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Abstract

The objective of this project was to design and test a secure IP-based ar-

chitecture suitable for short duration transactions. This included the devel-

opment of a prototype test-bed in which various operating scenarios (such as

cryptographic options, various IP-based architectures and fault tolerance) were

demonstrated. A solution based on SIP secured with TLS was tested on two IP

based architectures. Total time, CPU time and heap usage was measured for

each architecture and encryption scheme to examine the viability of such a solu-

tion. The results showed that the proposed solution stack was able to complete

transactions in reasonable time and was able to recover from transaction proces-

sor failure. This research has demonstrated a possible architecture and protocol

stack suitable for IP-based transaction networks. The benefits of an IP-based

transaction network include reduced operating costs for network providers and

clients, as shared IP infrastructure is used, instead of maintaining a separate IP

and X.25 network.
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Chapter 1

Introduction

Transaction networks are deployed in many scenarios for example: fire/burglar

alarms, remote monitoring/metering systems, airport check in systems and au-

tomated teller machines (ATMS). A transaction has the following properties

(from [28]):

• Asymmetrical Model: the two endpoints have distinct roles; one is a client

which initiates transactions, and the other is a server, which processes

requests.

• Half Duplex Transfers: it is unnecessary to send data in both directions

simultaneously.

• Short Duration: transactions last between 100s of milliseconds up to sev-

eral seconds, but never hours.

• Low Delay: latency is usually low.

• Few Data packets: typically two packets, a request and a response.

• Message Orientation: messages, rather than a stream of bytes, are trans-

ferred.

Mission critical transactions (such as medical alert systems and ATMs) may

have additional characteristics (from [117]):

• High Call Rates: some deployments involve a large number of clients con-

necting to a smaller number of servers.

• High peak to average load ratio: for example ATMs may average 20 trans-

actions per second for most of the year, but may increase to 200 during

the busiest day in December.

1



CHAPTER 1. INTRODUCTION 2

One visible application of transaction networks is Electronic Funds Transfer at

Point of Sale (EFTPOS). EFTPOS was launched in New Zealand in 1984 and

has since become a popular method for making payments. EFTPOS runs over

the Telecom Transaction Service (TTS) network. TTS is based on legacy pro-

tocols: High-Level Data Link Control in Normal Response Mode (HDLC NRM,

also known as Synchronous Data Link Control or SDLC) on the transaction

terminal side and X.25 on the bank switch delivery side. The transport layer

is AS2805.1, a connectionless datagram protocol. The AS2805 group of proto-

cols is a standard specifically designed for electronic funds transfers. AS2805

encompasses a transport protocol (.1), a financial messaging protocol (.2) and

message security, authentication, security and key management (.3-.6) among

others. AS2805.2 is an ISO 8583 message format, a specification for financial

messages used by payment cards.

TTS uses Public Switched Telephone Network (PSTN) dial up access for

sites with low transaction volumes and dedicated leased line access for loca-

tions with higher transaction volumes. In addition to transaction terminals and

transaction processors, TTS infrastructure is also comprised of concentrators

(to aggregate transactions) and Network Access Controllers (NACs). NACs

provide protocol conversion, proxying, concentration of transactions, routing

and network management functions.

TTS is based on protocols that have been superseded by IP based protocols.

IP is ubiquitous; many large organisations have deployed IP networks, while

broadband DSL and wireless access bring IP connectivity to small businesses

and residential users. Voice telephony is also migrating to IP as Voice over IP

(VoIP). Running multiple services over a shared IP infrastructure reduces costs

as providers no longer need to maintain and operate a dedicated, specialised net-

work that provides for only a single application. Thus, EFTPOS will eventually

need to be migrated to operate over IP.

Transaction terminals each need their own telephone line or leased line.

When IP is used, however, multiple terminals can share the same link. Line

rental costs can be reduced by connecting terminals to an existing DSL service

instead of providing each terminal with its own phone line. Adding a terminal

to an existing LAN or DSL service is also faster than adding an additional

telephone line at the merchant’s premises.

Broadband services are ‘always on’. Transaction terminals can take advan-

tage of this as no connection time is required. Broadband DSL speeds are also

at least several megabits per second in speed. This is sufficient to support

hundreds of transaction terminals in addition to existing uses of DSL such as
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internet use and VoIP [17].

If the EFTPOS service can operate over IP, it opens up the potential to use

any medium which can carry IP, for example wireless broadband, GPRS and

CDMA. This creates the possibility for a mobile real time EFTPOS service, for

example in taxis and temporary stalls. Current mobile EFTPOS services are

batch processed offline (at the end of the day for example).

In addition to business drivers, such as reducing operational costs, for mi-

grating from legacy protocols to modern protocols, technical drivers exist as

well. As X.25 is progressively replaced with IP networks, X.25 skills will di-

minish, for example planning, configuring and maintenance. There is also the

potential reduction of vendor support. Furthermore, replacing X.25 infrastruc-

ture as hardware becomes obsolete, also becomes more expensive.

The newer protocols also improve on X.25. X.25 provides a robust, error free

link between two end points.1 X.25 buffers the entire frame, checks it for errors,

then forwards it to the next node. The cost of this error correction is a high

delay. While this has little effect for large transfers, it is noticeable with small

exchanges such as an EFTPOS transaction. This buffering behaviour increases

the memory required in X.25 hardware, also making it expensive.

X.25 is optimised for noisy links with high error rates. However, newer dig-

ital transmission media have improved in quality, making X.25’s robust error

correction unnecessary. The high latency as a consequence of this error correc-

tion also results in poor bandwidth utilisation; small packet and window sizes,

in addition to the latency, cause X.25 to lose its effectiveness when the line speed

is greater than 100kbps. Modern broadband speeds, even for residential users,

are typically much higher than this.

1.1 Research Goals

This research aims to define a generic IP based transaction protocol stack on

which to run a transaction oriented application. The current EFTPOS system

will be used as a benchmark system.

This project does not intend to define a new EFTPOS protocol, that is, a

replacement for AS2805, but rather define a new generic architecture that can

carry AS2805 or any other transaction oriented protocol.

The new architecture must at least have the same performance and charac-

teristics as the current benchmark EFTPOS system, but should be capable of

exceeding them. These characteristics include security, reliability, availability
1http://www.sangoma.com/main/support/tutorials/x25
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and transaction time.

This requires analysing potential messaging/transport and security proto-

cols which satisfy the requirements. From the candidate protocols, a protocol

stack can be assembled which forms the basis of possible architectures. The

architecture defined is not limited to an EFTPOS application; it is relevant to

any system that utilises short transactions.



Chapter 2

Telecom Transaction

Service

This section details an example of a current transaction network, the Tele-

com Transaction Service (TTS). TTS is used for the EFTPOS system in New

Zealand. Transaction terminals connect to transaction processors via Network

Access Controllers (NAC), as the topology in Figure 2.1 illustrates [66]. Transac-

tion terminals can send transactions in either front end or back end transaction

mode. Terminals in front end switching mode send transactions to processors

as designated by the card issuer. Thus, a terminal will send transactions to

several processors. Terminals in back end switching mode send all transactions,

regardless of card issuer, to a single processor. This transaction processor will

then either process the transaction itself or send it to the transaction processor

elected by the card issuer.

