.50 0.254
Water availability*Genus 1 117641 117640.8 0.92 0.353
Light level*Water
availability*Genus

2 499536 249768.0 1.94 0.176

Residuals 16 2057549 128596.8
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Table A2.19 Analysis of variance table for the pigment Chlorophyll b in µmol per m-2 leaf area,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 109701.7 54850.86 3.13 0.071
Water availability 1 519.0 519.01 0.03 0.866
Genus 1 50515.7 50515.66 2.883 0.109
Light level*Water availability 2 6888.2 3444.09 0.20 0.824
Light level*Genus 2 65087.8 32543.91 1.86 0.188
Water availability*Genus 1 15756.7 15756.68 0.90 0.357
Light level*Water
availability*Genus

2 56899.0 28449.48 1.62 0.228

Residuals 16 280321.9 17520.12

Table A2.20 Analysis of variance table for the pigment Chlorophyll a+b in µmol per m-2 leaf area,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 1745246 872623 3.71 0.048
Water availability 1 117 117 0.00 0.983
Genus 1 1366680 1366680 5.81 0.028
Light level*Water availability 2 111532 55766 0.24 0.792
Light level*Genus 2 740432 370216 1.57 0.238
Water availability*Genus 1 219499 219499 0.93 0.348
Light level*Water
availability*Genus

2 879840 439920 1.87 0.186

Residuals 16 3763752 235235

Table A2.21 Analysis of variance table for the pigment Chlorophyll a:b in µmol per m-2 leaf area,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 0.0340329 0.01701643 0.51 0.611
Water availability 1 0.0080036 0.00800362 0.24 0.632
Genus 1 0.0952891 0.09528909 2.84 0.111
Light level*Water availability 2 0.0020084 0.00100418 0.03 0.971
Light level*Genus 2 0.1336930 0.06684649 1.99 0.169
Water availability*Genus 1 0.0082780 0.00827798 0.25 0.626
Light level*Water
availability*Genus

2 0.0528796 0.02643982 0.79 0.471

Residuals 16 0.5364583 0.03352865
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Table A2.22 Analysis of variance table for the pigment ß-Carotene in µmol per m-2 leaf area, samples
taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded
and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster
and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 2995.84 1497.92 2.41 0.122
Water availability 1 234.21 234.21 0.38 0.548
Genus 1 10405.67 10405.67 16.74 0.001
Light level*Water availability 2 566.63 283.31 0.46 0.642
Light level*Genus  2 1577.86 788.93 1.27 0.308
Water availability*Genus 1 659.20 659.20 1.06 0.318
Light level*Water
availability*Genus

2 503.22 251.61 0.41 0.674

Residuals 16 9943.73 621.48

Table A2.23 Analysis of variance table for vitamin E in µmol per cm-2 leaf area, samples taken at the
Cass field site during late afternoon in February 2002. Light level (natural daylight, shaded and
exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster and
Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 58 28.9 0.37 0.692
Water availability 1 106 105.9 1.36 0.251
Genus 1 317 317.4 4.08 0.050
Light level*Water availability 2 304 151.8 1.95 0.156
Light level*Genus 2 223 111.3 1.43 0.252
Water availability*Genus 1 92 91.6 1.18 0.285
Light level*Water
availability*Genus

2 300 149.8 1.93 0.160

Residuals 39 3035 77.8

Table A2.24 Analysis of variance table for vitamin E in µmol per m-2 leaf area, samples taken at the
Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded and exposed
plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster and
Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 7.7 3.83 0.50 0.609
Water availability 1 85.7 85.72 11.29 0.002
Genus 1 75.8 75.80 9.99 0.003
Light level*Water availability 2 21.1 10.56 1.39 0.263
Light level*Genus 2 18.5 9.26 1.22 0.308
Water availability*Genus 1 5.4 5.42 0.71 0.404
Light level*Water
availability*Genus

2 10.5 5.23 0.69 0.509

Residuals 258.1 7.59
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Table A2.25 Analysis of variance table for the pigment Violaxanthin in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 519.324 259.662 1.78 0.194
Water availability 1 1027.691 1027.691 7.04 0.015
Genus 1 2050.288 2050.288 14.04 0.001
Light level*Water availability 2 883.476 441.738 3.03 0.070
Light level*Genus 2 659.187 329.593 2.26 0.130
Water availability*Genus 1 655.295 655.295 4.49 0.046
Light level*Water
availability*Genus

2 1366.486 683.243 4.68 0.021

Residuals 21 3066.948 146.045

Table A2.26 Analysis of variance table for the pigment Antheraxanthin in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 321.170 160.5851 2.64 0.095
Water availability 1 47.273 47.2731 0.78 0.388
Genus 1 27.462 27.4624 0.45 0.509
Light level*Water availability 2 1.665 0.8327 0.01 0.986
Light level*Genus 2 3.004 1.5021 0.03 0.976
Water availability*Genus 1 42.550 42.5505 0.70 0.412
Light level*Water
availability*Genus

2 37.640 18.8199 0.31 0.737

Residuals 21 1276.666 60.7936

Table A2.27 Analysis of variance table for the pigment Zeaxanthin in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 2477.940 1238.970 5.70 0.011
Water availability 1 186.837 186.837 0.86 0.364
Genus 1 183.999 183.999 0.85 0.368
Light level*Water availability 2 273.269 136.634 0.63 0.543
Light level*Genus 2 101.924 50.962 0.24 0.793
Water availability*Genus 1 344.093 344.093 1.58 0.222
Light level*Water
availability*Genus

2 979.297 489.649 2.25 0.130

Residuals 21 4563.596 217.314
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Table A2.28 Analysis of variance table for the pigment Neoxanthin in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 1004.539 502.2693 5.98 0.009
Water availability 1 36.342 36.3417 0.43 0.518
Genus 1 806.353 806.3533 9.60 0.005
Light level*Water availability 2 15.812 7.9058 0.09 0.911
Light level*Genus 2 253.610 126.8052 1.51 0.244
Water availability*Genus 1 33.287 33.2873 0.40 0.536
Light level*Water
availability*Genus

2 824.982 412.4908 4.91 0.018

Residuals 21 1764.204 84.0097

Table A2.29 Analysis of variance table for the pigment Lutein in nmol per g fresh weight, samples
taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded
and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster
and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 5674.91 2837.457 2.67 0.093
Water availability 1 716.12 716.123 0.67 0.421
Genus 1 5759.24 5759.236 5.41 0.030
Light level*Water availability 2 775.36 387.682 0.36 0.699
Light level*Genus 2 3950.44 1975.221 1.86 0.181
Water availability*Genus 1 268.31 268.313 0.25 0.621
Light level*Water
availability*Genus

2 5129.71 2564.853 2.41 0.114

Residuals 21 22349.17 1064.246

Table A2.30 Analysis of variance table for the pigment Chlorophyll a in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 204877.2 102438.6 4.47 0.024
Water availability 1 18927.0 18927.0 0.83 0.374
Genus 1 82772.9 82772.9 3.62 0.071
Light level*Water availability 2 3336.0 1668.0 0.07 0.930
Light level*Genus 2 134457.7 67228.9 2.94 0.075
Water availability*Genus 1 201.9 201.9 0.01 0.926
Light level*Water
availability*Genus

2 162658.0 81329.0 3.55 0.047

Residuals 21 480898.8 22899.9
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Table A2.31 Analysis of variance table for the pigment Chlorophyll b in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 27229.13 13614.57 4.91 0.018
Water availability 1 1074.89 1074.89 0.39 0.540
Genus 1 2580.95 2580.95 0.93 0.345
Light level*Water availability 2 1095.58 547.79 0.20 0.822
Light level*Genus 2 13067.50 6533.75 2.36 0.119
Water availability*Genus 1 291.46 291.46 0.11 0.749
Light level*Water
availability*Genus

