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ABSTRACT

This thesis looks at the problem of channel estimation and equalization in a

multiple-input multiple-output (MIMO) dispersive fading environments. Two

classes of MIMO receiver structure are proposed with integrated channel esti-

mation and tracking. One is a symbol-by-symbol based receiver using a MIMO

minimum mean square error (MMSE) decision feedback equalizer (DFE), and the

other is a sequence-based receiver using a partitioned Viterbi algorithm (PVA)

which approaches the performance of maximum likelihood sequence estimation

(MLSE).

A MIMO channel estimator capable of tracking the time and frequency se-

lective channel impulse responses, known as the vector generalized recursive least

squares (VGRLS) algorithm, is developed. It has comparable performance and

a similar level of complexity as the optimum Kalman filter. However, it does

not require any knowledge of the channel statistics to operate and as such it

can be employed in a Rician fading channel readily. A reduced complexity form

of the estimator, known as the vector generalized least mean squares (VGLMS)

algorithm, is also developed. This is achieved by replacing the online recursive

computation of the VGRLS algorithm’s ‘intermediate’ Riccatti matrix with an

off-line pre-computed matrix. This reduces the complexity of the algorithm by

an order of a magnitude, but at the expense of degraded performance.

The estimators are integrated with the above-mentioned equalizers in a de-

cision directed mode to form a receiver structure that can operate in continu-

ously time-varying fading channels. Due to decision delays, the outputs from

the equalizer are delayed and this then produces ‘delayed’ channel estimates. A
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simple polynomial-based channel prediction module is employed to provide up-

to-date channel estimates required by the equalizers. However, simulation results

show that the channel prediction module may be omitted for a very slowly fading

channel where the channel responses do not vary much. In the case of the PVA-

receiver, the zero-delay tentative decisions are used as feedback to the channel

estimators with negligible loss.
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1G first generation

2G second generation

3G third generation

4G fourth generation
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AWGN additive white Gaussian noise

BER bit error rate

BLAST Bell Laboratories Layered Space Time Architecture

CCI co-channel interference

CIR channel impulse response

DDFSE delayed decision feedback sequence estimation

DFE decision feedback equalizer

DFMLSE decision feedback MLSE

DPLL digital phase-locked loop

DSP digital signal processing

FBF feedback filter

FFF feed-forward filter

FIR finite impulse response

FPGA field programmable gate arrays

GLMS Generalized Least Mean Squares

GRLS Generalized Recursive Least Squares

GSM Global System for Mobile Communications



viii

IMTS Improved Mobile Telephone Service

IIR infinite impulse response

IP internet protocol
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MMSE minimum mean squared error
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NLOS non line of sight

NMT Nordic Mobile Telephone

OFDM orthogonal frequency division multiplexing
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PSP per-survivor processing
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QPSK quadrature phase shift keying

RLS recursive least squares
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RW-RLS rectangular windowed RLS

SER symbol error rate

SIC successive interference cancellation
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SMS Short Message Service
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STBC space time block codes

STC space time coding

STTC space time trellis codes

TDL tapped delay line
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VGLMS Vector Generalized Least Mean Squares

VGRLS Vector Generalized Recursive Least Squares
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WSS wide sense stationary

WSSUS wide sense stationary with uncorrelated scattering

ZF zero-forcing





CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENT v

GLOSSARY vii

CHAPTER 1 INTRODUCTION 1

1.1 Overview of MIMO systems 3

1.2 Motivation for Thesis 5

1.3 Thesis Outline 6

1.4 Thesis Contributions 8

CHAPTER 2 BACKGROUND 11

2.1 Communication System and Signal Model 11

2.2 Mobile Wireless Channel 13

2.2.1 Fading mechanism 13

2.2.2 Channel functions 17

2.2.3 Channel Classification 19

2.2.4 Channel Models 22

2.2.5 Channel Simulations 25

2.2.6 MIMO Channel Models 26

2.3 Equalization 27

2.3.1 Linear Equalization 28

2.3.2 Decision Feedback Equalization 30

2.3.3 Maximum Likelihood Sequence Estimation 32

2.3.4 Partitioned Viterbi Algorithm 35

2.4 MIMO system 36

2.4.1 BLAST 37

2.4.2 Space Time Trellis Codes 37

2.4.3 Space Time Block Codes 38

2.5 Summary 39



xii CONTENTS

CHAPTER 3 THE VECTOR GENERALIZED RECURSIVE

LEAST SQUARES ALGORITHM 41

3.1 Introduction 41

3.2 The General System Model 45

3.3 Channel Estimation 47

3.3.1 The Polynomial Series Model 48

3.3.2 Minimum Noise Gain Polynomial Predictor 51

3.3.3 Statistical State-space Model 54

3.3.4 Polynomial-based State-space Model 56

3.3.5 Derivation of the VGRLS Algorithm 58

3.4 Parameters that affect the performance of the esti-

mator 69

3.4.1 Effect of the Predictor Length and Polyno-

mial Order 70

3.4.2 Effect of the ‘Forget Factor’ 71

3.4.3 Effect of SNR 72

3.4.4 Effect of the Normalized Fade Rate 72

3.4.5 Effect of the Training Sequence Length 73

3.4.6 Estimator Variances 73

3.5 Performance Evaluation 74

3.5.1 Predictor Length, Polynomial Order, SNR

and Training Sequence Length 75

3.5.2 ‘Forget Factor’ 79

3.5.3 Normalized Fade Rate 80

3.5.4 Rician Fading Channel 83

3.6 Summary 85

CHAPTER 4 REDUCED COMPLEXITY CHANNEL

ESTIMATION 89

4.1 Introduction 89

4.2 Complexity Reduction of the VGRLS Algorithm 91

4.3 A Complexity Comparison of the VGRLS and VGLMS

Algorithms 96

4.4 Performance Evaluation 97

4.5 Summary 103

CHAPTER 5 INTEGRATED SYMBOL-BY-SYMBOL BASED

RECEIVER 105

5.1 Introduction 105

5.2 Input-output Signal Model 107

5.3 The Vector DFE 110

5.4 Channel Estimation 114



CONTENTS xiii

5.5 The Integrated Receiver 114

5.5.1 Training Mode 115

VGRLS Algorithm 115

VGLMS Algorithm 116

5.5.2 Decision-directed Mode 116

5.6 Performance Evaluation 118

5.6.1 VGRLS Estimator with DFE 119

5.6.2 VGLMS Estimator with DFE 126

5.6.3 A Comparison Between the Estimators 128

5.7 Summary 129

CHAPTER 6 INTEGRATED SEQUENCE-BASED RECEIVER131

6.1 Introduction 131

6.2 Signal Model 132

6.3 The Integrated Receiver 133

6.3.1 Sequence Estimation Based on the PVA 134

DFE Prefilter 134

Trellis Structure 138

6.3.2 VGRLS Channel Estimation and Tracking 139

6.4 Receiver Operation 141

6.4.1 Training Mode 141

6.4.2 Decision-directed Mode 142

6.5 Simulation Results and Discussions 143

6.6 Summary 151

CHAPTER 7 CONCLUSIONS 153

7.1 Contributions 153

7.2 Suggested Future Work 155

APPENDIX A YULE-WALKER EQUATIONS 157

REFERENCES 161





Chapter 1

INTRODUCTION

The telecommunications industry, in particular the wireless sector, has gone

through very rapid growth in recent years [1],[2],[3]. This has been largely driven

by the increasing demand for high-quality digital communications at ever in-

creasing data rates. During the past 15 years several so-called ‘generations’ (G)

of wireless system have emerged and each generation is perhaps best epitomized

by the distinct technological advances associated with it.

When the first generation (1G) systems [4], such as the Advanced Mobile

Phone Services (AMPS) in North America and Nordic Mobile Telephone (NMT)

in Europe, were developed in the 1970s and 1980s, analogue transmission tech-

niques were used. In general terms, these systems are very similar to the older

“0G” Improved Mobile Telephone Service (IMTS) service, but use considerably

more computing power in order to select frequencies, hand off conversations to

plain old telephone service (POTS) lines, and handle billing and call setup.

In the 1980s and 1990s when the second generation (2G) systems [4],[5], such

as the Global System for Mobile Communications (GSM), Interim Standard (IS)-

95, IS-136, were developed, digital technology was employed. The key advantage

of these systems1 to consumers has been better voice quality and the availability

of low-cost alternatives to making calls, such as the Short Message Service (SMS).

Currently with third generation (3G) systems [6],[7],[8], such as Wideband

Code Division Multiple Access (WCDMA), CDMA2000 and Time Division-Synchronous

1GSM and IS-136 employ time division multiple access (TDMA) technique while IS-95 uses
code division multiple access (CDMA) technique.



2 CHAPTER 1 INTRODUCTION

Code Division Multiple Access (TD-SCDMA), the industry is undergoing a rev-

olutionary transformation from low-date-rate, voice-dominated to high-data-rate,

multimedia-rich system.

Even as the current deployment of 3G systems is still in its infancy, many re-

search advances for fully internet protocol (IP)-based integrated systems, known

as the fourth generation (4G) systems [6],[9], have already been developed. These

include the like of Wi-Fi, WiMAX, etc. True 4G deployment will be achieved

when wired and wireless technologies converge and will be capable of providing

100 Mb/s and 1 Gb/s speeds both indoors and outdoors, with both high quality

and security.

Beyond being simply a replacement for the fixed-line telephony system, wire-

less technology has revolutionized many aspects of our lives - the way we commu-

nicate, conduct business, socialize and entertain ourselves [3]. Today’s services

promise to deliver many innovative applications beyond voice communication.

These include ‘killer’ applications such as wireless broadband internet, picture

messaging, live video streaming, location-aware services etc, and all with ubiq-

uitous, ‘24-7’, always-on connection. As exciting as it may sound, in reality,

however, many technical challenges remain in designing robust systems to meet

the requirement of these emerging applications [1].

Currently wireless local area networks (WLANs) employing the IEEE 802.11g/a

standard offer up to 54 Mb/s [6]. However, even this is barely sufficient when

faced with the demands of multimedia content. Therefore, high-data-rate wire-

less communications in the gigabit region has generated enormous interest in

both the wireless industry and research community [10]. In theory, it is possible

to build such systems using the current single antenna technology known as the

single-input single-output (SISO) system. However, this would put tremendous

pressure on the wireless system, and as we will explain, it is simply impossible to

do so in practice.

Two fundamental elements that govern the performance of a wireless system

are transmitted power and system bandwidth. It is intuitive that with higher



1.1 OVERVIEW OF MIMO SYSTEMS 3

transmitted power giving higher system signal-to-noise ratio (SNR), a wireless

system is better equipped to combat the distortion and noise encountered at the

mobile radio channel. Consequently, fewer errors occur during transmission which

results in better error rate performance. However, in reality the transmitted

power near any human beings is capped by regulatory bodies at less than 1 W

for the indoor environment due to biohazard considerations [10]. Even without

this constraint, in practice the upper limit would be limited by the linearity of the

power amplifiers currently used at the transmitter - the maximum power available

without significantly distorting the data. Furthermore, the performance is also

limited by co-channel and adjacent channel interferences.

Larger system bandwidth will enhance system capacity. However, the licensed

frequency spectrum in which a wireless system operates is finite and limited,

making bandwidth a very valuable commodity - billions of dollars were spent to

occupy a slice of the ‘free air’ in the auctions of 3G spectrum in recent years

[11]. In addition, any increase in bandwidth is hard to obtain particularly in

the frequency band below 6 GHz where non line of sight (NLOS) networks are

feasible [10]. This is the region where most wireless systems operate, including

GSM, currently the most popular system in term of the number of subscribers

worldwide. Note that NLOS is important to ensure wide coverage.

In order to create a 1 Gb/s link with a SISO system [10], either very high

transmitted power or very large bandwidth is required, both of which far exceed

the regulatory limits. Consequently new technical advances are needed.

1.1 OVERVIEW OF MIMO SYSTEMS

The information-theoretic papers of [12],[13] have shown that the capacity of a

multiple-input multiple-output (MIMO) system can increase linearly with the

number of antenna elements. Increased spectral efficiency can thus be achieved

without putting further demands on the transmitted power and system band-

width albeit at the expense of increased hardware cost and design complex-
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ity. However, with the ever increasing power of field programmable gate arrays

(FPGA), digital signal processing (DSP) chips and application specific integrated

circuits (ASIC), the cost is beginning to drop significantly, making it affordable

for mass deployment in the near future.

Defined simply, a MIMO system is a wireless communication system where

there are multiple antenna elements at both the transmitter and the receiver. Its

operation depends on space-time signal processing in which both the time and

spatial domains are utilized. The time domain has been the traditional natural

dimension in digital communication where signals are transmitted at allocated

times; while the spatial domain is inherent in the use of multiple antenna elements

where multiple cochannel transmission links are established.

A key feature of a MIMO system is its ability to exploit the multipath prop-

agation often viewed as a pitfall in conventional wireless communication [14]. It

does so by leveraging the intrinsic diversity provided by the multipath fading to

improve the error rate performance. This improvement is most significant if the

MIMO system is employed in a dense multipath environment. This is because

the multipath propagation in such an environment creates many independent and

almost uncorrelated ‘virtual’ links where the effect of fading in one link does not

seriously affect the other links. Hence when one received signal is bad, there is

an increased chance of detecting good signals in the other links.

The original approach to using multiple transmit and receive antennas was

proposed by Foschini et al and is known as the Bell Laboratories Layered Space

Time Architecture (BLAST) [15]. Together with Vertical-BLAST (VBLAST)

[16], a simplified version of BLAST, such schemes are designed to maximize the

system throughput in terms of bits per second per Hertz (b/s/Hz). Specifically

they seek to improve spectral efficiency, by transmitting independent signals from

multiple transmit antennas. A BLAST scheme typically relies on successive in-

terference cancellation (SIC) [15] at the receiver to detect the signals. In doing

so, however, it loses diversity gain due to the interference cancellation process.

Moreover the scheme requires at least the same number of receive antennas as
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transmit antennas. This constraint is overcome in [17] by proposing a new trans-

mission format known as space time block codes (STBC). It provides transmit

diversity in a 2 transmit and 1 receive antenna system by using an orthogonal

signal design. This results in a diversity gain with no loss of system throughput2.

Besides STBC, space time trellis codes (STTC) [18] were also proposed. These

coding schemes typically provide good error rate performance achieved through

diversity and/or coding gain at the expense of system throughput. They are

collectively known as space time coding (STC) [19],[20],[21] and there have been

much recent research aimed at improving their throughput. MIMO systems will

be discussed in more detail in Chapter 2.

1.2 MOTIVATION FOR THESIS

A common feature of many of the above described MIMO techniques is the fre-

quency flat fading environment in which they are assumed to operate, i.e. they

were designed for a narrowband environment. Together with the assumption of

perfect channel knowledge at the receiver, relatively simple system designs are

possible, which are useful in studying the feasibility of the concept. In reality,

however, channel knowledge is rarely available at the receiver and must be esti-

mated. In addition, in a time-varying environment where the mobile terminals

may be moving, continuous channel estimation or tracking is necessary.

As the data rate increases in a wideband system, the channel response be-

comes frequency selective and its delay spread relative to the symbol period

becomes significant. This causes intersymbol interference (ISI) which is a critical

impediment as it degrades system performance and introduces error floors even

at high SNR. Orthogonal frequency division multiplexing (OFDM) [22] can be

used to combat ISI as it transforms the frequency selective channel into parallel

flat fading channels. Alternatively equalization can be used at the receivers, and

this together with continuous channel estimation are the focus of this thesis.

2Orthogonal STBC with more than 2 transmit antennas suffer from a loss of throughput.
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In [23], Bello proposes Power Series modelling of the mobile channel which

includes the like of f -, t-, ft- and tf -power series expansions3. Recently, f - and t-

power series models have been employed in receiver designs [24],[25],[26],[27],[28].

In particular, channel estimation techniques using t-power series model have been

proposed in [25],[29],[30]. However these are to-date limited to SISO systems.

The power series models can represent the underlying fading channel effi-

ciently using a reduced number of parameters. This is attractive for frequency

selective MIMO systems because not only are there multiple channel links to esti-

mate (and track), each of the links will have significant channel delay spread. The

overall effect is a large set of parameters to estimate compared to SISO systems.

The utilization of these channel models therefore allows a reduced complexity

approach in channel estimation and tracking. With the channel estimator, it is

then necessary to integrate it into appropriate receiver structures and to evaluate

the overall performance.

The motivation for the thesis is therefore to develop channel estimation and

tracking technique for both time and frequency selective MIMO fading channels4,

based on the t-power series techniques of [25],[29],[30], and to use the channel

estimates to drive equalizer structures in a VBLAST-type (spatial multiplexing)

transmission system.

1.3 THESIS OUTLINE

We have so far discussed the constraint of current SISO technology and explained

the potential of a MIMO system in meeting the demands of high-data-rate appli-

cations. A brief overview of MIMO systems has been provided to motivate the

work of the thesis. In the following we provide an outline of subsequent chapters.

In Chapter 2, required background information and literature survey is pre-

sented. This includes discussion of the building blocks of a typical SISO com-

3This refers to the expansion of a channel function, eg C(f, t), in the f or t parameter, or
sequentially in both the f and t, or t and f parameters. For details see [23].

4Also known as doubly selective channels.
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munication system, followed by an extension to a MIMO system. The wireless

channel is discussed in more detail. This includes methods to parameterize the

channel and some common channel estimation techniques. The chapter concludes

with a discussion of equalization methods.

In Chapter 3, we develop a vector polynomial predictor based channel es-

timator which we call a Vector Generalized Recursive Least Squares (VGRLS)

estimator. We start by presenting the polynomial series model and the minimum

noise gain polynomial predictor used. This is followed by a description of the

statistics-based state transition matrix and how polynomial prediction can be

used in the VGRLS estimator. We then analyze the effects of some parameters

on its performance and evaluate it in terms of mean square deviation (MSD).

We present a reduced complexity form of the VGRLS estimator in Chap-

ter 4 and call the resulting estimator a Vector Generalized Least Mean Squares

(VGLMS) estimator. We describe the simplification process and analyze the com-

plexity of the estimator. This is followed by an analysis on the effect of some

parameters on the estimator’s performance and concludes with a performance

evaluation of the estimator.

In Chapter 5, we present an integrated symbol-by-symbol-based MIMO re-

ceiver design by combining a vector decision feedback equalizer (DFE) [31] with

the VGRLS and VGLMS estimators. We start by describing the design of the

vector DFE and how a polynomial predictor is used to bridge the time gap cre-

ated by the equalizer’s decision delay. This is followed by an evaluation through

simulation of the error rate performance of the integrated receiver.

In Chapter 6, we present a reduced complexity sequence based equalizer with

integrated channel estimation and tracking. This is achieved by combining the

partitioned Viterbi algorithm (PVA) [32] with the VGRLS and VGLMS estima-

tors. We describe the extension of the original PVA structure to accommodate

adaptive channel tracking. A polynomial predictor is also used to bridge the

time gap created by the equalizer’s decision delays. We evaluate the performance

of the resulting PVA-based receiver and compare it with one using a full vector
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Viterbi algorithm (VVA) [33],[34],[35]. We also further investigate using tentative

decisions as feedback data in the PVA receiver.

In Chapter 7 we present conclusions to the thesis by providing a brief review

of the previous chapters and summarizing the contributions of the thesis. Possible

future work arising from the thesis is also discussed.

1.4 THESIS CONTRIBUTIONS

The work of the thesis has resulted in MIMO receiver structures using symbol-

by-symbol and sequence-based equalization techniques with integrated channel

estimation and tracking for time and frequency selective MIMO fading channels.

Channel estimation is based on polynomial prediction by expanding the un-

derlying channel using a Taylor’s series in the time domain. This is known as

the t-power series expansion. The resulting polynomial coefficients, i.e. the tap

weights of a polynomial predictor, are derived a priori without requiring channel

statistics. These are used as the coefficients of a state transition matrix of an

approximate channel state model having unforced dynamics. Together with the

measurement equation, these are then employed in a vector form of the general-

ized recursive least squares (GRLS) algorithm [29], known as the vector GRLS

(VGRLS) estimator. This estimator is Kalman-like in structure and its perfor-

mance can be made comparable

Further simplification of the VGRLS algorithm, following the approach of

the generalized least mean squares (GLMS) algorithm [30], results in a reduced

complexity form of the channel estimator which we call vector GLMS (VGLMS).

This estimator has similar features to the VGRLS estimator but it offers much

reduced complexity, achieved by replacing the online computation of the ‘inter-

mediate’ matrix with an offline pre-computed matrix. This complexity reduction

becomes significant in a large MIMO system with many antennas. However, it

is achieved at the expense of degraded performance especially in a fast fading

environment. Nevertheless, as shown in Chapter 4, the performance of the inte-
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grated receiver shows that it still offers a nice trade-off in terms of complexity

and performance in a slow fading environment, or in a Rician fading with strong

mean components.

These estimators are integrated with both symbol-by-symbol and sequence-

based equalizers in order to assess the error rate performance of a typical receiver

system. For symbol-based equalization, we have employed the DFE which is

attractive in terms of performance and complexity for practical applications. For

sequence-based equalization, the PVA algorithm has been adapted to operate

in a continuously fading environment. In both receivers, due to the decision

delay of the equalizers, the estimators can only produce delayed estimates of the

channel impulse response (CIR), whereas up-to-date estimates are required for

the equalizer to operate properly. We address this problem by proposing the use

of a polynomial prediction based channel predictor, and in the case of the PVA,

using the tentative decisions (i.e., zero delay) as well. Although the equalization

techniques used here have been well reported, the integration with the proposed

channel estimation and tracking has resulted in novel MIMO receiver structures.

The work of this thesis has been published/accepted for publication in the

following papers:

1. Y. H. Kho and D. P. Taylor, “MIMO Channel Estimation and Tracking

Based on Polynomial Prediction with Application to Equalization”, IEEE

Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1585 - 1595, May

2008.

2. ——, “Reduced Complexity MIMO Channel Estimation and Equalization

Using A Polynomial-Predictor Based Vector GLMS Algorithm”, Proceed-

ings of IEEE Personal, Indoor and Mobile Radio Conference, pp. 348 -

352, 3 - 7 Sept. 2007, Athens, Greece.

3. ——, “MIMO Receiver using Reduced Complexity Sequence Estimation

with Channel Estimation and Tracking”, accepted for publication in IEEE

Transactions on Vehicular Technology, 9 pages, to appear in Mar. 2009.
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Related to this thesis, the work involved in the investigation of the GLMS

algorithm has also been presented in the following papers:

4. Y. H. Kho, “Reduced Complexity Channel Estimation and Tracking Based

on Polynomial Prediction with Application to Equalization”, 3rd prize,

Postgraduate section, IEEE Region 10 Student Paper Contest, Jul. 2007.

5. Y. H. Kho and D. P. Taylor, “A Reduced Complexity Kalman-like Algo-

rithm for Channel Estimation and Equalization”, accepted for oral presen-

tation at the 2nd IET International Conference on Wireless, Mobile and

Multimedia Networks, 12 - 15 Oct. 2008, Beijing, China.



Chapter 2

BACKGROUND

In this chapter we present information required for a better understanding of

subsequent chapters. A general overview of the architectures and building blocks

for the communication system considered in the thesis work is presented. We start

by describing a general single-input single-output (SISO) communication system

where the information presented will be employed in a multiple-input multiple-

output (MIMO) context in the following chapters. A detailed discussion of the

physical mobile wireless channel is presented. This is followed by a discussion and

literature survey of equalization techniques, and some general MIMO systems.

2.1 COMMUNICATION SYSTEM AND SIGNAL MODEL

+
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Figure 2.1 A general block diagram of a discrete-time SISO communication system at time
k.

In the thesis we assume independent SISO communication systems for each of

the subchannels in an overall MIMO system. We describe a SISO system where a
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complex baseband model is shown in Fig. 2.1. The noiseless linearly modulated

signal with bandwidth B at the transmitter can be expressed as

s(t) =
K−1∑

k=0

dkp(t− kTs) (2.1)

where dk is the k -th transmitted symbol from an M -ary complex constellation

with a sequence length of K, Ts is the symbol period and p(t) is the transmit

pulse shape. The signal is transmitted over a fading dispersive channel with

an instantaneous, time-varying impulse response c(t, τ) and maximum Doppler

frequency fD. The channel is assumed to be a zero-mean, complex Gaussian

fading channel. At the front-end of the receiver, the signal is corrupted by additive

white Gaussian noise (AWGN) with variance, σ2
n. As the channel is random and

unknown, matched filtering cannot be implemented. Instead an ideal low pass

filter with bandwidth Blpf > B + fD is employed. The filtered received signal is

y(t) =
K−1∑

k=0

dkh(t, t− kTs) + n(t) (2.2)

where n(t) is the filtered noise term and

h(t, t− kTs) =

∫ ∞

−∞
p(t− τ − kTs)c(t, τ)dτ (2.3)

is the composite channel impulse response.

Although the response p(t) is unlimited in time, we can in general assume that

most of its energy is concentrated within a few symbol intervals and the truncated

impulse response spans Lp symbol periods for 0 ≤ t < LpTs. We further assume

that c(t, τ) is non-zero over the delay range 0 ≤ τ < τmax where the maximum

delay spread τmax = LcTs. Therefore h(t, t− kTs) may be assumed non-zero only

on the interval (t/Ts)−L < k < (t/Ts) where L = dLp +Lce. The received signal

y(t) is sampled at the Nyquist rate of fs = 1
Tr

= 2Blpf where Tr = Ts

Nr
and Nr

is the number of samples per symbol interval. Usually Nr = 2 is sufficient. This

ensures that the noise samples are uncorrelated. The fractionally-spaced received
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samples are defined as Y = {y(0), y(Tr), · · · , y ((K + L− 1)Nr − 1) Tr} where

y(iTr) =

b i
Nr
c∑

k=−L+1+b i
Nr
c
dkh (iTr, (i− kNr)Tr) + n(iTr). (2.4)

We will employ the above SISO description of the communication system and

extend it into a MIMO equivalent in the subsequent chapters.

2.2 MOBILE WIRELESS CHANNEL

The mobile wireless channel is a primary source of performance degradation in

any wireless communication system due to multipath fading. This is also observed

in communication channels such as HF shortwave ionospheric, UHF troposcatter

and VHF ionospheric forwrad scatter [36] which causes attenuation, delay and

phase shift in the transmitted signal. The aim of a communication receiver is to

recover the transmitted signal as faithfully and reliable as possible. An under-

standing of the characteristics of the channel is therefore important in designing

a receiver that can do so. Here we briefly discuss the characterization of a mobile

wireless channel. Detailed information on this topic can be found in [37].

2.2.1 Fading mechanism

Multipath fading occurs due to interferences from multiple propagation paths in

the channel, or medium, in which the signal is transmitted and received. These

paths arise due to reflection, refraction, or diffraction encountered in the channel,

as shown in Fig. 2.2. The amplitude and phase of each path vary in time due

to changes in the structure of the medium. As a result, the received signal

consists of the sum of multiple time-variant versions of the original transmitted

signal, delayed and scaled by the multipath channel. The interferences may be

constructive or destructive, depending on the relative amplitudes and phases of

the multiple paths, and this results in change in the received signal level. The
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Figure 2.2 The phenomenon of multipath fading where multiple copies of the transmitted
signal are received.

received signal may also experience dispersion, defined as spreading of the signal

in time or frequency. As such the fading is also known as dispersive fading.