Figure 2.1: The Telecom Transaction Service (TTS) Toplogy.

5
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The protocol stack is in Figure 2.2. Transaction terminals use HDLC(NRM)/SDLC

as the Data Link/Network layer protocol to communicate with the NAC. The

NAC operates as the NRM primary station and the terminal as the NRM sec-

ondary station (that is, the NAC always polls the terminal). The NAC commu-

nicates with transaction processors via the TTS X.25 network. The transport

protocol AS2805.1 is used end to end from the transaction terminal to the trans-

action processor.

Figure 2.2: The current TTS protocol stack.

2.1 Network Access Controller (NAC)

NACs provide TTS access for transaction terminals. NACs also multiplex, route

and accumulate network statistics. NACs concentrate 16 or 32 connections onto

a single X.25 connection to the transaction processor. Multiplexing reduces the

processing load on the transaction processor, as fewer connections are dealt with.

The routing role enables transaction terminals to address different transaction

processors as required (explained in Section 2.4). Network statistics accumu-

lated for each terminal and X.25 port can be used by the Network Management

System for fault resolution and network planning.

Terminals connect to one of the NAC’s 16 or 32 connections in several ways:

Dial Up: This uses the PSTN to access the NAC. This is less reliable and

slower than a dedicated connection (the other three methods described

below), but allows widely distributed, low transaction volume terminals

to be concentrated on a small number of NAC ports. Terminals using

this access method are only visible during a transaction, which prevents

management of these terminals.

Single Drop: A single terminal can have a dedicated line for continuous access

to a single port on the NAC. This is intended for high volume locations
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which require high reliability and availability. Dedicated lines do not rely

on the PSTN; the PSTN can worsen delays and occasionally restrict access.

Multi Drop: Each of the 16 or 32 ports on a NAC can support up to eight

dedicated or dial up terminals on a single line. This is intended for multiple

terminal sites such as supermarkets and shopping malls.

Terminal Controller: Terminal controllers can address 16 or 32 terminals

and are also commonly used in supermarkets, malls and other sites which

have a large number of terminals. Terminal controllers appear as a single

terminal to the NAC and can be single or multi dropped. This enables

multiple transaction terminals to connect transparently to the NAC.

Terminals in the TTS system connect to the NAC through a 1200 bps two

wire line (dedicated/leased line or dial up). This line speed is sufficient, as trans-

actions are approximately 300 bytes in length [14]. The latency and transaction

times depend on the NAC and transaction processor load, access mode (dedi-

cated or dial up) and line quality. However, one way latency is approximately

a few seconds (a mean of less than 1.2 seconds) and total transaction time is

approximately 15 seconds [65].

2.2 Network Management System (NMS)

The NMS monitors and controls the TTS network. It allows configuration,

software updates, queries, monitoring of NACs and the display of statistics.

Queries to obtain status and statistical data (such as traffic volumes and dial

attempts) from NACs can be used for fault resolution and network planning.

The NMS also gives a degree of service awareness; the NMS periodically polls

each NAC to discover its status. NACs also poll the terminals with Receiver

Ready messages, requesting transactions; this notifies the terminal it is ready

to receive transactions. Conversely, NACs can also send Receive Not Ready

messages to terminals indicating the NAC is unable to provide services.

2.3 Security

The TTS X.25 network employs the Closed User Group (CUG) facility to pre-

vent unauthorised access to the network. The network is invisible to Network

User Addresses (NUAs are unique identifiers, equivalent to a phone number or

an IP) which have not been entered into the list of acceptable NUAs. Different

CUGs are also used to establish different security permissions for the different
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types of traffic (for example management data and transaction traffic) and for

billing.

A transaction processor cannot call a NAC or initiate a transaction to a

terminal. A transaction processor can only contact the terminal if a circuit

already exists, or by calling the NMS which will authenticate its permissions to

access the terminal.

Terminals do not connect directly to the transaction processors; terminals

must be proxied through a NAC. This reduces load on the transaction processor

as they do not see connections and disconnections from terminals, only a stream

of transaction data aggregated from NACs. This also improves security as only

NACs can connect to transaction processors, not the terminals. This reduces

the risk from ‘fake’ terminals, as they must authenticate with the NAC before

they can send transactions.

‘Security by obscurity’ is used to some degree in this system. Malicious end

users are unlikely to have consumer equipment that can interface with SDLC

or X.25.

The system is also relatively hard to perform Denial of Service (DoS) attacks

against, as all links to NACs are 1200 bps. Links between NACs and transaction

processors are 48 kbps, consequently it is impossible for a single terminal to

overwhelm a transaction processor.

2.4 Procedure

ISO 78121 is a standard for magnetic stripe cards (such as door entry, ATM and

credit cards). ISO 7812 defines a Primary Account Number (PAN), which is

typically 13, 16 or 19 digits in length. The PAN is normally printed or embossed

onto the card itself (Figure 2.3). The first digit is referred to as the Major

Industry Identifier (MII). This identifies which industry the card is used in, for

example 4 and 5 are banking/financial categories. The first six digits (including

the MII) are referred to as the Issuer Identifier Number (IIN). This identifies the

card issuer, for example 4xxxxx is Visa, 51xxxx-55xxxx is MasterCard. IINs are

assigned by the American Bankers Association and are managed like IPs and

radio frequencies.2 The IIN was also known as the Bank Identification Number

(BIN). The next sequence of numbers is the account number. This can be up

to 12 digits in length. The final digit is a checksum using the Luhn algorithm.

Inside each transaction terminal is a card prefix table (Figure 2.4). The

1http://www.merriampark.com/anatomycc.htm
2http://www.ansi.org/other services/registration programs/iin registration.aspx
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Figure 2.3: The first digit is the Major Industry Identifier (MII). The first six

digits (including the MII) is the Issuer Identifier Number (IIN). The seventh

to second to last digit is the account number. The final number is a checksum

using the Luhn algorithm. Image is from http://www.bnz.co.nz.

terminal uses this table to route transactions from a particular card type to

a particular NAC. The first two columns contain the PAN range, for example

VISA is 4xxxxx. A row exists for each card type supported by the terminal

(for example bank/debit cards, credit cards, petrol cards and customer loy-

alty cards). The Network International Identifier (NII) is a three digit number

used in the TTS by the NACs to map messages from terminals to transaction

processors. The Dial Number column is the number of the NAC which relays

transactions for that particular PAN range. Other columns also exist, such as

a key set and session state.

PAN range NII Dial Number . . .

40. . . 0 49. . . 9 030 08731 . . .

. . . . . . . . . . . . . . .

Figure 2.4: The Card Prefix Table embedded within a transaction terminal. An

example Visa entry is shown; a row exists for each card type.

The NAC contains an addressing table, mapping NIIs to transaction proces-

sors (Figure 2.5). The X.25 numbers for two transaction processors are listed,

with the second one used as a back up.

Each transaction terminal is identified by a network address which is built
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NII Transaction Processor 1 Transaction Processor 2

030 4709000 9312000

Figure 2.5: The NAC addressing table. This determines which transaction

processor should handle the transaction, based on the NII.

up as it progresses through the network. This address is only unique within

a NAC, not between NACs. This address also does not identify which NAC

the terminal is connected to. Therefore, transaction processors must use the

existing X.25 circuit (created by the NAC to send the initial request) to send

replies, or provide its own mapping to establish which NAC the terminal is

connected to.

