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LAMB CARCASS CLASSIFICATION SYSTEM BASED ON COMPUTER VISION 

PART 1: TEXTURE FEATURES AND DISCRIMINANT ANALYSIS 

Chandraratne, M. R.', Kulasiri. D.', Frampton, c .~ ,  Samarasinghe, s.' and Bickerstaffe, R.' 

'~olecular  Biotechnology Group, Animal and Food Sciences Division, 
2 Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Lincoln, New Zealand. 

3~hristchurch School of Medicine and Health Sciences, University of Otago, Christchurch, New Zealand. 

Abstract 

This paper presents a lamb carcass classification system based on image and texture 

analyses together with multivariate statistical techniques (principal component analysis, 

cluster analysis and discriminant function analysis). Texture analysis is based on grey 

level co-occurrence matrix. A set of ninety texture features has been used to extract the 

texture information from the acquired images. In addition, twelve image area and 

thickness (geometric) variables have also been calculated. 

Principal component analysis was used to reduce the dimensionality of the original 

data set. Two feature sets were generated based on the results. These feature sets 

comprised of principal component (PC) scores calculated from the original variables and 

14 (6 geometric and 8 texture) variables selected from the original set of variables. Both 

feature spaces were used for discriminant analysis. 

From the experimental results, it was established that the system enabled 66.3% 

and 76.9% overall classification based on 6 geometric PC scores and 14 (geometric and 

texture) PC scores, respectively. The system also enabled 64% and 79 % overall 

classification of lamb carcasses based on 6 geometric and 14 (geometric and texture) 

variables, respectively. This study shows the predictive potential of combining image 

analysis with texture analysis for lamb grading. The addition of carcass weight improved 

the overall classification accuracy, of both feature sets, to 85%. 

Key words: Image analysis, Texture features, Lamb grading, Computer vision, 

Discriminant function analysis, Co-occurrence matrix 



1. Introduction 

Visual assessment has become the principal component of several meat classification and 

grading systems. Furthermore, the meat industry, in response to consumer demand for the 

products of consistent quality, strongly emphasises on quality assurance issues. Instrument 

grading of animal carcasses has been studied to meet the demand for increased accuracy 

and uniformity of meat grading. 

Computer vision has enormous potential for evaluating meat quality as image 

processing techniques can quantitatively and consistently characterize complex geometric, 

colour and textural properties. In New Zealand, the assignment of lamb carcasses to 

specific quality grades has been an integral part of a lamb carcass classification system 

(Figure 1). The current classification is based solely on carcass weight and fatness 

measurements. There are five weight ranges which are: A (very light and lean), E (light), 

M (medium), X (heavier) and H (heavy). There are also five fatness classes which are: A 

(devoid), Y (lean), P (prime), T (trimmer) and F (overfat). The fatness classes are 

specified according to the measured carcass GR (New Zealand Meat Board, 1992), which 

is defined as the total fat tissue depth over the 12 '~  rib at a point 11 cm from the midline of 

the carcass. GR is usually measured only on carcasses judged as marginal between fat 

classes P and T or T and F. In all the other cases it is visually estimated which is largely 

subjective. The final assigned grade is a combination of fatness class and weight class, eg. 

YM, PX etc. 

Figure 1. New Zealand lamb carcass classification system 

Texture is an important characteristic of many types of images. A precise 

definition of image texture does not exist. It can be quantitatively evaluated as having one 
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or more of the intrinsic properties of fineness, coarseness, smoothness, granulation, 

randomness, lineation or being mottled, irregular or hummocky (Haralick, 1979). A 

variety of techniques for analysing image texture have been proposed over the past three 

decades. Most of the approaches compute the features that are capable of capturing 

textural properties. Such features contain information representative of visual 

characteristics and also characteristics that cannot be visually differentiated. 

Haralick (1979), Reed & Du Buf (1993) and Van Goo1 et al. (1985) present a 

detailed survey of texture analysis methods used in image analysis. Tuceryan and Jain 

(1999), classified texture analysis methods into four categories as statistical, structural 

(geometrical), model based and signal processing. 