Consider a general bandpass transmitted signal written as

s̄(t) = Re{s(t)exp(j2πfct)} (2.5)

where s(t) is the linearly modulated signal given in (2.1) and fc is the carrier

frequency. Assuming there are P propagation paths in the channel where each

path is characterized by a gain (or attenuation) element, ap, and an associated

path delay, τp, the resultant bandpass received signal is the sum of the multiple

attenuated and delayed version of the transmitted signal, may be written as

ȳ(t) = Re

(
P∑

p=1

ap(t)s (t− τp(t)) exp (j2πfc (t− τp(t)))

)

= Re

([
P∑

p=1

ap(t)exp (−j2πfcτp(t)) s (t− τp(t))

]
exp(j2πfct)

) (2.6)

where the equivalent complex baseband form of the received signal is
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y(t) =
P∑

p=1

ap(t)exp(−j2πfcτp(t))s(t− τp(t)). (2.7)

We define the channel impulse response c(t, τ) as

c(t, τ) =
P∑

p=1

ap(t)exp(−j2πfcτp(t))δ(t− τp(t)) (2.8)

such that the received signal can be expressed as

y(t) =

∫ ∞

−∞
s(t− τ)c(t, τ)dτ. (2.9)

This equation describe the time-varying nature of the multipath effects on

the transmitted signal through c(t, τ) where c(t, τ) denotes the response of the

channel at time t due to an impulse applied at time t− τ .

The modelling of a dispersive fading channel is based on the use of math-

ematics to describe the physical or observed properties of the channels. Bello

[23] described a channel model using a tapped delay line representation which is

based on knowledge of the correlation properties of the channel. With respect to

the delay index τ , c(t, τ) is considered as the time-varying tap gain at delay τ .

In term of various paths, c(t, τ) is the sum of the complex gains of all paths with

delay τ and if the terminal is moving, the sum will be time-varying.

Since the fading process is random and not known a priori, a statistical

description of the channel is necessary by viewing it as a stochastic process. It is

assumed that a large number of paths exist such that central limit theorem can

be applied. The channel impulse response can then be represented as a complex

Gaussian process, c(t, τ), which captures the time-varying nature of the channel.

Under the complex Gaussian assumption, the channel is fully characterized

by its ensemble mean

c(t, τ) = E[c(t, τ)] (2.10)
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and its second moment or autocovariance

Rc(t1, t2; τ1, τ2) = E[{c(t1, τ1)− c(t1, τ1)}{c(t2, τ2)− c(t2, τ2)}∗] (2.11)

where * denote complex conjugation.

By taking the Fourier transform with respect to τ , the time-varying transfer

function of the channel, which is the dual representation of c(t, τ) in the frequency

domain is obtained as

C(f, t) =

∫ ∞

−∞
c(t, τ)e−j2πfτdτ. (2.12)

As the channel is a zero mean complex Gaussian random process, and given that

the Fourier transform is a linear operation [38], (2.12) retains the same statistics

as c(t, τ).

When the complex gains due to different scatterers have similar amplitudes

and there is no direct or dominant path in the channel, the function c(t, τ) (and

C(f, t)) is Gaussian with zero mean, i.e., c(t, τ) = 0. The received envelope

then has a Rayleigh distribution and the fading channel is known as a Rayleigh

fading channel. Most treatments of digital communications over fading channels

have focussed primarily on Rayleigh fading channels. This is mostly due to the

wide acceptance of the model in describing the fading effects on many radio

channels and its mathematical tractability. When a dominant or line-of-sight

path is present, a non-zero mean is present and the envelope will have a Rician

distribution. The resulting channel is then a Rician fading channel. c(t, τ) can

be decomposed into a specular (non-random) and diffuse (random) component,

where

cs(t, τ) = E[c(t, τ)] (2.13)

which is the channel mean and
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cd(t, τ) = c(t, τ)− E[c(t, τ)] (2.14)

which is Rayleigh faded.

It is further usually assumed that the fluctuations of the channel are wide

sense stationary (WSS). This assumption is based on the fact that on a sufficiently

small time scale and bandwidth usually associated with short-term, or small-scale

fading, the fluctuations of the channel in time and frequency can be assumed to

be stationary. Hence, we can assume c(t, τ) to be stationary in a time sense.

Further the channel may be modelled as a continuum of uncorrelated scatters

such that c(t, τ) is independent for different values of delay, τ and the channel

is said to exhibit uncorrelated scattering (US). When the time-varying impulse

response is assumed to have stationary fluctuation in time and frequency, the

channel is considered to be wide sense stationary with uncorrelated scattering

(WSSUS).

2.2.2 Channel functions

The WSSUS assumption enables the channel to be completely determined sta-

tistically through its second order statistics, i.e., auto-correlation function or its

Fourier transform the power spectral density. Due to the time and frequency du-

ality nature of the channel, there exist several autocorrelation functions or power

spectral densities that are used to characterize the channel.

One of them is the tap gain correlation function given by

Rc(t, t +4t; τ1, τ2) = Rc(4t, τ1)δ(τ1 − τ2). (2.15)

By setting 4t = 0, (2.15) becomes Rc(0, τ) = σ2
c (τ) which is the multipath

intensity profile or delay power profile. This describes the distribution of the

average power of the channel with respect to the delay parameter and allows the

evaluation of multipath delay spread1 τd which is the interval over which Rc(0, τ)

1Also known as the maximum delay spread τmax of the channel.



18 CHAPTER 2 BACKGROUND

is effectively non-zero. Under the WSSUS assumption, (2.15) can usually be

written in a product form as

Rc(4t, τ) = σ2
c (τ)Rc(4t). (2.16)

where σ2
c (τ) has the same meaning as Rc(0, τ) and Rc(4t) is the normalized

autocorrelation function. The Fourier transform of Rc(4t) gives SC(υ) which is

the Doppler spectrum of the channel.

The other function is the time-frequency correlation function defined as

RC(t1, t2; f1, f2) = E [C(t1, f1)C
∗(t2, f2)]

= E [C(t, f1)C
∗(t +4t, f2)]

=

∫ ∞

−∞
Rc(4t, τ)e−j2π4fτdτ

= RC(4t,4f)

(2.17)

which is the autocorrelation function of the time-varying transfer function (2.12).

It represents the cross-correlation function between the complex envelopes of

received carriers 4f apart. Since the transfer function is assumed stationary

with uncorrelated scattering, (2.17) is dependent only on the frequency and time

separation. Note that (2.17) is the Fourier transform of (2.15) in τ .

The Fourier transform of (2.15) with respect to t yields the channel scattering

function which is defined as the power spectrum of the complex gain fluctuation

at delay τ

Sc(υ, τ) =

∫ ∞

−∞
Rc(4t, τ)e−j2πυ4td4t. (2.18)

It exhibits the delay and Doppler spreading characteristics of the dispersive

channel. The width in υ is the two-sided Doppler bandwidth BD (or Doppler

spread) and is equal to 2fD.

In the same manner, the spaced-frequency Doppler spread correlation is given
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by

SC(υ,4f) =

∫ ∞

−∞
RC(4t,4f)e−j2πυ4td4t. (2.19)

Figure 2.3 The relationships of various channel correlation functions by Fourier transforma-
tion as indicated by arrow with respect to the variable next to it.

The Fourier transform relationships among the four correlation functions are

shown in Fig. 2.3 and more detail can be found in [23],[36].

2.2.3 Channel Classification

From (2.19), if 4f = 0, we have

SC(υ) =

∫ ∞

−∞
RC(4t)e−j2πυ4td4t. (2.20)

which is the Doppler power spectrum of the channel and gives the power at

the output of the channel as a function of the Doppler variable υ. The range

over which SC(υ) is non-zero is called the Doppler spread, BD, of the channel.

The Fourier transform of SC(υ) gives Rc(4t) the normalized autocorrelation

function which is depicted in Fig. 2.4. The channel is also characterized by

a coherence time, Tc, which represents the time over which the received signal
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Figure 2.4 Correlation and power density function for Rayleigh fading channel: Doppler
spectrum and normalized autocorrelation function.

can be considered coherent and it is roughly equal to the inverse of the Doppler

spread, 1
BD

. Within Tc the channel is effectively time-invariant.

Similarly, by setting 4t = 0 in (2.17), we have

RC(4f) =

∫ ∞

−∞
Rc(τ)e−j2πfτdτ. (2.21)

The range of frequency over which RC(4f) is non-zero is known as the coher-

ence bandwidth, Bc, of the channel. Within this bandwidth, the multipath fading

is flat as all frequency components of the signal are sent through the channel

with equal gain and change linearly in phase. Numerically, it is roughly equals

the inverse of the multipath delay spread of the channel, 1
τd

. We note that the

Fourier transform of RC(4f) gives σ2
c (τ), the delay power profile of the channel

and the relationship is depicted in Fig. 2.5.

Using these parameters, a channel can be classified as fast or slow, frequency

flat or selective fading in relation to the transmitted signal. The channel will

exhibit fast fading if the symbol period Ts of the signal is greater than the coher-

ence time of the channel and the bandwidth of the signal B is smaller than the

coherence bandwidth of the channel, i.e. Ts > Tc and B < BD, and slow fading

if Ts ¿ Tc and B À BD. On the other hand, the channel will exhibit frequency

flat fading if the signal bandwidth is greater than the coherence bandwidth and
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Figure 2.5 Correlation and power density function for Rayleigh fading channel: Delay power
profile and spaced frequency correlation function.

the symbol period is smaller than the multipath delay spread, i.e. B > Bc and

Ts < τd, and frequency selective fading if B ¿ Bc and Ts À τd.

1
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Figure 2.6 The classification of the fading channel in relation to the values of BDTs and τd

Ts
.

The above parameters by themselves are rather meaningless. It is common

practice to normalize the parameters with respect to the symbol period as Tc

Ts
,

BDTs (or fDTs), BcTs and τd

Ts
for ease of comparing the effect of different param-

eter values. In general, based on the values of BDTs and τd

Ts
the channel can be

classified as belonging to one of four channel classes [39],[37] as shown in Fig.

2.6. In the first, the channel is both time and frequency non-selective ( τd

Ts
¿ 1,

BDTs ¿ 1). The received signal is scaled by a complex gain, so equalization con-
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sists merely of estimating the channel gain and phase, where c(t, τ) = cδ(t). The

second class comprises time-invariant (BDTs ¿ 1), frequency-selective channels.

The channel response varies with frequency across the bandwidth of the trans-

mitted signal but it changes slowly compared to the symbol rate. The impulse re-

sponse may be considered as that of a linear, time-invariant filter c(t, τ) = c(0, τ),

which causes quasi-constant ISI between adjacent symbols. Equalizers have been

historically developed for such channels. In the third class, the channels are time-

selective but frequency non-selective ( τd

Ts
¿ 1). The main effect is a time-varying

complex attenuation, a(t), which affects all frequency components equally and

c(t, τ) = a(t)δ(τ). The fourth class comprises of both time and frequency se-

lective (known as doubly selective) channels. The response varies significantly

across the signal bandwidth and is time-varying. In this thesis, we are concerned

with the fourth class.

Another parameter BDτd [36] is used to define a channel that exhibits both

time and frequency selectivity, known as a doubly selective channel. If BDτd > 1

the channel is overspread, otherwise it is underspread [40]. Overspread channels,

such as underwater channels, are extremely difficult if not impossible to esti-

mate, whereas for underspread channels the impulse response may be estimated

although the difficulty increases as BDτd nears unity.

2.2.4 Channel Models

With (2.9), the channel can be interpreted as a continuum of scatterers [23], each

scatterer being associated with a complex attenuation c(t, τ) corresponding to

delays in the range (τ, τ + dτ). However, as shown in an earlier section, since

the transmitted signal and channel process are bandlimited, the received signal

is also bandlimited. It follows from the sampling theorem that there is no loss of

information if the received signal is sampled every Tr seconds, where Tr = Ts/r

and r is chosen large enough to satisfy the Nyquist sampling criterion. From

(2.9), the sampled received signal can be written as
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y(iTr) =

∫ ∞

−∞
s(iTr − τ)c(iTr, τ)dτ. (2.22)

The bandlimited transmitted signal can also be expressed as

s(t) =
∞∑

m=−∞
smsinc

(
1

Tr

(t−mTr)

)
(2.23)

where sm is the sample of s(t) at time t = mTr. From (2.22) and (2.23),

y(iTr) =

∫ ∞

−∞

∞∑
m=−∞

smsinc

(
1

Tr

(iTr −mTr − τ)

)
c(iTr, τ)dτ

=
∞∑

m=−∞
si−m

∫ ∞

−∞
c(iTr, τ)sinc

(
1

Tr

(mTr − τ)

)
dτ

=
∞∑

m=−∞
si−mci,m

(2.24)

where we define

ci,m =

∫ ∞

−∞
c(iTr, τ)sinc

(
1

Tr

(mTr − τ)

)
dτ. (2.25)

Equation (2.24) shows that a transversal filter can be used to represent the

channel as shown in Fig. 2.7. This model is commonly known as the tapped

delay line (TDL) model.

X


Add


Figure 2.7 Sampled time tapped delay line model for a multipath fading channel with Tr-
spaced taps.

Besides the TDL model, alternative methods using power series based models
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have been reported [23] and these include t-, f -, tf - and ft- power series models.

A t-power series model expands the channel response in the time domain as a

N -th order polynomial in a small finite interval of interest |t− ηTs| ≤ ϕTs about

t = ηTs using Taylor’s theorem [25],[23],[26] to obtain

c(t, τ) =
N∑

n=0

a(n)
η (τ)b(n)

η (t) + RN(t, τ) (2.26)

where the coefficients are given by

a(n)
η (τ) =

T n
s

n!

[
dnc(t, τ)

dtn

]

t=ηTs

(2.27)

with the elementary basis functions,

b(n)
η (t) =

(
t− ηTs

Ts

)n

(2.28)

and RN(t, τ) is the remainder term, or residual (modeling) error, of the Taylor

series, given by

RN(t, τ) =
(t− ηTs)

N+1

(N + 1)!

dN+1

dtN+1
c(t, τ). (2.29)

Given that the Doppler spread is normally much smaller than the sampling

rate, only the first N terms in the expansions (3.10) are significant [25],[23],[26].

The remaining higher order terms can be ignored as long as the expression is

used only in a small vicinity of ηTs. This enables the channel response to be

approximated using a small number of parameters.

The f -power series model is the dual of the t-power series model and expands

the channel response in the frequency domain. It is also known as the reduced

dimensionality model in [41]. If the delay spread of the channel is not too long,

it is found that only the first few terms of the series are necessary to give a good

approximation of the channel [23],[27],[41].



2.2 MOBILE WIRELESS CHANNEL 25

2.2.5 Channel Simulations

A statistical description of the fading channel was reported in [42] which is fur-

ther adopted by [43] in developing the classical Jakes’ fading model. This model

has been widely used and referenced in many research publications. It is a deter-

ministic method for simulating a time-correlated Rayleigh fading waveform [43]

with the following autocorrelation function assuming isotropic scattering [42]

Rc(4t, τ) = σ2
c (τ)J0(2πfD|4t|) (2.30)

where σ2
c is the total average power of the channel and J0(·) is the zeroth order

Bessel function of the first kind.

The corresponding normalized Doppler spectrum is the classical U-shaped

spectrum given by

SC(υ) =





1

πfD

r
1− υ2

f2
D

|υ| ≤ fD

0 otherwise

(2.31)

The Rayleigh fading process can be generated by filtering zero-mean complex

white noise using a low pass correlation filter [44], also known as a Doppler filter as

it produces correlated Doppler fading. The autocorrelation of the fading process

is given by (2.30) and the frequency response of the filter is given by
√

SC(υ)

where SC(υ) is given by (2.31). The corresponding impulse response of the filter

is [44]

hd(t) =





4√fDπ
Γ(5/4)

t = 0

J1/4(2πfDt
4√t

) otherwise

(2.32)

where J1/4(·) is the one-fourth order Bessel function of the first kind. Due to its

implementation as an FIR filter, the impulse response of (2.32) has heavy tails

and a Hanning window is used to produce a smooth fading process. A plot of the

Rayleigh fading process generated using the above method is shown in Fig. 2.8.



26 CHAPTER 2 BACKGROUND

−3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

Real

Im
ag

in
ar

y

Figure 2.8 Rayleigh fading process with a normalized fade rate fDTs = 0.1. The markers
represents symbol intervals.

A frequency selective fading channel may be implemented using the TDL

model of Fig. 2.7 where each of the complex gains h(t, τp) is implemented as

a Rayleigh fading generator. The normalized fading process is first weighted

according to the delay power profile of the channel before being used as the tap

gain of the CIR. A Rician fading channel may be implemented by using a constant

tap gain for the first branch of the TDL model.

2.2.6 MIMO Channel Models

In general, the above characterizations of the SISO channel are applicable to a

MIMO channel. However, some degree of signal correlation normally exists due

to the multiple antennas at the transmitter and receiver. This correlation is a

complicated function of the scattering environment and the antenna spacing. We

assume here sufficiently spaced antennas that the signal correlation between ad-

jacent antenna is rendered insignificant, and a rich scattering environment such

that the channel gains become independent and identically distributed (uncor-
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related). In this case, each of the MIMO subchannels can be described by the

SISO characterization. Detailed information on MIMO channel modelling can be

found in Chapter 6 of [45] and the references within.

2.3 EQUALIZATION

As we have seen in the previous section, the radio channel in which a wireless

system operates is usually a multipath fading channel where there is a large

performance penalty compared to an AWGN channel. For an AWGN channel,

the asymptotic decrease of the bit error rate (BER) performance in relation to

SNR has an exponential relationship, but for a Rayleigh flat fading channel,

the asymptotic decrease follows an inverse law [36]. This means that a large

SNR is necessary to achieve acceptable BER. In frequency selective fading, the

performance degradation is even more severe as ISI causes an irreducible error

floor at high SNR. Equalization is needed to reduce the error floor.

As signal processing provides a powerful mechanism to mitigate the effect

of ISI, in a broad sense, equalization can be thought of as any signal processing

techniques used at the receiver to mitigate the ISI problems. For time-varying

channels, it is necessary to employ adaptive equalizers that track the time-varying

channel response.

Fig. 2.9 shows a typical equalization scheme in a digital communication sys-

tem. Although adaptive equalizers that do not require explicit channel estimates

explicitly, as shown in Fig. 2.9(a), can be used, in this thesis we are concerned

with equalizers that operate with explicit channel estimates as shown in Fig.

2.9(b). These equalizers usually have better performances. For example a DFE

designed using explicit channel estimates is more robust against channel time vari-

ations [46] compared to one that is implemented with adaptive tap coefficients

tracking. A comprehensive review of the extensive research for the problem of

adaptive equalization for a SISO dispersive channel has been conducted by [39].

In the following we briefly describe equalization techniques using a linear
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Figure 2.9 Equalization techniques in a digital communication system: (a) using adaptive
algorithm and (b) using explicit channel estimates.

transversal filter, a DFE, an optimal sequence-based technique using maximum

likelihood sequence estimation (MLSE) and a reduced complexity sub-optimal

MLSE method using the partitioned Viterbi algorithm (PVA).

2.3.1 Linear Equalization

Linear equalization is a popular per-symbol equalization technique that can be

implemented as a tapped delay line filter structure with optimized tap weights

[47]. It attempts to compensate the distortions imposed on the received signals

by the time variations of the channel. In practice, at start-up, the receiver does

not have knowledge of the channel dynamics, and the channel may also vary in

time. Hence, a linear equalizer must be implemented as an adaptive filter which

can converge to a solution that satisfactorily reduces the error rate, and can then

track time variations in this solution as the channel varies in time.
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The first adaptive equalizer or filter design is often credited to [48] for the

design of a zero-forcing (ZF) equalizer in 1966. A ZF linear equalizer attempts

to cancel the effect of the channel by approximating the inverse of the channel

frequency response. The tap weights are chosen such that all but one of the

combined channel and equalizer samples are zero. It is relatively simple to design

and implement. However, it suffers from noise enhancement as it does not take

into account the effect of additive noise in its design. When the channel expe-

riences a spectral null (which results in relatively small response), the inverse of

the response tend to be large and this will excessively enhance the noise.

This problem of noise enhancement may be alleviated by using the mean

square error (MSE) design criterion under which ISI mitigation is balanced with

noise enhancement. It is defined as the mean square value of the error between

the desired output and the actual equalizer output. It is shown [36] that when the

additive noise approaches zero, the MSE criterion and the ZF criterion yield the

same set of tap coefficients, which results in complete elimination of ISI. On the

other hand, in the presence of noise, the MSE criterion produces better optimized

equalizer coefficients than the ZF criterion.

X


Add


X
X
 X
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Figure 2.10 A linear equalizer of length M.

Consider a linear equalizer of length M with a vector of tap coefficients w =

[w0, w1, · · · , wM−1]
T as shown in Fig. 2.10. The input vector at time kT

′
is yk =

[yk, yk−1, · · · , yk−M ]T where yk = y(kT
′
) and T

′
is the delay between successive
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taps. The objective is to minimize the mean squared error

εmse = E
[|zk − dk−4|2

]
(2.33)

where the output of the equalizer is zk = wHyk, the desired response is dk−4 and

4 is the decision delay.

The MMSE tap weights are the solution to the Wiener-Hopf equation [49]

which is expressed as

w = R−1
y P4 (2.34)

where P4 = E[d∗k−4yk] and Ry = E[yky
H
k ]. The MMSE may be expressed by

εmmse = 1−PH
4R−1

y P4 (2.35)

2.3.2 Decision Feedback Equalization

Feed-forward

filter taps
 +
 Decision


device


Feedback filter

taps


Figure 2.11 A vector MMSE DFE.

The DFE [50] is a well-known receiver structure for communication channels

with severe amplitude distortion and other bad channel characteristics. The DFE

decodes channel inputs on a symbol-by-symbol basis and uses past decisions to

remove trailing ISI. It contains a feed-forward filter (FFF) and a feedback filter

(FBF) as shown in Fig. 5.1. The FFF is a linear transversal equalizer. The

detected symbols are assumed correct and fed back to cancel the ISI which is
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attributed to them. The tap coefficients of the FBF are in fact the tail of the

overall response of the channel and FFF. The coefficients of the FFF and FBF

are optimized jointly.

We define Fk as the tap weight vector of the FFF of length Nf and Bk

the FBF taps of length Nb. The input vector to the FFF at interval kT
′

is

yk = [yk, yk−1, · · · , yk−Nf
]T and the input vector to the FBF at the same interval

is dk = [dk−4−1, dk−4−2, · · · , dk−4−Nb
]T where 4 is defined as the decision delay.

Let wdfe = [FT
k ,dT

k ]T be the combined tap vector and ydfe,k = [yT
k ,dT

k ]T the joint

input vector. Similar to the linear equalizer, the objective is to minimize

εmse = E
[|zk − dk−4|2

]
(2.36)

where zk = wH
dfeydfe,k and the optimum tap weights for minimizing the mean

squared error are given by the Wiener-Hopf equations

wdfe = R−1
dfePdfe,4 (2.37)

where Rdfe is the autocovariance matrix of the input vector ydfe,k and Pdfe,4 =

E[d∗k−4ydfe,k]. The MMSE may be expressed as

εmmse = 1−PH
dfe,4R−1

dfePdfe,4 (2.38)

When no constraint is placed on filter length, the optimal DFE filters gener-

ally have infinite-length [51],[52] corresponding to infinite impulse response (IIR)

designs. In [52], the transmitter and receiver of the infinite-length DFE for pulse

amplitude modulation (PAM) systems were jointly optimized. The result were

extended to quadrature amplitude modulation (QAM) systems in [53]. To re-

duce complexity, improve stability, or allow adaptability, however, most designs

use finite impulse response (FIR) filters in both the feed-forward and feedback

sections [54],[55].

The designs of the DFE structure either estimate the CIR and then compute
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the FFF/FBF taps [54],[55], or directly adapt the FFF/FBF taps using adaptive

algorithms such as the least mean squares (LMS) or recursive least squares (RLS)

algorithms [49].

MIMO DFEs have attracted much attention recently. The MIMO finite

length minimum mean squared error (MMSE) DFE was developed in [31] and

optimized for decision delay 4 ≥ 0. The choice of 4 > 0 improves performance

for a wide range of channels, as shown in [56]. Here only decisions on tempo-

rally preceding symbols are fed back into the detection process of each stream,

therefore co-channel interference (CCI) contributions from undetected future and

current-time symbols are not cancelled.

In contrast, for the ordered successive interference cancellation in [57], the

data streams are successively detected in an ordered manner using a multiple-

input single-output (MISO) DFE based BLAST where a MISO DFE is used at

each stage. Each stream is detected with the entire CCI contribution from every

previously detected stream already cancelled out. In [58], a similar scheme using

a MIMO DFE based BLAST is found to offer a performance advantage over the

MISO DFE case.

DFE is also known as successive cancellation in multiuser detection [59]. In

[60], multiuser detection using a DFE that simultaneously detects all incoming

signals is compared to interference rejection using a DFE that detects one signal

and rejects the remaining signals as interference. It was found that multiuser

detection in general provide better performance than interference rejection, es-

pecially when the power levels of users differ substantially.

2.3.3 Maximum Likelihood Sequence Estimation

Assuming perfect knowledge of the channel, an optimum receiver in the presence

of ISI and Gaussian noise is a maximum likelihood sequence estimator (MLSE)

[33] using a whitened matched filter (WMF) and a Viterbi algorithm (VA) [34]. In

linear and decision feedback equalization, the receiver first attempts to suppress

the channel impairments and then makes a decision on the transmitted data on
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a symbol-by-symbol basis. In MLSE, the receiver attempts to recover the entire

transmitted sequence of symbols using the maximum likelihood (ML) detection

criterion

d̂ = arg max
d̃

p(Y/d̃) (2.39)

where d̂ is the detected symbol sequence, d̃ is the hypothesized sequence and

p(Y/d̃) is the pdf of the vector of received samples y = [y1, y2, · · · , yK ] condi-

tioned on the hypothesized sequence. Based on (2.39), the ML detector selects

the hypothesized sequence that maximizes the conditional pdf as the transmitted

sequence.

If the elements of the received sample vector y are conditionally independent

of one another, then the joint conditional pdf may be expressed as

p(Y/d̃) =
K∏

k=1

p(yk/Yk−1) (2.40)

where Yk = {[y1, y2, · · · , yk, d̃}. By taking logarithm, the expression is simplified

to

ln p(Y/d̃) =
K∑

k=1

ln p(yk/Yk−1). (2.41)

For Gaussian distributed received samples the negative log likelihood metric

of (2.41) reduces to a Euclidean squared distance metric. Therefore MLSE se-

lects the sequence which minimizes the Euclidean distance between the received

samples and the hypothesized sequence.