2 25518.43 12759.22 4.60 0.022

Residuals 21 58192.79 2771.09

Table A2.32 Analysis of variance table for the pigment Chlorophyll a+b in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 381231.7 190615.9 4.71 0.020
Water availability 1 29022.9 29022.9 0.72 0.407
Genus 1 114586.2 114586.2 2.83 0.107
Light level*Water availability 2 6946.2 3473.1 0.09 0.918
Light level*Genus 2 227762.6 113881.3 2.81 0.083
Water availability*Genus 1 978.5 978.5 0.02 0.878
Light level*Water
availability*Genus

2 316550.7 158275.3 3.91 0.036

Residuals 21 849892.6 40471.1

Table A2.33 Analysis of variance table for the pigment Chlorophyll a:b in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 0.0402656 0.0201328 0.53 0.594
Water availability 1 0.0069805 0.0069805 0.19 0.672
Genus 1 0.1971796 0.1971796 5.22 0.033
Light level*Water availability 2 0.0796592 0.0398296 1.06 0.366
Light level*Genus 2 0.1142760 0.0571380 1.51 0.243
Water availability*Genus 1 0.0352442 0.0352442 0.93 0.345
Light level*Water
availability*Genus

2 0.1115657 0.0557829 1.48 0.251

Residuals 21 0.7926950 0.0377474
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Table A2.34 Analysis of variance table for the pigment ß-carotene in nmol per g fresh weight,
samples taken at the Cass field site during late afternoon in March 2003. Light level (natural daylight,
shaded and exposed plants), water availability (streambed and N-facing slope) and genus (Corokia
cotoneaster and Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 539.826 269.913 2.78 0.085
Water availability 1 0.150 0.150 0.00 0.969
Genus 1 1122.355 1122.355 11.55 0.003
Light level*Water availability 2 113.274 56.637 0.58 0.567
Light level*Genus 2 264.753 132.376 1.36 0.278
Water availability*Genus 1 0.258 0.258 0.00 0.959
Light level*Water
availability*Genus

2 438.688 219.344 2.26 0.130

Residuals 21 2041.418 97.210

Table A2.35 Analysis of variance table for vitamin E in µmol per g fresh weight, samples taken at the
Cass field site during late afternoon in February 2002. Light level (natural daylight, shaded and
exposed plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster and
Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 93344 46672 0.41 0.666
Water availability 1 136809 136809 1.20 0.280
Genus 1 483955 483955 4.26 0.046
Light level*Water availability 2 398010 199005 1.75 0.188
Light level*Genus 2 332417 166208 1.46 0.245
Water availability*Genus 1 131360 131360 1.16 0.289
Light level*Water
availability*Genus

2 405507 202753 1.78 0.182

Residuals 38 4321351 113720

Table A2.36 Analysis of variance table for vitamin E in µmol per g fresh weight, samples taken at the
Cass field site during late afternoon in March 2003. Light level (natural daylight, shaded and exposed
plants), water availability (streambed and N-facing slope) and genus (Corokia cotoneaster and
Coprosma propinqua) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 2 7167 3583 0.39 0.678
Water availability 1 122767 122767 13.48 0.001
Genus 1 131121 131121 14.39 0.001
Light level*Water availability 2 16594 8297 0.91 0.412
Light level*Genus 2 25800 12900 1.42 0.257
Water availability*Genus 1 8757 8757 0.96 0.334
Light level*Water
availability*Genus

2 9760 4880 0.54 0.590

Residuals 34 309749 9110
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Table A2.37 Analysis of variance table for the pigment Violaxanthin in mmol per mol total
Chlorophyll, samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs
75% of natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus
(Corokia cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as
treatments. Leaves taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-
divaricates Corokia buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 22.024 22.0245 0.31 0.588
Water availability 1 41.127 41.1269 0.57 0.460
Genus 1 223.506 223.5065 3.10 0.096
Habit 1 62.368 62.3684 0.87 0.365
Light level*Water availability 1 179.996 179.9961 2.50 0.132
Light level*Genus 1 8.000 7.9997 0.11 0.743
Water availability*Genus 1 0.043 0.0428 0.00 0.981
Light level*Habit 1 138.296 138.2956 1.92 0.184
Water availability*Habit 1 0.856 0.8564 0.01 0.915
Genus*Habit 1 68.748 68.7482 0.95 0.342
Light level*Water
availability*Genus

1 13.437 13.4374 0.19 0.671

Light level*Genus*Habit 1 5.866 5.8660 0.08 0.779
Water availability*Genus*Habit 1 250.066 250.0660 3.47 0.080
Residuals 17 1224.694 72.0408

Table A2.38 Analysis of variance table for the pigment Antheraxanthin in mmol per mol total
Chlorophyll, samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs
75% of natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus
(Corokia cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as
treatments. Leaves taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-
divaricates Corokia buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 26.5416 26.54162 1.24 0.282
Water availability 1 0.8183 0.81827 0.04 0.848
Genus 1 31.8193 31.81930 1.48 0.240
Habit 1 23.6715 23.67154 1.10 0.309
Light level*Water availability 1 4.1546 4.15455 0.19 0.666
Light level*Genus 1 23.1540 23.15402 1.08 0.314
Water availability*Genus 1 0.0742 0.07417 0.00 0.954
Light level*Habit 1 7.4607 7.46072 0.35 0.563
Water availability*Habit 1 0.0912 0.09123 0.00 0.949
Genus*Habit 1 18.7906 18.79056 0.88 0.363
Light level*Water
availability*Genus

1 5.3185 5.31848 0.25 0.625

Light level*Genus*Habit 1 4.8627 4.86272 0.23 0.640
Water availability*Genus*Habit 1 0.8308 0.83081 0.04 0.846
Residuals 17 365.1226 21.47780
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Table A2.39 Analysis of variance table for the pigment Zeaxanthin in mmol per mol total
Chlorophyll, samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs
75% of natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus
(Corokia cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as
treatments. Leaves taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-
divaricates Corokia buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 487.733 487.7333 0.86 0.368
Water availability 1 342.976 342.9755 0.60 0.448
Genus 1 513.823 513.8230 0.90 0.356
Habit 1 418.283 418.2828 0.73 0.403
Light level*Water availability 1 67.486 67.4864 0.12 0.735
Light level*Genus 1 350.090 350.0899 0.61 0.444
Water availability*Genus 1 569.551 569.5514 1.00 0.331
Light level*Habit 1 136.935 136.9351 0.24 0.630
Water availability*Habit 1 219.886 219.8864 0.39 0.543
Genus*Habit 1 429.584 429.5842 0.75 0.397
Light level*Water
availability*Genus

1 152.794 152.7941 0.27 0.611

Light level*Genus*Habit 1 79.212 79.2117 0.14 0.714
Water availability*Genus*Habit 1 368.774 368.7745 0.65 0.432
Residuals 17 9682.675 569.5691