Statistical approaches, better suited for micro textures, analyse the spatial 

distribution of grey values and derive a set of statistics. Depending on the number of 

pixels defining the local feature, statistical approaches can be further classified into first- 

order, second-order and higher-order statistics. Structural texture analysis techniques 

assume that textures are composed of well-defined texture elements. In the structural 

techniques, the primitives and the placement rules describe the texture elements and the 

spatial organization between the elements, respectively. Structural methods are of limited 

utility as many textures violate the assumption of texture elements. Signal processing 

techniques are based on the properties of the Fourier spectrum. Model-based methods are 

based on the construction of an image model, which can be used to describe and synthesize 

texture. 

A class of simple image properties that can be used for texture analysis are first- 

order statistics. It measures the possibility of observing a grey value at randomly chosen 

location in the image. The features calculated using the first order statistics of an image, 

such as mean and variance, are not textural features because they depend only on the 

intensity of individual pixels, independent of their neighbouring pixels. These features 

simply describe the grey level histogram of an image. Texture is essentially a 

neighbourhood property. It is an innate property of virtually all surfaces and contains 

important information about the structural arrangement of surfaces. Second-order and 

higher-order statistics estimate properties of two pixels and three or more pixels, 

respectively, occurring at specific locations relative to each other. 

Statistical approaches commonly used include the grey level co-occurrence matrix 

(GLCM) method (Haralick et al., 1973), the grey level difference method (GLDM) 

(Weszka et al., 1976) and the grey level run length matrix (GLRM) method (Galloway, 



1975). The other statistical approaches include autocorrelation functions, optical 

transforms, digital transforms, textural edgeness, autoregressive models and structural 

elements (Haralick, 1979). 

Model based approaches like Markov random field model (Tuceryan and Jain, 

1999), autoregressive models and fractal based modelling (Pentland, 1984) have also been 

widely used in image texture characterization. Signal processing methods include spatial 

domain filters, Fourier domain filters, Gabor filters and wavelets. Researchers have 

attempted to compare methods for texture &scrimination and classification (Conners and 

Harlow, 1980; Ohanian and Dubes, 1992; Ojala et al., 1996; Weszka et al., 1976). 

Since the texture of muscle images can reflect muscle fibre characteristics such as 

size, it may be directly or indirectly related to meat quality characteristics. During the last 

two decades, several authors have proposed different systems based on image analysis 

technology. Early studies have shown that image analysis technology has great potential to 

improve the current human grader based meat quality operation (Cross et al., 1983; 

Wassenberg et al., 1986). 

Several applications of image analysis in meat quality evaluation have also been 

published. These include quantification of intramuscular fat content in the beef ribeye 

(Chen et al., 1989), prediction of beef carcass lean meat yield using images of 12 '~  rib 

interface (Gardner et al., 1995), evaluation of marbling percentage and colour scores in 

beef (Gerrard et al., 1996; Schutte et al., 1998) and enhanced image segmentation (Lu and 

Tan, 1998; McDonald and Chen, 1989; McDonald and Chen, 1990). 

Prediction of carcass composition using the information extracted from carcass 

cross section by image analysis have also been reported (Karnuah et al., 1995a; 1995b: 

1996; 2001). Shackelford et al. (1998), used image information in combination with 

tenderness classification to predict carcass cutability and tenderness. Attempts for 

automatically grading of beef marbling by image analysis have also been published 

(Kuchida et al., 1992; Yoshikawa et al., 2000). 

Several studies on automated grading and classification of beef carcasses, based on 

image analysis have been reported (Borggaard et al., 1996; Karnuah et al., 1995a, 1995b, 

1996,2001; Kuchida et al., 1992; Lu et al., 1998; Shiranita et al., 2000). Only a few 

applications have been reported for sheep grading and classification (Hopkins et al., 1997; 

Horgan et al., 1995; Stanford et al., 1998). 

Texture features extracted using GLCM (Li et al., 1999; Shiranita et al., 1998), 

GLRM (Li et al., 1999; 2001), fractal approach (Ballerini and Bocchi, 2001) and wavelets 



(Li et al., 2001) have been used in meat quality evaluation exercises. Colour, marbling and 

image texture features have been used to develop tenderness prediction models for beef (Li 

et al., 1999). They performed statistical as well as neural network analyses to relate image 

features to tenderness score. In the work of Li et al. (2001), multi-scale texture analysis 

based on wavelets was used to classify beef samples into tender and tough categories. In 

the work of Shiranita et al. (2000), the concept of "marbling score1", image processing, 

neural networks and multiple regression analysis were used to study the implementation of 

a meat quality grading system. 