For MLSE, the estimated channel response is required and this must be pro-

vided by channel estimators. There have been several proposed MLSE receivers

incorporating channel estimation. The work of [61] proposed a MLSE receiver

for a general fading channel using the VA and a bank of Kalman filters to esti-

mate the channel continuously. Reference [62] further developed this explicitly

for the time dispersive Rayleigh fading channel. In [63], an innovations-based
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MLSE receiver was proposed with the channel estimates supplied by a set of

time-invariant linear filters. All these employ the TDL channel model. In [27]

and [41], the f -power series channel model was used. In particular, [27] proposed

a MLSE receiver using the VA and per-survivor processing (PSP) [64] with the

channel estimates provided by Kalman filters using the f -power series model. On

the other hand, a t-power series channel model is used by the MLSE receivers in

[25] and [26].

The complexity of MLSE is often prohibitive as it grows exponentially with

the length of the channel memory. For a given modulation size, M, and channel

memory, L, complexity increases as ML. For a MIMO system, the optimum

MLSE receiver using a vector Viterbi algorithm (VVA) was developed by [65],

[35]. The complexity further increases exponentially as a product of the number

of transmit antennas, T, and the length of the channel memory, L, according

to MTL. Reduced-state trellis-based equalizers, for example delayed decision-

feedback sequence estimation (DDFSE) [66], reduced-state sequence estimation

(RSSE) [67] and the M -algorithm [68] can be used. In general, the benefits of

reduced-state equalization can only be realized if the channel impulse response

which has to be equalized has a minimum-phase characteristic. This can usually

be achieved by using a prefilter, and with infinite filter order and high SNR, it

was found that the feedforward filter of a MMSE DFE tends to be the optimum

one [69] (more on prefilter in the following section).

For array measurements at the receiver (R > 1), an adaptive approach based

on PSP is proposed in [70], but when more transmitters are sharing the band-

width, CCI exists. There are two broad classes of techniques to combat CCI at

the receiver. One is to suppress interference, possibly in an adaptive fashion, as

in [71]. Another strategy is to decode all T data sequences simultaneously [72],

possibly with a blind/adaptive approach [73].
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2.3.4 Partitioned Viterbi Algorithm

The partitioned Viterbi algorithm (PVA) of [32] is a suboptimal form of MLSE

and incurs approximately a 2dB SNR penalty in achieving the same BER per-

formance compared to using a VVA [35] in a quasi static fading environment.

However, unlike the VVA, the complexity of the PVA increases only linearly with

the number of transmit antenna according to TML. This offers significant com-

plexity reduction in the total number of trellis searches required. We provide a

brief description of the PVA algorithm here and the interested reader can refer

to [32] for more detail.

A major component of the PVA is a length Lf prefilter used to provide

an estimate of the T transmitted signals. Ideally it should be a vector WMF.

However, in reality the WMF does not always exist in the MIMO case [69].

Because of this, the feedforward filter of an MMSE DFE is used instead [32],

and is shown to approach the WMF as the SNR and number of taps used in the

filter tend to infinity [69]. The prefilter compensates pre-cursor ISI and decouples

the received signal vector into T outputs. Parallel VA are used to process these

outputs. Tentative decisions are made in each interval and these are exchanged

among the parallel processors. For each transmitted signal stream, feedback

terms estimated using the tentative decisions obtained in the previous interval

from other processors are used to cancel the ‘cross-interference’.

In order to calculate the prefilter coefficients, channel estimates are needed.

A least squares (LS) channel estimator is used in [32] where the channel fading is

assumed to be quasi static (constant within a frame but changing randomly from

frame to frame2). Training symbols at the beginning of a frame are used to obtain

an estimate of the CIR which is then used for calculating the perfilter coefficients.

The estimated CIR and the received signal vector are then passed through the

prefilter, after which the prefiltered CIR matrix, H̃k = [H̃k,0, H̃k,1, · · · , H̃k,Lf−1],

and prefiltered received signal vector, ỹk, are used as inputs to the parallel VAs.

2The fading from frame to frame is correlated with the fading coefficients generated randomly
for the the duration of the frames.
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After some decoding delay4, an estimate of the transmitted vector d̂k−4 emerges

as the PVA output.

2.4 MIMO SYSTEM

The MIMO system considered in the thesis contains the same number of, or more,

receive antennas, R, as the number of transmit antennas, T, that is R ≥ T. This

configuration utilizes spatial multiplexing by transmitting multiple independent

signal streams from each of the T antennas. This increases the overall system

throughput and hence data rate. Optimum receiver structures for such a multiple

antenna system were developed in the 1970’s by [65], [35].

In the special case when R = T = 1, the system reduces to a conventional

single-input single-output (SISO) system. For T = 1 and R > 1, which is known

as the single-input multiple-output (SIMO) system, performance gain can be

achieved through receive diversity techniques, for example as in a RAKE receiver

in a CDMA system [36]. Special signal combining and processing techniques,

such as maximum ratio combining (MRC) [74], are used at the receiver to detect

the transmitted signals. However, using multiple receive antennas in a cellular

system, for example on a mobile handset, may not be practical due to space and

power constraints. It will be more convenient and also cost-effective to have the

multiple antennas at the transmitter, which provides transmit diversity. With

this technique, coding on the transmit signals is required so that they can be

detected effectively at the receiver. The first system using transmit diversity and

coding techniques was proposed in [75].

It was then realized that further performance gain and increased system ca-

pacity can be achieved with more than one antenna at both the transmit and

receive sides. Recent research by [13],[15] has shown that the capacity increases

according to the number of transmit antennas as long as there are at least as

many receive antennas. This suggests a linear increase in data rate with the

number of transmit antenna without any increase in transmission bandwidth or
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power. This also improves the BER performance of the system where the slope

of the BER curve against the SNR changes according to

BER ∝ 1

SNRd
(2.42)

where d is the diversity order of the system.

2.4.1 BLAST

Foschini et al proposed the Bell Laboratories Layered Space Time Architecture

(BLAST) in [15]. Together with Vertical-BLAST (VBLAST) [16], a simplified

version of BLAST, such schemes are designed to maximize the system throughput

in terms of bits per second per Hertz (b/s/Hz). Specifically they seek to improve

spectral efficiency, by transmitting independent signals from each of multiple

transmit antennas. A BLAST scheme typically relies on successive interference

cancellation (SIC) at the receiver to detect the signals. In doing so, however,

it loses diversity gain due to the interference cancellation process. Moreover

the scheme requires at least the same number of receive antennas as transmit

antennas.

VBLAST [16] has been shown to achieve the theoretically proven linear capac-

ity increases and has been demonstrated to achieve capacity of 20 - 40 bits/s/Hz

in an indoor environment with realistic SNR and error rate [76]. Various re-

search has been pursued with attempt to improve the performance by coding

[77],[78],[79], or by different detection architecture [80],[81],[82], or by reducing

the receiver complexity [83],[84],[85].

2.4.2 Space Time Trellis Codes

Space time trellis codes (STTC) [18] are a type of space time code (STC) that

introduce redundancy in the transmitted signal by using a trellis encoder which is

similar to a convolutional encoder. This redundancy provides coding gain which

improves the bit error rate performance. The coding gain is dependent on the
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construction of the trellis code and the memory length used in the trellis. Being

based on trellis codes, a STTC is complex to decode, especially in a frequency

selective fading channel. STTC requires multiple transmit antennas but suffice

with one receive antenna to operate; nevertheless, usually more than one antenna

is employed since it improves performance. The use of multiple transmit and/or

receive antennas further provides diversity gain.

There has been much research on developing design rules for STTC and eval-

uating their performance. Among the literature, [18] first proposed the construc-

tion on trellis codes based on determinant and rank criteria, while [86] proposed

using the trace criteria which is similar to maximizing the Euclidean distance of

the STTC.

2.4.3 Space Time Block Codes

Space time block codes (STBC) [17], [87] act on a block of data at once, in a way

similar to block codes. As such it can be viewed as a simple variant of the STTC

in a similar way that block codes are related to trellis codes. As with STTC,

the operation of STBC necessarily requires multiple transmit antenna but suffice

with one receive antenna (although more than one is usually used). Although

STBC provides diversity gain, unlike STTC it does not provide coding gain.

A simple orthogonal STBC [17] requires 2 transmit and 1 receive antenna.

Data is mapped to a encoding matrix in a block structure for transmission. All

columns of the encoding matrix are orthogonal to each other which enables the

signal to be easily and linearly separated at the receiver, hence requiring only a

very simple decoding scheme. It provides diversity gain and is closely related to

MRC. However, it suffers a 3-dB performance penalty under equivalent transmit

power constraint where the transmitted power is reduced by PT /T .

For quasi-orthogonal STBC [88],[89], the block structure is divided into pairs

of columns, and each pair is orthogonal to each other. Decoding is done on a

pair-wise basis and is more complex. Non-orthogonal STBC [90] are possible but

are much more complex to decode.



2.5 SUMMARY 39

2.5 SUMMARY

We have presented some background information in this chapter, which include

discussions on communication system, fading channel, equalization techniques

and some general MIMO systems.





Chapter 3

THE VECTOR GENERALIZED RECURSIVE
LEAST SQUARES ALGORITHM

3.1 INTRODUCTION

Channel estimation is an integral part of modern receiver implementations as

many classes of equalization techniques require estimates of the channel impulse

response (CIR) to operate. These include maximum likelihood sequence estima-

tion (MLSE) [33],[36] where the CIR estimate is needed in the computation of

the likelihood metrics. In addition, for equalization techniques that can be imple-

mented adaptively by adjusting filter tap coefficients, such as those employed in

decision feedback equalization (DFE), direct computation of the tap coefficients

using channel estimates is found to be more robust against time variation of the

channel [46] compared to adaptive tap adjustment.

Conventional adaptive algorithms, such as the least mean squares (LMS)

[91],[49] and recursive least squares (RLS) algorithms [49] are often employed in

channel estimators for slowly time-varying fading environments as they are simple

to implement and lead to good estimates of the CIR. Typically the RLS algorithm

has a convergence rate an order of a magnitude faster than the LMS algorithm1

and is not sensitive to variation in the eigenvalue spread of the correlation matrix

of the input vector. With a finite training period, in steady state the ensemble

averaged squared error of RLS algorithm is also lower than the LMS algorithm.

However, this is achieved at a higher level of complexity.

1In an environment with sufficiently high signal-to-noise ratio [49].
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With its faster convergence rate and lower steady state error, it is tempting to

conclude that the RLS algorithm can track a fading environment better than the

LMS algorithm. Nevertheless, it has been reported that with properly chosen pa-

rameters, the LMS algorithm actually has superior tracking performance [92],[93].

This may come as a surprise. However, according to [94],[95], the RLS algorithm

can be interpreted as a special case of a Kalman filter with a state transition

matrix equal to a constant multiple of an identity matrix and without a process

noise vector. Therefore, the RLS algorithm can be considered as model dependent

whereas the LMS is model independent. Unless the multiparameter regression

model assumed in the derivation of the standard RLS algorithm closely matches

the underlying model of the environment in which it operates, there will be a

degradation in its tracking performance due to model mismatch. Furthermore,

the assumption of a constant state transition matrix is not normally considered

as a way to solve the tracking problem in a fading environment [94].

Even though the LMS and RLS algorithms are relatively simple to implement,

their tracking ability is rudimentary at best in that in a faster fading environment,

their performances tend to degrade [96]. The tracking ability can be enhanced

by incorporating information about the channel dynamics, such as the tempo-

ral evolution of the CIR and an appropriate mathematical model describing its

evolution.

A Kalman filter is one such estimation algorithm that is widely known and

used in many applications. It computes the estimates recursively. Prior infor-

mation about the statistics of the channel is a prerequisite for its design. The

Kalman-filter-based estimator (known as the Kalman estimator hereafter) as-

sumes that the channel dynamics follow an auto-regressive (AR) model of some

appropriate order, where there is a trade-off between the accuracy of the model

and the variance of the modelling errors [97]. Assuming that the underlying

statistics are Gaussian, a Kalman filter is optimum in that it produces estimates

with minimum variance [49].

A Kalman estimator requires a state-space model of the channel response
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process with state transition matrix coefficients that depend on an underlying

AR model of the channel dynamics. It thus requires knowledge of the second

order channel statistics. In addition, knowledge of the signal-to-noise ratio (SNR)

is needed to compute the process noise autocovariance. These requirements are

critical drawbacks to using a Kalman estimator because the acquisition of channel

statistics usually requires a long observation and measurement time [97],[98],[99]

which may not be possible in practice. In addition, solving the resulting Yule-

Walker equations to obtain the AR coefficients adds a layer of complexity in the

estimation process.

For simplicity, in the literature the required statistics are often assumed

known. For example, in [100], a Kalman estimator is used to estimate and track

the frequency selective channel responses where the AR parameters required by

the Kalman filter and the noise statistics are assumed known. On the other hand,

additional algorithms for obtaining channel statistics can be used, as for example

in [101] where a noise covariance estimation algorithm and a noise whiteness test

are developed to estimate the noise covariance needed by the Kalman filter. In

[97] an RLS algorithm is used to track the AR parameters.

To overcome these problems, a fixed state transition matrix where the co-

efficients are derived a priori without needing channel statistics is proposed in

[25]. It uses the theory of polynomial prediction by assuming a polynomial series

expansions of the underlying channel impulse responses using a Taylor’s series in

the time domain (also known as a t-power series expansion [23]). The coefficients

for various predictor lengths and polynomial orders can easily be derived offline.

However, the rectangular windowed RLS (RW-RLS) estimator in [25] is cum-

bersome as it involves constant ‘downdating’ of the observation window size and

may experience numerical problems. Furthermore, its overall complexity is about

twice that of a Kalman estimator. Note that the fixed state transition matrix can

be used in a Kalman filter structure, therefore overcoming the requirement for

second order channel statistics. However, the SNR is still required to compute

the process noise autocovariance.
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In [102] an estimator using a RLS-Kalman algorithm, also known as the

generalized RLS (GRLS) algorithm, was developed. It incorporates a simplified

state-space model of the channel process and the conventional RLS algorithm is

a special case of this algorithm. The estimator models each sample of the CIR

as a two term t-power series [23]. Instead of estimating the channel response

coefficients, the coefficients of the t-power series are estimated. A two term

t-power series is suitable only for linearly time-varying channels [25], and the

resulting state-space model is limited to channels that vary linearly with time. In

[103], the GRLS algorithm is applied to the derivation of variable loop gains of a

digital phase-locked loop (DPLL). However, there is no mention of the derivation

of the AR parameters, which are assumed to be known.

To avoid the need for channel statistics, an estimator is proposed in [29]

that incorporates the non-statistics-based state transition matrix of [25] into the

GRLS algorithm of [102]. The algorithm arrives at an approximate channel state

model that has unforced dynamics, thereby avoiding the need for the process

noise autocovariance. Its performance is found to be comparable to that of a

Kalman estimator when appropriate predictor lengths and polynomial orders are

used [29]. The fixed non-statistics-based state transition matrix enables the es-

timator to operate without modification in a Rician fading environment. Note

that statistics-based methods such as the Kalman estimator require specific re-

configuration of the state transition matrix [97] to take into account a Rician

channel model. The resulting estimator has a complexity of O(
(N )3

)
real opera-

tions per iteration, which is the same as that of the Kalman estimator, N being

the dimension of the channel state vector.

The GRLS algorithm of [29] pertains to a single-input single-output (SISO)

environment. In this chapter we develop a vector form of the GRLS algorithm

that can be used in a multiple-input multiple-output (MIMO) transmission en-

vironment. We call the resulting algorithm a Vector GRLS (VGRLS) algorithm.

In the following sections we describe its application to channel estimation and

evaluate its performance in a MIMO environment.
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3.2 THE GENERAL SYSTEM MODEL
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Figure 3.1 A general block diagram of a symbol-spaced discrete-time MIMO communication
system at time k for T transmit and R receive antennas.

In order to develop the estimator structure, we assume a MIMO system trans-

mitting independent signals from each of T antennas to R ≥ T receive antennas

using a VBLAST-type2 transmission format [16]. Figure 3.1 shows a discrete-

time model for the system. At the receiver, each of the R antennas observes a

linear combination of the transmitted signals. The symbol-rate sample of the

complex baseband received signal at time k may be written at the j -th receive

antenna as

y
(j)
k =

∑T
i=1

∑L−1
l=0 d

(i)
k−lh

(j,i)
k,l + n

(j)
k

; j = 1, 2, · · · , R (3.1)

where d
(i)
k is the k -th transmitted complex baseband M -ary data symbol from the

i -th antenna, {h(j,i)
k,l }l=L−1

l=0 is the sampled fading dispersive composite3 channel

impulse response between the i -th transmit and j -th receive antennas at time

k with delay spread of L symbol periods, and n
(j)
k is sampled additive white

Gaussian noise (AWGN) with variance, σ2
n.

2Throughout the present work no space-time coding is employed.
3Assumed to be the convolution of the transmit pulse shape and physical channel response.
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With an oversampling factor of Nr ≥ 1 so that sampling occurs every Ts/Nr

seconds Ts being the symbol period, we define vectors of Nr samples in the k -th

symbol period as

y
(j)
k =




y
(j)
k,0

y
(j)
k,1

...

y
(j)
k,Nr−1




,H
(j,i)
k,l =




h
(j,i)
k,l,0

h
(j,i)
k,l,1

...

h
(j,i)
k,l,Nr−1




,n
(j)
k =




n
(j)
k,0

n
(j)
k,1

...

n
(j)
k,Nr−1




. (3.2)

From (3.1), we may then write the oversampled (vector) form of the signal

in the k -th symbol interval as

y
(j)
k =

∑T
i=1

∑L−1
l=0 d

(i)
k−lH

(j,i)
k,l + n

(j)
k

; j = 1, 2, · · · , R. (3.3)

The MIMO received signal of (3.3) may be then expressed in a compact

matrix-vector form [32] as

yk =
L−1∑

l=0

Hk,ldk−l + nk (3.4)

where

yk =



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k

y
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k

...
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k
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k

...

d
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(3.5)

and where we define the RNr x T channel matrix-taps

Hk,l =




H
(1,1)
k,l · · · H

(1,T )
k,l

...
. . .

...

H
(R,1)
k,l · · · H

(R,T )
k,l


 ; l = 0, 1, 2, · · · , L− 1. (3.6)
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To facilitate the description of the VGRLS estimator, we reformulate (3.4).

First, we observe that there are L channel matrix-taps. Next, we represent each

as a column vector using the operator vec(Hk,l) [100] and stack the columns of

Hk = [Hk,0, · · · ,Hk,L−1] into a length RNrTL channel vector,

hk = vec(Hk)

= [h
(1,1)
k,0,0 · · ·h(1,1)

k,0,Nr−1 · · ·h(R,1)
k,0,0 · · ·h(R,1)

k,0,Nr−1, · · · ,

h
(1,T )
k,0,0 · · ·h(1,T )

k,0,Nr−1 · · ·h(R,T )
k,0,0 · · ·h(R,T )

k,0,Nr−1, · · · ,

h
(1,1)
k,L−1,0 · · ·h(1,1)

k,L−1,Nr−1 · · ·h(R,1)
k,L−1,0 · · ·h(R,1)

k,L−1,Nr−1, · · · ,

h
(1,T )
k,L−1,0 · · ·h(1,T )

k,L−1,Nr−1 · · ·h(R,T )
k,L−1,0 · · ·h(R,T )

k,L−1,Nr−1]
t

(3.7)

where t denotes matrix transposition. To ensure dimensional compatibility,

we also define a RNr x RNrTL transmitted data matrix Dk as

Dk =
[
d

(1)
k · · · d(T )

k , d
(1)
k−1 · · · d(T )

k−1, · · · , d
(1)
k−L+1 · · · d(T )

k−L+1

]
⊗ IRNr (3.8)

where IRNr is the RNr x RNr identity matrix and ⊗ is the Kronecker product.

We may then write (3.4) in the compact form

yk = Dkhk + nk. (3.9)

3.3 CHANNEL ESTIMATION

Fundamental to the development of the VGRLS estimator is the polynomial se-

ries expansion of the underlying channel impulse responses using a Taylor’s series

in the time domain, i.e. a t-power series expansions [23]. With this model, a

polynomial predictor is employed to predict the fading process. It is shown that

known polynomial coefficients with different predictor lengths and polynomial or-
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ders4 can be derived a priori without requiring any channel statistics. Assuming

small modelling error, the one-step polynomial prediction can be interpreted as

an approximate channel state equation with unforced dynamics. This approxima-

tion then enables the prediction process to be done recursively using a form of the

RLS-Kalman algorithm, i.e. GRLS, algorithm which is similar to a Kalman filter

but without the process noise vector. In the following sections, we will describe

these in more detail.

3.3.1 The Polynomial Series Model

Bello proposed in [23] that for a bandlimited fading channel, and given that the

time variation of the channel is smooth, the randomly time-variant channel im-

pulse response h(t, τ) can be approximated over a short interval by a polynomial

series. h(t, τ) is indeed bandlimited in t where the bandwidth is bounded by the

maximum Doppler spread, and if the channel fading is slow, then the time varia-

tion can be considered as smooth. We describe in the following how the channel

taps can be approximated by polynomials.

We assume that h(t, τ) is a Gaussian process whose sample functions can be

differentiated to any order in the mean squared sense [23]. As the fading process

is bandlimited [38], it can be expanded as an N -th order polynomial in a small

finite interval of interest |t − ηTs| ≤ ϕTs about t = ηTs for 0 ≤ ϕ ≤ 1 using

Taylor’s theorem [25],[23],[26] to obtain

h(t, τ) =
N∑

n=0

a(n)
η (τ)b(n)

η (t) + RN(t, τ) (3.10)

where the coefficients a
(n)
η (τ) are given by

a(n)
η (τ) =

T n
s

n!

[
dnh(t, τ)

dtn

]

t=ηTs

(3.11)

with the elementary basis functions,

4We use a polynomial series expansion of order N, which when truncated results in polyno-
mials of degree N.
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b(n)
η (t) =

(
t− ηTs

Ts

)n

(3.12)

and RN(t, τ) is the remainder term, or residual (modelling) error, of the Taylor

series, given by

RN(t, τ) =
(t− ηTs)

N+1

(N + 1)!

dN+1

dtN+1
h(t, τ). (3.13)

Provided that the sampling rate within the interval of interest is adequate

in that a sufficient number of CIR samples is available, the mean squared value

of RN(t, τ) → 0 as the polynomial order N → ∞, and the expansion (3.10)

approaches

h(t, τ) =
∞∑
n

a(n)
η (τ)b(n)

η (t). (3.14)

Therefore with increasing polynomial order N, the polynomial approximation

becomes more accurate. However, as N increases, the number of unknown param-

eters increases too, and for a fixed number of observations within the ϕ interval,

these unknowns cannot be determined accurately if they are too numerous.

Given that the Doppler spread is normally much smaller than the sampling

rate, only the first few terms in the expansions of (3.14) are significant. Any

higher order terms can be ignored as long as the expression is used only in a

small vicinity of ηTs.

Using the Wiener-Khintchine theorem together with the fact that dN+1

dtN+1 (•) is

equivalent to multiplication by (j2πf)N+1 in the frequency domain, and assuming

finite support of the Doppler power spectral density over |f | ≤ fD, where fD is

the maximum Doppler frequency, we may write the mean squared value of the

remainder RN(t, τ),

1

2
E{RN(t, τ)R∗

N(t, τ)} =
(t− ηTs)

2(N+1)

(N + 1)!2

∫ fD

−fD

|2πf |2(N+1)Shh(f)df (3.15)
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Table 3.1 Effect of Polynomial Orders on ΦN with fDTs = 0.002
Order N Upper bound ΦN

0 1.9739 x 10−5

1 2.4352 x 10−11

2 8.9018 x 10−18

where Shh(f) is the Doppler power spectral density of the channel impulse re-

sponse h(t, τ).

If we consider the polynomial series of (3.10) in an interval (η − ϕ)Ts ≤ t ≤
(η +ϕ)Ts, then an upper bound ΦN , on the mean squared value of the remainder

term is

1

2
E{RN(t, τ)R∗

N(t, τ)} ≤ (2πϕTs)
2(N+1)

(N + 1)!2

∫ fD

−fD

|f |2(N+1)Shh(f)df = ΦN . (3.16)

Assuming that the fading process evolves according to Clarke’s fading model

[42] with a U-shaped Doppler spectrum [43] given by

Shh(f) =





1

πfD

r
1− f2

f2
D

|f | ≤ fD

0 otherwise

(3.17)

the upper bound is approximately given by

ΦN ≈ 2(N + 1)!(πϕfDTs)
2(N+1)

N
2(N+1)
r ((N + 1)!)4

(3.18)

where Nr is the number of samples per symbol. As we can see, for a fixed Nr and

ϕ, the approximate upper bound depends on the polynomial order N and the

normalized fade rate, fDTs. We calculate in Table 3.1 the approximate values of

the bound for various polynomial orders for fDTs = 0.002, Nr = 1 and ϕ = 1.

As ΦN is inversely proportional to 1
((N+1)!)3

, for fDTs ¿ 1, its value diminishes

very quickly and hence a small polynomial order N is sufficient to represent the

fading process.
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3.3.2 Minimum Noise Gain Polynomial Predictor

With the channel impulse response modelled as a polynomial series in (3.10),

it can be shown that a priori known one-step ahead polynomial predictor tap

coefficients can be derived and used to predict the fading process [25],[26]. The

first attempt to predict the process using a polynomial predictor appeared in [104].

The predictor used is actually equivalent to a least squares predictor where the

optimization can also be achieved by using the Lagrange multiplier technique.

The polynomial predictor used in [25],[26] can also be derived using Prony’s

method [105],[106]. Here we describe the derivation of the polynomial predictor

tap coefficients.

Consider a general polynomial series, Ψm, of order N,

Ψm =
∑N

i=0 dim
i; m = · · · ,−1, 0, 1, · · · , (3.19)

and we want to predict one-step ahead the terms in the polynomial series with a

P -tap predictor, for P ≥ N + 1, where the one-step prediction can be expressed

as

N∑
i=0

di(m + 1)i =
P∑

p=1

ap

N∑
i=0

di(m− p + 1)i =
N∑

i=0

di

P∑
p=1

ap(m− p + 1)i. (3.20)

For arbitrary polynomial coefficients {di}, we have

(m + 1)i =
P∑

p=1

ap(m− p + 1)i. (3.21)

Let a = [a1, a2, · · · , aP ] be the predictor tap coefficient vector of the P -tap

predictor which can be calculated in closed form with the following set of linear

constraints on the coefficients [107]5:

5Note that the constraints follow directly from (3.21)
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g0 =
P∑

p=1

ap − 1 = 0 (3.22)

gi =
∑P

p=1 piap = 0; i = 1, · · · , N. (3.23)

Observing (3.21) at m = 0, without loss of generality, we have

(1)i =
P∑

p=1

ap(−p + 1)i, (3.24)

which after rearranging gives

∑P
p=1 ap(p− 1)i = (−1)i; i = 0, 1, · · · , N. (3.25)

Equation (3.25) gives a set of N + 1 equations which can be written compactly

as

Pat = b (3.26)

where P is the (N + 1) x P matrix

P =




1 1 1 · · · 1

0 1 2 · · · P − 1

0 12 22 · · · (P − 1)2

...

0 1 2N · · · (P − 1)N




(3.27)

and b = [1,−1, 1, · · · , (−1)N ]t.