When a card is swiped, the transaction terminal connects to the NAC using

the Dial number field in the Card Prefix Table, according to the card type.

The terminal uses the NII as the network destination, that is, the transaction

processor.

When the NAC receives this, it establishes a virtual circuit to the transac-

tion processor specified in the NII if one does not already exist. A NAC has

at most one circuit for each transaction processor. If a virtual circuit cannot

be established with the primary transaction processor, the NAC attempts to

establish one with the back up secondary address.

After the transaction has been sent, the transaction processor replies (for

example an ‘Accepted’ or ‘Declined’ response) using the same circuit. After the

transaction is completed, the NAC holds the idle circuit up for three minutes

before clearing the call. If additional data is transferred (for example further

transactions) the timer is reset.

2.5 Previous Approaches

Most available approaches focus on using a legacy gateway to convert protocols

[11]. The remote device connects to the gateway (using the legacy protocol) as if

it were a telephone exchange. The gateway extracts the application layer data,

and sends this to the transaction processor (or any other destination) over the

replacement protocol (for example TCP/IP). These legacy gateways, or EFT to

IP Converters, can also log transactions to provide statistical information for

the merchant.

Several vendors offer this as a solution, such as Hypercom and Braintree

Communications. Solutions such as these are a stopgap measure at best, as they
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essentially enable older equipment to be connected to the new network. These

methods will be valuable during a migration phase, when an IP based short

transaction network must support both new IP and legacy protocol transaction

terminals.

Attempts intended for native IP transaction terminals have also been made.

Unfortunately, many of these never progressed past the experimental phase of

development, or are proprietary. These are described in detail in Section 3.

Supervisory Control and Data Acquisition (SCADA) systems provide a method

to obtain and process data from remote locations. Such systems are typically

the foundation of utility control systems [52, 54]. Utility control systems have

many applications such as power plants, water/waste utilities, refineries, oil/gas

transmission, distribution and production, communication networks and indus-

trial control.

A SCADA system provides monitoring and control of remote devices and

processes in real time. Measurements may be pressure, flow rate or tempera-

ture and can alert operators to component faults. SCADA systems use a polling

scheme similar to the NAC method; the monitoring station periodically polls

the remote terminal units (RTU) for monitoring of system statistics. Another

polling technique is a round robin method. In this method the monitoring

station sequentially polls each RTU. When one RTU has been polled, the mon-

itoring station polls the next RTU. This results in continuous utilisation of the

communication line. The sampling rate then depends on the number of RTUs

on the line.

While the SCADA architecture has many of the same requirements as a

transaction network, for example short delay notification and messaging, the

model is slightly different. SCADA monitoring stations initiate connections to

the remote devices, while in a transaction network such as EFTPOS, it is the

remote devices (transaction terminals) which initiate connections to the central

station, the NACs in this case

IBM’s Message Queuing Telemetry Transport (MQTT) [19, 85] is another

architecture for real time messaging. It has the same goals of remote data acqui-

sition as SCADA, however the model is a subscribe/publish model, as opposed

to SCADA’s poll/response model. Subscribers (for instance a monitoring sta-

tion) connect to a repository and subscribe to a topic, for instance flow control

in a pump station. The remote device, for example the pump station, publishes

messages to the message repository. The repository then distributes the mes-

sages to all subscribed clients. The message repository can also store messages

for offline clients and deliver them when they come online again. MQTT is
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based on TCP/IP like third generation SCADA systems [83] and features three

Quality of Service (QoS) levels: best effort, at least once and exactly once.

Like the SCADA architecture, MQTT is not aligned with the messaging

model of EFTPOS. It would not make sense to publish the data from a single

transaction terminal to several subscribers as only a single transaction processor

is needed to process a transaction.

2.6 Requirements

Based on the description of the current EFTPOS system, the requirements for

the new system can be formulated. The solution has the following requirements:

Low Delay: The current system has a mean round trip latency between the

terminal and host of 2.4 seconds (1.2 seconds each way). This depends on

the network used. Total transaction time is approximately 15 seconds.

Transaction Aggregation: Aggregating a large number of messages onto one

connection reduces costs and network requirements. The reduced connec-

tion load on transaction processors also improves performance and relia-

bility. This is currently provided by NACs and terminal controllers.

Reliable Transport: A guaranteed ‘at most once’ delivery is required, not

‘best effort’. The current system uses SDLC and X.25 to provide link

level acknowledgement, flow control and error recovery.

Reliable Network with High Availability: The network must have fault

tolerance and a degree of ‘network intelligence’; terminals will know which

servers/connections are down and use alternatives. Terminals also know

whether the service is available or not. This requirement includes redun-

dancy, alternate routing and load sharing.

In the current system, terminals using dial up access can determine whether

the link is alive by the presence of a dial tone. NACs also poll terminals,

notifying them of the NAC status. NACs have a back up transaction pro-

cessor to establish circuits with, if it cannot establish one with the primary

transaction processor. The NMS also periodically polls NACs to learn of

their status.

Network Management: With network intelligence, the status of all compo-

nents in the network should be known at any or all times. This includes

reporting, controlling and measuring transactions in the network. Faults
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must be easily diagnosed and located quickly. This is currently provided

by the NMS.

Scalable 1: The system must support a large number of terminals connected

to a relatively small number of central processors.

Scalable 2: The system must support high connection rates.

Scalable 3: The system should be designed to support peak, not average load.

When the transaction processor is overloaded during congestion, the trans-

action rate should be throttled.

Secure: Perfect forward secrecy is required with one time session keys. The

system must be secure from external risks as well as internal risks (for

example rogue or hijacked clients within the network). This is provided

in the current system through the use of X.25’s CUGs, the proxied access

model via the NACs and the specialised equipment required to access

the network. The connections to terminals are rate limited, making DoS

attacks from a single client impossible.

Efficient 1: The solution must be simple enough to implement easily.

Efficient 2: The solution must operate under limited bandwidth environments.

In the current system, terminals use a 1200 bps link. However, with

modern networks, speeds of at least several kilobits per second are possible.

Modern broadband links are at least several megabits per second.

Efficient 3: The solution must be able to operate on embedded devices with

low processing power and perform encryption in reasonable time. The

current system only performs encryption at the application level; AS2805

only encrypts the PIN using the Triple DES (3DES) cipher.

Use Active, Industry Supported, Open Standards and Protocols: Open

systems and protocols have the benefit of being exposed to peer review,

public scrutiny and criticism that in turn may expose performance and

security issues. While exposing these makes the protocol potentially more

vulnerable to attack, more important is that the vulnerabilities drive de-

velopment in order to reduce or remove the risk, making the vulnerability

a temporary one. This is more desirable than the ‘security by obscu-

rity’ model, where the security of a system relies on knowledge being kept

secret. Knowledge which must be kept secret is a potential point of vul-

nerability. Open standards also improve connectivity; when proprietary

protocols are used, only devices from one particular vendor can be used.
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Candidate Protocols

This section introduces several transport protocols (not necessarily layer 4 in

the OSI model) which could support the requirements defined in Section 2.6.