The aim of this research was to investigate the use of image processing and texture 

analysis techniques in the classification of lamb chop images, with the specific objective 

was to characterize lamb chops from the features provided by image and texture analyses. 

In section 2, we describe the materials used. Section 3 presents the methods used, 

which includes, calculation of geometric and texture features and data analysis. Section 4 

describes the results and the conclusions are in section 5. 

4 

Computer t J Camera 
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Figure 2. Equipment set up for image capture and analysis 

2. Materials 

2.1. Source of Lamb Chops 

The data were collected from 160 digital images of lamb mid loin chops taken at 13 '~  rib 

from randomly selected sides of 160 lamb carcasses. The animals were from Dorset Down 

x Coopworth and Merino x Coopworth breeds. Six common lamb grades (FH, PM, PX, 

TH, YM, YX) were selected for this analysis. These grades represent about 90% of the 

1 marbling score is a measure of the distribution of marbling. 



total volume of lamb graded in New Zealand for export market. After 24 hrs of aging, two 

sets of mid loin chops were removed from both sides of the carcass. One set of samples 

was used for 24 hrs tenderness evaluation and imaging. The other set was aged at 1°C 

until 21 days post-mortem and then used for tenderness evaluation. 

2.2. Imaging System 

The imaging system (Figure 2) consisted of a 3 CCD (Charge Couple Device) colour 

digital camera (Sony, DSR-PD15OP) mounted on a stand (RSX copy stand, Kaiser, 

Germany), lighting system (two sets of RB 5004 HF copy lighting units, Kaiser, 

Germany), personal computer (850 MHz AMD Athlon processor, with 512 MB RAM) and 

image processing and analysis software (Image-Pro Plus, Media Cybernetics, USA) with 

its development environment. 

2.3. Image Acquisition 

The samples were all bloomed for 30 min. and surface moisture was removed with a paper 

towel before capturing images. For imaging, lamb chops were placed flat on a nonglare 

black surface and illuminated with standard lighting (Kaiser lighting system). The still 

images of lamb chops were later transferred to the PC for storage and analysis. The 

images included lean area, marbling, subcutaneous fat, intermuscular fat and bone. 

3. Methods 

3.1. Image Processing and Analysis 

Image processing and analysis were accomplished using Image-Pro Plus software. 

Processing algorithms for determining lean and fat areas, marbling, fat thicknesses and 

texture parameters were developed using Image-Pro Plus with Image-Pro Basic (IPBasic) 

programming language. IPBasic is the language in which Image-Pro macros are written 

and interpreted. PBasic commands conform to Visual Basic syntax. Automation of 

routine procedures was achieved with Auto-Pro scripting facility. The images were first 

segmented into lean (dark) and fat (light) areas. Thresholding was done through trial and 

error by observing and selecting the best value. Initial values for thresholding were 

selected from the plot of pixel intensities. 



A total of 12 image geometric variables were measured. 

1. area of lean in cm2 (lean area) 

2. area of marbling within lean in cm2 (marbling area) 

3. subcutaneous fat area in cm2 (fat area) 

4. lean ratio - the ratio of areas between lean and lean + marbling (lean ratio) 

5. number of marbling specks (no of marbling specks) 

6. average, minimum and maximum thickness values of subcutaneous fat (sub fat 

average, sub fat maximum, sub fat minimum) 

7. thickness of fat layer at a point 1 lcm from the midline of the carcass (fat 11) 

8. average, minimum and maximum of fat thickness values between 10 cm and 12 

cm from the midline of the carcass (fat 11 average, fat 11 minimum and fat 11 

maximum) 

3.2. Extraction of Texture Features 

Image texture contains statistical information of grey level image in the spatial domain and 

can be analysed by studying the spatial dependence of pixel values. Since the textural 

properties of images appear to carry useful information, it is important to extract features 

from images. Texture analysis is a well-developed technology and has been used for the 

analysis of a wide variety of images ranging from microscopic images to satellite images. 

In this research we use grey level co-occurrence matrix to extract texture features. 

Grey Level Co-occurrence matrix (GLCM) 

The GLCM is based on the estimation of second order joint conditional probability density 

functions P (i, j: d, 8 ). Each P (i, j: d, 8 ) is the probability that two neighbouring pixels 

with grey levels i and j occur for a given distance d and direction 8. This yields a matrix of 

dimensions equal to the grey levels in the image, for each distance and orientation (d, 8). 