Now (3.26) is a system of N + 1 linear equations in P unknowns. Since

P ≥ N + 1, there may exist an infinite number of solutions. Different design

methodologies for polynomial predictors can be found in [108],[109]. Here we

consider a minimum noise gain6 design [107] where the noise gain is defined by

6In the presence of AWGN, it is critical that the noise gain is minimized.
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Table 3.2 Polynomial Predictor Tap Coefficients of Various Order and Length
Length P Order N Polynomial Coefficients {a1, a2, · · · , aP }

2 0 {1/2, 1/2}
2 1 {2, -1}
3 0 {1/3, 1/3, 1/3}
3 1 {4/3, 1/3, -2/3}
3 2 {3, -3, 1}
4 0 {1/4, 1/4, 1/4, 1/4}
4 1 {1, -1/2, 0, 1/2}
4 2 {9/4, -3/4, -5/4, 3/4}
4 3 {4, -6, 4, -1}

aat. Hence, we want the solution of (3.26) with as small value of aat as possible.

This optimization can be achieved using a (N + 1) x 1 Lagrange multiplier vector

z, where

L = aat + zt(Pat − b). (3.28)

Differentiating (3.28) with respect to a and equating the result to zero gives

at = −1

2
Ptz. (3.29)

From (3.26) and (3.29), the Lagrange multiplier vector is given by z =

−2(PPt)−1b. Substituting this into (3.29), we get

at = Pt(PPt)−1b. (3.30)

Polynomial predictor tap coefficients with different values of predictor length,

P, and polynomial order, N, are calculated and given in Table 3.2. Note that with

the constraint in (3.22), the sum of the coefficients for each value of P and N is

1.

The polynomial predictor will suppress or amplify noise depending on whether

the norm7 of the polynomial coefficient vector,
∑P

p=1 |aN
p |2, is less than or greater

7I.e. aat
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than one. In the presence of AWGN with variance σ2
n, it can be shown [49] that

the variance of the prediction due to AWGN can be approximately given by

σ2
AWGN ≈

(
P∑

p=1

|aN
p |2

)
σ2

n (3.31)

and that due to the approximate upper bound ΦN on the mean squared value of

the remainder term is approximately

σ2
res ≈

(
P∑

p=1

|aN
p |2

)
ΦN . (3.32)

These affect the performance of the estimator as will be shown later.

3.3.3 Statistical State-space Model

Channel estimators based on the Kalman filter [100],[97] assume that the RNrTL

x 1 multipath fading channel response vector of (3.7) evolves according to an order

Pa vector autoregressive (VAR) process [110]. With this assumption, a RNrTLPa

x 1 channel state vector at time k can be written as

hk =
[
ht

k, h
t
k−1, · · · , ht

k−Pa+1

]t
(3.33)

and its transition from time k to k + 1 can be described by a state equation of

the form,

hk+1 = Ahk + vk (3.34)

where vk is a zero-mean process noise vector of dimension RNrTLPa x 1 such

that

E{vkv
H
l } =





Rv for k = l,

0m,m for k 6= l.

(3.35)
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with 0m,m being the (m x m) null matrix and m = RNrTLPa. The superscript

H denotes Hermitian transposition and A is the RNrTLPa x RNrTLPa state

transition matrix having the form

A =


 A1 A2 · · · APa−1 APa

IRNrTL(Pa−1) 0RNrTL(Pa−1),RTL


 (3.36)

where the matrices {Al = φlIRNrTL}, l = 1, 2, · · · ,Pa, are the RNrTL x RNrTL

matrix coefficients of the VAR process. The AR coefficients {φl} and the process

noise autocovariance matrix, Rv, may be obtained by measuring the channel

statistics and solving the resulting matrix-vector Yule-Walker equations [111],

[112], [110], the derivation of which is included in Appendix A. The choice of the

process order Pa is a trade-off between complexity and modelling accuracy [97].

When a high degree of accuracy is needed, a large Pa is selected such that the

variances of the elements of vk are small [29].

By defining a RNr x RNrTLPa data matrix, dk, as

dk =
[

Dk | 0RNr,RNrTL(Pa−1)

]
(3.37)

with Dk given by (3.8), we may express the MIMO received signal of (3.9) as

yk = dkhk + nk (3.38)

which provides an observation equation.

The state-space model used by the Kalman estimator [49],[100],[97] is then

given by the state equation of (3.34) and the observation equation, (3.38). As

the model is structured, it is restricted to Rayleigh fading channels. However it

may be explicitly modified to model specular components [97] by reformulating

the state transition matrix A.
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3.3.4 Polynomial-based State-space Model

Note that the state equation of (3.34) can be interpreted as a one-step length-

Pa vector-matrix predictor of the channel state vector with the VAR matrix

coefficients {Al} for l = 1, 2, · · · ,Pa, being one-step prediction coefficients and

vk the associated prediction error.

Since the fading process varies smoothly, as shown previously we may model

the time evolution of each of the samples as polynomial sequences of order N [29].

From the theory of polynomial prediction [104], a one-step predictor of length P

with coefficients {ap} for p = 1, 2, · · · ,P, may be derived for each polynomial se-

quence. Following [104],[25],[113], for the µ-th scalar channel component of (3.7)

for µ = 1, 2, · · · , RNrTL, we may then write a one-step N-th order polynomial

prediction equation at time k as

hk,µ =
P∑

p=1

aphk−p,µ + ek,µ(N,P ) (3.39)

where P is the length of the polynomial predictor, assuming that each channel

response is modeled as a truncated t-power series [23] of order N and that the

series converges over a window of size P + 1 [26] observations.

As shown in section 3.3.2, the polynomial predictor coefficients {ap} for p =

1, 2, · · · ,P, are dependent only on the values of N and P, and may be computed

offline using a Lagrange multiplier technique [25], or a standard least square

optimization approach [29]. Moreover the computation does not require any

channel statistics. Polynomial coefficients for various orders, N, and lengths, P,

are given in Table 3.2.

The prediction error arising from truncation of the series to the first N terms,

ek,µ(N, P ), is dependent on the order of the polynomial series and the predictor

length, where ek,µ(N, P ) → 0 as N → ∞ [29]. It will be small if the window of

expansion (i.e., the predictor length, P) is small, thereby allowing the use of a

small value of N. Using (3.39) a VAR-like model of the channel vector of (3.7)

may be written as
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hk =
P∑

p=1

Uphk−p + ek(N,P ) (3.40)

where the RNrTL x RNrTL polynomial predictor matrices are given by Up =

apIRNrTL for p = 1, 2, · · · ,P. The model is only VAR-like because the error vector

ek(N,P ) = [e
(1,1)
k,0 · · · e(R,1)

k,0 · · · e(1,T )
k,0 · · · e(R,T )

k,0 · · ·
e
(1,1)
k,L−1 · · · e(R,1)

k,L−1 · · · e(1,T )
k,L−1 · · · e(R,T )

k,L−1]
t

(3.41)

is not necessarily zero-mean or white [29] as required by an actual VAR process.

In general, the elements of the covariance of ek(N, P ) will be small over a suitably

small window of expansion around each sampling instant [29]. As a result, if

ek(N, P ) is assumed to be approximately zero, which holds if the polynomial

model of (3.10) is used only in the vicinity of ηT , a state-space model similar in

form to (3.34), but with unforced dynamics is obtained from (3.40) as

hk+1 = Uhk (3.42)

where

hk =
[
ht

k, h
t
k−1, · · · , ht

k−P+1

]t
(3.43)

is the RNrTLP x 1 channel state vector at time k and the associated state

transition matrix is given by

U =


U1 U2 · · · UP−1 UP

IRNrTL(P−1) 0RNrTL(P−1),RNrTL


 . (3.44)

This is similar in form to (3.36), but with Pa replaced by P and the matrices

Al replaced by the matrices UP . The observation equation associated with (3.42)

is similar to (3.38), except that Pa in the data matrix of (3.37) becomes P.
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Equations (3.38) and (3.42) define a polynomial-based state-space model with

unforced dynamics. It does not require channel statistics in the derivation of the

state transition matrix coefficients, and can be used with both Rayleigh and

Rician fading channels with no explicit reconfiguration of the state transition

matrix U.

3.3.5 Derivation of the VGRLS Algorithm

With reference to [102],[26], we shall develop the algorithm from the first princi-

ples using a general time-indexed8 state transition matrix, Uk/k−1. The algorithm

is recursive in the sense that, on the receipt of a current signal sample, it repeats

a sequence of operations on a set of parameter values determined after the receipt

of the previous signal sample. It is least squares in the sense that it minimizes

the weighted squared error in the estimate of the signal sample.

In our work, the MIMO channel estimator operates with a RNrTLP x 1

component vector, ĥk, which is the k -th estimate of the channel vector hk in

equation (3.43), and is expressed as

ĥk =
[
ĥt

k, ĥ
t
k−1, · · · , ĥt

k−P+1

]t

, (3.45)

and the data vector dk, of size RNr x RNrTLP in equation (3.37) is also repeated

here for convenience

dk =
[

Dk | 0RNr,RNrTL(Pa−1)

]
. (3.46)

From (3.45) and (3.46), an estimate of the measurement vector (the received

signal vector) formed by the estimator is

ŷk = dkĥk. (3.47)

In relation to the actual received vector yk, the error in the estimate is

8This is to show explicitly the temporal progression of the algorithm.
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ēk = yk − ŷk. (3.48)

The vector ĥk determined by the channel estimator is such as to minimize

the time-average weighted cost function

J(k) =
k∑

l=0

λk−l|ēl|2

=
k∑

l=0

λk−l
(
yl − dlĥl

)2

.

(3.49)

where λ is a real-valued constant known as the weighting or ‘forget factor’ in the

range of 0 < λ < 1. Assuming that the estimator starts operation on receipt of

y0, the quantity J(k) is the weighted squared error in {ŷl}, starting with ŷ0, for

l = {0, 1, · · · , k}.

We define a general time-indexed state transition matrix, Uk/k−1, which is

the RNrTLP x RNrTLP state transition matrix relating the channel state vector

at time k -1 to the one at time k and is similar in form to (3.44). With this, an

estimate ĥk of the channel state vector can be expressed as

ĥk = Uk/k−1ĥk−1. (3.50)

As we want to determine the channel estimation vector ĥk, which together

with the state transition matrix, minimizes J(k), then from (3.49), the cost func-

tion may be expressed as

J(k) =
k∑

l=0

λk−l
(
yl − dlĥl/l

)H (
yl − dlĥl/l

)
(3.51)

where ĥk/k is the k -th estimate of the state vector hk given all information up

to and including information at time k and H denotes Hermitian transposition.

Minimizing J(k) in fact minimizes the weighted sum of all squared errors of each
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of the elements of the error vector
(
yl − dlĥl/l

)
, up to and including the k -th

error.

We can express {ĥl/l} in (3.51) in term of ĥk/k and we note that ĥk/k can be

obtained recursively from all its previous estimates {ĥl/l}. From this, we have

ĥk/k = Uk/k−1ĥk−1/k−1

= Uk/k−1

(
Uk−1/k−2ĥk−2/k−2

)

= Uk/k−1

(
Uk−1/k−2

[
Uk−2/k−3ĥk−3/k−3

])

=
(
Uk/k−1Uk−1/k−2 · · ·Ul+1/l

)
ĥl/l

= Uk/lĥl/l

(3.52)

where the last line of (3.52) is obtained by using the properties of the state

transition matrix [49],

Uk/k−1Uk−1/k−2 · · ·Ul+1/l = Uk/l. (3.53)

Further recognizing [49] that

Uk−1/k = U−1
k/k−1 (3.54)

where Uk−1/k is the backward state transition matrix from time k to k -1, we may

rearrange the terms in equation (3.52) to get

ĥl/l = U−1
k/lĥk/k

= Ul/kĥk/k.
(3.55)

We may then rewrite (3.51) in terms of the estimate ĥk/k as

J(k) =
k∑

l=0

λk−l
(
yl − dlUl/kĥk/k

)H (
yl − dlUl/kĥk/k

)
. (3.56)
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Note that (3.56) reduces to the cost function used in the derivation of the

scalar observation GRLS algorithm [102],[26] for a communication system having

one transmit and one receive antenna (R = T = 1).

The cost function (3.56) may be expanded as

J(k) =
k∑

l=0

λk−l
(
yH

l yl − yH
l dlUl/kĥk/k − ĥH

k/kU
H
l/kd

H
l yl + ĥH

k/kU
H
l/kd

H
l dlUl/kĥk/k

)
,

(3.57)

and is a quadratic function in ĥk/k. We assume that J(k) (which is real and

positive) is a unimodal function in the space spanned by ĥk/k with a global

minimum at a particular value of J(k). To minimize J(k), its gradient is evaluated

and equated to zero. The definition of the complex gradient operation for vectors

and matrices is found in [49].

From (3.57) the gradient of J(k) with respect to ĥk/k is

∇J(k) =
k∑

l=0

λk−l
(
−2UH

l/kd
H
l yl + 2UH

l/kd
H
l dlUl/kĥk/k

)
. (3.58)

Equating the gradient in equation (3.58) to zero and rearranging the terms

yields

(
k∑

l=0

λk−lUH
l/kd

H
l dlUl/k

)
ĥk/k =

k∑

l=0

λk−lUH
l/kd

H
l yl. (3.59)

Equation (3.59) is in fact a form of the weighted time average normal equa-

tions. In Wiener filter theory [49], the tap coefficients giving the minimum mean

squared error are obtained by solving the normal equations. In this case, not

the statistical mean but the actual difference between the desired response vector

and the estimate is minimized.

Let

Rk/k =
k∑

l=0

λk−lUH
l/kd

H
l dlUl/k (3.60)
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and

Qk/k =
k∑

l=0

λk−lUH
l/kd

H
l yl. (3.61)

The normal equations of (3.59) then become

Rk/kĥk/k = Qk/k. (3.62)

The vector ĥk/k is the required least squares estimates of the corresponding

channel vector. However, to evaluate ĥk/k directly from the RNrTLP equations

of (3.62) would be inefficient and impractical for each new received signal vector.

To avoid this, ĥk/k is instead determined recursively.

First, it is necessary to determine the corresponding recursive formulations

for Rk/k and Qk/k. These can be obtained by using (3.53) and the fact that

Uk/k = IRNrTLP . Isolating the term in (3.60) at time l = k (which gives dH
k dk),

and recognizing that Rk−1/k−1 =
∑k−1

l=0 λ(k−1)−lUH
l/k−1d

H
l dlUl/k−1, the recursive

formulation of (3.60) is then given by

Rk/k = λUH
k−1/kRk−1/k−1Uk−1/k + dH

k dk (3.63)

and for (3.61)

Qk/k = λUH
k−1/kQk−1/k−1 + dH

k yk. (3.64)

Using (3.62) to replace Qk/k by Rk/kĥk/k and Qk−1/k−1 by Rk−1/k−1ĥk−1/k−1

in equation (3.64), we get

Rk/kĥk/k = λUH
k−1/kRk−1/k−1ĥk−1/k−1 + dH

k yk. (3.65)

Equation (3.65) gives a relationship between ĥk/k and ĥk−1/k−1 which forms

the basis of the required recursive algorithm to determine ĥk/k. However, the

equation involves the two matrices Rk/k and Rk−1/k−1, and it is desirable to

replace Rk−1/k−1 to simplify the computation.
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Using (3.54), the relationship in (3.63) is rewritten as

λRk−1/k−1 =
(
UH

k/k−1Rk/kUk/k−1

)− (
UH

k/k−1d
H
k dkUk/k−1

)
. (3.66)

Substituting (3.66) into equation (3.65), we obtain

Rk/kĥk/k =
(
ĥk−1/k−1Uk/k−1Rk/kU

H
k/k−1U

H
k−1/k

)

−
(
ĥk−1/k−1Uk/k−1d

H
k dkU

H
k/k−1U

H
k−1/k

)
+ dH

k yk

=
(
ĥk−1/k−1Uk/k−1Rk/k

)
−

(
ĥk−1/k−1Uk/k−1d

H
k dk

)
+ dH

k yk.

(3.67)

We then rearrange the terms so that

ĥk/k =
(
ĥk−1/k−1Uk/k−1

)
−

(
ĥk−1/k−1Uk/k−1d

H
k dkR

−1
k/k

)
+ dH

k ykR
−1
k/k

= ĥk/k−1 + Pk/kd
H
k

(
yk − dkĥk/k−1

) (3.68)

where

ĥk/k−1 = Uk/k−1ĥk−1/k−1 (3.69)

and

Pk/k = R−1
k/k. (3.70)

Equation (3.68) is known as the recursive estimate update equation. The

new estimate ĥk/k on the l.h.s. of (3.68) is updated by the weighted error vector,

which is the second term on the r.h.s. of (3.68). Analogous equations are also

found in other algorithms such as those for Kalman and LMS estimators.

Upon observation, however, equation (3.68) is still not fully recursive since it

is dependent on the parameter Pk/k without showing how this can be evaluated

from Pk−1/k−1. The next step is therefore to develop a relationship between

Pk/k and Pk−1/k−1. From equation (3.63), by substituting Rk/k = P−1
k/k and
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Rk−1/k−1 = P−1
k−1/k−1 we obtain

P−1
k/k = λUH

k−1/kP
−1
k−1/k−1Uk−1/k + dH

k dk

= λ
(
Uk/k−1Pk−1/k−1U

H
k/k−1

)−1
+ dH

k dk.
(3.71)

It can be shown that the bracket term in equation (3.71) equals Pk/k−1,

Uk/k−1Pk−1/k−1U
H
k/k−1 = Pk/kU

H
k/k−1

= Uk−1/kPk/k

= Pk/k−1.

(3.72)

Therefore, we obtain the relationship

P−1
k/k−1 = λ

(
Uk/k−1Pk−1/k−1U

H
k/k−1

)−1

= λUH
k−1/kP

−1
k−1/k−1Uk−1/k

(3.73)

and we observe that

Pk/k−1 = λ−1Uk/k−1Pk−1/k−1U
H
k/k−1. (3.74)

Substituting equation (3.73) into (3.71) the expression becomes

P−1
k/k = P−1

k/k−1 + dH
k dk. (3.75)

To evaluate the inverse of Pk/k, we invoke the matrix inversion lemma9. By

defining A = Pk/k, B−1 = P−1
k/k−1, C = dH

k , D−1 = IR, CH = dk, the recursion

(3.75) is then expressed as

9Given A = B−1 + CD−1CH , the inverse of A is given by A−1 = B−BC(D+ CHBC)−1CHB.
For more details see [49].
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Pk/k = Pk/k−1 −Pk/k−1d
H
k

(
IR + dkPk/k−1d

H
k

)−1
dkPk/k−1. (3.76)

Now we define the Kalman gain matrix as

Kk = Pk/k−1d
H
k

(
IRNr + dkPk/k−1d

H
k

)−1
(3.77)

so that (3.76) becomes

Pk/k = (IRNrTLP −Kkdk)Pk/k−1. (3.78)

Equations (3.74), (3.77) and (3.78) give a recursive relationship between Pk/k

and Pk−1/k−1, which can be used with equation (3.68) to give a recursive rela-

tionship between ĥk/k and ĥk−1/k−1.

However, a further simplification of the algorithm can be achieved. We post-

multiply (3.78) by dH
k and obtain

Pk/kd
H
k = Pk/k−1d

H
k −KkdkPk/k−1d

H
k . (3.79)

Substituting (3.77) into (3.79) yields

Pk/kd
H
k = Kk

(
IM + dkPk/k−1d

H
k

)−KkdkPk/k−1d
H
k

= Kk

(3.80)

which is another expression for the Kalman gain vector.

Now equation (3.68) is given by

ĥk/k = ĥk/k−1 + Kk

(
yk − dkĥk/k−1

)
. (3.81)

and the derivation of the VGRLS algorithm is completed.
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Now we employ the polynomial predictor based model of (3.42) in the VGRLS

algorithm to directly estimate the channel tap or state vector, hk. The coefficients

of the state transition matrix U (3.44) are pre-determined (cf. Table 3.2) for a

given predictor length, P, and polynomial order, N. Given that the state transition

matrix is fixed, we drop the time index in Uk/k−1 and use U in the VGRLS

algorithm from here onwards.

In summary, assuming that ĥk/k−1 and Pk/k−1 are known, the update equa-

tions for the algorithm may be expressed as

Kk = Pk/k−1d
H
k

(
IRNr + dkPk/k−1d

H
k

)−1
(3.82)

Pk/k = (IRNrTLP −Kkdk)Pk/k−1 (3.83)

ĥk/k = ĥk/k−1 + Kk

(
yk − dkĥk/k−1

)
. (3.84)

The prediction equations may then be written as

ĥk+1/k = Uĥk/k (3.85)

Pk+1/k = λ−1UPk/kU
H (3.86)

where ĥk/k−1 is the estimate of the channel state vector at time k based on all

(k -1) prior received samples, λ is the RLS ‘forget factor’, Kk is analogous to the

Kalman gain vector [49] and Pk/k is the so-called ‘intermediate’ matrix. In a

conventional RLS algorithm, Pk/k is the inverse input autocorrelation matrix but

that is not the case here, hence the term ‘intermediate’ matrix.

To initialize the algorithm, we set the estimated channel state vector ĥ1/0

to the null vector and let P1/0 = δ−1IRNrTLP , where δ is a small positive real

constant. Also note that when P = 1 and N = 0, the VGRLS algorithm reduces
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Unit

delay
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Figure 3.2 Block diagram of the VGRLS algorithm.

to a conventional vector RLS estimation algorithm [29].

The input to the algorithm consists of the vector received samples, yk and

the resulting output equals ĥk+1/k, the one-step predicted channel vector. Besides

these, the algorithm also requires the input of U, dk, λ and δ, all assumed known

quantities. When the VGRLS estimator is operated in isolation, dk is the vector

of known training symbols. When it is operated in tandem with an equalizer in

decision-directed mode, dk is the output vector of the equalizer.

We note from (3.82), (3.83) and (3.86) that the Kalman gain Kk and the re-

cursive update of Pk/k are independent of the received vector yk. Consequently

these quantities may be computed before the VGRLS algorithm is put into oper-

ation and this provides a basis for further complexity reduction as will be shown

in the next chapter.

The VGRLS algorithm can be represented by the block diagram in Fig. 3.2

which is based on the three components:
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1. Kalman gain operator which produces Kk

2. Riccatti operator which produces Pk+1/k

3. One-step channel predictor which produces ĥk+1/k

The details of these three components are shown in Figs. 3.3, 3.4 and 3.5

respectively.

Inverse
+
x
x
 x


Figure 3.3 Signal flow diagram of the Kalman gain operator.

Unit

delay


x


x


x


x
x


+

-


Figure 3.4 Signal flow diagram of the Riccatti operator.

The VGRLS estimator of (3.82) - (3.86) is similar in structure to a Kalman

estimator as both consist of time-update and prediction equations. Due to the

Riccatti recursion in (3.83) and (3.86), the complexity of the estimator in the

highest term is O(
(RNrTLP )3

)
, which is similar to that of the Kalman filter.

Therefore the ‘baseline’ complexity of the two algorithms is similar. However,
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Figure 3.5 Signal flow diagram of the one-step channel predictor.

the VGRLS does not require channel statistics to compute the coefficients of the

state transition matrix.

3.4 PARAMETERS THAT AFFECT THE PERFORMANCE OF

THE ESTIMATOR

The performance of the VGRLS estimator is evaluated during steady state to

which it settles after an initial transient period. The average squared norm dif-

ference, or error, between the original and the estimated responses, known as the

‘mean squared deviation’ (MSD), depends on several parameters. Some of these

are inherent to the estimator itself, such as the

• predictor length, P,

• polynomial order, N,

• ‘forget factor’, λ,

while the rest are system parameters such as the

• signal to noise ratio, SNR,

• normalized channel fade rate, fDT ,
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• number of the training symbols, Lt,

We will examine in the following how these parameters influence the perfor-

mance of the estimator.

3.4.1 Effect of the Predictor Length and Polynomial Order

In deriving the estimator, we have assumed that the channel fading process may

be expanded as an N -th order Taylor’s series over a small window. Since the

Doppler spread is much less than the sampling frequency, only the first few terms

(i.e., N terms) of the expansion are significant. However, ignoring the remainder

terms causes the model to have a residual modelling error. An approximate upper

bound on its mean squared value is given as ΦN in (3.18) which is reproduced

here for convenience as

ΦN ≈ 2(N + 1)!(πϕfDTs)
2(N+1)

N
2(N+1)
r ((N + 1)!)4

. (3.87)

It was shown in [25] that the variance of the estimation error, which is termed

the effective noise, of the polynomial predictor consists of two parts, namely

σ2
eff = σ2

AWGN + σ2
res, where σ2

AWGN is the effective variance component due to

AWGN given in (3.31) as

σ2
AWGN ≈

(
P∑

p=1

|aN
p |2

)
σ2

n (3.88)

and σ2
res in (3.32) is the effective variance component due to ΦN ,

σ2
res ≈

(
P∑

p=1

|aN
p |2

)
ΦN . (3.89)

For a fixed predictor length P, the larger the polynomial order N, the better

the fit to the actual fading process and hence the smaller the achievable ΦN , and

this is desirable. However, a higher polynomial order results in larger values of

the predictor tap coefficients (cf. Table 3.2), thereby increasing the squared norm
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Table 3.3 Norm of the Predictor Tap Vector
∑P

p=1 |aN
p |2 (refer Table 3.2)

Order N
Length P 0 1 2 3

2 0.5 5 - -
3 0.33 2.33 19 -
4 0.25 1.5 7.75 69

of the coefficient vector
∑P

p=1 |aN
p |2, as shown in Table 3.3. This will result in a

larger effective AWGN variance σ2
AWGN especially at low SNR. However, as most

wireless systems operate with relatively high SNR, the effect due to this variance

becomes very small. Note that even though a larger norm will increase σ2
res, this

is compensated by a better model fit, resulting in a small residual modelling error,

hence a negligibly small ΦN (cf. Table 3.1).

For a fixed polynomial order N, it is possible to reduce the effective AWGN

variance σ2
AWGN by using more predictor taps, i.e., a longer predictor length, P.

However, this directly increases the complexity of the estimator, which increases

as (RNrTLP )3. From our simulation results in the next section, it is found that

using a predictor length of P = 3 with a polynomial order of N = 2 is sufficient

for most channel conditions.

3.4.2 Effect of the ‘Forget Factor’

As with a conventional RLS algorithm, with a ‘forget factor’ of λ < 1, the

estimates may become ‘noisy’ [49]. A smaller value of λ results in a noisier

adaptive process and at low SNR the ‘mean squared deviation’ behavior tends

to get worse due to this ‘adaptation noise’. The value of λ also affects the

effective memory of the algorithm according to 1
1−λ

[49] where the memory is

effectively shortened with a smaller λ. This means the algorithm uses a smaller

number of significant previous samples in the adaptive process. In a fast fading

environment where tracking becomes more challenging and the resulting estimates

get noisier, this is beneficial as a smaller number of the noisy samples are used

in the subsequent recursive updates.
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3.4.3 Effect of SNR

The performance of the estimator at low SNR is influenced by AWGN more than

by the residual modelling error. From Table 3.3 and equation (3.88), we note that,

depending on the choice of P and N, the effective variance due to AWGN σ2
AWGN

can be suppressed or amplified. From the theory of least squares estimation [105],

the effect of noise averaging increases as the ratio of P to N + 1 increases. Hence

the lower the polynomial order N in relation to the predictor length P, the less

the noise enhancement. For N = 0, the noise is actually suppressed. Therefore for

a fixed predictor length P at low SNR, a lower polynomial order N will perform

better than a higher order one due to a smaller effective AWGN variance.