Table A2.40 Analysis of variance table for the pigments in the Deepoxidation state in mmol per mol
sum Xanthophyll cycle pigments, samples taken in the glasshouse during late afternoon in June 2002.
Light level (100% vs 75% of natural daylight), water availability (200 mls every 2 days and 50mls
every 3 days) and genus (Corokia cotoneaster, Coprosma propinqua, Corokia buddleioide and
Coprosma robusta) as treatments. Leaves taken from divaricates Corokia cotoneaster and Coprosma
propinqua and non-divaricates Corokia buddleioides and Coprosma robusta. [significant results in
bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 521.539 521.5393 2.89 0.096
Water availability 1 82.783 82.7830 0.46 0.501
Genus 1 32.566 32.5658 0.18 0.673
Habit 1 283.048 283.0476 1.57 0.217
Light level*Water availability 1 110.377 110.3772 0.61 0.438
Light level*Genus 1 32.075 32.0750 0.18 0.675
Water availability*Genus 1 3.133 3.1331 0.02 0.896
Light level*Habit 1 246.622 246.6224 1.37 0.248
Water availability*Habit 1 163.938 163.9376 0.91 0.346
Genus*Habit 1 1.829 1.8293 0.01 0.920
Light level*Water availability*Genus 1 18.879 18.8792 0.11 0.748
Light level*Water availability*Habit 1 145.304 145.3041 0.81 0.374
Light level*Genus*Habit 1 1.510 1.5098 0.01 0.927
Water availability*Genus*Habit 1 109.005 109.0046 0.61 0.441
Light level*Water
availability*Genus*Habit

1 38.451 38.4510 0.21 0.646

Residuals 44 7931.536 180.2622
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Table A2.41 Analysis of variance table for the pigment Neoxanthin in mmol per mol total
Chlorophyll, samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs
75% of natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus
(Corokia cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as
treatments. Leaves taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-
divaricates Corokia buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 108.519 108.5194 0.97 0.340
Water availability 1 146.385 146.3847 1.30 0.270
Genus 1 16.939 16.9393 0.15 0.703
Habit 1 60.489 60.4892 0.54 0.473
Light level*Water availability 1 200.576 200.5761 1.78 0.199
Light level*Genus 1 87.687 87.6871 0.78 0.390
Water availability*Genus 1 87.351 87.3510 0.78 0.390
Light level*Habit 1 1.475 1.4751 0.01 0.910
Water availability*Habit 1 0.040 0.0403 0.00 0.985
Genus*Habit 1 1.165 1.1647 0.01 0.920
Light level*Water
availability*Genus

1 85.394 85.3945 0.76 0.396

Light level*Genus*Habit 1 0.028 0.0278 0.00 0.988
Water availability*Genus*Habit 1 1.982 1.9816 0.02 0.896
Residuals 17 1911.643 112.4496

Table A2.42 Analysis of variance table for the pigment Lutein in mmol per mol total Chlorophyll,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 545.715 545.715 1.45 0.245
Water availability 1 3.558 3.558 0.01 0.924
Genus 1 2951.109 2951.109 7.83 0.012
Habit 1 1670.402 1670.402 4.43 0.050
Light level*Water availability 1 1679.452 1679.452 4.46 0.050
Light level*Genus 1 317.214 317.214 0.84 0.372
Water availability*Genus 1 84.951 84.951 0.23 0.641
Light level*Habit 1 227.820 227.820 0.60 0.448
Water availability*Habit 1 480.277 480.277 1.27 0.275
Genus*Habit 1 119.728 119.728 0.32 0.580
Light level*Water
availability*Genus

1 481.663 481.663 1.28 0.274

Light level*Genus*Habit 1 146.409 146.409 0.39 0.541
Water availability*Genus*Habit 1 308.584 308.584 0.82 0.378
Residuals 17 6407.596 376.917
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Table A2.43 Analysis of variance table for the pigment ß-carotene in mmol per mol total Chlorophyll,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 6.471 6.471 0.046 0.831
Water availability 1 557.994 557.994 3.96 0.052
Genus 1 3771.929 3771.929 26.74 0.000
Light level*Water availability 1 32.471 32.471 0.23 0.633
Light level*Genus 1 7.225 7.225 0.05 0.822
Water availability*Genus 1 401.428 401.428 2.85 0.098
Light level*Water
availability*Genus

1 9.190 9.190 0.07 0.800

Residuals 51 7194.092 141.061

Table A2.44 Analysis of variance table for vitamin E in mol per mol total Chlorophyll, samples taken
in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of natural daylight),
water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia cotoneaster,
Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves taken from
divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia buddleioides
and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.00105 0.001048 3.81 0.057
Water availability 1 0.00035 0.000345 1.25 0.269
Genus 1 0.00000 0.000004 0.02 0.902
Habit 1 0.00711 0.007107 25.84 0.000
Light level*Water availability 1 0.00000 0.000000 0.00 0.966
Light level*Genus 1 0.00008 0.000080 0.29 0.592
Water availability*Genus 1 0.00085 0.000849 3.09 0.086
Light level*Habit 1 0.00008 0.000082 0.30 0.587
Water availability*Habit 1 0.00003 0.000029 0.11 0.747
Genus*Habit 1 0.00019 0.000190 0.69 0.411
Light level*Water availability*Genus 1 0.00000 0.000000 0.00 0.974
Light level*Water availability*Habit 1 0.00039 0.000394 1.43 0.238
Light level*Genus*Habit 1 0.00034 0.000341 1.24 0.272
Water availability*Genus*Habit 1 0.00016 0.000156 0.57 0.456
Light level*Water
availability*Genus*Habit

1 0.00030 0.000299 1.09 0.303

Residuals 43 0.01183 0.000275
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Table A2.45 Analysis of variance table for the pigment Violaxanthin in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 84835 84835 1.59 0.225
Water availability 1 197875 197875 3.71 0.071
Genus 1 467981 467981 8.77 0.009
Habit 1 1463820 1463820 27.42 0.000
Light level*Water availability 1 26996 26996 0.51 0.487
Light level*Genus 1 45200 45200 0.85 0.370
Water availability*Genus 1 98299 98299 1.84 0.193
Light level*Habit 1 85938 85938 1.61 0.222
Water availability*Habit 1 9232 9232 0.17 0.683
Genus*Habit 1 743450 743450 13.93 0.002
Light level*Water
availability*Genus

1 836 836 0.02 0.902

Light level*Genus*Habit 1 7830 7830 0.15 0.707
Water availability*Genus*Habit 1 219 219 0.00 0.950
Residuals 17 907444 53379

Table A2.46 Analysis of variance table for the pigment Antheraxanthin in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 84.783 84.7827 1.00 0.331
Water availability 1 58.125 58.1253 0.69 0.419
Genus 1 388.155 388.1546 4.59 0.047
Habit 1 90.720 90.7204 1.07 0.315
Light level*Water availability 1 0.852 0.8522 0.01 0.921
Light level*Genus 1 65.054 65.0538 0.77 0.393
Water availability*Genus 1 28.332 28.3317 0.33 0.570
Light level*Habit 1 1.628 1.6275 0.02 0.891
Water availability*Habit 1 28.888 28.8884 0.34 0.567
Genus*Habit 1 38.271 38.2710 0.45 0.510
Light level*Water
availability*Genus

1 0.244 0.2444 0.00 0.958

Light level*Genus*Habit 1 5.075 5.0751 0.06 0.809
Water availability*Genus*Habit 1 14.948 14.9479 0.18 0.680
Residuals 17 1438.197 84.5998
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Table A2.47 Analysis of variance table for the pigment Zeaxanthin in µmol per m-2 leaf area, samples
taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 786.21 786.210 0.24 0.633
Water availability 1 3135.34 3135.338 0.94 0.345
Genus 1 1483.12 1483.118 0.45 0.513
Habit 1 303.07 303.075 0.09 0.766
Light level*Water availability 1 65.62 65.622 0.02 0.890
Light level*Genus 1 3954.55 3954.551 1.19 0.290
Water availability*Genus 1 1786.34 1786.340 0.54 0.473
Light level*Habit 1 2174.87 2174.870 0.66 0.430
Water availability*Habit 1 1396.79 1396.792 0.42 0.525
Genus*Habit 1 5199.47 5199.475 1.57 0.228
Light level*Water
availability*Genus