Consider an image with Nx pixels in the horizontal direction and Ny pixels in the vertical 

direction. The grey levels of image pixels are quantised into N, grey levels. Consider a 

pair of pixels (k, 1 ) and (m, n) in a texture image, that are separated by a distance d and 

angle 8 with respect to the horizontal axis (Figure 3). Let the grey level of pixel (k, 1 ) be 

of value i and that of pixel (m, n) be of value j. 

When GLCM is constructed with symmetry, only angles up to 180' need to be 

considered and this can be done at regular angular intervals. There is no distinction 



between opposite angles, i.e. P (i, j: d, 0 ) = P (i, j: d, 0 + n) and therefore P (i, j: d ,  8 ) = P 

( j, i: d, 0 ). The elements of unnormalized co-occurrence matrix, P (i, j: d, 0 ), in the four 

principal directions (horizontal, first diagonal, vertical and second diagonal or 8 = o', 45', 

90' and 135') are defined as: 

P (i,  j: 4 0') = #{((k,  1 1, (m, 4) E (Lx x &) x (Lx x Ly) I 
( k - m = O , I l - n I = d ) , I ( k , l ) = i ,  I ( m , n ) = j }  (1) 

p (i, j: d, 45') = #l ((k, 1 1, (my 4) E (Lx x &) x (h x Ly) 1 
( k - m = d , l - n = - d ) o r ( k - m =  - d , 1 - n = d ) ,  

I (k, 1 ) = i, I (m, n) = j }  (2) 

p (i,  j: d, 90') = #{  ((k, 1 ), (m, n))  E (Lx x x (Lx x Ly) 1 
( ( k - m I = d , l - n = O ) , I ( k , l ) = i , I ( m , n ) = j )  (3) 

P (i,  j: d, 135') = #{((k ,  1 1, (m, 4) E (Lx x &) x (L x Ly) I 
( k - m = d , l - n = d ) o r ( k - m = - d ,  1 - n = - d ) ,  

I (k, 1 )  = i, I (m, n) = j }  (4)  

# = number of elements in the set 

(k, 1 ) = coordinate with grey level i  

(m, n)  = coordinate with grey level j  

I  (k,  1 ) = grey level intensity at coordinate (k, 1 ) 

I  (m, n) = grey level intensity at coordinate (m, n)  

LX = horizontal spatial domain (1, 2, . . . , Nx) 

LY = vertical spatial domain (1,2, . . . , Ny) 

where 

/ grey level j 

Figure 3. Displacement (d, 0 ) 

Scale is an important aspect of texture. Characterization of image texture depends 

on the scale of analysis. The scale refers to the size of the textural elements or 



neighbourhood used for textural analysis. Use of different scales reveals different levels of 

details of an image texture. A small d results in a P matrix relating to the detailed local 

properties of an image, while a large d leads to properties in large scale. 

There is no known rigorous optimal method for selecting d and 6'. Based on the 

results of preliminary experiments we fixed the value of d = 1 to 10 with angles 6' = o', 

45', 90' and 135'. For each direction, one matrix is computed and thus we have four such 

matrices ( P (i, j: l,oO), P (i, j :  1, 45'1, P (i, j : 1, 90') and P (i, j : 1, 135')). If an image is 

quantised into N, grey levels, then the co-occurrence matrix is an N, x N, matrix. The 

GLCM is to be implemented with some rotation invariance. This can be achieved by 

combining the results of subset of angles (6' = o', 45', 90' and 135'). By adding the four 

matrices we obtained the summation matrix P (i, j). 

i , j = 1 , 2  ,............ 
7 N, 

In addition P (i, j) and P (i, j: d, 6' ) are normalized by dividing each entry of the co- 

occurrence matrix by the total number of paired occurrences in the image as 

A number of features can be computed from these matrices. A general procedure 

was presented by Haralick et a1 (1973) for extracting textural properties of image data in 

the spatial domain and suggested a set of 14 features for texture characterization. Unser 

(1986) also defined some texture properties. In this research, a set of 18 features was 

calculated. These 18 features are angular second moment, contrast, correlation, variance, 

inverse diflerence moment or homogeneity, sum average, sum variance, sum entropy, 

entropy, difference variance, difference entropy, information measures of correlation (1 

and 2), mean, difference average, cluster prominence, cluster shade and product moment. 