As SNR increases, the effect of AWGN decreases and after a certain SNR

called the ‘transition SNR’, the residual modelling error (3.89) becomes dominant.

A higher order model will then perform better than a lower order one due to a

better model fit.

For a fixed polynomial order N, as the SNR increases, there will be a floor

in the MSD behavior because as the AWGN decreases and the residual error

become dominant, there is essentially no improvement in the MSD performance

with further increase in SNR, except through using a higher polynomial order.

In general, for a given predictor length P at low SNR, a lower polynomial order

N performs better than a higher order but at high SNR the reverse is true.

3.4.4 Effect of the Normalized Fade Rate

The normalized fade rate, fDTs, affects the mean squared value of the residual

error, ΦN , in (3.16) through the Doppler spectrum. For a Jakes’ fading model,

an approximate upper bound on ΦN is given in (3.87). We see that as fDTs

increases, so does ΦN . Hence we see that the MSD behavior of the estimator

will degrade as fDTs increases due to a larger residual error. According to Table

3.3, the effective variance σ2
res of (3.89) due to this increased residual error may

be reduced by increasing the predictor length P (while keeping N fixed), as this
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gives a smaller vector norm of the associated polynomial coefficients. However,

this will increase the complexity of the estimator as (RNrTLP )3. At high fade

rate, the effect of fading at low SNR is significant compared to the AWGN. Hence

the MSD even when using a lower order estimator will be high when compared

with the MSD at a low fade rate.

3.4.5 Effect of the Training Sequence Length

As mentioned at the beginning of this section, the MSD is a measure of the steady

state behavior of the estimator, assuming that it has settled following an initial

transient period. For a given training sequence length of Lt, if this assumption

is not valid, a variance component due to this ‘transient noise’ will be added

to the overall MSD, resulting in worse MSD behavior. It is expected that in

general as Lt increases the MSD behavior will improve as the estimator would

have converged closer to its steady state. We will show this effect in the next

section.

3.4.6 Estimator Variances

Summarizing from the above, the MSD behavior of the estimator is influenced

by several types of errors, or variances, associated with different values of the

parameters, as follows:

1. Inherent to the modelling of the fading process using finite Taylor’s series

expansion, there is a residual modelling error due to the truncated number

of terms in the series. This is determined by the polynomial order N as the

residual error decreases with increasing N (i.e. increasing number of terms

retained).

2. For a fixed predictor length P, the norm of the polynomial coefficients

increases as the polynomial order N increases. It is shown that this has a

direct effect on the effective variances due to AWGN and residual error.
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3. A variance component due to ‘adaptation noise’, which is dependant on

SNR and the ‘forget factor’, λ, also affects the MSD.

4. A fast fading channel where the channel condition changes significantly over

the interval of polynomial expansion is more difficult to estimate and track.

Thus, an error is introduced depending on the normalized channel fade rate,

fDTs.

5. As with any other communication system, the received signal at the input

of the estimator is corrupted by AWGN. Hence, the estimate will be noisy

and this is directly related to the system SNR.

6. A variance component due to transient noise will be introduced if an in-

sufficient number of training symbols is used so that the estimator has not

converged to steady state when the MSD is calculated.

These effects will be illustrated in the following section dealing with the per-

formance evaluation of the estimator.

3.5 PERFORMANCE EVALUATION

We evaluate the performance of the VGRLS estimator in terms of the ‘mean

square deviation’ (MSD), which is the time-averaged squared norm difference,

or error, between the actual and estimated channel impulse responses. The es-

timator is operated using knowledge of the transmitted training symbols and it

constantly updates the estimated channel responses. It is assumed to operate in

a transient mode during the Lt training symbols, after which it is assumed to

operate in steady state mode. The MSD measures this steady state performance,

and therefore the first Lt symbols of each frame are not included in the MSD

calculation. At the beginning of each new frame the estimator re-initializes, and

starts channel acquisition again. The MSD performance versus SNR of the esti-

mator with a fixed predictor length of P = 3 and 4, and polynomial orders, N =

0, 1, 2, 3, is evaluated. The steady state MSD in the α-th frame is estimated as
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σ2
MSD(α) = 〈||hk − ĥk/k−1||2〉 (3.90)

where hk is the channel vector at time k, ĥk/k−1 is the one-step ahead estimated

channel vector and 〈||.||〉 denotes the time average of the Euclidean norm operator.

The MSD for each sub-channel is accumulated and averaged for 10,000 frames.

The overall MSD is then averaged across the RT sub-channels of the MIMO

system.

The SNR is defined per received antenna as

SNR =

(
σ2

dσ
2
c (τ)

∫∞
−∞ |p(t)|2dt

σ2
n

)
(3.91)

where σ2
d is the total average energy per data symbol, σ2

c (τ) =
∑3

k=1 σ2
c (τk) is

the average subchannel power with 3 multipath rays each, p(t) is the transmit

pulse shape and σ2
n is the AWGN variance at the input of each receiver. We use

QPSK modulation with unit power and normalize the overall effective channel

tap power to unit power. Unless stated otherwise, we assume that the total

transmitted power is unity and allocated equally among the T antennas.

3.5.1 Predictor Length, Polynomial Order, SNR and Training Se-

quence Length

Fig. 3.6 shows the MSD behaviors of a VGRLS estimator and a Kalman filter

10 at a normalized fade rate of fDTs = 0.002, where fD is the maximum Doppler

frequency. We observe how the polynomial order, N, system SNR and training

sequence length, Lt, affect the MSD. At low SNR where noise dominates, an

estimator with order N = 0 has a slightly better MSD than the others, since the

algorithm then acts primarily as a noise averaging filter which tends to suppresses

the noise [29] (cf. Table 3.3). This is also attributed to a smaller norm of

the polynomial coefficients for N = 0 because a larger norm amplifies the noise

10We assume a VAR order Pa = 3 for the Kalman filter, the same as the predictor length, P,
in the simulations.
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Figure 3.6 MSD of the VGRLS estimator and that of a Kalman filter for a (2,2) MIMO
system in a Rayleigh fading channel with a normalized fade rate fDTs of 0.002. VGRLS with
N = 0 corresponds to a conventional vector RLS algorithm. With sufficient training sequence
length, the MSD of VGRLS with N = 2 approaches that of a Kalman filter’s.

according to (3.88). At moderate SNR, an order of N = 1 not only performs

linear interpolation but also noise averaging, and has the lowest MSD. At high

SNR where the effect of modelling error dominates, an order of N = 2 has the

lowest MSD. These behaviors are consistent with those reported in [29].

It is interesting to note that the estimator MSD exhibits a floor at sufficiently

high SNR regardless of the value of N. This was initially thought to be because

of non-convergence of the estimator due to an insufficient number of training

symbols. However, when the number of training symbols is increased11 to Lt =

78 , the floor for N = 2 is still visible at very high SNR although the effect is

slight within the observed SNR range. This is unlike the scalar case of [29] where

the use of Lt = 52 effectively removes the error floor for N = 2 at high SNR. As

will be shown later, this effect is attributable to error introduced by the channel

fading which cannot be reduced by increasing the SNR or the polynomial order,

11Data length Ld is still 116 symbols.
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N. We also note that increasing the length of the training sequence, e.g. using Lt

= 130, improves the steady state MSD performance of the estimator across the

SNR region for all estimator orders.
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Figure 3.7 MSD of the VGRLS estimator for a (2,2) MIMO system in a Rayleigh fading
channel with a normalized fade rate fDTs of 0.002. The VRGLS has a predictor length of P
= 3 and various N with various training symbol length as shown. The power delay profile is
SUI-4 [114] which is non-uniform with a power profile of (0dB, -4dB and -8dB).

We have assumed a uniform power delay profile in our simulations for sim-

plicity. However, in reality the power delay profile may not be uniform. We have

investigated the MSD performance of the VGRLS estimator at a normalized fade

rate of 0.002 for a (2,2) Rayleigh fading, with a non-uniform power delay pro-

file modeled according to the SUI-4 channel model [114]. This is a 3 ray model

with a power profile of (0dB, -4dB and -8dB). The result is shown in Fig. 3.7.

Compared to Fig. 5.12 for a uniform power delay profile, we note that there is

negligible difference in performance. A uniform profile is considered as one of the

more severe profiles as all the multipath rays have equal power. It is also used as

a test profile for the purpose of GSM’s equalizer testing [115]. In the following,

a uniform delay profile is used unless otherwise stated.
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Figure 3.8 MSD of the VGRLS estimator and a Kalman filter for a (4,4) MIMO system in
a Rayleigh fading channel with a normalized fade rate fDTs of 0.002.
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Figure 3.9 MSD of the VGRLS estimator for a (4,4) MIMO system in a Rayleigh fading
channel with a normalized fade rate fDTs of 0.0001.
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For simplicity12, most of the evaluations in this thesis have been limited to

a (2,2) MIMO system. We have, however, also included some key results for a

(4,4) system. Figs. 3.8 and 3.9 shows the MSD performance of the estimator for

a (4,4) MIMO system at normalized fade rates of 0.002 and 0.0001 respectively.

In general the MSD performance is worse than that of a (2,2) system although

it is improved with a longer training sequence length, Lt. We note the very high

irreducible MSD floor for N = 2 with Lt = 26. This appears to be due to the

failure of the estimator to converge within 26 symbol periods.

3.5.2 ‘Forget Factor’
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Figure 3.10 MSD of the VGRLS estimator for a (2,2) MIMO system in a Rayleigh fading
channel with different values of lambda at fDTs = 0.002.

Fig. 3.10 shows the effect of different values of ‘forget factor’ λ on the per-

formance of the estimator. At low SNR, an estimator with a smaller value of λ

has worse MSD behavior because of the noisier adaptive process associated with

a smaller λ. As SNR increases, this noise effect becomes less dominant and the

12The complexity of VGRLS increases as (RNrTLP )3
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Figure 3.11 MSD of the VGRLS estimator with different values of lambda at fDTs = 0.01.

estimates start to have better MSD behavior. It is also because the estimator

with a smaller memory effectively utilizes a smaller number of previous CIR sam-

ples in updating the estimates, and hence the updated estimates are less noisy.

This is more evident in fast fading when tracking becomes more challenging and

therefore the estimates get noisier. As shown in Fig. 3.11, for P = 3 and N =

2 at fDTs = 0.01, the MSD can be reduced significantly at high SNR by reduc-

ing λ from 0.9 to 0.7. However this reduction is achieved at the expense of a

significantly increased MSD at low SNR due to the noisier adaptive process.

3.5.3 Normalized Fade Rate

Fig. 3.12 shows the MSD of the VGRLS at a slower normalized fade rate of

0.0001 and Fig. 3.13 shows the MSD at a faster normalized fade rate of 0.01.

The results show a similar trend in MSD performance, i.e., at low SNR there is

not much difference between the various orders but at high SNR N = 2 offers

significantly lower MSD. The results show that the VGRLS estimator is able to
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Figure 3.12 MSD of the VGRLS estimator for a (2,2) MIMO system in a Rayleigh fading
channel with a normalized fade rate fDTs of 0.0001.
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Figure 3.13 MSD of the VGRLS estimator for a (2,2) MIMO system in a Rayleigh fading
channel with a normalized fade rate fDTs of 0.01.
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Figure 3.14 MSD of the VGRLS estimator for a (2,2) MIMO system in a Rayleigh fading
channel with a normalized fade rate fDTs of 0.01. The VRGLS has a predictor length of P =
4 and various order N as shown. (Note: the curves for N = 0 and N = 1 overlap each other)

operate in both slow and fast fading environments because it converges in both

scenarios.

These figures also reveal the effect of fade rate on the estimator. A faster

fading channel is more difficult to track and hence it introduces a fade-rate-related

error. Furthermore, due to the truncation effect of the Taylor series expansion,

more terms in the series, hence a higher polynomial order and predictor length13,

are required to support a higher fade rate [113]. This is shown in Fig. 3.14

where a VGRLS estimator with P = 4 and N = 3 produces a lower MSD at a

fade rate of 0.01 compared to the results of Fig. 3.13. However, we note that

in slower fading a larger polynomial order and predictor length does not offer

any substantial advantage. As shown in Fig. 3.15 for a fade rate of 0.002, the

VGRLS estimator with P = 4 and N = 3 has the same MSD at high SNR as

that with P = 3 and N = 2. We deduce from these results that the ‘floor’ at

13Alternatively the sampling rate can be increased to provide more samples, or the interval
of expansions is reduced to preserve the ‘smoothness’ in the samples.
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Figure 3.15 MSD of the VGRLS estimator for a (2,2) MIMO system in a Rayleigh fading
channel with a normalized fade rate fDTs of 0.002. The VRGLS has a predictor length of P =
3, N = 2 and P = 4, N = 3, with various training sequence length.

high SNR is attributed to fade-rate-related error and cannot be lowered by using

higher values of P and N.

3.5.4 Rician Fading Channel

So far all the above simulation results pertain to a Rayeligh fading channel. Here

we show that the VGRLS estimator can also operate in a Rician channel readily.

We assume that each channel coefficient consists of a non-random (specular)

component and a random (diffuse) component as h
(j,i)
k,l = h

(nr),(j,i)
l + h

(r),(j,i)
k,l . The

power ratio between the specular and the diffuse components is given by the Rice

K -factor,

K =

∣∣h(nr)
∣∣2

E
{
|h(r)|2

} (3.92)
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where a K value of 0 corresponds to Rayleigh fading and a large K corresponds

to Rician fading. In reality a specular component can be present in any or all

of the paths and the value of the K -factor can be the same or different for each

path. For simplicity, we assume here that all multipath components contain a

specular component with the same value of K.
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Figure 3.16 MSD of a VGRLS estimator for a (2,2) MIMO system in a Rician fading channel
with a normalized fade rate fDTs of 0.01 with K-factors of 4 and 10. The VRGLS has a predictor
length of P = 3 and various polynomial orders N.

Fig. 3.16 and 3.17 show the MSD performances of a VGRLS estimator with

a predictor length P = 3 with various polynomial orders N and a Kalman es-

timator. The normalized fade rate is 0.01 in Fig. 3.16 with K-factors of 4 and

10. In obtaining the result for the Kalman estimator, for simplicity, the non-

random components of the fading channel are assumed known. In practice, the

state transition matrix of the Kalman estimator needs to be reconfigured to suit

a Rician fading channel. This is not necessary for the VGRLS estimator as it

does not require channel statistics to derive the coefficients of the state transi-

tion matrix. When comparing Fig. 3.16 with Fig. 3.13, we can see that the

MSD performances of the VGRLS estimator are greatly improved. In a Rician
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Figure 3.17 MSD of the VGRLS estimator for a (2,2) MIMO system in a Rician fading
channel with a normalized fade rate fDTs of 0.007 with a K-factor of 10.

environment, the channel is easier to track and hence the cross-over point where

a larger N has a better MSD performance occurs at higher SNR. For example,

for a K-factor of 4, the cross-over point for N = 0 and 2 occurs at SNR = 12

dB, while for a K-factor of 10, this occurs at about 15 dB. The same is observed

for the cross-over point for N = 0 and 1. In Fig. 3.17, the MSD performance

is for a normalized fade rates of 0.007 and K-factor of 10. These parameters are

used because in the subsequent chapter we will compare the performance of an

integrated receiver with the results of [100] which use the same parameter values.

3.6 SUMMARY

We could interpret the VGRLS algorithm as a special case of a Kalman filter

where there is no process noise vector and the state transition matrix is fixed.

The algorithm therefore operates as an approximation to a Kalman filter. As

such its performance is not expected to be superior than that of a Kalman filter.

This explains why the performance of the VGRLS estimator presented in the
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previous section never exceeds that of the Kalman estimator.

However, with appropriately chosen parameters, the VGRLS estimator is able

to offer comparable MSD performance to a Kalman estimator, with a similar

level of complexity. Furthermore, it has a major advantage over the Kalman

estimator in that it does not require any channel statistics, i.e., second order

channel statistics and SNR, in order to operate. This is because it employs a

fixed state transition matrix that can be derived a priori without knowing the

statistics. This derivation is based on the theory of polynomial prediction and a

Taylor’s series expansions of the channel impulse response in the time domain, i.e.,

t-powers series expansions. The estimator arrives at an approximate channel state

model with unforced dynamics which does not require knowledge of the process

noise autocovariance, and hence the SNR. This makes the VGRLS algorithm an

attractive alternative to the Kalman estimator.

The MSD performance of the VGRLS estimator is affected by several param-

eters, some of which are inherent to the algorithm, such as the predictor length,

P, polynomial order, N, and forget factor, λ, while the rest are determined by

the conditions under which it is operated, such as the normalized channel fade

rate, fDTs, system SNR and the length of the training sequence, Lt.

It is noted that the algorithm’s parameters tend to have opposing effects

across the range of SNR studied. For example, for a fixed predictor length P,

a higher polynomial order N offers a better fit to the fading process, hence re-

ducing the residual error and offers a better MSD at high SNR; however, with a

higher polynomial order the norm of the polynomial coefficients is larger thereby

increasing the effective variance component due to the AWGN, resulting in worse

MSD especially at low SNR. Similarly, adjusting the ‘forget factor’ λ will also

result in this contradicting effect on the MSD across the SNR range. Therefore

a chosen set of parameters may not be suitable for every condition and adaptive

adjustment of some of the parameters, e.g. λ, may be necessary.

Nevertheless, the simulation results under a broad range of channel conditions

have indicated that with sufficient training in the mid to high SNR range of 25
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to 50 dB and for the range of fade rates studied, the VGRLS estimator with a

predictor length P = 3, polynomial order N = 2, and forget factor λ = 0.9 offers

excellent MSD performance.





Chapter 4

REDUCED COMPLEXITY CHANNEL
ESTIMATION

4.1 INTRODUCTION

We have shown in Chapter 3 that the VGRLS estimator is able to offer com-

parable ‘mean square deviation’ (MSD) performance to an optimum Kalman

estimator and at a similar level of complexity, namely O(
(N )3

)
real operations

per iteration, where N is the dimension of the channel state vector of the VGRLS

algorithm. The primary computational load of the VGRLS estimator (also the

Kalman estimator) is the recursive computation of the Riccatti update equation

for Pk/k. As noted, this computation does not depend on the received samples yk.

Referring to Fig. 3.4, with known inputs, i.e. dk, U, λ and δ, the Riccatti equa-

tion can actually be computed before the algorithm is initiated. This provides

a basis for computing the equation off-line which offers complexity reduction in

the implementation of the algorithm.

The potential for this simplification is recognized by [30] which replaces the

on-line computation of the Riccatti equation with an off-line recursive computa-

tion. This results in a reduced complexity estimator known as the polynomial-

based generalized least mean squares (GLMS) algorithm. With appropriately

chosen predictor lengths and polynomial orders, the GLMS estimator offers sub-

stantially better performance than that of a conventional LMS algorithm. How-

ever, in general its performance is not as good as the GRLS and Kalman esti-

mators. The degradation in performance represents a trade-off for the reduced
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computational load.

The GLMS algorithm is interesting in that it represents a state-space ap-

proach to a conventional LMS algorithm. It achieves this by being a model

dependant algorithm which is a departure from the traditional model indepen-

dent approach of the LMS algorithm [91]. As such, it offers better tracking in a

fading environment, but at an increased level of complexity. With O(
(N )2

)
real

operations per iteration, it is an order of magnitude more complex than the LMS

algorithm at O(
(N )

)
real operations per iteration. Since the GLMS algorithm is

a simplification of the GRLS algorithm, it provides an approach to reducing the

complexity of a Kalman-like algorithm.

We note that there have been several approaches to reducing the complexity of

an actual Kalman estimator. In [116], an LMS-like channel estimation algorithm

is proposed by replacing the online computation of Riccatti equation of a Kalman

filter with an equivalent algebraic equation that is pre-computed. This equation

is dependant on a model of the channel dynamics and is different for various

models. Examples are shown using an autoregressive (AR) second order model

and an integrated random walk model. Furthermore, similar to the Kalman filter,

it requires channel statistics in order to derive the AR parameters and the process

noise autocovariance.

In [117], a predictive LMS-type channel estimator known as the Wiener LMS

(WLMS) algorithm is proposed. It employs Wiener filters and also requires the

channel covariance. Another predictive LMS-type estimator, known as the mod-

ified LMS estimator, is proposed in [118] by simplifying a Kalman filter. It is

only considered for a second order Markov model of the channel, and is equiva-

lent to a special case of the GLMS algorithm with a predictor length P = 2 and

polynomial order N = 1. On the other hand, the GLMS algorithm of [30] may

be used for higher order polynomial models of the channel. In contrast to these

algorithms, the GLMS algorithm, like its predecessor GRLS algorithm [29], also

does not require any a priori knowledge of the channel statistics.

Motivated by [30], we investigate the reduced complexity form of the VGRLS
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algorithm of Chapter 3. As the resulting algorithm is a vector form of the GLMS

algorithm, we call it a polynomial predictor based Vector GLMS (VGLMS) al-

gorithm. In the following sections, we derive the algorithm and compare its

performance to that of the VGRLS algorithm.

4.2 COMPLEXITY REDUCTION OF THE VGRLS ALGORITHM

Assuming that the channel state vector ĥk/k−1 and the intermediate matrix

Pk/k−1 are known, the update equations for the VGRLS algorithm may be ex-

pressed as

Kk = Pk/k−1d
H
k

(
IRNr + dkPk/k−1d

H
k

)−1
(4.1)

Pk/k = (IRNrTLP −Kkdk)Pk/k−1 (4.2)

ĥk/k = ĥk/k−1 + Kk

(
yk − dkĥk/k−1

)
(4.3)

and the prediction equations may then be written as

ĥk+1/k = Uĥk/k (4.4)

Pk+1/k = λ−1UPk/kU
H . (4.5)

In order to reduce the complexity of the VGRLS algorithm, it is necessary

to replace the on-line recursive computation of Pk/k. We follow the approach

of [92] where in analyzing the steady state tracking performance of the RLS

algorithm, it is assumed that the elements of Pk/k converge to some fixed values

represented by the elements of a matrix P̂. This is also assumed in [30] where an

approximation to P̂ is achieved by inverting P̂−1 which can be approximated by

limk→∞E
[
P−1

k/k

]
. In the following we will show the derivation of P̂.
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First, we note that in steady state the inverse of Pk/k, i.e. P−1
k/k, can be

modelled as [92]

P−1
k/k = E

[
P−1

k/k

]
+ ϑk (4.6)

where ϑk is a zero mean complex Gaussian perturbation matrix. For λ → 1

[92],[26], the variance of the elements of the perturbation matrix will be small,

and hence P̂−1 = limk→∞E
[
P−1

k/k

]
.

Next, we recall equations (3.73) and (3.75) of Chapter 3, namely

P−1
k/k−1 = λ

(
Uk/k−1Pk−1/k−1U

H
k/k−1

)−1

= λUH
k−1/kP

−1
k−1/k−1Uk−1/k,

(4.7)

and

P−1
k/k = P−1

k/k−1 + dH
k dk. (4.8)

We then use them to evaluate P̂−1 as

P̂−1 = limk→∞E
[
P−1

k/k

]
= limk→∞E

[
λGHP−1

k−1/k−1G + dH
k dk

]
(4.9)

where G is the backward transition matrix defined as G = U−1 [49]. Expanded

backward recursively using (4.7) and (4.8), we may write E
[
P−1

k/k

]
as

E
[
P−1

k/k

]
= λGHE

[
λGHP−1

k−2/k−2G + dH
k dk

]
G + E

[
dH

k dk

]

= λk
(
GH

)k
P−1

0/−1 (G)k +
k∑

l=1

λlGHRdG + Rd

= λk
(
GH

)k
P−1

0/−1 (G)k +

(
λk+1 − λ

λ− 1

)
GHRdG + Rd

(4.10)
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where E
[
dH

k dk

]
= Rd is the autocorrelation matrix of dk.

It is generally intractable [26] to evaluate the asymptotic value of the first

term on the r.h.s. of (4.10) as k → ∞. As an alternative, we may run (4.10)

recursively for some suitably chosen large value of k by assuming that the system

reaches steady state for that value of k. An approximation to P̂ is then obtained

by inverting the resulting matrix. However, there are instances for which the

matrix is ill-conditioned and direct inversion leads to inaccurate results.

To circumvent this problem, we resort to evaluating (4.10) recursively without

involving matrix inversion. We assume that the autocorrelation matrix of dk

may be factorized as Rd = DHD, where D is a square matrix of size RNrTLP x

RNrTLP . Then, (4.10) may be expressed as

E
[
P−1

k/k

]
= λGHE

[
P−1

k−1/k−1

]
G +DHD

= E
[
P−1

k/k−1

]
+DHD

(4.11)

where

E
[
P−1

k/k−1

]
= λGHE

[
P−1

k−1/k−1

]
G. (4.12)

Using the matrix inversion lemma1, and by defining A = E
[
P−1

k/k

]
, B−1 =

E
[
P−1

k/k−1

]
, C = DH , D−1 = IRNrTLP , CH = D, the inverse of equation (4.11)

may be expressed as

E
[
P−1

k/k

]−1

= E
[
P−1

k/k−1

]−1

− E
[
P−1

k/k−1

]−1

DH

(
IRNrTLP +DE

[
P−1

k/k−1

]−1

DH

)−1

E
[
P−1

k/k−1

]−1

.

(4.13)

1Given A = B−1+CD−1CH , the inverse of A is given by A−1 = B−BC(D+CHBC)−1CHB.
For more details see [49].
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By further defining P̂k/k = E
[
P−1

k/k

]−1

and P̂k/k−1 = E
[
P−1

k/k−1

]−1

, this can

be reduced to a simplified form as

P̂k/k = P̂k/k−1 − P̂k/k−1DHΨk/k−1DP̂k/k−1 (4.14)

where

Ψk/k−1 =
(
IRNrTLP +DP̂k/k−1DH

)−1

. (4.15)

Using similar definitions (4.12) may also be expressed as

P̂k/k−1 = λ−1UP̂k−1/k−1U
H . (4.16)

In steady state, the ‘intermediate’ matrix P̂ is well approximated by P̂k/k

for large values of k and P̂0/−1 = P0/−1. In this manner, the matrix P̂ may

be obtained by computing P̂k/k recursively off-line following (4.16), (4.15) and

(4.14) and without any of the numerical problems associated with matrix inver-

sion. It has been observed that as λ → 1, a large value of k is needed for P̂k/k to

reach steady state. The number of recursions required to obtain a good approxi-

mation was not mentioned in [30]. However, no more than 1000 iterations were

empirically found to be sufficient for the channels employed in this thesis.
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Figure 4.1 Signal flow diagram of the time-invariant intermediate matrix P̂.