3.1 Transmission Control Protocol (TCP) - RFC

793

Transmission Control Protocol (TCP) is one of the core transport protocols in

the Internet Protocol suite, the other being User Datagram Protocol (UDP). It

is defined in RFC 793 [97]. As it is widely used and published, it will not be

detailed here.

In terms of its suitability for this project, RFC 955 [28] asserts that TCP

is at one end of possible transport service attributes and UDP is at the other

extreme. TCP provides a reliable flow controlled transfer. Packets can also be

fragmented at the sender end and reassembled at the destination. The packet

stream offered by TCP means the application must provide its own message

framing to distinguish separate messages. TCP also features congestion control

features. However, TCP lacks fault tolerance functionality present in newer

transport protocols, such as multihoming and link failure in SCTP, described

in Section 3.4. Fault tolerance improves reliability as it notifies the client that

the network peer is not responding.

TCP features an explicit connection establishment and termination phase.

In terms of transactions where the transaction consists of a single packet sent and

received in response, the establishment and termination phases would constitute

a larger number of packets sent and received than the actual transaction itself.

However, this may be a minor issue; when the transaction establishment does

14
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make up a large proportion of the total transaction time, the total transaction

time is likely to be no more than several seconds. This duration is acceptable

for short duration transaction systems such as EFTPOS. This allows a TCP

based short transaction system to operate adequately even in an environment

with a large RTT.

By itself, TCP cannot be considered a suitable component for this project.

While it provides a reliable, flow controlled connection, it is not message oriented

and also lacks fault tolerance functionality.

3.2 User Datagram Protocol (UDP) - RFC 768

User Datagram Protocol (UDP) is the other core transport protocol in the

Internet Protocol suite. It is defined in RFC 768 [96]. As its operation is widely

used and published, it will not be detailed here.

Unlike TCP, UDP is a message based protocol. This relieves the application

from having to provide its own message framing. UDP is unreliable, which

means packets may be duplicated, lost or unordered. Applications will then

need to provide for timeouts and retransmissions.

As UDP is unreliable and does not establish a connection or virtual circuit

before sending data, it has no congestion control features. As a result, any

congestion in the network may be worsened by UDP. The solution would be

to implement congestion control at the application layer, however as there are

transport protocols which have congestion and flow control built in, this would

unnecessarily complicate the application.

While UDP is a message based protocol and has no connection phase, it lacks

reliability and has no flow or congestion control mechanisms. Consequently,

UDP by itself cannot be considered a suitable transport protocol for this project.

Attempts have been made to build reliability and flow control on top of UDP

and one example, QTP, is described in Section 3.5.

3.3 Transaction TCP (T/TCP) - RFC 1644

Transaction TCP (T/TCP) is an experimental backwards compatible extension

to TCP, defined in RFC 1644 [30]. T/TCP is designed to provide reliable and

efficient client-server transaction oriented traffic. The extensions aim to make

available a transport protocol as reliable as TCP and as fast as UDP. T/TCP

improves upon TCP in two ways: by bypassing the 3-way handshake (3WHS)

and shortening the delay in the TIME-WAIT state. Bypassing the 3WHS means
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a T/TCP connection can approach a UDP connection in terms of speed, while

maintaining the reliability of a TCP connection [109]. Rather than performing

the 3WHS before transferring data, T/TCP carries the user data in the initial

connection establishment packet, reducing the number of packets required to

perform a transaction to 2, therefore improving transaction times. Shortening

the TIME-WAIT delay enables sockets to be cycled and reused more often,

increasing the rate at which a client can send transaction requests.

3.3.1 Bypassing the 3-way handshake

The 3WHS is bypassed through use of a mechanism called TCP Accelerated

Open (TAO) (Figure 3.1). Standard TCP necessitates the use of the 3WHS to

prevent the receiver from confusion by the receipt of old duplicate connection

initiations. The receiver of the initial SYN responds with an ACK, verifying

with the sender that the connection request is not an old one that arrived out of

order. T/TCP achieves this without using the 3WHS by using a monotonically

increasing 32-bit incarnation number called a connection count (CC). This is

carried in the T/TCP header as a new TCP option anytime a client wishes to

initiate a connection with a server. A server supporting T/TCP keeps a cache

of the last valid CC for each client. When a client first connects to a server

(Figure 3.1(a)), the server has no CC state for that client, so a normal 3WHS

is performed. On this initial connection, the server initialises the CC for that

particular client on successful completion of the 3WHS. Subsequent connections

from that client use an incremented CC value. When the server receives a con-

nection request, the CC value in the connection request is compared with the

corresponding client’s cached CC value on the server. If the incoming value is

larger than the cached value (Figure 3.1(b)), the SYN is considered new and

the connection is considered established. The user data is passed to the appli-

cation layer immediately and the cached CC value is updated. If the incoming

CC value is not larger than the cached value, a normal 3WHS is performed to

validate the connection request, as the server has no way of knowing whether

the SYN is an old duplicate, or was delivered out of order. This comparison

of CC values is known as the TAO test. If the TAO test succeeds, an optimi-

sation is realised in the form of reducing the connection establishment by one

RTT. The user data is passed to the application layer as soon as it is received,

otherwise the server queues the user data and falls back to the usual 3WHS of

TCP to validate the SYN. Falling back to TCP also provides for reliability and

backwards compatibility.

T/TCP effectively reduces the number of segments required to perform a
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(a) The first connection attempt requires the use of the 3WHS to validate the SYN.

(b) Subsequent connection bypasses the 3WHS through use of the TAO test.

Figure 3.1: The TCP Accelerated Open (TAO) bypasses the 3WHS to minimise

the number of segments exchanged to perform a transaction (adapted from [30]

and [111]).

request-response transaction to three segments and because the data is carried

in the first two, the applications see the user data at the same speed as if UDP

were used. Notice in Figure 3.1(b), the initial segment contains the SYN, data

(data1) and FIN. After the data is passed to the application layer, the FIN is

processed and the server responds with its SYN, ACK and FIN flags as well as

any response data (data2). The client processes the received SYN and ACK,
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and passes the server’s reply to the application layer. The client also uses the

CC.ECHO option to validate the server’s SYN ACK segment. When the FIN

is processed, the client responds with a final ACK and moves into the TIME-

WAIT state. When the server receives the ACK of its FIN, the connection is

closed. This example shows how a connection is established and closed with a

minimal exchange of segments.

It is possible for the CC values to wrap around, for example: connections

which last longer than the Maximum Segment Lifetime (MSL), as the CC values

are global to all connections; the client crashing, rebooting and reinitialising the

CC generator back to 1; or simply reaching the end value. Since all subsequent

connections will have lower CC values than the cached value on the server, there

will be a performance degradation, as the TAO test will fail. This causes the

hosts to perform the 3WHS each time they initiate a new connection. Clients

avoid this by specifying the CC.NEW option, which updates the server’s CC

cache to the new value.