These 18 parameters were calculated from the normalized co-occurrence matrices in four 

principal directions ( p (i, j : 1, o'), p (i, j : 1, 45'1, p (i, j : 1, 90') and p (i, j : 1, 135')) 

separately, as well as from the normalized summation matrix p (i, j). There were total of 

90 texture variables. 



3.3. Data Analysis 

Principal Component Analysis and Cluster Analysis were used to reduce the 

dimensionality of the data. The reduced feature spaces were used for the discriminant 

analysis. Statistical analysis was performed with Minitab (release 13.1, Minitab Inc.) and 

SPSS (release 10.0.5, SPSS Inc.). 

3.3.1. Principal Component analysis (PCA) 

PCA is a method of data compression, developed to identify the directions of main 

variability in a multivariate data space. It is an orthogonal transformation that transforms 

the original set of variables into new axes or principal compon'ents (PCs), while retaining 

as much as possible variation in the original data set. Mathematically, PCs are linear 

transformations of the original measured set of variables. The calculation of PCs is simply 

a task of finding these indices of linear transformation. 

The PCs are uncorrelated and ordered so that the first PC displays the largest 

amount of variation and each successively defined PC expresses decreasing amount of 

variation. The first few PCs contain most of the variation in the original data set. The lack 

of correlation means that the PCs are measuring different dimensions in the data. The best 

results from PCA are obtained when the original variables are highly correlated (Manly, 

1994; Mardia et al., 1979). 

The number of PCs to choose is usually determined by how much variability each 

of the PC represents; select the smallest number of PCs that the cumulative variance 

proportion has reached the criterion acceptable. For each principal component a new 

variable is obtained by projecting the samples onto its space. These new variables are 

usually called PC scores. 

3.3.2. Cluster analysis 

Clustering analysis is another multivariate analysis technique that classifies objects into 

clusters. The objects within the same cluster should resemble and objects in different 

clusters should differ from one another. The resulting clusters of objects should then 

exhibit high homogeneity within a cluster and high heterogeneity between clusters. 

Many algorithms have been proposed for cluster analysis. The two approaches, 

partitioning and hierarchical techniques, are more common. Partitioning method classifies 



objects into a specified number of clusters with each cluster containing at least one object 

and each object belonging to no more than one cluster. In this method objects are allowed 

to move in and out of clusters at different stages of the analysis. 

Hierarchical clustering methods fall into two categories, agglomerative and divisive 

clustering. Clustering starts with a matrix of distances between individuals (the distances 

between each individual to all other individuals). In divisive clustering all objects start in a 

single cluster. This is then split into two clusters. The procedure continues until all objects 

are in clusters of their own. In agglomerative clustering, each object is considered as a 

separate cluster and then two clusters that are most similar are merged into a new cluster. 

The procedure is continued until finally all the objects are in a single cluster. The 

graphical representation of the results of a hierarchical clustering is called dendrogram. 

3.3.3. Discriminant function analysis (DFA) 

DFA is yet another multivariate technique in which two or more predictors are used in 

combination. DFA is concerned with the problem of assigning individuals (on whom 

several variables have been measured) to certain groups that are already identified in the 

sample. It takes into account the different variables of an object and works out which 

group the object most likely belongs to. DFA finds a set of linear combinations of the 

variables, whose values are as close as possible within groups and as far apart as possible 

between groups. A discriminant function is a linear combination of the discriminating 

(independent) variables. 

A linear discriminant function ( Di = ai  + b,,X, + bi2X2 + . . . + bip Xp ) is created 

such that the two groups differ as much as possible on D, where the b's are discriminant 

coefficients, the X 's are discriminating variables and a is a constant. 

4. Results and Discussion 

For each image, 102 features were calculated: 12 geometric variables and 90 co-occurrence 

texture variables as described in sections 3.1 and 3.2. The standardised data (mean of zero 

and variance of one) were then reduced using PCA and cluster analysis and the reduction 

procedure is described below. 



4.1. Data Reduction 

The results of the PCA for image geometric variables and texture variables are presented in 

Table 1. The analysis shows that 43.7% of the total variation of the image geometric 

variables is explained by the first PC, 64.2% by the first two PCs, 79.1% by the first three 

PCs, 87.8% by the first four PCs, 93% by the first five PCs and the 96.1% by the first six 

PCs. That means 96.1% of the total variance in all the twelve geometric variables can be 

condensed into six PCs. Principal components loading (eigen vectors) of geometric 

variables are shown in Table 2. The loading plot (plot of eigen vectors), shown in Figure 

4 ,  can be used for further interpretation of results. 