1 1136.28 1136.283 0.34 0.566

Light level*Genus*Habit 1 48.65 48.654 0.02 0.905
Water availability*Genus*Habit 1 1615.15 1615.151 0.49 0.495
Residuals 17 56445.34 3320.314

Table A2.48 Analysis of variance table for the pigment Neoaxanthin in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 1372.50 1372.500 1.50 0.237
Water availability 1 515.69 515.688 0.57 0.463
Genus 1 889.73 889.733 0.97 0.338
Habit 1 26.31 26.311 0.03 0.867
Light level*Water availability 1 1158.43 1158.428 1.27 0.276
Light level*Genus 1 1066.07 1066.074 1.17 0.295
Water availability*Genus 1 379.98 379.976 0.42 0.528
Light level*Habit 1 103.67 103.671 0.11 0.740
Water availability*Habit 1 12.87 12.868 0.01 0.907
Genus*Habit 1 198.54 198.535 0.22 0.647
Light level*Water
availability*Genus

1 701.55 701.547 0.77 0.393

Light level*Genus*Habit 1 22.95 22.947 0.03 0.876
Water availability*Genus*Habit 1 11.35 11.350 0.01 0.913
Residuals 17 15530.33 913.549
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Table A2.49 Analysis of variance table for the pigment Lutein in µmol per m-2 leaf area, samples
taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 1243529 1243529 2.04 0.172
Water availability 1 2506639 2506639 4.10 0.059
Genus 1 7238035 7238035 11.84 0.003
Habit 1 22273480 22273480 36.44 0.000
Light level*Water availability 1 454838 454838 0.74 0.400
Light level*Genus 1 685152 685152 1.12 0.305
Water availability*Genus 1 1255827 1255827 2.06 0.170
Light level*Habit 1 1183371 1183371 1.94 0.182
Water availability*Habit 1 51875 51875 0.09 0.774
Genus*Habit 1 12070377 12070377 19.75 0.000
Light level*Water
availability*Genus

1 28877 28877 0.05 0.831

Light level*Genus*Habit 1 144882 144882 0.24 0.633
Water availability*Genus*Habit 1 185 185 0.00 0.986
Residuals 17 10390345 611197

Table A2.50 Analysis of variance table for the pigment Chlorophyll a in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 40540599 40540599 1.90 0.186
Water availability 1 78838355 78838355 3.70 0.071
Genus 1 178267814 178267814 8.36 0.010
Habit 1 550895148 550895148 25.84 0.000
Light level*Water availability 1 7575501 7575501 0.36 0.559
Light level*Genus 1 21875745 21875745 1.03 0.325
Water availability*Genus 1 38792315 38792315 1.82 0.195
Light level*Habit 1 32486606 32486606 1.52 0.234
Water availability*Habit 1 4295379 4295379 0.20 0.659
Genus*Habit 1 309085769 309085769 14.50 0.001
Light level*Water
availability*Genus

1 98241 98241 0.01 0.947

Light level*Genus*Habit 1 4790962 4790962 0.23 0.642
Water availability*Genus*Habit 1 767756 767756 0.04 0.852
Residuals 17 362468941 21321702
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Table A2.51 Analysis of variance table for the pigment Chlorophyll b in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 6254616 6254616 1.98 0.177
Water availability 1 13770135 13770135 4.36 0.052
Genus 1 26293883 26293883 8.33 0.010
Habit 1 90165876 90165876 28.58 0.000
Light level*Water availability 1 774188 774188 0.25 0.627
Light level*Genus 1 3085976 3085976 0.98 0.337
Water availability*Genus 1 7492267 7492267 2.38 0.142
Light level*Habit 1 4906346 4906346 1.56 0.229
Water availability*Habit 1 1748832 1748832 0.55 0.467
Genus*Habit 1 49477375 49477375 15.68 0.001
Light level*Water
availability*Genus

1 4197 4197 0.00 0.971

Light level*Genus*Habit 1 512515 512515 0.16 0.692
Water availability*Genus*Habit 1 332532 332532 0.11 0.749
Residuals 17 53638061 3155180

Table A2.52 Analysis of variance table for the pigment Chlorophyll a+b in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 78642721 78642721 1.97 0.178
Water availability 1 158505828 158505828 3.98 0.063
Genus 1 341490189 341490189 8.56 0.009
Habit 1 1086805093 1086805093 27.25 0.000
Light level*Water availability 1 13193186 13193186 0.33 0.573
Light level*Genus 1 41394375 41394375 1.04 0.323
Water availability*Genus 1 80381054 80381054 2.02 0.174
Light level*Habit 1 62642945 62642945 1.57 0.227
Water availability*Habit 1 11525780 11525780 0.29 0.598
Genus*Habit 1 605890882 605890882 15.19 0.001
Light level*Water
availability*Genus

1 61828 61828 0.00 0.969

Light level*Genus*Habit 1 8437448 8437448 0.21 0.651
Water
availability*Genus*Habit

1 2110839 2110839 0.05 0.821

Residuals 17 678086283 39887428
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Table A2.53 Analysis of variance table for the pigment Chlorophyll a:b in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.057978 0.0579779 0.75 0.400
Water availability 1 0.054547 0.0545472 0.70 0.414
Genus 1 0.910634 0.9106336 11.70 0.003
Habit 1 0.043805 0.0438046 0.56 0.463
Light level*Water availability 1 0.002783 0.0027833 0.03 0.852
Light level*Genus 1 0.001039 0.0010393 0.01 0.909
Water availability*Genus 1 0.082666 0.0826661 1.06 0.317
Light level*Habit 1 0.042210 0.0422096 0.54 0.472
Water availability*Habit 1 0.028911 0.0289114 0.37 0.550
Genus*Habit 1 0.025729 0.0257294 0.33 0.573
Light level*Water
availability*Genus

1 0.005550 0.0055504 0.07 0.793

Light level*Genus*Habit 1 0.000346 0.0003457 0.00 0.948
Water availability*Genus*Habit 1 0.149794 0.1497937 1.93 0.183
Residuals 17 1.322730 0.0778077

Table A2.54 Analysis of variance table for the pigment ß-Carotene in µmol per m-2 leaf area, samples
taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 34222.8 34222.8 0.80 0.383
Water availability 1 27560.8 27560.8 0.65 0.433
Genus 1 274283.2 274283.2 6.42 0.021
Habit 1 671352.4 671352.4 15.72 0.001
Light level*Water availability 1 34871.9 34871.9 0.82 0.379
Light level*Genus 1 26398.4 26398.4 0.62 0.443
Water availability*Genus 1 12901.0 12901.0 0.30 0.590
Light level*Habit 1 36008.9 36008.9 0.84 0.371
Water availability*Habit 1 22695.0 22695.0 0.53 0.476
Genus*Habit 1 421334.6 421334.6 9.87 0.006
Light level*Water
availability*Genus

1 8163.2 8163.2 0.19 0.667

Light level*Genus*Habit 1 10227.1 10227.1 0.24 0.631
Water availability*Genus*Habit 1 14068.1 14068.1 0.33 0.574
Residuals 17 725847.1 42696.9
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Table A2.55 Analysis of variance table for vitamin E in µmol per m-2 leaf area, samples taken in the
glasshouse during late afternoon in June 2002. Light level (100% vs 75% of natural daylight), water
availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia cotoneaster, Coprosma
propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves taken from divaricates
Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia buddleioides and
Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 143 143 5.87 0.020
Water availability 1 146 146 6.01 0.018
Genus 1 1229 1229 50.60 0.000
Habit 1 3462 3462 142.58 0.000
Light level*Water availability 1 169 169 6.96 0.012
Light level*Genus 1 0 0 0.01 0.911
Water availability*Genus 1 96 96 3.95 0.053
Light level*Habit 1 117 117 4.82 0.034
Water availability*Habit 1 57 57 2.34 0.133
Genus*Habit 1 1833 1833 75.51 0.000
Light level*Water availability*Genus 1 45 45 1.84 0.182
Light level*Water availability*Habit 1 157 157 6.47 0.015
Light level*Genus*Habit 1 12 12 0.49 0.490
Water availability*Genus*Habit 1 12 12 0.49 0.490
Light level*Water
availability*Genus* Habit