3.3.2 Truncation of the TIME WAIT state

The TIME-WAIT state exists in TCP to ensure the remote host has received

the acknowledgement (ACK) of its connection termination request (FIN). Upon

receiving a connection termination request, a host enters the TIME-WAIT state

for twice the MSL, usually between 60 and 240 seconds (Figure 3.2). In this

state, the port pair (C:P and S:P) cannot be reused; a host can only receive

and acknowledge the retransmission of a remote FIN. This keeps old packets

from the closed connection still in the network from interfering with another

connection created using the same socket pair, should they be reused. For

example if a server retransmitted a FIN (as the client’s final ACK was lost), the

TIME-WAIT state would ensure that the client responded by retransmitting

the lost ACK, rather than an RST which would happen if the client was not in

the TIME-WAIT state. The wait time of 2MSL also ensures that any remaining

packets from the previously closed connection expire.

Shortening the TIME-WAIT state can increase transaction rates and is pos-

sible in T/TCP due to the introduction of the CC value. The CC value protects

against old duplicates, as the value increases with each new connection. In

T/TCP, the time spent in the TIME-WAIT state is a multiple of the retrans-

mission timeout (RTO, of 1.5 seconds [111]) instead of the MSL; it is reduced

to 12 seconds, eight times the RTO (Figure 3.3). The RTO multiplied by eight

ensures that the sender has an opportunity to retransmit any unacknowledged

segments. It is clear, when comparing TCP’s TIME-WAIT state (Figure 3.2)
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Figure 3.2: TIME WAIT state in TCP (from [111]). A client-server port pair

(C:P and S:P) cannot be reused for 2MSL (typically 240 seconds) after a con-

nection has been closed.

Figure 3.3: TIME WAIT state in T/TCP (from [111]) when different ports are

used for each transaction. The client-server port pair (C:P and S:P) can be used

sooner than in TCP.

with T/TCP’s (Figure 3.3) that shortening the TIME-WAIT state makes ports

available for use sooner and more often.

A further optimisation is possible if the client and server reused the same

ports for a subsequent transaction (Figure 3.4). The TIME-WAIT state ends as

soon as another transaction is initiated via use of the CC values. For example

if a client had received a FIN, an ACK would be sent in response. If this ACK

was lost but the client initiated a new transaction before the retransmitted

FIN arrived, the exchange would continue as normal. This is possible because

the new SYN would have a higher CC value and the TAO test would succeed.

This implicitly acknowledges the server’s unacknowledged FIN. The server then

closes the old connection and starts a new one. The data contained in the

newly received SYN is then passed to the application layer (as the TAO test

succeeded).

A constraint on the truncation of the TIME-WAIT state is that the duration

of the connection must be less than the MSL (which is typical of a simple request-
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Figure 3.4: TIME WAIT state in T/TCP (from [111]) when the same ports are

reused for each transaction. The client-server port pair (C:P and S:P) can be

reused when a new connection is initiated.

Figure 3.5: Truncation is possible here, as the connection duration is less than

the MSL of 120 (from [111]).

response transaction in any case). The T/TCP RFC states that “The essential

requirement for correctness of T/TCP is this: CC values must advance at a rate

slower than 231 counts per 2MSL where MSL denotes the maximum segment

lifetime in the Internet”. This requirement ensures that a particular CC value

for a particular connection (that is, a port pair) is not reused for at least 2MSL.

Thus if the duration of a connection exceeds the MSL (120 seconds in TCP’s

specification, RFC 793, [97]), the TIME-WAIT state interval must revert to

TCP’s delay of 2MSL (240 seconds) to protect from old duplicates. Figures 3.5

and 3.6 (from [111]) illustrate why. In Figure 3.5, a connection starts at time 0

with a CC of 1, and lasts for 100 seconds. The TIME-WAIT state starts at time

100 and lasts until time 112 or until the client initiates another transaction using

the same ports, whichever comes first. As the MSL is 120, all segments from this
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connection will have expired by time 220. As the CC values repeat only every

240 seconds (2MSL), in this instance it is safe to truncate the TIME-WAIT

state (as the connection’s duration was less than MSL).

Figure 3.6: Truncation is not possible here, as the connection duration is greater

than the MSL of 120 (from [111]); the CC values could wrap around before

segments from the first connection expire.

However, in Figure 3.6, the connection lasts for 140 seconds - longer than

the MSL of 120. All segments from this connection will have expired by time

260, however CC values cycle through at most every 240 seconds. By time 240,

the CC values may have cycled through and a new connection with a CC value

of 1 may be initiated. However, segments from the first connection (also with

a CC value of 1) are not guaranteed to expire until time 260. Consequently,

old duplicates from the previous connection could be delivered erroneously to

the new connection and accepted as legitimate, as the CC value is ‘correct’.

To protect against this, when the connection duration is longer than MSL, the

TIME-WAIT state cannot be truncated, and the socket pair cannot be reused

for 2MSL (until time 380). The CC value of 1 can be safely reused at time 240

as long as it is for another connection (that is, a different socket pair), however

it cannot be reused for the socket pair for which old duplicate segments still

exist.

Thus there are two port strategies available: use the same port pairs for every
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transaction to save TCP resources (Figure 3.4), in which case if the duration

of the connection is greater than MSL, the TIME-WAIT state delay must be

at least 2MSL, otherwise the TIME-WAIT state can end upon initiation of a

transaction; or use different ports for each transaction (Figure 3.3), which means

applications do not need to be programmed to use the same port number. In any

case, as long as the connection duration is less than the MSL, the TIME-WAIT

state is always truncated from 2MSL to 8RTO.

As most transaction oriented connections usually exist for much shorter than

120 seconds, T/TCP offers an optimisation, as resources are available more often

and are cycled through faster, making higher transaction rates possible.

3.3.3 Security Vulnerabilities

While T/TCP has attractive features aimed specifically at improving request-

response transactions, there are weaknesses which make it more vulnerable than

TCP. Spoofing a connection is almost certain to be successful and significantly

easier under T/TCP than TCP [46]. When the TAO test succeeds, the server

considers the connection to be established and the data is passed to the appli-

cation layer immediately. Thus, all an attacker needs to do is succeed the TAO

test. There are two simple methods to succeed the TAO test, and therefore

spoofing a T/TCP connection; the attacker can either perform packet sniffing

to discover the current CC value, or simply use a large value for the CC.

If the attacker is on the same network as the host to be spoofed, the current

CC value of the connection between the host and the server can be discovered via

packet sniffing. Once this is discovered, all the attacker needs to do is increment

the discovered CC value and initiate a connection to the server, using the source

address of the spoofed host. The monotonically increasing property of the CC

value ensures the TAO test will succeed, and the data will be passed to the

application layer on the server immediately.

The other method is to simply use a large value for the CC value. If the

attacker is unable to sniff out the current CC value, using a large CC value

has a high chance of succeeding the TAO test, as all observed implementations

initialise the CC value to 1 [105]. The CC value is a 32-bit unsigned number,

with a maximum value of 232 − 1. The chance that a particular host has used

even half of these values is unlikely. Therefore the higher the CC value used,

the greater the probability of success.