Table 1. Results from the PCA for geometric variables and texture variables 

Principal Eigen % Cumulative 
components value Variance variance % 

Image PC2 2.46 20.5 64.2 

geometric PC3 1.79 14.9 79.1 

variables PC4 1.05 8.7 87.8 
PC5 0.62 5.1 93.0 

Co-occurrence PC3 11.20 12.4 84.3 

texture PC4 5.89 6.5 90.9 

variables PC5 4.89 5.4 96.3 
PC6 1.20 1.3 97.6 

Six new variables or PC scores were calculated as a linear combination of the 

measured variables. For each sample, PC scores were calculated as the summation of the 

principal component loading multiplied by respective measured variable. For example, 

PC1 = (- 0 . 1 4 8 ~  leanarea -0.485 x marbling area - 0.293 x fat area+ 0.477 xlean ratio. 

These PC scores were used as variables for classification. The other alternative to PC 

score is that one of the measured variables can be selected to represent the principal 

component. This is computationally attractive, as we don't have to extract all the 

variables. Only the selected variables can be extracted. In this research, we used both 

approaches to examine the effect on classification. 



Table 2. Principal components loading of geometric variables 

Variable PC1 PC2 PC3 PC4 PC5 PC6 

lean area 

marbling area 

fat area 

lean ratio 

marbling specks 

sub fat average 

sub fat minimum 

sub fat maximum 

fat 11 

fat 11 average 

fat 11 minimum 

fat 11 maximum 

* maximum coefficient # selected coefficient 

. . 
w 

5 
sub fat minimum 
suh fat maximum 

. i lilL ll 

fat 11 average ) I \ I 

fat 11 rninimum 

-0.5 0.0 0.5 
Principal component 1 

Figure 4. Loading plot of geometric variables 

The most important variables for the first PC were fat 11, fat 11 average, fat 11 

minimum and fat 11 maximum (Table 2). These variables are related to subcutaneous fat 

thickness at 11 cm (from the mid line of the carcass). So, the first PC is defined by 11 cm 

fat thickness. These variables, placed to the left in the third quadrant of the loading plot, 

are close together making a single cluster (Figure 4). The second PC was characterised by 



two marbling indicators: marbling area and no of marbling specks. These variables are 

placed in the second quadrant, form another cluster (Figure 4). 

The third PC is characterized by three subcutaneous fat thickness (sub fat average, 

sub fat maximum, sub fat minimum) parameters. These variables placed to the left in the 

second and third quadrants (close to the x axis) of the loading plot are also close together 

making another cluster (Figure 4). Lean area, fat area and lean ratio represented the 

fourth, fifth and sixth PC, respectively. The variables formed three separate groups in the 

third and fourth quadrants of the loading plot (Figure 4). First, second and third PCs are 

characterized by more than one variable. Three variables were selected to represent these 

PCs. Therefore the original number of 12 variables can be effectively represented by six 

variables which are: fat 11, marbling area, sub fat average, lean area, fat area and lean 

ratio. 

Similarity 

, Partition 

Variable 

Figure 5. Dendrogram of geometric variables 

Cluster analysis of the variables (agglomerative clustering ) was carried out using 

twelve geometric variables. Figure 5 shows the dendrogram. Partition of the six clusters 

produced lean ratio, lean area and fat area alone in three separate clusters whilst two 

variables (marbling area and marbling specks), three variables (sub fat average, sub fat 

minimum and sub fat maximum) and four variables (fat 11, fat 11 average, fat 11 minimum 

and fat 11 maximum) were in three other clusters confirming the results of PCA. 

The analysis of texture variables shows that 52.3% of the total variation is 

explained by the first PC, 71.9% by the first two PCs, 84.3% by the first three PCs, 90.9% 



by the first four PCs, 96.3% by the first five PCs, 97.6% by the first six PCs, 98.5% by the 

first seven PCs and 99.2% by the first eight PCs (Table 1). That is 99.2% of the total 

variance in the ninety image texture variables can be condensed into eight PCs. Figure 6 

shows loading plot for image texture variables. Visual examination of the loading plot 

revealed eight clusters of variables. Therefore, eight texture variables were selected using 

the procedure explained previously, for geometric variables. The texture variables selected 

are mean, homogeneity, entropy, contrast, cluster prominence, cluster shade, difference 

entropy and IMC2. All of them were calculated from the summation matrix, p (i, j). 