To evaluate the time-invariant approximation P̂ requires knowledge of the
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Figure 4.2 Signal flow diagram of Ψk/k−1.

autocorrrelation matrix of the data vector Rd = E
[
dH

k dk

]
, the state transition

matrix U and the ‘forget factor’ λ, and in general these parameters are known a

priori. A signal flow diagram for P̂ and Ψk/k−1 is given in Fig. 4.1 and 4.2.

From (3.80), we recognize that the Kalman gain Kk = Pk/kd
H
k and by re-

placing Pk/k with P̂, we obtain the approximation

Kk = P̂dH
k (4.17)

and given that dk is the vector of known training symbols, it can also be derived

a priori.

Substituting Pk/k = P̂ in the VGRLS algorithm of equations (4.1) to (4.5), we

may write the real time one-step prediction equation of the simplified estimation

algorithm as

ĥk+1/k = Uĥk/k

= U
[
ĥk/k−1 + Kk

(
yk − dkĥk/k−1

)]

= U
[
ĥk/k−1 + P̂dH

k

(
yk − dkĥk/k−1

)]
.

(4.18)

The corresponding signal flow diagram is given in Fig. 4.3.

We call the reduced complexity algorithm of (4.18) a Vector GLMS (VGLMS)

algorithm. We note that in the special case where P = 1 and N = 0, the algorithm

reduces to a conventional vector LMS algorithm with a step size µ = 1− λ.
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Figure 4.3 Signal flow diagram of the simplified one step prediction.

Table 4.1 Numbers of real operation per iteration of the VGRLS and VGLMS algorithms for
a (2, 2) MIMO system with a delay spread, L = 3, Nr = 1 sample per symbol and a predictor
length, P = 3.

Algorithm Type × + ÷
VGRLS 400608 387288 4
VGLMS 14400 11448 4

4.3 A COMPLEXITY COMPARISON OF THE VGRLS AND

VGLMS ALGORITHMS

We compare the complexity of the VGRLS and VGLMS algorithms for the fol-

lowing scenario: a (2,2) MIMO system with L = 3 multipath rays in each of

the subchannels and a predictor length of P = 3 and Nr = 1 sample per sym-

bol. Table 4.1 gives the numbers of real operation2 needed per iteration of the

algorithms.

It is clear from Table 4.1 that substantial computational savings are achieved

by the VGLMS algorithm. This is because for VGRLS the on-line recursion of

(4.2) for computing Pk/k requires O (
(RNrTLP )3) real operations per iteration

in the highest term of calculations. In fact this constitutes the bulk of the com-

putational complexity and by getting rid of this online recursion, we reduce the

complexity of the algorithm to just O (
(RNrTLP )2) real operations. The sav-

2We assume that one complex multiplication requires 4 real multiplications and 2 real ad-
ditions; while one complex addition requires 2 real additions.
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Figure 4.4 Comparison of the required numbers of real operation per iteration of the VGRLS
and VGLMS algorithms with a fixed predictor length P = 3, Nr = 1 sample per symbol and
delay spread of L = 3 for various (T, R) MIMO system for T = R.

ings become more significant as the dimension of the MIMO system increases, as

shown in Fig. 4.4.

4.4 PERFORMANCE EVALUATION

The ‘mean square deviation’ (MSD) performance of the VGLMS estimator is

presented in this section. The MSD estimates the average squared norm, or error,

between the original and the estimated channel impulse responses in steady state.

The estimator is operated alone with known transmitted frames. Various lengths,

Lt = 52, 104 and 208, of training sequence followed by 116 data symbols, all using

QPSK modulation, are randomly generated. We assume that the estimator is in

transient mode during the training period, after which it settles into steady state

mode. Hence for MSD evaluation the first Lt symbols of each frame are not

included. At the beginning of each frame the estimator re-initializes and starts

acquisition again. Simulation results for the estimator with predictor lengths P

= 3, 4 and polynomial orders N = 0, 1, 2, 3 are presented.

Fig. 4.5 shows the average MSD performance of the VGLMS estimator with

a predictor length P = 3 in a (2,2) MIMO Rayleigh fading channel with a nor-
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Figure 4.5 MSD of the VGLMS estimator for P = 3 and various N in a Rayleigh fading
with fDTs = 0.002 and λ = 0.95.
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Figure 4.6 MSD of the VGLMS estimator for P = 3 and various N in a Rayleigh fading
with fDTs = 0.002 and λ = 0.90.
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malized fade rate fDTs = 0.002 and a forget factor λ = 0.95. The performance

for N = 0, which is equivalent to the vector LMS algorithm, is relatively very

poor at 10−1 and that of N = 1 is in between at approximately 10−2. Similar

to the VGRLS estimator, the VGLMS estimator with N = 2 offers the best per-

formance. By changing the forget factor λ to 0.90, as shown in Fig. 4.6, the

performance for N = 1 and 2 is improved at high SNR although for N = 2, the

performance tends to get worse below 35dB. In general, the MSD performance of

the VGLMS estimator is worse than that of the VGRLS estimator. For example

comparing Figs. 4.6 and 3.6 at high SNR the MSD for VGLMS estimator with N

= 2 is close to 10−3 whereas for that of the VGRLS estimator it gets very close

to 10−5.
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Figure 4.7 MSD of the VGLMS estimator for P = 3 and various N in a Rayleigh fading
with fDTs = 0.0001 and λ = 0.95.

Fig. 4.7 and 4.8 show the MSD performance of the VGLMS estimator with

similar settings as above but with a normalized fade rate of 0.0001. The results

show that the performance of the VGLMS estimator is better in a slower fading

environment. With λ = 0.95, N = 2 offers the best performance whereas with λ
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Figure 4.8 MSD of the VGLMS estimator for P = 3 and various N in a Rayleigh fading
with fDTs = 0.0001 and λ = 0.90.

= 0.90, N = 1 offers the best performance. We note that in general the VGLMS

estimator requires a longer training sequence, about twice that required by the

VGRLS estimator, to converge. The MSD performance for faster fading with a

normalized fade rate of 0.01 is shown in Fig. 4.9 and 4.10. At this fade rate,

the estimator does not really converge with λ = 0.95, and with λ = 0.90 the

MSD performance is still very poor even though it converges to about 10−1. This

implies that the VGLMS estimator does not track a very fast fading environment

well.

Now we show in Fig. 4.11 and 4.12 the MSD performance of the VGLMS

estimator with a predictor length P = 4 , forget factor λ = 0.95 and 0.90, at a

normalized fade rate of 0.002. The performance is slightly worse than that of P =

3. For λ = 0.90, N = 3 does not converge. This also occurs at a normalized fade

rate of 0.0001. The results show that using a predictor length P = 3 is sufficient

for most situations.

We show the MSD performance of the VGLMS estimator in a Rician fading
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Figure 4.9 MSD of the VGLMS estimator for P = 3 and various N in a Rayleigh fading
with fDTs = 0.01 and λ = 0.95.
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Figure 4.10 MSD of the VGLMS estimator for P = 3 and various N in a Rayleigh fading
with fDTs = 0.01 and λ = 0.90.
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Figure 4.11 MSD of the VGLMS estimator for P = 4 and various N in a Rayleigh fading
with fDTs = 0.002 and λ = 0.95.

5 10 15 20 25 30 35 40 45 50
10

−4

10
−2

10
0

10
2

10
4

10
6

SNR per receive antenna

A
ve

ra
ge

 M
S

D

 

 
N=0, Lt=52
N=0, Lt=104
N=0, Lt=208
N=1,  Lt=52
N=1, Lt=104
N=1, Lt=208
N=2, Lt=52
N=2, Lt=104
N=2, Lt=208
N=3, Lt=52
N=3, Lt=104
N=3, Lt=208

Figure 4.12 MSD of the VGLMS estimator for P = 4 and various N in a Rayleigh fading
with fDTs = 0.002 and λ = 0.90.
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Figure 4.13 MSD of the VGLMS estimator for P = 3 and various N in a Rician fading with
fDTs = 0.007, K = 10 and λ = 0.90.

channel with a normalized fade rates of 0.007 and K -factor of 10 in Fig. 4.13.

The result shows that the VGLMS estimator, like the VGRLS estimator, can

readily operate in a Rician fading environment without requiring reconfiguration

of the state transition matrix, and the MSD performance is also greatly improved

in such a fading channel.

4.5 SUMMARY

A reduced complexity channel estimator based on the previously derived VGRLS

estimator, known as the VGLMS estimator, has been developed. This is achieved

by replacing the online recursive computation of the Riccatti equation by a offline

approximation that can be computed a priori. This reduces the computational

load of the algorithm by an order of magnitude. However, as a result, the MSD

performance of the VGLMS estimator is not as good as the VGRLS estimator. It

is shown that the VGLMS estimator can still offer sufficiently low MSD in slow

fading although it is not suitable for fast fading.





Chapter 5

INTEGRATED SYMBOL-BY-SYMBOL BASED
RECEIVER

5.1 INTRODUCTION

A polynomial predictor based channel estimator for MIMO fading dispersive

channels known as the VGRLS estimator was developed in Chapter 3. Simu-

lation results show that the VGRLS estimator is able to offer comparable MSD

performance to an optimum Kalman filter based estimator without requiring

knowledge of channel statistics. Its structure and complexity is similar to the

Kalman estimator. A simplified version of the estimator known as the VGLMS

estimator was developed in Chapter 4. Even though the performance of the

VGLMS estimator is not as good as its predecessor the VGRLS estimator, it

offers significant reduction in computational complexity.

As an application of the channel estimators, we now integrate them into a

receiver employing a vector decision feedback equalizer (DFE) structure similar

to those of [100] and [31]. Channel estimates from either the VGRLS or the

VGLMS channel estimator are used to calculate the filter tap coefficients of the

DFE.

Intersymbol interference (ISI) is a significant impairment in digital commu-

nication systems operating in a frequency selective fading environment. System

performance, in terms of average symbol error probability, may be severely de-

graded by ISI. For ISI-corrupted received signals, maximum likelihood sequence

estimation (MLSE) is an optimum equalization method [36],[35]. However, for
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a given modulation format, its complexity increases exponentially with both the

channel delay spread, L, and number of transmit antennas, T. Furthermore, its

decision delay is significant (typically about 5L) [36]. We have, therefore, em-

ployed a vector minimum mean square error (MMSE) DFE [31] structure here.

The principle of a DFE is to use previous decisions, combined with a knowl-

edge of the channel response, to form an estimate of that portion of the ISI at

the decision instant due to previously transmitted symbols. This estimate is then

subtracted from the received signal, thereby reducing the effect of ISI. If the pre-

vious decisions are all correct and the channel response is known perfectly, the

ISI due to previously detected symbols is eliminated entirely.

A DFE implementation consists of a linear feedforward filter, which attempts

to equalize the ISI due to symbols transmitted in the future, followed by a deci-

sion device and a feedback filter. The output of the decision device is input to

the feedback filter to form an estimate of the ISI due to previously transmitted

symbols. This estimate is subtracted from the signal at the input to the decision

device. Both filters are usually implemented as tapped delay lines. The number

of taps in the feedback filter determines the number of previous decisions which

are assumed to affect the current decision.

The decisions at the output of the DFE are used as reference signals for

the channel estimator in updating the channel estimates. The current decisions

are needed to obtain up-to-date channel estimates which are required when re-

calculating the filter tap coefficients of the DFE. However, the decision delay

of the DFE, which arises as the received signal passes through the feedforward

filter, causes the output at the decision device to be delayed. Therefore the

channel estimates are also delayed, and a ‘time-lag’ is created. In order to bridge

this gap, channel prediction is employed. Here a simple polynomial-based channel

prediction module which exploits the fixed a priori derived polynomial coefficients

employed in the VGRLS and VGLMS estimators, is employed for predicting the

channel response.

In the following sections, we describe the overall receiver structure which in-
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cludes the development of the vector DFE, the integration with the VGRLS/VGLMS

channel estimator and the polynomial-based channel prediction module.

5.2 INPUT-OUTPUT SIGNAL MODEL

The input-output signal model used in this chapter is defined here. Following the

definitions used in [31], we treat the transmitted data symbol as the input and

the received signal as the output of the channel. For convenience we reproduce

some of the signal model equations used in Chapter 3 here.

At time k, the j -th symbol-rate channel output may be written as

y
(j)
k =

∑T
i=1

∑L−1
l=0 d

(i)
k−lh

(j,i)
k,l + n

(j)
k

; j = 1, 2, · · · , R (5.1)

where d
(i)
k is the k -th transmitted complex baseband M -ary input data symbol

from the i -th antenna, {h(j,i)
k,l }l=L−1

l=0 is the sampled fading dispersive composite1

channel impulse response between the i -th transmit and j -th receive antennas at

time k with delay spread of L symbol periods, and n
(j)
k is sampled additive white

Gaussian noise (AWGN) with variance, σ2
n.

Assuming an oversampling factor of Nr ≥ 1 so that sampling occurs every

Ts/Nr seconds Ts being the symbol period, we define vectors of Nr samples in

the k -th symbol period as

y
(j)
k =




y
(j)
k,0

y
(j)
k,1

...

y
(j)
k,Nr−1




,H
(j,i)
k,l =




h
(j,i)
k,l,0

h
(j,i)
k,l,1

...

h
(j,i)
k,l,Nr−1




,n
(j)
k =




n
(j)
k,0

n
(j)
k,1

...

n
(j)
k,Nr−1




. (5.2)

From (5.1), we may then write the oversampled (vector) form of the signal

in the k -th symbol interval as

1Assumed to be the convolution of the transmit pulse shape and physical channel response.
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y
(j)
k =

∑T
i=1

∑L−1
l=0 d

(i)
k−lH

(j,i)
k,l + n

(j)
k

; j = 1, 2, · · · , R. (5.3)

This signal may then be expressed in a compact matrix-vector form [32] as

yk =
L−1∑

l=0

Hk,ldk−l + nk (5.4)

where

yk =




y
(1)
k

y
(2)
k

...

y
(R)
k




, dk =




d
(1)
k

d
(2)
k

...

d
(T )
k




,nk =




n
(1)
k

n
(2)
k

...

n
(R)
k




(5.5)

and where we define the RNr x T channel matrix-taps

Hk,l =




H
(1,1)
k,l · · · H

(1,T )
k,l

...
. . .

...

H
(R,1)
k,l · · · H

(R,T )
k,l


 ; l = 0, 1, 2, · · · , L− 1. (5.6)

Over a block of Nf symbol periods (corresponding to the length of the DFE

feedforward filter), the received signal vectors yk of (5.4) can be written in matrix

form as
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


yk+Nf−1

yk+Nf−2

...

yk




=




Hk+Nf−1,0 · · · Hk+Nf−1,L−1 0 · · · 0

0 Hk+Nf−2,0 · · · Hk+Nf−2,L−1 0 · · ·
...

...

0 · · · 0 Hk,0 · · · Hk,L−1







dk+Nf−1

dk+Nf−2

...

dk−L+1




+




nk+Nf−1

nk+Nf−2

...

nk




(5.7)

This may be expressed in the compact form,

yk+Nf−1:k = Cdk+Nf−1:k−L+1 + nk+Nf−1:k (5.8)

where C is the convolution matrix,

C =




Hk+Nf−1,0 · · · Hk+Nf−1,L−1 0 · · · 0

0 Hk+Nf−2,0 · · · Hk+Nf−2,L−1 0 · · ·
...

...

0 · · · 0 Hk,0 · · · Hk,L−1




(5.9)

Corresponding to this is the block of (Nf + L − 1) input symbol vectors

dk+Nf−1:k−L+1 consisting of (L - 1) past symbol vectors dk−1:k−L+1 and (Nf − 1)

future symbol vectors dk+Nf−1:k+1 that are yet to be detected. The feedback

filter utilizes a subset dk−1:k−Nb
of previously detected symbol vectors (assumed

correct) to cancel their interfering effect on the current symbol vector dk.

We define the T(Nf + L− 1) x T(Nf + L− 1) input auto-correlation matrix
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Rdd = E{dk+Nf−1:k−L+1d
H
k+Nf−1:k−L+1}

= σ2
dIT (Nf+L−1)

(5.10)

where IT (Nf+L−1) is an identity matrix of size T (Nf +L−1) and σ2
d is the variance

of the transmitted data symbol. Similarly we define the (RNf ) x (RNf ) noise

auto-correlation matrix

Rnn = E{nk+Nf−1:kn
H
k+Nf−1:k}

= σ2
nIRNf

(5.11)

where IRNf
is an identity matrix of size RNf and σ2

n is the AWGN noise variance.

The input-output cross-correlation and output auto-correlation matrices needed

for the calculation of the DFE tap coefficients can then be written in terms of

Rdd, Rnn and C as

Rdy = E{dk+Nf−1:k−L+1y
H
k+Nf−1:k} = RddC

H (5.12)

and

Ryy = E{yk+Nf−1:ky
H
k+Nf−1:k}

= CRddC
H + Rnn. (5.13)

5.3 THE VECTOR DFE

We assume that the DFE contains Nf feedforward filter matrix taps, Fk, and Nb

feedback filter matrix taps, Bk, as shown in Fig. 5.1. Each of the feedforward taps

consists of Ts

Nr
-spaced taps while each of the feedback taps is Ts-spaced. These

matrix tap coefficients are optimized jointly based on the MMSE performance



5.3 THE VECTOR DFE 111

criterion. Following [31], we describe the design of the optimum MMSE vector

DFE in detail.

Feed-forward

filter taps,
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-


Figure 5.1 A vector MMSE DFE.

The vector DFE consists of a feedforward filter matrix

FH
k =

[
FH

k,0 FH
k,1 · · · FH

k,Nf−1

]
(5.14)

with Nf matrix taps each of size (RNr x T ) and a feedback filter matrix

BH
k =

[
BH

k,1 · · · BH
k,Nb

]
(5.15)

with Nb matrix taps each of size (T x T ).

For analytical convenience, we define an extended T x T(Nf +L−1) feedback

filter matrix

B̃H
k =

[
0T,T4 IT BH

k

]
, (5.16)

that corresponds to the symbol vectors dk+Nf−1:k−L+1 of (5.8). Note that 4 is

the decision delay in a causal realization of the DFE that satisfies the condition

(4+Nb+1) = (Nf +L−1). In general, for ISI cancellation, we require Nb ≥ L−1.

For the purpose of modelling, we assume here that Nb = L−1 so that 4 = Nf−1

[31].

Referring to Fig. 5.1, the vector DFE’s error vector at time k, assuming
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correct past decisions, is given by

Ek = dk+Nf−1−4 − d̃k+Nf−1−4

= dk+Nf−1−4 −
∑Nf−1

f=0 FH
k,fyk+Nf−1−f +

∑Nb

b=1 BH
k,bdk+Nf−1−4−b

=
[

0T,T4 IT,T BH
k,1 · · · BH

k,Nb

]
dk+Nf−1:k−L+1

−
[

FH
k,0 · · · FH

k,Nf−1

]
yk+Nf−1:k

= B̃H
k dk+Nf−1:k−L+1 − FH

k yk+Nf−1:k.

(5.17)

The corresponding error auto-correlation matrix may then be written as

Ree = E[EH
k Ek]

= B̃H
k RddB̃k − B̃H

k RdyFk − FH
k RydB̃k + FH

k RyyFk

= B̃H
k

(
Rdd −RdyR

−1
yy Ryd

)
B̃k +

(
FH

k − B̃H
k RdyR

−1
yy

)
Ryy

(
FH

k − B̃H
k RdyR

−1
yy

)H

= B̃H
k R⊥B̃k + WH

k RyyWk

(5.18)

From (5.17) and applying the orthogonality principle using the least squares

approach, which states that E[Eky
H
k+Nf−1:k] = 0, the feedforward matrix filter

that achieves optimal performance for a given feedback matrix filter B̃k is given

by

FH
k = B̃H

k RdyR
−1
yy . (5.19)

Using this optimum feedforward matrix filter of (5.19) reduces the second

term on the r.h.s of (5.18) to zero which then simplifies the equation to Ree =

B̃H
k R⊥B̃k.

Employing equations (5.10) to (5.13) together with matrix inversion lemma2,

2Given A = B−1+CD−1CH , the inverse of A is given by A−1 = B−BC(D+CHBC)−1CHB.
For more details see [49].
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the error auto-correlation matrix in (5.18) may then be written as

Ree = B̃H
k R⊥B̃k

= B̃H
k (Rdd −RdyR

−1
yy Ryd)B̃k

= B̃H
k (Rdd −RddC

H(CRddC
H + Rnn)−1CRdd)B̃k

= B̃H
k (R−1

dd + CHR−1
nnC)−1B̃k

= B̃H
k R−1B̃k

(5.20)

where

R = R−1
dd + CHR−1

nnC. (5.21)

To calculate the optimal feedback matrix taps, we partition R into the sub-

matrix form [31],

R =


 R11 R12

RH
12 R22


 (5.22)

where R11 is the T(4+ 1) x T(4+ 1) upper left sub-matrix. We further define

a matrix

Gt =
[

0T,T4 IT

]
(5.23)

and from (5.22) and (5.23), we obtain

B̃k =


 IT (4+1)

RH
12R

−1
11


G =




0T,T4

IT

Bk


 (5.24)

where B̃k is the extended feedback matrix containing Bk as the optimal feedback

matrix tap coefficients. The error auto-correlation matrix of (5.20) can then be

calculated and the optimal 4 determined such that the trace of Ree is minimized
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[31]. There is no closed-form solution [55] to the 4 that minimizes the trace of

Ree, and it must be found by numerical search. However, as we have assumed

that the number of feedback matrix-taps is Nb = L − 1, the delay 4 is fixed at

Nf −1 which is found to be optimal for most practical channels [31]. The MMSE

feedforward matrix tap coefficients are calculated as in (5.19) using B̃H
k .

5.4 CHANNEL ESTIMATION

The above development of the DFE is based on the assumption that the channel

convolution matrix C is available. In reality this matrix is obtained using channel

estimates. Here we employ the VGRLS/VGLMS channel estimator to provide an

estimate Ĉ of the channel matrix C.

With channel estimation, at each time instant k, we formulate the RNrNf x

T(Nf +L−1) block pre-windowed channel convolution matrix Ĉ, the estimate of

(5.9), where Ĥb,m for b = {k + Nf − 1, · · · , k} and m = {0, 1, · · · , L− 1}, are the

estimates of the (RNr x T ) channel matrices, Hk,l of (5.6). Using the estimate

Ĉ in place of C, the feedback matrix tap coefficients of the DFE are estimated

following the steps described in (5.21) to (5.24), and the feedforward matrix tap

as in (5.19).

5.5 THE INTEGRATED RECEIVER

The overall receiver structure is shown in Fig. 5.2 where the channel estimator

provides vector estimates, {ĥ(j,i)
k,l,n}l=L−1

l=0 , of the channel responses, {h(j,i)
k,l,n}l=L−1

l=0 , for

the adaptive equalization of the received signal streams, {y(j)
k,n}, for j = 1, 2, · · · ,R,

i = 1, 2, · · · ,T and n = 0, 1, · · · , Nr − 1. The transmitted frame consists of Lt

training symbols and Ld data symbols. Initially the receiver operates in training

mode where only the estimator is operating and the training sequence is used

to obtain an initial channel estimate. Following this, the receiver operates in

decision-directed mode during the Ld-symbol data transmission period, where

the estimator and equalizer work in tandem.
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Figure 5.2 The overall receiver structure in decision-directed mode where the vector DFE
and channel estimator work in tandem. Note initially when in training mode, the estimator
operates alone using the known training symbols instead of the output symbols from the DFE.

5.5.1 Training Mode

In this mode, only the channel estimator is operated using a training sequence of

length Lt, according to the following:

VGRLS Algorithm

Step 1: Initiate the VGRLS algorithm with an all-zero estimated channel vector,

ĥ1/0, and ‘intermediate’ matrix, P1/0 = δ−1IRNrTLP , where δ is a small posi-

tive real constant, IRNrTLP is an identity matrix with dimension of RNrTLP

x RNrTLP . Using the observation vector yk, compute the Kalman gain

(3.82), update the ‘intermediate’ matrix (3.83), and update the estimated

channel vector (3.84).

Step 2: Compute the one-step predicted channel vector (3.85) and one-step pre-

dicted ‘intermediate’ matrix (3.86).

Step 3: With every subsequent received observation vector, yk, k ≥ 2, repeat steps

2 and 3 until the end of the training sequence.
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VGLMS Algorithm

Step 1: Compute the offline recursion for P̂k/k according to (4.16), (4.15) and (4.14).

Step 2: Compute the one-step predicted channel vector (4.18).

Step 3: With every subsequent received observation vector, yk, k ≥ 2, repeat steps

2 and 3 until the end of the training sequence.

5.5.2 Decision-directed Mode

In this mode, the channel estimator and the vector DFE are operated together

during data transmission. Initially, channel estimates obtained from the training

mode are used to calculate the DFE filter coefficients and equalize the received

signals. The outputs from the DFE are then used by the channel estimator to

provide the next channel estimates.

However, due to the equalizer decision delay of 4 = Nf − 1 symbols with

reference to the equalizer input, a time-lag is introduced where at time k -1

the output symbols from the DFE are delayed by 4 symbol periods. Thus,

the output of the decision device is the estimated symbol vector d̂k−4−1 ={
d̂

(1)
k−4−1, d̂

(2)
k−4−1, · · · , d̂

(T )
k−4−1

}t
3. This is fed to the channel estimator in place of

the training symbols to provide the next channel estimate vector at time k. Using

the DFE decision vectors d̂k−4−1, · · · , d̂k−4−L, the received vector yk−4−1 and

P previously estimated channel vectors, the channel estimator produces ĥk−44.

To calculate the vector DFE at time k, the Nf most recent estimated channel

vectors are needed. Up to time k −4, the channel estimates are available from

the channel estimator and the last 4 channel vectors need to be predicted. A

simple method is to assume that the channel remains constant over 4 time sym-

bols so that ĥk = ĥk−1 = · · · = ĥk−4 where ĥk−4 is available from the estimator.

However, this strictly speaking applies only to a very slowly fading channel.

3For convenience of illustration we shift the time index of the DFE in this section from
k + Nf − 1 : k to k : k −Nf + 1 so that the output of the decision device at time k is indexed
as d̂k−4 instead of d̂k+Nf−1−4.

4For brevity we simplify the notation ĥk−4/k−4−1 to ĥk−4.
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As an alternative, we employ a polynomial prediction module similar to that

of [25] for predicting the 4 channel vectors. Since the underlying structure

of the channel estimator uses a t-power series expansion [23] for modeling the

channel fading process as an N -th order polynomial series, we already have the

polynomial-based state transition matrix

U =


U1 U2 · · · UP−1 UP

IRNrTL(P−1) 0RNrTL(P−1),RNrTL


 (5.25)

where Up = apIRNrTL and ap for p = 1, 2, · · · ,P are the polynomial coefficients.

It is, therefore, straight forward to compute the predicted channel vectors as

ĥk−4+1 = Uĥk−4

ĥk−4+2 = Uĥk−4+1

... =
...

ĥk = Uĥk−1.

(5.26)

The channel estimates provided by the channel estimator and the channel

prediction module are used to compute the feedforward and feedback tap coeffi-

cients of the DFE. The received signal vectors are equalized by the DFE and the

detected symbol vector is produced at the output of the decision device. This is

used at the input of the channel estimator in decision-directed operation. The

operations during decision-directed mode may be summarized as:

Step 1: With ĥk−4−1 available at time k − 1, operate the channel estimator to

produce ĥk−4 at time k using the DFE decisions d̂k−4−1, · · · , d̂k−4−L, the

received vector yk−4−1 and P previously estimated channel vectors.