1 109 109 4.50 0.040

Residuals 43 1044 24
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Table A2.56 Analysis of variance table for the pigment Violaxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 705.401 705.401 1.50 0.237
Water availability 1 499.192 499.192 1.06 0.317
Genus 1 266.234 266.234 0.57 0.462
Habit 1 284.847 284.847 0.60 0.447
Light level*Water availability 1 2681.832 2681.832 5.69 0.028
Light level*Genus 1 541.332 541.332 1.15 0.298
Water availability*Genus 1 817.729 817.729 1.73 0.204
Light level*Habit 1 2188.689 2188.689 4.64 0.045
Water availability*Habit 1 146.425 146.425 0.31 0.584
Genus*Habit 1 2795.550 2795.550 5.93 0.026
Light level*Water
availability*Genus

1 922.195 922.195 1.96 0.179

Light level*Genus*Habit 1 151.771 151.771 0.32 0.577
Water availability*Genus*Habit 1 284.883 284.883 0.60 0.447
Residuals 18 8484.365 471.354

Table A2.57 Analysis of variance table for the pigment Antheraxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 16.8753 16.87529 0.32 0.576
Water availability 1 24.2054 24.20537 0.47 0.504
Genus 1 59.3162 59.31621 1.14 0.299
Habit 1 69.1654 69.16539 1.33 0.264
Light level*Water availability 1 8.2107 8.21071 0.16 0.696
Light level*Genus 1 12.9890 12.98901 0.25 0.623
Water availability*Genus 1 20.3129 20.31289 0.39 0.540
Light level*Habit 1 0.9389 0.93886 0.02 0.895
Water availability*Habit 1 12.5158 12.51583 0.24 0.630
Genus*Habit 1 63.2667 63.26665 1.21 0.284
Light level*Water
availability*Genus

1 3.5311 3.53110 0.07 0.797

Light level*Genus*Habit 1 0.0223 0.02231 0.00 0.984
Water availability*Genus*Habit 1 0.8649 0.86489 0.02 0.899
Residuals 18 935.1839 51.95466
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Table A2.58 Analysis of variance table for the pigment Zeaxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 437.991 437.9908 0.89 0.357
Water availability 1 395.010 395.0099 0.81 0.382
Genus 1 451.402 451.4024 0.92 0.350
Habit 1 411.502 411.5017 0.84 0.372
Light level*Water availability 1 71.659 71.6591 0.15 0.707
Light level*Genus 1 295.288 295.2877 0.60 0.448
Water availability*Genus 1 430.402 430.4015 0.88 0.362
Light level*Habit 1 120.954 120.9544 0.25 0.626
Water availability*Habit 1 265.292 265.2921 0.54 0.472
Genus*Habit 1 309.475 309.4755 0.63 0.438
Light level*Water
availability*Genus

1 119.285 119.2854 0.240 0.628

Light level*Genus*Habit 1 57.516 57.5165 0.12 0.736
Water availability*Genus*Habit 1 302.227 302.2273 0.62 0.443
Residuals 18 8836.357 490.9087

Table A2.59 Analysis of variance table for the pigment Neoxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 162.571 162.5710 1.22 0.283
Water availability 1 179.053 179.0534 1.35 0.261
Genus 1 16.786 16.7863 0.13 0.726
Habit 1 60.984 60.9839 0.46 0.507
Light level*Water availability 1 256.698 256.6983 1.93 0.182
Light level*Genus 1 109.128 109.1277 0.82 0.377
Water availability*Genus 1 95.944 95.9435 0.72 0.407
Light level*Habit 1 0.007 0.0066 0.00 0.994
Water availability*Habit 1 0.848 0.8479 0.01 0.937
Genus*Habit 1 7.984 7.9838 0.06 0.809
Light level*Water
availability*Genus

1 109.523 109.5232 0.82 0.376

Light level*Genus*Habit 1 2.270 2.2698 0.02 0.898
Water availability*Genus*Habit 1 7.679 7.6794 0.06 0.813
Residuals 18 2392.108 132.8949
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Table A2.60 Analysis of variance table for the pigment Lutein in nmol per g fresh weight, samples
taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 11798.2 11798.21 2.03 0.172
Water availability 1 3293.1 3293.14 0.57 0.462
Genus 1 1489.4 1489.38 0.26 0.619
Habit 1 3614.0 3613.97 0.62 0.441
Light level*Water availability 1 34929.3 34929.25 6.00 0.025
Light level*Genus 1 7707.3 7707.32 1.32 0.265
Water availability*Genus 1 10236.9 10236.87 1.76 0.202
Light level*Habit 1 39248.1 39248.09 6.74 0.018
Water availability*Habit 1 2185.3 2185.26 0.38 0.548
Genus*Habit 1 29871.1 29871.07 5.13 0.036
Light level*Water
availability*Genus

1 14092.4 14092.39 2.42 0.137

Light level*Genus*Habit 1 822.5 822.55 0.14 0.712
Water availability*Genus*Habit 1 9633.9 9633.93 1.66 0.215
Residuals 18 104840.0 5824.44

Table A2.61 Analysis of variance table for the pigment Chlorophyll a in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 542699 542699 2.52 0.130
Water availability 1 93866 93866 0.43 0.517
Genus 1 2400 2400 0.01 0.917
Habit 1 213776 213776 0.99 0.332
Light level*Water availability 1 691955 691955 3.22 0.090
Light level*Genus 1 431536 431536 2.01 0.174
Water availability*Genus 1 477057 477057 2.22 0.154
Light level*Habit 1 1957938 1957938 9.11 0.007
Water availability*Habit 1 364016 364016 1.69 0.210
Genus*Habit 1 1400845 1400845 6.52 0.020
Light level*Water
availability*Genus

1 237442 237442 1.10 0.307

Light level*Genus*Habit 1 959 959 0.00 0.948
Water availability*Genus*Habit 1 624564 624564 2.90 0.106
Residuals 18 3870773 215043
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Table A2.62 Analysis of variance table for the pigment Chlorophyll b in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 92081.3 92081.3 2.82 0.110
Water availability 1 5299.5 5299.5 0.16 0.692
Genus 1 12078.7 12078.7 0.37 0.550
Habit 1 21378.9 21378.9 0.66 0.429
Light level*Water availability 1 101832.7 101832.7 3.12 0.094
Light level*Genus 1 52535.8 52535.8 1.61 0.221
Water availability*Genus 1 83212.0 83212.0 2.55 0.128
Light level*Habit 1 278650.6 278650.6 8.54 0.009
Water availability*Habit 1 35405.7 35405.7 1.09 0.311
Genus*Habit 1 189558.7 189558.7 5.81 0.027
Light level*Water
availability*Genus

1 49740.9 49740.9 1.53 0.233

Light level*Genus*Habit 1 1.1 1.1 0.00 0.995
Water availability*Genus*Habit 1 86731.5 86731.5 2.66 0.120
Residuals 18 587110.9 32617.3