Cluster analysis of the variables was carried out on the ninety texture variables and 

produced similar results to PCA. The reduced set of variables, therefore, included six- 

image geometric variables and eight co-occurrence texture based variables. 

-1.0 -0.5 0.0 0.5 
Principal component 1 

Figure 6. Loading plot of texture variables 

4.2. Classification 

DFA was performed to classify lamb images into different grades. The analysis was 

carried out using linear and quadratic discriminant functions with and without cross 

validation. In all cases, linear discriminant functions produced better classification than 

quadratic discriminant functions. In the analysis, equal prior probabilities (all the groups 

are treated equally) as well as prior probabilities calculated from group membership sizes 

were used. Prior probabilities calculated from group sizes account for prior knowledge of 

probable group membership or bias the allocation procedure in favour of groups with 



higher membership. Adjustment for prior probabilities will have the greatest impact when 

the groups overlap or when there are number of cases near the borderlines between the 

groups (Klecka, 1980). If the groups are very distinct, then the adjustments for prior 

probabilities will have the least effect. 

Table 3. Results of Discriminant Function Analysis 

variables' No of images correctly classified (%) 

FH PM PX TH YM YX Total 

1 reduced set 1 100.0 73.3 44.4 100.0 58.1 66.7 64.0 

2 reduced set 2 100.0 60.0 44.4 80.0 67.7 70.7 66.0 

3 reduced set 3 100.0 73.3 63.0 100.0 74.2 85.3 79.0 

4 all variables 100.0 66.7 51.9 100.0 74.2 77.3 73.0 

5 PCscoressetl 100.0 66.7 48.1 100.0 54.8 72.0 66.3 

6 PC scores set 2 100.0 66.7 44.4 0.0 77.4 73.3 67.5 

7 PC scores set 3 100.0 66.7 59.3 80.0 77.4 82.7 76.9 

# reduced set 1 (6 geometric variables); reduced set 2 (8 texture variables calculated from p (i, j)); 
reduced set 3 (reduced set 1 + reduced set 2); all variables (12 geometric and 90 texture variables); 
PC scores set 1 (6 PC scores of geometric variables); PC scores set 2 (8 PC scores of texture 
variables); PC scores set 3 (PC scores set 1 + PC scores set 2). 

Classification was performed using both the reduced and original data sets. The seven sets 

of variables used for classification were: three reduced sets (six geometric variables, eight 

texture variables and 14 geometric + texture variables); all 102 variables (12 geometric 

variables and 90 texture variables) and three sets of PC scores (six geometric PC scores, 

eight texture PC scores and 14 geometric + texture PC scores). Table 3 shows 

classification results. In the analysis, higher overall classification rate was observed with 

prior probabilities calculated from group sizes. 

Both PC scores and selected variables were used to examine the effect of selecting 

original variables to represent PC scores. Classification with 14 PC scores produced 

76.9% accuracy but the classification accuracy with 14 geometric and texture variables 

were 79%. This clearly shows that selection of original variables to represent PC scores is 

successful. The original data set was used to observe the effect of data reduction on 

classification. The results are shown in Table 3. Classification with all variables (12 

geometric and 90 texture) produced 73% accuracy but the classification was higher (79%) 

with the selected set of variables. It undoubtedly indicates that the data reduction is 

effective and there is no loss of information contained in the data set. In other words, it is 



clear that some of the variables measured are highly correlated with others and carry no 

additional information, making them redundant. 

More features extracted from images always leads to a better characterization. 

Normally we would expect a higher classification with more features. But in practical, the 

contrary was observed indicating the existence of an optimal measurement complexity. 

The error rate initially drops with an increasing number of features but at a certain point 

error rate saturate and then it rises if additional features are used (Jain and Chandrasekaran, 

1982). This phenomenon is called curse of dimensionality. 

Table 4. Details of misclassified images (reduced set 3) 

FH PM PX TH YM YX Total 

Table 4 present details of misclassified images with prior probabilities calculated 

from group sizes. The classification rate of the grade YX was 85.3%, while the 

corresponding misclassifications into grades PM, PX and YM were 1.3%, 6.7% and 6.7%, 

respectively (Table 4). The classification rate of grade YM was 74.2%. The 

misclassification of YMs into grades PM and YX were 9.7% and 16.1%, respectively. 