Step 2: Predict the next 4 channel vectors as in (5.26).

Step 3: Formulate Ĉ, the estimated convolution matrix of (5.9).

Step 4: Calculate the optimum coefficients of the DFE matrix-tap vectors, Bk, and

Fk of (5.24) and (5.19).
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Step 5: Equalize the received vectors and obtain d̂k−4.

Step 6: At the next time instance, repeat steps 1 to 6.

5.6 PERFORMANCE EVALUATION

We consider the error rate performance of the integrated receiver consisting of

the VGRLS/VGLMS channel estimator and the vector DFE [31] operating in

decision-directed mode. We assume throughout an uncoded, VBLAST-type [16]

of MIMO system. Independent quadrature phase shift keying (QPSK) signal

streams are transmitted from each transmit antenna. Each transmitted frame

consists of Lt training symbols and Ld data symbols. We assume independent,

WSSUS subchannels each with similar fading conditions. The fading processes are

assumed to follow Clarke’s model [42] and are simulated according to [44]. Each

subchannel is assumed to have a uniform power delay profile with L = 3 multipath

rays. Each of the multipath rays may contain both a non-random (specular)

component and a random (diffuse) component as h
(j,i)
k,l = h

(nr),(j,i)
l + h

(r),(j,i)
k,l . The

Rice K -factor, reproduced here from Chapter 3,

K =

∣∣h(nr)
∣∣2

E
{
|h(r)|2

} (5.27)

defines the power ratio between the specular and random components.

The estimated channel responses from the VGRLS/VGLMS channel estima-

tor are used to calculate the tap coefficients of the DFE and the outputs of the

DFE are used by the estimator to update the estimated channel responses. The

simulation at each SNR point is carried out until 200 symbol errors are encoun-

tered in each of the streams, and the symbol error rate (SER) is averaged across

the T transmitted signal streams. The simulations for the Kalman-filter-based

receiver follow the same approach.

The SNR is defined per received antenna. Given that σ2
n is the AWGN vari-

ance at the input of each receiver, and with both the QPSK signals and the
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overall random components of the multipath rays normalized to unit energy, we

have

SNR = 10log

(
(1 + K)

σ2
n

)
. (5.28)

Unless stated otherwise, we assume that the total transmitted power is re-

stricted to unity and allocated equally between the T antennas.

5.6.1 VGRLS Estimator with DFE
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Figure 5.3 Average SER performance of the VGRLS estimator and a Kalman filter for a
(2,2) MIMO VBLAST-type system in a Rayleigh fading channel with a normalized fade rate
fDTs of 0.002, using a MIMO MMSE DFE.

Figs. 5.3 to 5.5 show the average SER performance of independently trans-

mitted QPSK signal streams in (2,2) Rayleigh fading, (4,4) Rayleigh fading and

(2,2) Rician fading MIMO systems. A MIMO MMSE-DFE with Nf = 4 feed-

forward filter taps, Nb = 2 feedback filter taps and a decision delay of 4 = 3

is used together with a VGRLS channel estimator having a predictor length P

= 3 and polynomial orders N = 0, 1, 2. Transmitted frames with a training
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Figure 5.4 Average SER performance of the VGRLS estimator and a Kalman filter for a
(4,4) MIMO VBLAST-type system in a Rayleigh fading channel with a normalized fade rate
fDTs of 0.002, using a MIMO MMSE DFE.

sequence of Lt = 78 symbols and a data length of Ld = 1160 symbols are used.

The result shows that the receiver is able to track the channel over a reasonably

long data frame before the next training phase in the subsequent frame. For N

= 2, we have also simulated a more frequent periodic retraining using Lt = 78

symbols in the first frame and Lt = 26 in all subsequent frames with Ld = 116

in all frames. The results show that more frequent periodic retraining offers only

marginal improvement in the error rate performance for the scenarios considered

although the improvement appears to be slightly greater for the (4,4) case.

The Rayleigh simulations each have unity transmit power shared equally

among the transmitters for a normalized fade rate of 0.002. From Fig. 5.3 and

5.4, we observe that at low to moderate SNR all the channel estimators lead to

comparable SER performance regardless of the polynomial order used. However,

at high SNR, N = 2 performs better and is comparable to that of the Kalman-

filter-based receiver, which also starts to exhibit an error floor that is not much

different from that seen when using the VGRLS-based receiver. We note that at a
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Figure 5.5 Average SER performance of the VGRLS estimator and a Kalman filter for a
(2,2) MIMO VBLAST-type system in a Rician fading channel with a normalized fade rate
fDTs of 0.007 and K=10. The Kalman filter result of [100] is also plotted for reference.

SER of 10−3 there is a 5 dB difference in the Kalman filter’s performance between

a (2,2) and (4,4) system. Results with perfect decision feedback (i.e., using known

transmitted symbols) to the estimator and perfect channel information for the

DFE tap calculation when using the VGRLS estimator are also included, and

show that the N = 2 case suffers only modest losses.

We follow the approach of [100] for the simulation of the (2,2) Rician fading.

We allocate unit transmit power to each of the transmitters, so the resulting

graph has a log10(T ) = 3dB increase in the SNR per antenna compared to when

the total transmit power is limited to unit energy. A Rician K -factor of 10 and a

normalized fade rate of 0.007 are used. We also assume the specular components

of the fading channel responses to be known when simulating the Kalman filter.

This simplifies the simulation by not requiring the state transition matrix to be

restructured [97]. However, we have used 3 instead of 2 multipath rays in each

sub-channel and this affects the vector DFE’s design. We note that the resulting

Kalman filter’s curve is reasonably close to that of [100].
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For the VGRLS estimator, the specular components of the fading channel

responses are not known and are estimated together with the diffuse components.

From Fig. 5.5, we note that at a SER of 10−3 the VGRLS/DFE combination with

N = 2 is only 1 dB from the Kalman estimator. Results using perfect decision

feedback to the estimators and perfect channel information for the DFE tap

calculations are also included. They indicate almost a 9 dB loss with respect

to the perfect channel information case at a SER of 10−3, but only very modest

losses with respect to a Kalman estimator using perfect decision feedback.
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Figure 5.6 Average SER performance of the receiver with QPSK and 16-QAM for a (2,2)
Rayleigh fading with a normalized fade rate of 0.002 using a VGRLS estimator with P = 3 and
N = 2.

Besides QPSK, we have also simulated the performance of the receiver using

16-QAM. Figs. 5.6 and 5.7 show the average SER performance of the receiver for

a (2,2) and (4,4) Rayleigh fading. The VGRLS estimator has a predictor length

P = 3 and N = 2. We note that the performance of the receiver with a higher

order modulation is relatively poor. This is partly due to the fact the higher

order modulation is more susceptible to noise and channel estimation error.

In trying to improve the performance of the receiver, we investigate the effect
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Figure 5.7 Average SER performance of the receiver with QPSK and 16-QAM for a (4,4)
Rayleigh fading with a normalized fade rate of 0.002 using a VGRLS estimator with P = 3 and
N = 2.
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Figure 5.8 Average SER for different number of feedforward DFE taps.
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Figure 5.9 Average SER for different number of feedback DFE taps.

of using different numbers of feedforward and feedback taps in the DFE. Fig. 5.8

shows the performance of the DFE with 2 feedback taps and a varying number

of feedforward taps while Fig. 5.9 is obtained by varying the number of feedback

taps while keeping the feedforward taps at 4. Both plots are obtained at 30dB of

SNR and with QPSK modulation. We can observe that in general a larger num-

ber of feedforward and/or feedback taps does not necessarily improve the error

rate performance. In fact the performance drops (albeit slightly) as the length

of either the feedforward or feedback taps increases. This is due to the fact that

the equalizer time span is now a lot longer than the actual channel delay spread

and when this happens the extra DFE coefficients actually create unwanted in-

terference. Furthermore for a larger number of feedback taps, the effect of error

propagation will last longer [36], causing a degradation in performance.

As mentioned previously, a polynomial-based channel prediction module is

used to compensate the decision delay, 4, created by the DFE. In our work,

4 = 3 symbols and during this period, a sufficiently slow fading channel may

not vary much so that we can assume the channel coefficients to stay constant.
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Figure 5.10 The effect of channel prediction module on the performance of the receiver at
different normalized fade rates for a (2,2) MIMO system in a Rayleigh fading environment with
QPSK modulation. The VGRLS estimator has P = 3 and N = 2.

The filter coefficients of the DFE are then calculated using the channel estimates

obtained 4 symbols earlier, i.e., the channel estimates are ‘out-dated’ by 4
symbols. We investigate the effect of not using updated channel estimates on

the performance of the receiver by not using the channel prediction module. Fig.

5.10 shows the performance of the receiver for a (2,2) MIMO system using QPSK

modulation in a Rayleigh fading environment with normalized fade rates of 0.002

and 0.0001. The VGRLS estimator has a predictor length P = 3 and polynomial

order N = 2. At a fade rate of 0.002, the performance of the receiver is degraded

by approximately 2dB at an SER of 10−3, while at a fade rate of 0.0001, the

degradation is smaller at less than 1dB. Hence for a slowly fading channel, the

use of the channel prediction module may not be necessary.
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Figure 5.11 Average SER performance of a (2,2) MIMO system using a VGLMS estima-
tor and a Kalman estimator, each operating with a vector DFE in a Rayleigh fading with a
normalized fade rate of 0.002. The VGLMS estimator has a predictor length of P = 3 and
various orders as shown. With perfect decisions for N = 2, the transmitted signals instead of
the outputs from the DFE, are used by the VGLMS estimator.

5.6.2 VGLMS Estimator with DFE

With similar channel settings, we have also evaluated the error rate performance

of a receiver consisting of a VGLMS estimator and a vector DFE [31] operating

in a decision-directed mode using the immediate previously detected symbols as

feedback. Similar to the previous setting, the DFE consists of 4 forward and 2

feedback matrix-taps with a decision delay of 3 symbols. Each frame consists of

Lt = 200 training and Ld = 1160 data symbols. The simulation at each SNR

point is carried out until 200 symbol errors are encountered per streams, and the

symbol error rate (SER) is averaged across the T transmitted signal streams.

The average SER performance of a (2,2) system in a Rayleigh fading with a

normalized fade rate of 0.002 is shown in Fig. 5.11. We include the performance

of a vector DFE using a Kalman estimator, and a vector DFE having perfect

channel information for reference. In general the system performance using the



5.6 PERFORMANCE EVALUATION 127

VGLMS estimator is worse than that when using the optimum Kalman estimator.

However, it is much better than that using a conventional vector LMS estimator

(curve for N = 0). For N = 2, the estimator’s performance is about 7 dB away

from that of the Kalman estimator at an SER of 10−3. When perfect decisions

instead of the output decisions from the DFE are used by the estimator, the

difference is reduced to about 2 - 3 dB at the same SER.
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Figure 5.12 A (2,2) MIMO average SER performance of VGLMS and Kalman estimators
operating with a vector DFE in a Rician fading with a normalized fade rate of 0.007 and a
K -factor of 10. The VGLMS estimator has a predictor length of P = 3. The results of [100] is
also plotted for reference.

Fig. 5.12 shows the average SER of the above receivers in a Rician fading

environment. In order to compare our results with [100] we follow their approach.

We allocate unit transmit power to each of the transmitters, so the resulting graph

has a log10(T ) = 3dB increase in the SNR per antenna. A Rician K -factor of

10 and a normalized fade rate of 0.007 is used. We also assume the specular

components of the fading channel responses to be known when simulating the

Kalman filter. This simplifies the simulation by not requiring the state transition

matrix to be restructured [97]. However, we have used 3 instead of 2 multipath

rays in each sub-channel and this affects the vector DFE’s design. We note that
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the resulting Kalman filter’s curve is reasonably close to that of [100].

We note that at an SER of 10−3 the system using a VGLMS estimator with

N = 2 is 2 - 3 dB worse than the Kalman estimator-based system. This margin

is worse when compared to the 1 dB difference between a VGRLS estimator and

a Kalman estimator. However, the degradation is compensated by the reduced

complexity in the channel estimation process. The results with perfect decision

feedback to the estimator and perfect channel information are also included. They

indicate almost a 10 dB loss with respect to perfect channel information at a SER

of 10−3, but modest losses with respect to a Kalman estimator.

5.6.3 A Comparison Between the Estimators
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Figure 5.13 Average SER performance of a (2,2) MIMO system using VGLMS, VGRLS and
Kalman estimators operating with a vector DFE in a Rayleigh fading with normalized fade
rates of 0.002 (dashed lines) and 0.0001 (solid lines) as indicated. The VGLMS and VGRLS
estimators each has a predictor length of P = 3.

For comparison, we have plotted in Fig. 5.13 the error performance curves

of the VGLMS, VGRLS and Kalman estimator operating with the above vector

DFE in a (2,2) MIMO system in Rayleigh fading with normalized fade rates of
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0.002 and 0.0001. At a fade rate of 0.002, the VGLMS based system is degraded

between 6 and 7 dB at an SER of 10−3 compared to systems using the VGRLS and

Kalman estimators respectively. However, in slower fading, i.e. at a normalized

fade rate of 0.0001, the VGLMS estimator performs much better since the channel

is easier to track. The SER at 10−3 is improved by about 5 dB compared to that at

a fade rate of 0.002. This shows that the VGLMS-based receiver offers reasonably

good performance in a slowly fading environment.

5.7 SUMMARY

We have developed a symbol-by-symbol based MIMO receiver structure with

integrated channel estimation and tracking. A vector MMSE DFE, whose matrix

tap coefficients are derived using the channel estimates from the VGRLS/VGLMS

estimator, is used as an equalizer. A simple polynomial-based channel prediction

module is used to compensate the time-lag created by the decision delay of the

equalizer. Using a VGRLS estimator, the resulting symbol error rate performance

in Rician and Rayleigh fading channels is shown to be within 1 - 3 dB of that

obtained using an optimum Kalman-based estimator. For a slowly fading channel,

the performance penalty for not using updated channel estimates is found to

be negligible and therefore the channel prediction module may in practice be

omitted. We have also demonstrated that the VGLMS estimator is able to offer

sufficiently good performance in slow Rayleigh fading or Rician fading with a

strong mean component, where the performance is only 2 to 4 dB worse than

that of a Kalman-estimator-based system.





Chapter 6

INTEGRATED SEQUENCE-BASED RECEIVER

6.1 INTRODUCTION

Maximum likelihood sequence estimation (MLSE) using the Viterbi algorithm

(VA) has been shown to be the optimum equalization method [33],[34] for com-

pensating the effect of ISI in a frequency selective fading environment. However,

its complexity increases exponentially with the length of the channel delay spread.

In a multiple-input multiple-output (MIMO) system, MLSE requires the use of

the vector Viterbi algorithm (VVA) [35] and this adds significant complexity to

the receiver.

The complexity of MLSE using the VVA depends on the number of states

in the ISI-induced trellis. In a MIMO context, this depends on the modulation

constellation size, M, the number of transmit antennas, T, and the channel de-

lay spread, L, according to MTL. For a given value of M, the complexity of

MLSE increases exponentially with both T and L. For example, a 4 x 4 MIMO

system (T = 4) transmitting QPSK signals (M = 4) in a fading environment

assuming a channel delay spread of 2 symbols (L = 2) requires 65536 states. For

larger constellations and more transmit antennas, the number of states quickly

grows out of hand. Moreover, in some channels the delay spread is significantly

longer which further increases complexity. Channel shortening filters that reduce

the length of the effective channel impulse response (CIR) [119], reduced state

sequence estimation (RSSE) [67] and delayed decision feedback sequence estima-

tion (DDFSE) [66] can be used to reduce the number of states. However, there
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is still an exponential dependance on both T and L.

As a result, reduced complexity sequence estimation techniques that offer a

linear increase in complexity with T and/or L are therefore highly desired. In

[120], a decision feedback MLSE (DFMLSE) scheme is proposed where complexity

increases linearly with L, according to LMT . For the above example, the number

of states is then 512. Alternatively, a partitioned Viterbi algorithm (PVA) with

a linear increase in complexity with T as TML can be employed as proposed in

[32]. The total number of states is then only 64 for the above example. Since the

PVA results in linearly increasing complexity with T, which is more important

in MIMO systems, it is considered in this work.

In [32] the channel fading is assumed to be quasi-static, where the CIR is

assumed to remain constant throughout the transmission of a signal frame, but to

vary randomly from frame to frame. Training symbols are used at the beginning

of each frame to estimate the CIR using the least-squares (LS) technique. The

estimates are then used to equalize the remainder of the frame. Channel tracking

is not used in [32] and system performance tends to degrade in a continuously

time-varying fading environment, particularly for longer frames.

Here, we extend the PVA-based receiver of [32] to cope with continuous fading

by incorporating channel estimation and tracking using the VGRLS/VGLMS

channel estimator developed earlier. The resulting receiver is an implementable

approximation to MLSE in MIMO channels and is among the first to explicitly

incorporate dynamic channel estimation in the context of sequence estimation

receivers. For ease of illustration, we will describe the channel estimation in

the following sections using the VGRLS estimator, and note that the VGLMS

estimator can be used readily in place of the VGRLS estimator.

6.2 SIGNAL MODEL

We employ a MIMO signal model in a spatial multiplexing context similar to the

one used in Chapter 5. Therefore we will not repeat the development of the signal
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model in this section except to recall the appropriate equations in the subsequent

sections when necessary.

6.3 THE INTEGRATED RECEIVER

Training mode
 Decision-directed mode


Channel estimator and

channel prediction


module


D

 F


 E

  
P


 r
e
 f
i
l
t
e
 r


1
-st
 VA


T
-th VA


T

e
n
t
a
 t
i
v
 e
  
d
 e
 c
 i
s
 i
o
 n
  
s
 t
o
 r
a
 g
 e


switch


Known training

symbols


Figure 6.1 The integrated sequence-based receiver using the PVA algorithm with channel
estimation and tracking for a continuously frequency selective fading environment.

In this section, we develop the integrated sequence-based receiver using the

PVA algorithm with VGRLS channel estimation and tracking. To do this, we

replace the non-tracking LS channel estimator of [32] with the VGRLS estimator

developed in Chapter 3. The VGRLS estimator tracks the channel variation, so

that the channel estimates are time-variant from symbol-to-symbol. There are

two aspects that require attention compared to the original structure proposed

in [32]: first, the symbol-by-symbol updating of the CIR estimates and the effect

on the subsequent PVA operation and second, the effect of the VA and prefilter

decision delays on the updating of the CIR estimates. The latter results in the

VGRLS estimator producing delayed channel estimates. We consider these in
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more detail in the following sections.

6.3.1 Sequence Estimation Based on the PVA

A major component of the PVA is a length Lf prefilter used to provide linear

estimates of each of the T transmitted signal streams. Ideally it should be a vector

whitened matched filter (WMF) [33]. However, in practice the vector WMF does

not always exist [69]. As a result, the feedforward filter of a vector MMSE DFE

is used [32]. The benefit of using the DFE prefilter is that it always exists even

when the WMF does not. It has been shown to approach WMF performance

as the SNR and number of filter taps increases [69]. The prefilter compensates

for pre-cursor ISI and decouples the received signal vector into T signal streams.

Parallel VAs are then used to process these outputs to obtain equalized data

estimates. Tentative decisions are made in each interval and these are exchanged

among the parallel VAs. For each transmitted signal stream, feedback terms

estimated using the tentative decisions obtained in the previous interval from

the other processors are used to cancel ‘cross-interferences’ effects from the other

signal streams.

DFE Prefilter

We describe in this section the derivation of the DFE prefilter. Following [32] we

assume that a length Lf fractionally spaced FIR feedforward filter with matrix

taps is used as the prefilter, where Lf is the support of the prefilter impulse

response in symbols. Each tap is denoted by a T x RNr matrix Fk,m for m =

0, 1, · · · , Lf − 1. The prefilter matrix-taps can be expressed in a vector as Fk =

[Fk,0, · · · ,Fk,Lf−1]. Prefiltering the received signal vector, yk, of (5.4) gives
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ỹk =

Lf−1∑
m=0

Fk,myk−m

=

Lf+L−2∑
n=0




Lf−1∑
m=0

Fk,mHk−m,n−m


 dk−n +

Lf−1∑
m=0

Fk,mnk−m

=

Lf+L−2∑
n=0

H̃k,ndk−n + ñk

(6.1)

where the prefiltered channel and prefiltered noise are defined as

H̃k,n =

Lf−1∑
m=0

Fk,mHk−m,n−m (6.2)

and

ñk =

Lf−1∑
m=0

Fk,mnk−m (6.3)

respectively.

As shown in Chapter 5, a block of Lf received signal vectors yk of (5.4) can

be written as




yk+Lf−1

yk+Lf−2

...

yk




=




Hk+Lf−1,0 · · · Hk+Lf−1,L−1 0 · · · 0

0 Hk+Lf−2,0 · · · Hk+Lf−2,L−1 0 · · ·
...

...

0 · · · 0 Hk,0 · · · Hk,L−1







dk+Lf−1

dk+Lf−2

...

dk−L+1




+




nk+Lf−1

nk+Lf−2

...

nk




.

(6.4)
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This may be expressed in the compact form,

yk+Lf−1:k = Ckdk+Lf−1:k−L+1 + nk+Lf−1:k (6.5)

where Ck is the convolution matrix

Ck =




Hk+Lf−1,0 · · · Hk+Lf−1,L−1 0 · · · 0

0 Hk+Lf−2,0 · · · Hk+Lf−2,L−1 0 · · ·
...

...

0 · · · 0 Hk,0 · · · Hk,L−1




.

(6.6)

To facilitate the derivation of the DFE prefilter and the structure of the PVA

trellis, we initially assume that the channel responses, i.e. the elements of (6.6),

are available. In reality these are obtained through channel estimation which we

will deal with later on.

We partition (6.6) into three sections of T (Lf − 1), T and T (L− 1) columns

corresponding to Hk,fut, Hk,pres and Hk,past. The first T (Lf−1) columns represent

the LfRNr x T (Lf − 1) matrix Hk,fut which represents the filter response from

‘future’ symbols. The T columns represent the LfRNr x T matrix Hk,pres which

represent the current transmitted symbols and the last T (L−1) columns represent

the LfRNr x T (L− 1) matrix Hk,past which represent the previously transmitted

symbols. Then (6.5) can be written in the form

yk+Lf−1:k = (Hk,fut Hk,pres Hk,past) dk+Lf−1:k−L+1 + nk+Lf−1:k

= Hk,futdk+Lf−1:k+1 + Hk,presdk + Hk,pastdk−1:k−L+1 + nk+Lf−1:k.

(6.7)

In deriving the prefilter, we employ the methodology used in designing a

MMSE DFE where the feedforward and feedback filter coefficients are derived

and optimized jointly. We assume correct past decisions are available (i.e.,
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d̂k−1:k−L+1 = dk−1:k−L+1) so that (6.7) can be used to write an FIR vector DFE

estimate as

d̂k = Fkyk+Lf−1:k − FkHk,pastdk−1:k−L+1

= FkHk,futdk+Lf−1:k+1 + FkHk,presdk + Fknk+Lf−1:k

= [H̃k,0, H̃k,1, · · · , H̃k,Lf−2]dk+Lf−1:k+1 + H̃k,Lf−1dk + ñk+Lf−1:k.

(6.8)

where H̃k = [H̃k,0, H̃k,1, · · · , H̃k,Lf−1] is the time-variant prefiltered CIR defined

by (6.2). The prefiltered noise ñk+Lf−1:k is assumed to be Gaussian and white

as in [32]. This is a requirement for the PVA’s use of the Viterbi algorithm. We

note that in some cases, e.g. in an overloaded system when T > R, the noise may

not be white. In such a case the colored-noise version of the Viterbi algorithm

[121] can be used.

The FIR vector DFE uses the forward filter Fk that minimizes the mean-

square-error (MSE) E{||d̂k−dk||2}. It is shown that the MSE is minimized when

this filter satisfies [32]

([Hk,fut,Hk,pres][Hk,fut,Hk,pres]
H + σ2

nI)F
H
k = Hk,pres. (6.9)

Since ([Hk,fut,Hk,pres][Hk,fut,Hk,pres]
H + σ2

nI) is Hermitian and positive defi-

nite, (6.9) can be solved efficiently using the Cholesky decomposition.

The advantage of using the DFE prefilter is that the prefiltered channel matrix

taps H̃k,n for n = 0, 1, · · · , Lf−1 are T x T matrices independent of the number of

receive antennas, R, and oversampling factor, Nr [32]. This means that increasing

R or Nr will increase the complexity of solving (6.9) but not the complexity of the

Viterbi algorithm. Examination of (6.8) shows that the MSE is minimized when

the first Lf − 1 prefiltered channel taps [H̃k,0, H̃k,1, · · · , H̃k,Lf−2] approximate

zero-matrices and the tap H̃k,Lf−1 approximates the identity matrix. With these

approximations the τ -th output of the prefilter for τ = 1, 2, · · · , T can be written

as
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ỹ
(τ)
k+Lf−1 =

T∑
m=1

Lf+L−2∑
n=0

h̃
(τ,m)
k,n d

(m)
k+Lf−1−n + ñ

(τ)
k+Lf−1

≈
T∑

m=1

L−1∑
n=0

h̃
(τ,m)
k,n+Lf−1d

(m)
k−n + ñ

(τ)
k+Lf−1

≈
L−1∑
n=0

h̃
(τ,τ)
k,n+Lf−1d

(τ)
k−n +

∑

m6=τ

L−1∑
n=1

h̃
(τ,m)
k,n+Lf−1d

(m)
k−n + ñ

(τ)
k+Lf−1.

(6.10)

This shows that the τ -th prefilter output value is a function of the most

recent L symbols from the τ -th transmitter d
(τ)
k:k−L+1 and (L - 1) delayed symbols

{d(m)
k−1:k−L+1}m6=τ from each of the other transmitters. This is used to generate

inputs to the PVA algorithm and the structure of (6.10) is exploited to develop

the PVA algorithm.

Trellis Structure

As described in the previous section, the inputs to the PVA algorithm are the

prefiltered received signal (ỹk+Lf
) and prefiltered channel responses (H̃k). Since

there are T outputs from the prefilter, T VAs are employed to process them

in parallel [32]. Consider an estimate of the τ -th transmitted symbol sequence

d̂
(τ)
k:k−L+1, for τ = 1, 2, · · · , T . Divide the estimate into two overlapping sections

which define the ML−1 “states”, d̂
(τ)
k−1:k−L+1 and d̂

(τ)
k:k−L+2, where each state cor-

responds to a possible symbol combination. Let i indicate a particular previous

state d̂
(τ)
k−1:k−L+1 and let j indicate a particular current state d̂

(τ)
k:k−L+2. The branch

metric of the VA used for the τ -th trellis at each time k corresponding to the

state transition (i, j) is then given by

λτ (i, j, k) =

∣∣∣∣∣ỹ
(τ)
k+Lf−1 −

L−1∑
n=0

h̃
(τ,τ)
k,n+Lf−1d̂

(τ)
k−n − φ(k, τ)

∣∣∣∣∣

2

(6.11)

where
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φ(k, τ) =
∑

m6=τ

L−1∑
n=1

h̃
(τ,m)
k,n+Lf−1d̄

(m)
k−n (6.12)

is the feedback term estimated using the tentative decisions {d̄(m)
k−n}m6=τ made by

the other trellises during the previous symbol time. The summation in (6.11)

is an estimate of the τ -th transmitter’s contribution to the observed value in

ỹ
(τ)
k+Lf−1.