Table A2.63 Analysis of variance table for the pigment Chlorophyll a+b in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 1081871 1081871 2.63 0.123
Water availability 1 143773 143773 0.35 0.562
Genus 1 25247 25247 0.06 0.807
Habit 1 370363 370363 0.90 0.356
Light level*Water availability 1 1324688 1324688 3.22 0.090
Light level*Genus 1 785210 785210 1.91 0.184
Water availability*Genus 1 958750 958750 2.33 0.145
Light level*Habit 1 3713858 3713858 9.01 0.008
Water availability*Habit 1 626475 626475 1.52 0.233
Genus*Habit 1 2621020 2621020 6.36 0.021
Light level*Water
availability*Genus

1 504535 504535 1.23 0.283

Light level*Genus*Habit 1 895 895 0.00 0.963
Water availability*Genus*Habit 1 1176782 1176782 2.86 0.108
Residuals 18 7415805 411989
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Table A2.64 Analysis of variance table for the pigment Chlorophyll a:b in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.001679 0.0016788 0.01 0.922
Water availability 1 0.240011 0.2400108 1.41 0.251
Genus 1 0.530950 0.5309497 3.11 0.095
Habit 1 0.006675 0.0066754 0.04 0.845
Light level*Water availability 1 0.060083 0.0600826 0.35 0.560
Light level*Genus 1 0.035911 0.0359105 0.21 0.652
Water availability*Genus 1 0.000179 0.0001786 0.00 0.975
Light level*Habit 1 0.140799 0.1407988 0.83 0.376
Water availability*Habit 1 0.223376 0.2233762 1.31 0.267
Genus*Habit 1 0.003104 0.0031035 0.02 0.894
Light level*Water
availability*Genus

1 0.135330 0.1353305 0.79 0.385

Light level*Genus*Habit 1 0.023745 0.0237454 0.14 0.713
Water availability*Genus*Habit 1 0.017629 0.0176294 0.10 0.752
Residuals 18 3.070108 0.1705616

Table A2.65 Analysis of variance table for the pigment ß-carotene in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in June 2002. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia
cotoneaster, Coprosma propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves
taken from divaricates Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia
buddleioides and Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 241.933 241.933 1.14 0.300
Water availability 1 3.155 3.155 0.02 0.904
Genus 1 360.076 360.076 1.70 0.209
Habit 1 322.830 322.830 1.52 0.233
Light level*Water availability 1 1077.435 1077.435 5.08 0.037
Light level*Genus 1 278.653 278.653 1.31 0.267
Water availability*Genus 1 167.050 167.050 0.79 0.386
Light level*Habit 1 888.111 888.111 4.19 0.056
Water availability*Habit 1 155.822 155.822 0.73 0.403
Genus*Habit 1 871.460 871.460 4.11 0.058
Light level*Water
availability*Genus

1 400.778 400.778 1.89 0.186

Light level*Genus*Habit 1 0.102 0.102 0.00 0.983
Water availability*Genus*Habit 1 854.426 854.426 4.03 0.060
Residuals 18 3816.378 212.021
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Table A2.66 Analysis of variance table for vitamin E in µmol per g fresh weight, samples taken in the
glasshouse during late afternoon in June 2002. Light level (100% vs 75% of natural daylight), water
availability (200 mls every 2 days and 50mls every 3 days) and genus (Corokia cotoneaster, Coprosma
propinqua, Corokia buddleioide and Coprosma robusta) as treatments. Leaves taken from divaricates
Corokia cotoneaster and Coprosma propinqua and non-divaricates Corokia buddleioides and
Coprosma robusta. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 234 234 0.06 0.815
Water availability 1 21793 21793 5.16 0.028
Genus 1 3276 3276 0.78 0.383
Habit 1 15168 15168 3.59 0.065
Light level*Water availability 1 1739 1739 0.41 0.525
Light level*Genus 1 950 950 0.23 0.638
Water availability*Genus 1 9536 9536 2.26 0.140
Light level*Habit 1 5383 5383 1.28 0.265
Water availability*Habit 1 64 64 0.02 0.903
Genus*Habit 1 5917 5917 1.40 0.243
Light level*Water availability*Genus 1 2474 2474 0.59 0.448
Light level*Water availability*Habit 1 156 156 0.04 0.848
Light level*Genus*Habit 1 456 456 0.11 0.744
Water availability*Genus*Habit 1 13422 13422 3.18 0.082
Light level*Water
availability*Genus*Habit

1 7016 7016 1.66 0.204

Residuals 43 181604 4223
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A3 Anova Tables of Glasshouse Data 2003
Table A3.1 Analysis of variance table for water potential in the glasshouse, (a) predawn, (b) noon and
(c) evening measurements during January and predawn (d) December 2003. Light level (100% vs 75%
of natural daylight), water availability (200 mls every 2.day and 50mls every 3.day) and habit (Corokia
cotoneaster, Corokia buddleioides and Corokia hybrid) as treatments. Measurements recorded from
shoots of Corokia cotoneaster and Corokia hybrid; leaves of Corokia buddleioides. [significant results
in bold].
a Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.09455 0.09455 0.30 0.5910
Water availability 1 13.09937 13.09937 40.89 0.0000
Habit 2 1.71015 0.85508 2.67 0.0858
Light level*Water availability 1 0.24831 0.24831 0.78 0.3857
Light level*Habit 2 0.14406 0.07203 0.22 0.800
Water availability*Habit 2 2.37042 1.18521 3.70 0.037
Light level*Water availability*Habit 2 0.28553 0.14276 0.45 0.645
Residuals 30 9.61167 0.32039

b Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.010962 0.010962 0.10 0.756
Water availability 1 3.250680 3.250680 29.27 0.000
Habit 2 1.415164 0.707582 6.37 0.006
Light level*Water availability 1 0.102774 0.102774 0.93 0.346
Light level*Habit 2 0.336102 0.168051 1.51 0.240
Water availability*Habit 2 1.759296 0.879648 7.92 0.002
Light level*Water availability*Habit 2 0.233094 0.116547 1.05 0.366
Residuals 24 2.665358 0.111057

c Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 1.64948 1.64948 28.26 0.000
Water availability 1 14.50516 14.50516 248.53 0.000
Habit 2 1.09897 0.54948 9.41 0.001
Light level*Water availability 1 0.84480 0.84480 14.47 0.001
Light level*Habit 2 0.09403 0.04701 0.81 0.457
Water availability*Habit 2 3.09344 1.54672 26.50 0.000
Light level*Water availability*Habit 2 0.12072 0.06036 1.03 0.369
Residuals 27 1.57583 0.05836

d Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.019114 0.019114 0.58 0.451
Water availability 1 0.715106 0.715106 21.86 0.000
Habit 2 2.915456 1.457728 44.56 0.000
Light level*Water availability 1 0.205066 0.205066 6.27 0.018
Light level*Habit 2 0.254102 0.127051 3.88 0.032
Water availability*Habit 2 0.213783 0.106891 3.27 0.053
Light level*Water availability*Habit 2 0.574082 0.287041 8.77 0.001
Residuals 28 0.916042 0.032716
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Table A3.2 Analysis of variance table for Fv/Fm in the glasshouse, (a) predawn, (b) noon and (c)
evening measurements during January and predawn (d) December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia buddleioides and Corokia hybrid) as treatments. Measurements recorded from
shoots of Corokia cotoneaster and Corokia hybrid; leaves of Corokia buddleioides. [significant results
in bold].
a  Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.00159087 0.001590869 0.54 0.467
Water availability 1 0.00179303 0.001793030 0.61 0.440
Habit 2 0.00566583 0.002832914 0.97 0.391
Light level*Water availability 1 0.00130664 0.001306641 0.45 0.509
Light level*Habit 2 0.01591078 0.007955392 2.72 0.083
Water availability*Habit 2 0.00785577 0.003927883 1.34 0.277
Light level*Water availability*Habit 2 0.00644846 0.003224230 1.10 0.345
Residuals 29 0.08476150 0.002922810

b Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.1092025 0.1092025 7.40 0.011
Water availability 1 0.0745046 0.0745046 5.05 0.033
Habit 2 0.0133972 0.0066986 0.45 0.640
Light level*Water availability 1 0.0103553 0.0103553 0.70 0.409
Light level*Habit 2 0.0165287 0.0082644 0.56 0.577
Water availability*Habit 2 0.0870366 0.0435183 2.95 0.069
Light level*Water availability*Habit 2 0.0293458 0.0146729 1.00 0.383
Residuals 28 0.4129667 0.0147488

c Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.06036107 0.06036107 50.48 0.000
Water availability 1 0.00004858 0.00004858 0.04 0.842
Habit 2 0.09165923 0.04582962 38.33 0.000
Light level*Water availability 1 0.00037842 0.00037842 0.32 0.578
Light level*Habit 2 0.05037779 0.02518889 21.07 0.000
Water availability*Habit 2 0.01506626 0.00753313 6.30 0.005
Light level*Water availability*Habit 2 0.00861702 0.00430851 3.60 0.040
Residuals 29 0.03467450 0.00119567

d Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.00513023 0.005130225 5.32 0.029
Water availability 1 0.00130698 0.001306976 1.36 0.254
Habit 2 0.00247727 0.001238633 1.29 0.292
Light level*Water availability 1 0.00178583 0.001785834 1.85 0.184
Light level*Habit 2 0.00397889 0.001989447 2.06 0.146
Water availability*Habit 2 0.00227383 0.001136916 1.18 0.322
Light level*Water availability*Habit 2 0.00033693 0.000168466 0.17 0.841
Residuals 28 0.02698642 0.000963801
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Table A3.3 Analysis of variance table for the pigment Violaxanthin in mmol per mol total
Chlorophyll, samples taken in the glasshouse during late afternoon in December 2003. Light level
(100% vs 75% of natural daylight), water availability (200 mls every 2 days and 50mls every 3 days)
and habit (Corokia cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant
results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 1.1723 1.1723 0.08 0.787
Habit 2 414.8057 207.4028 13.59 0.001
Water availability*Habit 2 2.2887 1.1443 0.08 0.928
Residuals 11 167.8711 15.2610

Table A3.4 Analysis of variance table for the pigment Antheraxanthin in mmol per mol total
Chlorophyll, samples taken in the glasshouse during late afternoon in December 2003. Light level
(100% vs 75% of natural daylight), water availability (200 mls every 2 days and 50mls every 3 days)
and habit (Corokia cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant
results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 0.717269 0.7172687 1.44 0.256
Habit 2 0.648321 0.3241607 0.65 0.541
Water
availability*Habit

2 0.025172 0.0125858 0.03 0.975

Residuals 11 5.489250 0.4990227

Table A3.5 Analysis of variance table for the pigment Zeaxanthin in mmol per mol total Chlorophyll,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 50.3741 50.37407 2.98 0.112
Habit 2 24.8716 12.43581 0.74 0.501
Water availability*Habit 2 18.8050 9.40249 0.56 0.589
Residuals 11 185.8599 16.89635

Table A3.6 Analysis of variance table for pigments in the Deepoxidation state in mmol per mol sum
Xanthophyll cycle pigments, samples taken in the glasshouse during late afternoon in December 2003.
Light level (100% vs 75% of natural daylight), water availability (200 mls every 2 days and 50mls
every 3 days) and habit (Corokia cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments.
[significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 0.00895106 0.008951062 1.72 0.217
Habit 2 0.00072371 0.000361853 0.07 0.933
Water
availability*Habit

2 0.00496102 0.002480508 0.48 0.633

Residuals 11 0.05725833 0.005205303

Table A3.7 Analysis of variance table for the pigment Neoxanthin in mmol per mol total Chlorophyll,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 1.3875 1.38747 0.17 0.692
Habit 2 155.3622 77.68111 9.28 0.004
Water availability*Habit 2 45.6902 22.84508 2.73 0.109
Residuals 11 92.1318 8.37562
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Table A3.8 Analysis of variance table for the pigment Lutein in mmol per mol total Chlorophyll,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 100.7003 100.7003 1.49 0.247
Habit 2 468.3064 234.1532 3.47 0.068
Water availability*Habit 2 53.8378 26.9189 0.40 0.680
Residuals 11 742.3721 67.4884

Table A3.9 Analysis of variance table for the pigment ß-carotene in µmol per mol total Chlorophyll,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 0.079 0.079 0.00056 0.9812949
Habit 2 1234.876 617.438 4.39370 0.0222871
Water availability* Habit 2 27.225 13.612 0.09687 0.9079925
Residuals 11 3794.257 140.528

Table A3.10 Analysis of variance table for the vitamin E in mol per mol total Chlorophyll, samples
taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.6783 0.6783 76.40 0.000
Water availability 1 0.0149 0.0149 1.68 0.206
Habit 2 0.0524 0.0262 2.95 0.069
Light level*Water availability 1 0.0203 0.0203 2.29 0.141
Light level*Habit 2 0.0745 0.0372 4.19 0.026
Water availability*Habit 2 0.0806 0.0403 4.54 0.020
Light level*Water
availability*Habit

2 0.0335 0.0167 1.88 0.171

Residuals 28 0.2486 0.0089
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Table A3.11 Analysis of variance table for the pigment Violaxanthin in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 9.045 9.045 0.16 0.698
Habit 2 6278.594 3139.297 55.10 0.001
Water availability*Habit 2 1.340 0.670 0.01 0.988
Residuals 11 626.777 56.980

Table A3.12 Analysis of variance table for the pigment Antheraxanthin in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 0.008366 0.008366 0.04 0.848
Habit 2 2.855947 1.427973 6.60 0.013
Water availability*Habit 2 0.041209 0.020605 0.10 0.910
Residuals 11 2.380867 0.216442

Table A3.13 Analysis of variance table for the pigment Zeaxanthin in µmol per m-2 leaf area, samples
taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 5.7675 5.7675 1.389 0.264
Habit 2 673.7616 336.8808 81.11 0.000
Water availability*Habit 2 1.8839 0.9420 0.23 0.801
Residuals 11 45.6899 4.1536

Table A3.14 Analysis of variance table for the pigment Neoxanthin in µmol per m-2 leaf area, samples
taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 26.324 26.324 0.42 0.530
Habit 2 6321.904 3160.952 50.57 0.000
Water availability*Habit 2 2.494 1.247 0.02 0.980
Residuals 11 687.637 62.512

Table A3.15 Analysis of variance table for the pigment Lutein in µmol per m-2 leaf area, samples
taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 243.08 243.08 0.48 0.503
Habit 2 65848.46 32924.23 65.03 0.000
Water availability*Habit 2 13.78 6.89 0.01 0.987
Residuals 11 5569.42 506.31
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Table A3.16 Analysis of variance table for the pigment Chlorophyll a in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 3994 3993.6 0.28 0.606
Habit 2 1416031 708015.5 49.88 0.000
Water availability*Habit 2 38 19.2 0.00 0.999
Residuals 11 156136 14194.2

Table A3.17 Analysis of variance table for the pigment Chlorophyll b in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 470.7 470.70 0.30 0.595
Habit 2 154390.0 77194.98 49.22 0.000
Water availability*Habit 2 9.1 4.56 0.00 0.997
Residuals 11 17252.0 1568.37

Table A3.18 Analysis of variance table for the pigment Chlorophyll a+b in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 7207 7207 0.29 0.603
Habit 2 2505579 1252789 49.80 0.000
Water availability*Habit 2 84 42 0.00 0.998
Residuals 11 276723 25157