This higher misclassification into grade YX is probably due to the influence of high 

membership population in grade YX, forcing the cases near the borderline between YM 

and YX to classify as YX. But the YM managed to improve its classification by drawing 

some rnisclassified cases from grades PM and PX. 

The two grades TH and FH produced 100% classification rates. The classification 

rate for the grade PM was 73.3%. The grade PM was unable to attract any of the 

misclassified cases from YM. This may be due to higher membership population of the 

grade YM compared to the grade PM. Finally, the classification of grade PX was only 

63%. This can be explained by analysing misclassified cases. The rnisclassification into 

grade YX and YM were 33.3% and 3.7%, respectively. The influence of YX on PX, the 

grade share common border with YX, is high. 



All the misclassified images of grade PM were classified as grade YM (Table 4). 

These two grades lie between the same weight ranges. A fat depth of 7 mm separates the 

grades. A fat depth higher than 7 rnm is graded as PM and fat depth with 7 mm or less is 

graded as YM. On the other hand, 9.7% of the misclassified images of the grade YM fell 

into the grade PM. Similar observations were made between the grades YX and PX. The 

two grades are separated by 9 mm fat depth. Highest percentage (33.3%) of misclassified 

images of the grade PX were in the grade YX, while 6.7% of the misclassified images in 

grade YX are in grade PX. 

Inclusion of carcass weight produced higher overall classification in first three 

cases of Table 5. Apparently, carcass weight seems to have some vital information that 

does not carry in the geometric and texture variables. The highest overall classification 

rate without carcass weight was 79% and addition of carcass weight improved the overall 

classification to 85% (Table 5). In case of all (geometric and texture) variables, the overall 

classification remained unchanged at 73%, even after the addition of carcass weight 

indicating that the carcass weight has no additional information. PC scores with carcass 

weight produced classification accuracy of 85%. 

Table 5. Results of Discriminant Function Analysis effect of carcass weight 

No of images correctly classified (%) 
Variables* 

FH PM PX TH YM YX total 

1 reduced set 1 

reduced set 1 + HCW 

2 reduced set 2 

reduced set 2 + HCW 

3 reduced set 3 

reduced set + HCW 

4 all variables 

all variables + HCW 

5 PC score set3 

PC score set 3 + HCW 

* HCW (hot carcass weight), others similar caption as Table 3 

More than 35% of the New Zealand lambs produced for the export market belong 

to the YM grade (Meat New Zealand, 2001). The YX, PM and PX grades together account 



for nearly 50% of the export lamb production. The TH and FH grades comprise about 5%, 

the grades YL and PH account for about 6% and the other grades (PLY TL, TM, FL and 

FM) contribute about 1%. The majority of carcasses fall, therefore, into YM, YX, PM and 

PX grades. Thus higher classification accuracy is required for these grades. In this 

research, we used YM, YX, PM, PX, TH and FH grades. These grades represent more 

than 90% of the New Zealand export lamb production. 

5. Conclusions 

In this paper, we have investigated the classification of lamb images using image and 

texture analysis together with multivariate statistical techniques. Six geometric variables 

and eight texture variables extracted from grey level co-occurrence matrices of lamb chop 

images were used for classifying lamb carcasses into different grades. PC scores 

calculated from geometric and texture variables were also used for classifying lamb 

carcasses. 

The classification showed encouraging results indicating that the data extracted 

from images of lamb chops can be effectively used to predict lamb carcass grades. The 

classification accuracy using 14 PC scores were 76.9% and addition of carcass weight 

produced overall classification of 85%. The accuracy of predicting lamb grades using six 

geometric variables was 64%. Inclusion of eight texture variables in the analysis improved 

the overall classification to 79%, which is better than the classification using PC scores. 

The addition of carcass weight improved the overall classification to 85%. 

The classification of lamb images using geometric and texture features have 

therefore been successful. Certain grades were classified as 100%. The calculated texture 

features have therefore the potential to be used as indicators of the quality of lamb 

carcasses. Extraction of texture features with different techniques and further experiments 

on a larger number of samples, including the grades YL and PH are planned for future 

studies on lamb carcasses. 
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