These two methods not only have a high or certain chance of success, they

also ensure that subsequent connection requests from the legitimate host fail

the TAO test, as the server updates the CC cache with each successful connec-
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tion. The payload of such spoofed connections can be the same as those used

under TCP, such as the command ‘echo ‘‘+ +’’ >> /.rhosts’, used in Unix

to extend trust to any user from any host. Sending a spoofed packet with an

acceptable CC value to succeed the TAO test, with the Unix command as the

payload, is all that is needed to compromise the server. Unlike TCP, sequence

numbers do not need to be predicted to establish the connection, making the

attack almost effortless, as only one packet is needed. The 3WHS provides a

limited degree of validation of the sender’s address, and removing this greatly

eases the spoofing of complete connections. Use of the TAO mechanism also

negates the use of randomised initial sequence numbers (ISN) for each connec-

tion as well as incrementing the sequence numbers every half second - the best

techniques for preventing spoofed TCP connections.

Another weakness of T/TCP is its vulnerability to SYN flooding, which

leaves the server unable to accept new connections, as all the resources are

devoted to multiple half-open connections due to spoofed connection requests.

While TCP is also vulnerable, under T/TCP, SYN flooding is more harmful and

harder to defend against. To reduce transaction overheads, T/TCP carries data

(a request from the client) in the initial SYN. If the TAO test fails, the server

queues the data until the fallback 3WHS succeeds. As a consequence, a SYN

flood can do more damage under T/TCP, as an attacker can spoof SYNs such

that each connection request fails the TAO test. With data queued from many

connection requests (due to each one failing the TAO test) memory buffers can

be exhausted faster than if TCP were used. The reduced TIME-WAIT state

also enables attackers to send requests faster when attacking from the same

address and port, which makes T/TCP very prone to DoS attacks.

Strictly speaking, TCP is also vulnerable to queuing the data of pending

connections. TCP, however, can be implemented such that data sent with the

initial SYN can be discarded. This would require the client to retransmit the

data, after the connection is established with the 3WHS. However, if this were

applied to T/TCP (which is completely feasible) it would not be aligned with

the goal of providing fast transaction processing as the client would need to

retransmit the data, effectively reducing the speed to that of TCP.

A method to protect against SYN flooding is the use of SYN cookies [118].

A SYN-cookie is a cryptographically generated ISN, based on the source IP

address, port and other data. When a SYN is received to request a connection,

the server responds with a SYN-ACK, with the SYN-cookie as the ISN. When an

ACK is received in response, the sequence number in the ACK is validated, and

only then does the server allocate state, a buffer and open the connection. If the
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sequence number is invalid, the packet is dropped. Use of the SYN-cookie makes

a stateless handshake possible, as resources are allocated only on receipt of the

final ACK from the client, rather than on sending the SYN-ACK. As a result,

the risk from SYN flooding is greatly reduced, as half-open pending connections

cannot exist. Unfortunately this technique cannot be used with T/TCP. The

TAO makes use of the CC value, which is carried in the TCP options part of

the header. As the server does not hold any state for a connection until the

final ACK form the client is received, any TCP options in the initial SYN (and

therefore the CC value) would be lost, meaning the CC value cannot be cached.

Figure 3.7: T/TCP can deliver duplicate data due to use of the TAO mechanism

(from [105]).

Finally, T/TCP is not completely compliant with TCP in some instances.

Use of the TAO mechanism can cause duplicate data to be delivered ‘legiti-

mately’ to the application layer. This is illustrated in Figure 3.7. In this ex-

ample (from [105]), the client sends the first part of a transaction (the request)

to the server. The two hosts have established their CC values, so the TAO test

succeeds. The server passes the data in the request to the application layer,

however it crashes before it can send its ACK (the response part of the trans-

action). The client times out as it has not received an ACK, so retransmits the

request. After the server has rebooted, it receives the request again, however

this time the TAO test fails, as the server’s CC cache is reinitialised and thus

invalid. Consequently, the server queues the data carried in the request, and

performs the 3WHS. When this is completed, the queued data is passed to the

application layer for the second time as the server maintains no state after a

reboot, and therefore cannot identify duplicate requests. A required attribute
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of a transaction system (as described in Section 2.6) is ‘exactly-once’ semantics,

and the functional specification of T/TCP does not conform to this.

In addition, page 73 in RFC 793 states “Do not process the FIN if the state

is CLOSED, LISTEN or SYN-SENT since the SEG.SEQ cannot be validated;

drop the segment and return”. This means when a standard TCP server receives

data with both the SYN and FIN flags set (that is, from a T/TCP client),

the segment will be dropped; sending a FIN with a SYN flag violates TCP’s

processing rules [58]. Most servers drop the FIN and processing will require a

3WHS to continue, however, T/TCP will be unable to communicate with TCP

servers that conform strictly to the TCP specification. In this situation, T/TCP

is not compatible with TCP.

3.3.4 Implementations and Development

RFC 1644 was published in 1994, and remains in experimental state. There have

been several implementations of T/TCP in several operating system kernels:

Linux, SunOS and FreeBSD.1 Patches exist for up to Linux kernel version 2.4

(which was released in January 2001), however the development2 never went

past the beta stage. Backward compatibility problems also exist in Solaris

implementations, when a T/TCP enabled client connects to a standard TCP

server. In Solaris 2.4 (SunOS 5.4), a standard TCP server’s stack dropped the

data in the initial SYN and did not acknowledge it [111]. This caused the

T/TCP client to timeout and retransmit the data. A patch was issued in 19983

for the FreeBSD kernel, addressing the spoofed connection vulnerability (when

the .rhosts file is used as the only method of authentication).

Enhanced Transaction TCP [27] proposes solutions for the security and back-

ward compatibility problems in the current experimental specification. To re-

duce the risk from spoofed connections, CC value is made a socket variable,

instead of a global variable as defined in RFC 1644. This has two advantages;

the server can now handle up to 232 − 1/2MSL transactions per second per

client, instead of 232 − 1/2MSL transactions per second globally. Secondly, the

CC values can now have predictable increments as the CC value spaces are now

specific to each client. Consequently the TAO test can be modified so CC values

must be exactly one larger than the cached value. Another measure suggested

was to randomise the CC value instead of initialising it to 1. This would reduce
1http://www.kohala.com/start/T/TCP.html. This site also lists several T/TCP enabled

internet hosts.
2http://sourceforge.net/projects/ttcplinux (accessed February 2007).
3http://ciac.org/ciac/bulletins/i-051.shtml
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the ease of spoofing a connection, which only needed to use a high enough CC

value to succeed.

To reduce the risk from SYN-flooding, use of a SYN-cache was suggested in

[79]. Normally when a server receives a SYN, the whole Transmission Control

Block (TCB)4 for that connection is allocated. Thus when a SYN flood is

taking place, the server’s resources are tied up in the TCB’s of the attacker’s

pending connections. SYN caching, on the other hand, allocates minimal state

when the server receives a SYN. This state records TCP options which are not

retransmitted in the ACK from the client, such as the CC value. The full TCB

is allocated only when the connection is established. A limit is placed on the

amount of cached state to place a bound on the amount of memory the SYN

cache uses. When this limit is reached, the oldest entry is dropped. Use of

the SYN cache therefore limits the damage potential from a SYN flood. In

addition, following the failure of the TAO test, the server should not queue the

data, as this can aid an attacker when performing a DoS attack by consuming

more memory.

As for duplicate deliveries, two-phase commits and transaction logging can

eliminate this problem, that is, make the application layer responsible [109].