6.3.2 VGRLS Channel Estimation and Tracking

We integrate the PVA algorithm with both the VGRLS and VGLMS channel

estimators. For ease of description, here we use the VGRLS algorithm to describe

the channel estimation part of the resulting receiver. Apart from the initialization

stage (i.e. the off-line Riccatti computation), we note that the VGLMS estimator

can be used readily in place of the VGRLS estimator.

Recall from Chapter 3 that the VGRLS algorithm may be described by the

equations

Kk = Pk/k−1d
H
k (IRNr + dkPk/k−1d

H
k )−1 (6.13)

Pk/k = (IRNrTLP −Kkdk)Pk/k−1 (6.14)

ĥk/k = ĥk/k−1 + Kk(yk − dkĥk/k−1). (6.15)

ĥk+1/k = Uĥk/k (6.16)

Pk+1/k = λ−1UPk/kU
H (6.17)

where ĥk/k−1 is the estimate of the channel state vector at time k based on (k -
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1) prior received samples, λ is the RLS “forget factor”, Kk is analogous to the

Kalman gain vector [49] and Pk/k is the so-called ‘intermediate’ matrix1. More

details on the VGRLS estimator are available in Chapter 3.

In decision-directed mode, the VGRLS estimator in the receiver employs the

detected symbols2, d̂k, from the PVA output in place of dk, the known training

symbol vector. Due to the decision delay, 4, of the VAs, these are delayed by

4 symbol periods. Recall from Chapter 5 that as the received signal yk passes

through the length-Lf DFE prefilter a decision delay of Lf − 1 is introduced.

Therefore there is a total delay of 4total = Lf +4− 1 symbols with respect to

the input of the receiver as well as the estimator (see Fig. 6.1).

Using these delayed symbols, together with the received vector yk−4total
and

P previously estimated channel vectors, the VGRLS estimator produces a delayed

channel estimate3 ĥk−4total+1. However, to calculate the length Lf prefilter taps

of the PVA at time k+1, up-to-date estimated channel vectors corresponding to

the most recent Lf symbols should be used. The VGRLS estimator provides

one of these Lf estimates and the subsequent Lf − 1 estimates are still required.

A simple method is to assume that the channel remains constant over these Lf

symbol periods so that ĥk−4 = · · · = ĥk−4total+2 = ĥk−4total+1 where ĥk−4total+1

is available from the VGRLS estimator. However, this may apply only to a very

slowly fading channel.

An alternative approach is to predict the Lf − 1 channel vectors. Here we

employ a vector polynomial channel prediction module similar to the one used in

Chapter 5 to predict the estimated channel vectors. Since the underlying struc-

ture of the VGRLS estimator uses a t-power series expansion [23] to model the

channel fading process as an N -th order polynomial series, the polynomial-based

state transition matrix U is available. It is then straight forward to compute the

predicted channel estimates, as in Chapter 5, as

1Pk/k is the inverse input autocorrelation matrix in a conventional RLS algorithm.
2Here the detected symbol vector d̂k is rearranged into d̂k, a matrix with appropriate di-

mension as required by the VGRLS estimator. See (3.37) in Chapter 3 for more detail.
3For brevity we simplify the notation ĥk−4total+1/k−4total

to ĥk−4total+1.
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ĥk−4total+2 = Uĥk−4total+1

... =
...

ĥk−4 = Uĥk−4−1.

(6.18)

The complexity of the VGRLS estimator can be reduced significantly by

replacing the online ‘Riccatti’ computation of (6.14) with an offline pre-computed

matrix. This reduces complexity from O(
(RNrTLP )3

)
in the highest order terms

to O(
(RNrTLP )2

)
and results in a reduced complexity algorithm known as the

VGLMS estimator. We have, therefore, also simulated an integrated receiver

employing the VGLMS estimator and PVA algorithm. We note that apart from

the offline matrix computation, the VGLMS estimator can be used in place of

the VGRLS estimator albeit with some loss in receiver performance.

Upon obtaining new channel estimates at time k, we formulate Ĉk the es-

timated convolution matrix of (6.6) and used it to solve for the prefilter coeffi-

cients in (6.9). We process a block of Lf received signal vectors to obtain (6.10)

and use the channel estimates to obtain the prefiltered channel taps H̃k,n for

n = 0, 1, · · · , Lf − 1. Using these, we compute the branch metrics for each of

the T parallel VAs as in (6.11) and (6.12). After a VA decision delay of 4, an

estimate of the transmitted vector d̂k−4total
is produced4 as the PVA output.

6.4 RECEIVER OPERATION

The receiver is operated in two modes, a training mode or a decision-directed

data transmission mode. Each transmitted frame consists of Lt training symbols

followed by Ld data symbols. The receiver operation is described as follows:

6.4.1 Training Mode

Here, only the VGRLS estimator is operated using a training sequence of length

Lt, according to the following:

4Note that 4total = 4+ Lf − 1.
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Step 1: Initiate the VGRLS algorithm with an all-zero estimated channel vector,

ĥ1/0, and ‘intermediate’ matrix, P1/0 = δ−1IRNrTLP , where δ is a small

positive real constant and IRNrTLP is an identity matrix with dimension,

RNrTLP x RNrTLP . Using the observation vector yk, compute the Kalman

gain of (6.13), update the ‘intermediate’ matrix of (6.14), and update the

estimated channel vector of (6.15).

Step 2: Compute the one-step predicted channel vector of (6.16) and one-step pre-

dicted ‘intermediate’ matrix of (6.17).

Step 3: With each observation vector, yk, k ≥ 2, repeat steps 2 and 3 until the end

of the training sequence.

Following training, the receiver switches to decision-directed operation. This

procedure is identical to that in Chapter 5.

6.4.2 Decision-directed Mode

In this mode, the DFE prefilter and PVA algorithm are operated in tandem

with the VGRLS estimator and the channel prediction module during the Ld

data transmission period. In this mode, the feedback terms are calculated using

tentative decisions from the VA’s. Assuming d̂k−4total
to be the data vector at

time k, the receiver operation may be described as:

Step 1: With ĥk−4total
available at time k, operate the VGRLS estimator to produce

ĥk−4total+1 at time k+1 using the PVA output vectors d̂k−4total
, · · · , d̂k−4total−L+1,

received vector yk−4total
and P previously estimated channel vectors.

Step 2: Predict the next Lf − 1 channel vectors as in (6.18). Recall that each

estimated vector ĥ follows the structure of (3.43) with P vector elements,

ĥ, where each element or sub-vector has RNrTL components as shown in

(3.7).
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Step 3: Following (3.2) and (3.6), the estimated convolution matrix, Ĉk+1, at time

k + 1, can be obtained and structured.

Step 4: Calculate the prefilter coefficients, Fk+1, of the vector DFE in (6.9) and the

prefiltered CIR estimate as H̃k+1 = Ĉk+1 ∗Fk+1 where ∗ is the convolution

operator.

Step 5: Prefilter the received signals to obtain the T outputs of (6.10).

Step 6: Calculate the feedback terms in (6.12) using tentative decisions from the

previous symbol period.

Step 7: For each of the T parallel VAs calculate the branch metric of (6.11) and

advance the algorithms by one time step.

Step 8: Output the data decisions d̂k−4total+1.

Step 9: At each succeeding time instant, repeat steps 1 to 9 to the end of the frame.

6.5 SIMULATION RESULTS AND DISCUSSIONS

We now evaluate the performance of the integrated PVA-based receiver. We

assume a similar uncoded, VBLAST-type [16], MIMO system as employed in

Chapter 5, where each transmitter uses the same M -ary modulation, pulse-shape,

carrier frequency and transmit power. This is considered to be one of the more

difficult detection scenarios since only channel differences can be used to sepa-

rate the spatially-multiplexed co-channel signals [32]. We assume independent,

wide-sense-stationary uncorrelated-scattering (WSSUS) subchannels with similar

fading conditions on each. The fading processes are assumed to follow Clarke’s

fading model [43] and are simulated according to [44]. Each subchannel is as-

sumed to have a uniform power delay profile with L = 3 rays.

Independent QPSK signal streams are transmitted from each of T antennas.

A raised cosine filter with a roll-off of 0.99 is used at the transmitter with its

response truncated to ±2Ts. An ideal low pass filter with sufficient bandwidth to
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accommodate the Doppler faded signal is employed at the receiver inputs and an

oversampling factor of Nr = 2 is used. We mimic GSM specifications where each

frame at each antenna consists of Lt = 26 training symbols and Ld = 116 data

symbols, except for the first frame5 where Lt = 78. We also include Lf + L − 2

= 7 termination symbols to ensure a known trellis end state. Both the training

symbols and data symbols are randomly generated. We use a prefilter with Lf

= 6 taps, and assume a VA decision delay of 5L = 15 symbol periods. For each

SNR point, the simulation is carried out until 200 errors are accumulated in each

subchannel.

The SNR is defined as the received Eb

σ2
n

per receive antenna. The average

received energy per bit Eb is defined as

Eb =
σ2

d · σ2
h · T

log2M
(6.19)

where σ2
d = 1 is the transmitted symbol power and σ2

h = 1 is the normalized

variance of the composite channel responses. For a given SNR, the complex

AWGN variance of σ2
n can be calculated as

σ2
n =

Eb

10
SNR
10

. (6.20)

We compare the performance of the integrated PVA receiver with a VVA [35]

receiver also operating with a VGRLS estimator to provide the CIR for MLSE.

A VGRLS estimator with a predictor length of P = 3 and polynomial order of

N = 2 is used. Both receivers are operated under the same fading conditions.

Using QPSK (M = 4) with a channel delay spread, L = 3 symbol periods, the

number of states required by the PVA and VVA receivers are plotted in Figure

6.2 for comparison. For simplicity we restrict most of the simulations to a (2,2)

system. For this scenario, the VVA receiver requires 4096 states while the PVA

receiver requires a total of 128 states; a 32 fold reduction in complexity.

Figure 6.3 illustrates the effect of VGRLS channel estimation error upon

5Similar to the condition used in section 5.6.1.
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Figure 6.2 A comparison of the number of states required in the trellis search for PVA and
VVA based receiver, for a (T,R) MIMO systems for T = R, with QPSK modulation M = 4
and channel delay spread L = 3.
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Figure 6.3 BER of the PVA receiver when operating with the VGRLS estimator for a (2,2)
MIMO system with a normalized Rayleigh fade rate of 0.0001 and 0.002. The performance of
the PVA with known CIR and when using LS channel estimates in a quasi static fading channel
is also plotted for references.
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the average bit error rate (BER) performance of the integrated PVA receiver in

a (2,2) MIMO fading channel with normalized fade rates, fDTs, of 0.002 and

0.0001, where fd is the maximum Doppler frequency. The performance of the

PVA receiver with known CIR and with LS channel estimation in a quasi static

fading channel [32] is also included for reference. For fDTs = 0.002, we note

that the VGRLS channel estimation error degrades the performance by about

12dB at an BER of 10−3 compared to the known CIR case. At a BER of 10−4,

the performance is slightly worse as the curve is seen to start flooring although

very gradually. This degradation is largely due to the dynamics of the fading as

it introduces errors in the channel estimates, which in turn affects the accuracy

of the DFE prefilter calculation and subsequently the prefiltered received signal

and estimated CIR, and lastly the tentative decisions. This is evident in slower

fading with fDTs = 0.0001 where the error floor disappears and the degradation

is reduced to only 10dB at both the above BER values. Compared to the quasi

static fading case, a continuously time-varying fading channel has a significant

effect on the performance of the integrated PVA receiver.

Figure 6.4 shows the BER performance of the integrated PVA receiver and

a VVA receiver, both for a (2,2) MIMO system, each operating with a VGRLS

estimator in similar Rayleigh fading channels with fDTs values of 0.002 and 0.0001

as before. The performance of a (2,2) system using LS channel estimates in a

quasi-static fading channel [32] is also simulated for reference. We observe that

the difference between the PVA and VVA receivers at fDTs = 0.002 is about

4dB at an BER of 10−4. This difference is only 2dB [32] at the same BER

value in a quasi static fading channel. The additional degradation is due to the

time-varying channel estimation error (on prefilter calculation and the subsequent

effects) because at fDTs = 0.0001, the error floor disappears and the difference

is reduced to less than 3dB. The results show that the integrated PVA receiver

is capable of near MLSE detection in a continuous fading environment, and that

it achieves this at significantly lower complexity.

The performance of the PVA receiver for a (4,4) MIMO system, together with
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Figure 6.4 BER of the PVA and VVA receivers when operating with the VGRLS estimator
for a (2,2) MIMO system with normalized Rayleigh fade rates of 0.0001 and 0.002. The per-
formance of PVA and VVA using LS estimates in a quasi static fading channel is also plotted
for comparison.

the performance of (2,2) system, with a normalized fade rates of 0.002 and 0.0001

is shown in Fig. 6.5. In general, the performance for a (4,4) system is about 2.5

to 3dB worse than that of the (2,2) system.

The decision delay 4 of the VA is typically set at 5L symbol periods [36]. For

our simulations with L = 3, the VA decision delay is therefore 15 symbol periods.

We investigate two options to overcome this long latency: one is to use a shorter

VA decision delay, which we propose to be 2L = 6 symbol periods, while the other

is to employ the tentative decisions, corresponding to a zero VA decision delay,

as reference signals for the VGRLS estimator in each symbol period. Note that

in both cases there is still a DFE prefilter decision delay of Lf − 1 = 5 symbol

periods where channel prediction is required.

The BER performance of the these two options at fDTs = 0.0001 is shown

in Fig. 6.6. We note that performance, when using a VA decision delay of 6

symbols, is slightly better than when using the zero-delay VA tentative decisions,
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Figure 6.5 Performance comparison of a PVA receiver for a (2,2) and (4,4) MIMO system
with a normalized fade rates of 0.002 and 0.0001.

although the difference is only about 0.2 dB. Both performances are, as expected,

very slightly worse than when using the original VA delay of 15 symbols. Never-

theless, this very small degradation shows that zero-delay VA tentative decisions

can be used and that there is little justification for the use of the longer VA

decision delay. Besides this, we have also shown in Fig. 6.6 that the performance

degradation without employing the channel prediction module is negligible, at

about 0.5dB. This is consistent with the result shown in section 5.6.1 where the

performance degradation without using the channel prediction module in a slowly

fading channel is less than 1dB.

The complexity of channel estimation and tracking can be further reduced

by using the VGLMS estimator at least in slow fading. To see this, we evaluate

the performance of an integrated PVA receiver using the VGLMS estimator. The

receiver is, as before, operated for a (2,2) Rayleigh fading with normalized fade

rates of 0.0001 and 0.002. As can be seen in Fig. 6.7, the VGLMS-based receiver

performs 2 - 3 dB worse than the VGRLS-based receiver. This degradation in
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Figure 6.6 BER of the PVA and VVA receivers when operating with the VGRLS estimator
for a (2,2) MIMO system with a normalized Rayleigh fade rate of 0.0001. The decision delays of
the VAs are as indicated. Using tentative decisions (i.e., zero delay) is shown to have negligible
degradation on performance, as well as without using the channel prediction module.

performance is to be expected because of the simplification in the estimation

process. We also note that for the VGLMS-based receiver at a fade rate of 0.002,

the error rate performance is seen to start gradually flooring more obviously than

in the case of the VGRLS-based receiver. However, within the range of SNR and

conditions studied, the VGLMS-based receiver offers an attractive trade-off of

performance versus complexity.

The PVA algorithm, being a sequence-based detection method using the

Viterbi algorithm, is more complicated than the symbol-based detection method

such as the vector decision feedback equalizer (DFE). As such the performance

of the integrated PVA receiver is expected to be better than that of a DFE-based

integrated receiver also employing the VGRLS estimator under the same channel

condition. Fig. 6.8 shows a comparison of the average symbol error rate (SER)

performance of the integrated PVA receiver with the integrated DFE receiver of

Chapter 5 in a Rayleigh fading with a normalized fade rate fDT = 0.002. It
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Figure 6.7 BER of a PVA-based receiver using VGRLS and VGLMS estimators for a (2,2)
MIMO system with normalized Rayleigh fade rates of 0.0001 and 0.002.
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Figure 6.8 Performance comparison of the integrated PVA receiver with a DFE-based re-
ceiver of Chapter 5 operating in a MIMO system with normalized Rayleigh fade rate of 0.002.
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clearly shows the superiority of the PVA receiver over the DFE receiver where

the performance is about 17 dB better at an SER of 10−3. The SER results in

that chapter have also shown that the performance of the DFE receiver using the

VGRLS estimator is within 1 - 3 dB of that obtained using an optimum KF-based

estimator. The performance difference attributed to using VGRLS and KF-based

estimators for a PVA receiver is within the same margin.

6.6 SUMMARY

We have developed a reduced complexity sequence-based receiver for a MIMO

system that can operate in a continuously time-varying fading environment.

The overall receiver, which is an implementable approximation to MLSE in

MIMO channels, is implemented by combining the PVA algorithm with the

VGRLS/VGLMS channel estimator. It is among the first to explicitly incorporate

dynamic channel estimation in the context of sequence estimation receivers. Sim-

ulation results show that the integrated PVA-based receiver can offer near MLSE

performance when compared to a VVA-based receiver, also using a VGRLS esti-

mator, and at significantly lower complexity in term of the total number of trellis

states. Simulations also show that using zero-delay tentative decisions results in

negligible performance loss. Furthermore for a very slowly fading channel where

the channel is assumed to stay constant, it has been shown that the channel

prediction module is not necessary. The complexity in channel estimation can be

further reduced by using a VGLMS estimator in place of the VGRLS approach,

and the simulation results provided for the range of SNR and conditions studied

illustrate the trade-off of performance versus complexity.





Chapter 7

CONCLUSIONS

In this chapter we summarize the contributions of the thesis and suggest some

possible future work.

7.1 CONTRIBUTIONS

In the thesis we have presented two receiver structures with integrated channel

estimation and tracking for time and frequency selective MIMO fading channels.

The receiver structures are based on a symbol-by-symbol equalization technique

using a MIMO MMSE DFE, and a sequence-based technique using a PVA which

is a suboptimal form of MLSE.

We have shown that when compared to an optimum Kalman estimator, the

VGRLS channel estimator developed in Chapter 3 is able to offer comparable

performance with a predictor length P = 3 and polynomial order, N = 2. The

baseline complexity of both the estimators is the same. However, the VGRLS

estimator has advantages over the Kalman estimator in that it does not require

knowledge of the channel statistics to operate, and can readily operate in a Ri-

cian fading environment. A Kalman estimator requires the (zero-mean) channel

statistics in order to derive the coefficients of the state transition matrix. There-

fore in a Rician fading channel, specific re-configuration of the structure of the

state transition matrix is necessary.

A simplified version of the channel estimator known as the VGLMS estimator

is presented in Chapter 4. By replacing the online recursion of the ‘intermediate’
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matrix in the VGRLS estimator with an offline pre-computed matrix, complexity

is reduced by an order of magnitude. It is shown that when the MIMO dimension

in terms of the number of transmit and receive antenna is large, the saving

in computational load becomes more significant. The drawback of the reduced

complexity is, however, that the performance of the VGLMS estimator is not as

good as the VGRLS estimator. However, it can also operate readily in a Rician

fading environment. It is also shown to offer sufficiently good performance in

slowly Rayleigh fading channels, or Rician fading channel with a strong mean

component.

Both estimators are integrated independently with MIMO receivers. In Chap-

ter 5, a MMSE DFE is employed. The channel estimates from the estimator are

used to calculate the feedforward and feedback filter tap coefficients. In a deci-

sion directed mode, the outputs from the DFE are used by the channel estimator

to update the next channel estimates. However, due to the decision delay of the

DFE, the outputs are delayed and when this is used by the channel estimator, de-

layed channel estimates are produced. This poses a problem as the calculation of

the DFE filter tap coefficients requires updated channel estimates. To overcome

this problem, we propose using a polynomial channel predictor to predict those

channel response required by the DFE. However, we have also shown the pre-

diction module may in practice be omitted with negligible performance penalty

in slow fading. We have therefore presented a symbol-by-symbol based receiver

that can operate in continuously fading environment.

In Chapter 6, a sequence-based receiver capable of operating in a continuously

time-varying environment is presented by integrating the PVA algorithm, which

is a suboptimal form of MLSE, with the estimators independently. The PVA-

receiver is shown to offer near MLSE performance when compared to a VVA-

receiver and at significantly lower complexity in terms of the number of trellis

states. Due to the decision delay, the output of the VAs are delayed. As such the

receiver also encounters a similar problem to the DFE-based receiver in that the

channel estimates are not up-to-date. A polynomial channel prediction module
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has been proposed to provide these channel estimates. We have also investigated

using the zero-delay tentative decisions as feedback to the channel estimator and

simulation results indicate negligible loss. We have also shown that the channel

prediction module may be omitted in slow fading. The resulting PVA-receiver

is among the first to explicitly incorporate dynamic channel estimation in the

context of sequence estimation receivers.

7.2 SUGGESTED FUTURE WORK

Our simulation results have shown that the performance of the VGRLS and

VGLMS estimators are affected by the value of the parameters used, for example

the polynomial order N, and ‘forget factor’, λ. If the channel conditions, for ex-

ample the normalized fade rate and SNR, are known, the appropriate values of

the parameters may be chosen in advance. However, in reality these may not be

readily available. Hence a dynamic selection of the parameters may be needed

during a ‘start-up’ period, perhaps when the estimator is operated in training

mode. Our simulation have indicated that for most conditions the VGRLS es-

timator, for instance, offers good performance with a predictor length P = 3,

polynomial order N = 2 and λ = 0.9. With dynamic selection, different combi-

nation of parameter values may be used and those that offer the best performance

selected for use during decision-directed mode. This evaluation may be carried

out repeatedly during subsequent channel acquisition periods, if necessary.

In the thesis we have treated the MIMO channel as independent and uncorre-

lated by assuming sufficiently spaced antennas and a rich scattering environment.

However, in reality the MIMO channel may not be spatially uncorrelated when

the antennas spacing and angular spread of the incoming rays are small. Further

investigation on how this spatial correlation affects the structure, and subse-

quently the performance of the channel estimator, and that of the integrated

receiver, should be done.

Throughout the thesis we have assumed an uncoded MIMO system. In in-
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vestigating a way to improve the performance of the symbol-by-symbol based

receiver, we have investigated the effect of having different DFE filter lengths.

The performance of the integrated receiver may be improved with the use of chan-

nel coding and this may be investigated further. Furthermore, we have integrated

the receiver in a purely spatial multiplexing context with no successive interfer-

ence cancellation (SIC). MIMO-DFE based BLAST system with SIC [57],[58] is

found to offer improved performance. An adaptation of SIC into our receiver to

improve performance may be investigated.

The proposed VGRLS estimator offers an attractive alternative to the op-

timum Kalman estimator and it may be integrated with other MIMO systems

where channel estimation and tracking using the Kalman estimator is used. For

example, a Kalman filter is employed for channel tracking in a space-time coded

system [122] and instead of Kalman estimator, the VGRLS estimator may be

used.

It would be interesting to implement the proposed integrated receiver prac-

tically and compare the performance with the simulation results. Of particu-

lar interest would be the channel estimator, especially the reduced complexity

VGLMS estimator, as it is shown to offer a nice trade-off between performance

and complexity in our simulation results.



Appendix A

YULE-WALKER EQUATIONS

If we assume that each of the CIR hk+1,µ for µ = 1, 2, · · · , RNrTL in (3.7)

evolves according to an AR process of order Pa, it can then be represented by

the following difference equation

hk+1,µ = φ1hk,µ + φ2hk−1,µ + · · ·+ φPahk−Pa+1,µ + vk+1 (A.1)

where φl for l = 1, 2, · · · , Pa is the AR coefficients and vk is the zero-mean process

noise.

Multiply both side of (A.1) by hk,µ, a lag-1 sample of the CIR,

hk,µhk+1,µ =
Pa∑
p=1

φphk,µhk−p+1,µ + hk,µvk+1 (A.2)

where k and p are the time and term indices.

Taking expectance, we have

E{hk,µhk+1,µ} =
Pa∑
p=1

φpE{hk,µhk−p+1,µ}+ E{hk,µvk+1}. (A.3)

Note that E{hk,µvk+1} = 0 as the process noise is assumed to be uncorrelated

to the fading process.

Define E{hk,µhk+q,µ} = rq as the lag-q autocorrelation, (A.3) can be written

as
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r1 =
Pa∑
p=1

φprp−1. (A.4)

Following the similar process, next we multiply (A.1) by hk−1,µ, a lag-2 sample

of the CIR to obtain

r2 =
Pa∑
p=1

φprp−2 (A.5)

and continue to do so for the next Pa samples. For lag-Pa, we have

rPa =
Pa∑
p=1

φprp−Pa . (A.6)

Rewriting all these equations together yields

r1 = φ1r0 + φ2r1 + φ3r2 + · · ·+ φPa−1rPa−2 + φParPa−1

r2 = φ1r1 + φ2r0 + φ3r0 + · · ·+ φPa−1rPa−3 + φParPa−2

... =
...

rPa−1 = φ1rPa−2 + φ2rPa−3 + φ3rPa−4 + · · ·+ φPa−1r0 + φPar1

rPa = φ1rPa−1 + φ2rPa−2 + φ3rPa−3 + · · ·+ φPa−1r1 + φPar0

which can also be written as




r1

r2

...

rPa−1

rPa




=




r0 r1 r2 · · · rPa−2 rPa−1

r1 r0 r1 · · · rPa−3 rPa−2

...
...

rPa−2 rPa−3 rPa−4 · · · r0 r1

rPa−1 rPa−2 rPa−3 · · · r1 r0







φ1

φ2

· · ·
φPa−1

φPa




.
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Recalling that r0 = 1, the above equation is also




r1

r2

...

rPa−1

rPa




︸ ︷︷ ︸
r

=




1 r1 r2 · · · rPa−2 rPa−1

r1 1 r1 · · · rPa−3 rPa−2

...
...

rPa−2 rPa−3 rPa−4 · · · 1 r1

rPa−1 rPa−2 rPa−3 · · · r1 1




︸ ︷︷ ︸
R




φ1

φ2

· · ·
φPa−1

φPa




︸ ︷︷ ︸
Φ

or succinctly

RΦ = r. (A.7)

Since R is full rank and symmetric, it is invertible and hence

Φ = R−1r. (A.8)

The process noise autocovariance can be found by using a lag-0 correlation,

rv = r0 −
Pa∑
p=1

φprp (A.9)

For a given (measured or assumed) autocorrelation process of the fading

channel, the AR coefficients and process noise autocovariance can therefore be

derived. For a MIMO system, if we assume that the fading condition is similar

for each of the subchannels, the above can be easily extend to a vector form as

given by (3.36).
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