Table A3.19 Analysis of variance table for the pigment Chlorophyll a:b in µmol per m-2 leaf area,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 0.0120471 0.0120471 0.92 0.359
Habit 2 0.5190970 0.2595485 19.76 0.000
Water
availability*Habit

2 0.0204446 0.0102223 0.78 0.483

Residuals 11 0.1444583 0.0131326

Table A3.20 Analysis of variance table for the pigment ß-Carotene in µmol per m-2 leaf area, samples
taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 15.783 15.783 0.35 0.568
Habit 2 6527.318 3263.659 71.63 0.000
Water availability*Habit 2 0.115 0.057 0.00 0.999
Residuals 11 501.184 45.562
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Table A3.21 Analysis of variance table for the vitamin E in µmol per m-2 leaf area, samples taken in
the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural daylight),
water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia cotoneaster,
Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 3.98 3.98 10.47 0.003
Water availability 1 0.95 0.95 2.51 0.124
Habit 2 50.17 25.08 66.04 0.000
Light level*Water availability 1 0.71 0.71 1.86 0.183
Light level*Habit 2 7.19 3.60 9.47 0.001
Water availability*Habit 2 2.02 1.01 2.65 0.087
Light level*Water
availability*Habit

2 1.81 0.91 2.39 0.109

Residuals 30 11.40 0.38
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Table A3.22 Analysis of variance table for the pigment Violaxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 1.108 1.108 0.02 0.904
Habit 2 3193.212 1596.606 21.70 0.000
Water availability*Habit 2 126.614 63.307 0.86 0.446
Residuals 13 956.357 73.566

Table A3.23 Analysis of variance table for the pigment Antheraxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 0.113262 0.113262 0.15 0.701
Habit 2 2.112634 1.056317 1.43 0.274
Water availability*Habit 2 0.029497 0.014748 0.02 0.980
Residuals 13 9.583957 0.737227

Table A3.24 Analysis of variance table for the pigment Zeaxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 37.6557 37.6557 2.53 0.136
Habit 2 276.5981 138.2991 9.28 0.003
Water availability*Habit 2 33.7731 16.8865 1.13 0.352
Residuals 13 193.6730 14.8979

Table A3.25 Analysis of variance table for the pigment Neoxanthin in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 10.654 10.654 0.12 0.739
Habit 2 2223.935 1111.968 12.08 0.001
Water availability*Habit 2 93.634 46.817 0.51 0.613
Residuals 13 1196.800 92.062

Table A3.26 Analysis of variance table for the pigment Lutein in nmol per g fresh weight, samples
taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural
daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 270.48 270.48 0.34 0.572
Habit 2 21447.01 10723.51 13.30 0.001
Water availability*Habit 2 1250.69 625.34 0.78 0.481
Residuals 13 10485.54 806.58
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Table A3.27 Analysis of variance table for the pigment Chlorophyll a in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 1860.7 1860.7 0.08 0.785
Habit 2 419482.3 209741.2 8.74 0.004
Water availability*Habit 2 37586.3 18793.1 0.78 0.477
Residuals 13 311878.4 23990.6

Table A3.28 Analysis of variance table for the pigment Chlorophyll b in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 86.11 86.11 0.03 0.865
Habit 2 38152.79 19076.39 6.68 0.010
Water availability*Habit 2 3361.01 1680.50 0.59 0.569
Residuals 13 37139.72 2856.90

Table A3.29 Analysis of variance table for the pigment Chlorophyll a+b in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 2747.4 2747.4 0.06 0.805
Habit 2 705024.6 352512.3 8.16 0.005
Water availability*Habit 2 63288.4 31644.2 0.73 0.500
Residuals 13 561682.4 43206.3

Table A3.30 Analysis of variance table for the pigment Chlorophyll a:b in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 0.0231058 0.0231058 1.87 0.195
Habit 2 0.5307228 0.2653614 21.47 0.000
Water
availability*Habit

2 0.0254902 0.0127451 1.03 0.384

Residuals 13 0.1607033 0.0123618

Table A3.31 Analysis of variance table for the pigment ß-carotene in nmol per g fresh weight,
samples taken in the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of
natural daylight), water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia
cotoneaster, Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Water availability 1 63.597 63.597 0.87 0.368
Habit 2 3501.558 1750.779 23.90 0.000
Water availability*Habit 2 327.592 163.796 2.24 0.146
Residuals 13 952.321 73.255
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Table A3.32 Analysis of variance table for the vitamin E in µmol per g fresh weight, samples taken in
the glasshouse during late afternoon in December 2003. Light level (100% vs 75% of natural daylight),
water availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia cotoneaster,
Corokia hybrid and Corokia buddleioides) as treatments. [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 82140 82140 8.85 0.006
Water availability 1 10155 10155 1.09 0.304
Habit 2 35935 17968 1.94 0.163
Light level*Water availability 1 3194 3194 0.34 0.562
Light level*Habit 2 99292 49646 5.35 0.011
Water availability*Habit 2 127664 63832 6.88 0.004
Light level*Water
availability*Habit

2 40895 20448 2.20 0.129

Residuals 29 269153 9281
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Table A3.33 Analysis of variance table for daytime respiration measurements in the glasshouse, taken
in December 2003. Light level (100% vs 75% of natural daylight), water availability (200 mls every 2
days and 50mls every 3 days) and habit (Corokia cotoneaster, Corokia buddleioides and Corokia
hybrid) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 4.38440 4.38440 1.7326 0.198
Water availability 1 14.82654 14.82654 5.8591 0.022
Habit 2 75.41143 37.70571 14.900 0.000
Light level*Water availability 1 2.63123 2.63123 1.0398 0.316
Light level*Habit 2 0.91118 0.45559 0.1800 0.836
Water availability*Habit 2 11.91620 5.95810 2.3545 0.112
Light level*Water availability*Habit 2 1.48693 0.74347 0.2938 0.748
Residuals 30 75.91580 2.53053

Table A3.34 Analysis of variance table for measurements of quantum efficiency (QE) in the
glasshouse, taken in December 2003. Light level (100% vs 75% of natural daylight), water availability
(200 mls every 2 days and 50mls every 3 days) and habit (Corokia cotoneaster, Corokia buddleioides
and Corokia hybrid) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 0.000179884 0.000179884 0.615 0.439
Water availability 1 0.001038388 0.001038388 3.550 0.070
Habit 2 0.002421448 0.001210724 4.139 0.026
Light level*Water availability 1 0.000072745 0.000072745 0.249 0.622
Light level*Habit 2 0.000476372 0.000238186 0.814 0.453
Water availability*Habit 2 0.000706918 0.000353459 1.208 0.313
Light level*Water availability*Habit 2 0.000016034 0.000008017 0.027 0.973
Residuals 29 0.008483333 0.000292529

Table A3.35 Analysis of variance table for measurements of the maximum photosynthetic rate (Amax)
in the glasshouse, taken in December 2003. Light level (100% vs 75% of natural daylight), water
availability (200 mls every 2 days and 50mls every 3 days) and habit (Corokia cotoneaster, Corokia
buddleioides and Corokia hybrid) as treatments [significant results in bold].

Df Sum of Sq Mean Sq F Value Pr(F)
Light level 1 11.3341 11.3341 1.3385 0.256
Water availability 1 2.9341 2.9341 0.3465 0.561
Habit 2 354.9180 177.4590 20.958 0.000
Light level*Water availability 1 36.9760 36.9760 4.3668 0.045
Light level*Habit 2 37.3567 18.6784 2.2059 0.128
Water availability*Habit 2 45.5578 22.7789 2.6902 0.084
Light level*Water availability*Habit 2 30.7273 15.3636 1.8144 0.180
Residuals 30 254.0251 8.4675
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