3.3.5 Summary

T/TCP was designed for simple request-response transactions. It aimed to pro-

vide a protocol as fast as UDP, but with the reliability of TCP. It reduced the

overhead required to establish a connection by including the data in the initial

connection establishment segments and by bypassing the 3WHS through use of

the CC value. This enabled the application layer to receive the data as fast as

if UDP were used. The other main improvement upon TCP was the truncation

of the TIME-WAIT state. This reduced the time ports were unavailable for

use after closing a connection, which enabled higher transaction rates. Unfortu-

nately the use of the CC value greatly eased the spoofing of connections, as all

attackers needed to do to ensure success was to use a large enough CC value - a

CC value larger than the cached value on the server was all that was needed to

accept the data and pass it to the application layer. With TCP, the attacker had

to at least guess the sequence numbers and this could be made more difficult

with randomised sequence numbers and half-second increments to the numbers

- defence techniques that cannot be used to protect T/TCP. The other major

security flaw in T/TCP was its risk from SYN flooding; while TCP is also vul-

nerable, T/TCP would typically exhaust the server’s memory faster. The most

4An operating system uses these to maintain a transport protocol’s connection.
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effective protection against this, SYN cookies, again cannot be used to protect

T/TCP. In some instances, T/TCP is not compatible with TCP, leading to du-

plicate message delivery to the application layer, or no communication at all

with a strictly implemented TCP host.

There have been limited deployments and implementations of T/TCP and a

distinct lack of active development in the protocol. Enhanced T/TCP proposes

solutions to T/TCP’s shortcomings, however it has not had any deployment or

implementation in any major Unix/Linux distribution. The requirements that

T/TCP had set out fulfil are highly aligned with those in Section 2.6. In fact,

parts of those requirements in Section 2.6 are adapted from RFC 1644, and

T/TCP in concept, meets those requirements. However, given the serious secu-

rity issues, its lack of development, implementation, deployment and maturity,

it cannot be considered a viable transport protocol suitable for the requirements

described in Section 2.6.

3.4 Stream Control Transmission Protocol (SCTP)

- RFC 2960

Stream Control Transmission Protocol (SCTP) is a transport layer protocol

originally designed to transport SS7 telephony messages over an IP network

[53]. SCTP was developed by the IETF Signalling Transport (SIGTRANS)

working group and is currently a proposed standard as RFC 2960 [114].

The information carried in SS7 PSTN signalling messages are for call man-

agement, such as call set up and teardown, billing and routing and value added

services, for instance call waiting and caller identification [32]. Such messages

require reliable and timely delivery as errors or delays can result in disruption

of the service (for example failure to establish a call or billing errors). With

the growth of VoIP, a transport protocol was needed to transport SS7 signalling

messages over IP. Until late 2000, TCP and UDP were the only prospective

transport layer protocols in the TCP/IP suite. UDP does not provide reliable,

in-order transport, or any form of congestion control. Without flow control, the

send rate remains constant, worsening the effects of any network congestion.

Congestion in turn makes UDP even more unreliable as data will be discarded.

Because of these shortcomings, UDP was not considered. TCP, with respect to

carrying PSTN signalling, had the following limitations (from [114]).

• TCP provides strict order-of-transmission delivery. Applications that do

not require sequential delivery may suffer from unnecessary delays due to
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Head-of-Line (HoL) Blocking

• As TCP is stream-oriented (or byte-oriented), it delivers a stream of bytes.

Applications that process individual messages (such as a PSTN signalling

message) need to add their own application level message framing within

the TCP byte stream. Applications must also explicitly use TCP’s PUSH

facility to ensure complete messages are sent with minimum delay (as

opposed to the standard behaviour of blocking data together and sending

when convenient).

• TCP does not support multihoming; a single destination IP address is

bound to a particular TCP connection. If this connection fails, it must be

re-established. This does not meet the signalling transport’s requirement

of high availability and network resilience.

• TCP is relatively vulnerable to DoS attacks, such as SYN-flooding

As a result of TCP’s limitations, SCTP was proposed to carry PSTN sig-

nalling across an IP network. Even though SCTP’s design was motivated by

this need, it is considered a general-purpose protocol; like TCP, SCTP provides

a reliable, full duplex connection with congestion avoidance mechanisms.

SCTP’s congestion control functions are based on the rate-adaptive, window-

based scheme of TCP. This includes slow start, congestion avoidance and fast re-

transmit [113]. As these are derived from those of TCP, SCTP is ‘TCP friendly’;

SCTP applications can co-exist and share network resources with TCP appli-

cations without constrained or excessive use of the network. However, SCTP

improves upon TCP’s congestion window (cwnd). A congestion window reduces

the sending rate during network congestion by limiting the number of bytes

that can be inserted into a network. When no congestion is detected and all

the data in a window is acknowledged by the receiver, the slow start and con-

gestion avoidance algorithms (defined in RFC 2581, [21]) double the value of

cwnd. This is because the sender’s current sending rate does not appear to

be causing congestion. These algorithms assume that the cwnd is limiting the

sending rate. However, an application can send at a rate slower than what the

cwnd is limited to. This is common for signalling applications, as this ensures

the network remains functional in the event of a load spike [33]. Under this sit-

uation, TCP would increase cwnd exponentially. If the application has a sudden

burst of traffic, the large cwnd will allow all of it to be sent at once. This could

cause network congestion resulting in packet losses and timeouts. In SCTP,

cwnd can only be increased when the full cwnd is used, rather than doubling it

upon successful transmission as in TCP [53].
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SCTP’s flow control is also derived from TCP, more specifically TCP Selec-

tive Acknowledgements (SACK). TCP SACK is defined in RFC 2018 [81]. The

ACK in TCP is used to detect packet loss and is cumulative; it indicates the

last packet successfully received in sequence (therefore implicitly acknowledging

that all packets before the acknowledged packet were also received successfully).

SACK enables the receiver to acknowledge packets that have been received suc-

cessfully after packet loss. For example (from [33]) if a host receives packets 1,

2, 3, 5 and 7, it will respond with ACK(1), ACK(2), ACK(3), ACK(3), ACK(3).

When the sender receives ACK(3), it knows that packets up to 3 were success-

fully received in sequence. However, receiving ACK(3) multiple times indicate

that packet 4 was lost and needs to be retransmitted. The sender, however, is

unaware which packets after 3 were also lost or successfully received, so packets

after 4 are also retransmitted. With the SACK extension, the receiver would

have sent ACK(3)-SACK(5,7). The sender would then know to not only retrans-

mit packet 4, but also packet 6. This reduces the impact of multiple dropped

segments, as only the packets that were not sent successfully are retransmit-

ted thus saving bandwidth. Like congestion control, while SCTP’s flow control

is based on TCP’s, SCTP improves upon TCP’s mechanism - while SACK is

optional in TCP, it is a standard feature of SCTP.

Common Header

Data Chunk 1

. . .

Data Chunk n

Figure 3.8: The SCTP packet format. Multiple data chunks can be in a single

SCTP packet up to the MTU.

While SCTP inherits some features from TCP and can offer the same func-

tionality, it contains additional features to overcome TCP’s limitations. One

of these is conservation of message boundaries. Like UDP, SCTP is message

oriented. This simplifies applications that process individual messages, as the

transport protocol indicates the start and end of the message. One of the disad-

vantages of TCP is that the application must preserve the message boundaries

themselves. SCTP frames messages by carrying them in units called chunks. A

chunk consists of a header and the data. As illustrated in Figure 3.8, an SCTP

packet can contain multiple chunks. Large messages can also be fragmented

into multiple chunks and then reassembled at the receiving end. Fragmenting

user messages at the transport layer avoids fragmentation at the IP layer. IP
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layer fragmentation is undesirable as the protocol header (TCP, SCTP, UDP

etc), containing the destination and source port numbers, is contained only in

the first fragment [33]. As subsequent fragments do not contain this header

data, they may not be able to pass through NAT devices or firewalls. If the

path MTU changes (due to a change in the network path for example), SCTP in

some circumstances may be forced to perform IP fragmentation. If the receiver

is behind a NAT device, the data may never be received, causing the SCTP

association (equivalent to a connection in TCP) to timeout. This limitation is

described in [33].

Another important feature is multihoming. SCTP allows each endpoint of an

SCTP association to be accessible from more than one IP address. This provides

a level of redundancy (as required for SS7 signalling transport), as the failure

of the primary address (for example due to link failure or congestion) does not

disrupt the data transfer. When SCTP initialises as association, each endpoint

exchanges a list of addresses or host names from which they can receive data

from. The sending host selects one of the receiver’s addresses as the primary

address and uses this for all data transmission. Retransmitted data is sent to

an alternate address to improve the probability of successful transmission [87].

Sustained failure to send to the primary address causes the end point to send

all data to the alternate address, until the primary address becomes available

again. This change is potentially transparent to the sending application [71].

If this occurred in TCP, the connection would collapse, interrupting the data

transfer, as the connection would need to be re-established.

A requirement for multihoming to be effective is that the multiple addresses

need to be connected to different networks (for example different network ad-

dress prefixes or possibly ISPs) to ensure the traffic is transmitted over a differ-

ent network path in the event of primary address failure. The more diverse the

alternate network paths, the more fault tolerance multihoming affords; multi-

homing loses some effectiveness when the alternate paths meet at a single point

of failure, such as a single link or router.

SCTP detects the failure of a link via ACKs received from acknowledged data

and a heartbeat mechanism. A heartbeat request is sent periodically to each

of the remote endpoint’s idle alternate addresses to determine the state of the

link. The remote endpoint responds with a heartbeat acknowledgement, to con-

firm the link and endpoint’s availability. When the number of unacknowledged

retransmissions or heartbeat requests exceed a configured maximum parameter

(RFC 2960 recommends a value of 5 for the Path.Max.Retrans parameter), the

address is deemed to be unreachable, and an alternate address is selected to
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transmit data. Heartbeat requests are still sent to unreachable addresses, so

that addresses that do become reachable again can respond with a heartbeat

acknowledgement, and can be noted as active.

Figure 3.9: Head of Line blocking in TCP. Even though segments 3 to 5 are

transmitted successfully, they cannot be delivered to the application until seg-

ment 2 is successfully transmitted.

SCTP also adds multistreaming. An endpoint can only have one SCTP as-

sociation with a particular endpoint (an endpoint can have many concurrent

associations as long as they are with different endpoints [115]). Each associa-

tion, however, can contain multiple streams. Each stream is a unidirectional

flow of chunks; each chunk belongs to one stream. Streams are independent

of each other and in this way SCTP separates message reliability and message

ordering. This enables endpoints to transfer multiple ordered sequences of mes-

sages reliably, without the sequences interfering with each other. This avoids the

Head-of-Line blocking problem in TCP, which happens when separate streams

of data are multiplexed over a single TCP connection. For example in Fig-

ure 3.9, segments 1 to 5 belong to separate independent sessions. Segment 1,

3, 4 and 5 are delivered successfully to the host, however, segment 2 is lost.

Segment 1 is delivered to the application, but 3, 4 and 5 are queued as TCP

requires order-of-transmission delivery. Thus the delivery of 3,4 and 5 to the

application must wait until 2 has been successfully retransmitted and received,

even through they belong to different logical sessions. In SCTP, each indepen-

dent session can be transferred over a separate stream, ensuring that the loss in

one stream does not affect the other streams (Figure 3.10), thus avoiding HoL

blocking and associated delays.

It is important to note that within a stream, messages are normally still de-

livered in order-of-transmission, so HoL blocking still affects individual streams.

In Figure 3.10, if S1 and S2 were each a stream, stream S2 would operate nor-

mally, however stream S1 would be blocked until segment 2 of stream S1 was

successfully retransmitted and received by the remote endpoint.

SCTP also supports unordered reliable message delivery. This also avoids
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Figure 3.10: Use of multiple streams avoids Head of Line blocking. Even though

segment 2 of stream S1 has been lost, segments in stream S2 can still be delivered

to the application.

Figure 3.11: Use of unordered delivery also avoids Head of Line blocking.

Chunks that have been transmitted successfully can be delivered immediately

to the application, regardless of previously lost chunks.

HoL blocking, but this time within a stream. For example Figure 3.11 shows a

single stream. Chunks 1, 3, 4 and 5 have been specified for unordered delivery,

and can therefore be delivered immediately to the application. The delivery

mode is specified at the chunk level, so within a single stream, some chunks

can be specified for out of order delivery, and the rest delivered in order (the

default).

Previous work ([33, 55]) studying the effects of HoL blocking found that

the improvements in SCTP over TCP do not result in a large reduction in

transmission delay under normal conditions. Both studies found under normal

network conditions, the mean delays with SCTP and TCP cannot be statistically

differentiated. However, both also found as network conditions worsened (due

to congestion and high packet loss), SCTP and its avoidance of HoL blocking

provided a small (up to 18% in [55]) improvement in transmission delay.

While HoL blocking can be avoided in TCP by using multiple TCP connec-
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tions for each ‘stream’, there is increased overhead, as a TCB must be main-

tained for each connection (compared to one for the single multistreamed SCTP

association). If the server has insufficient memory, incoming TCP connection re-

quests may be dropped. This can also happen if the server runs out of ports. In

addition, an application utilising multiple TCP connections could get an unfair

share of the network bandwidth between the two hosts [115].

Establishing a separate connection for each ‘stream’ also increases the con-

nection set up delay, as each TCP connection must perform a 3WHS. In SCTP,

up to 65,535 independent streams can be established between two endpoints

with a single four-way handshake association initiation.

3.4.1 Association Initiation

As SCTP is connection oriented, an association must be established before data

can be exchanged. SCTP’s association establishment is similar to TCP’s SYN-

cookie mechanism; SCTP uses a four-way handshake to protect servers from

SYN flood DoS attacks. Figure 3.12 illustrates the association establishment

process [114]. The client initiates an association by sending an INIT chunk.

This chunk contains the required number of inbound and outbound streams (as

streams are unidirectional), an initiation tag, the initial Transmission Sequence

Number (TSN) and a list of all the IP address which the client can be accessed

from. The initiation tag is a randomised 32-bit integer and is used as the

verification tag during data transfer. This protects against blind ‘man-in-the-

middle’ and sequence number attacks. It is also used to prevent old duplicate

packets from previous associations from being processed as part of the current

association.

The server responds with an INIT-ACK chunk. At this point TCP would

reply with a SYN-ACK, and allocates resources; SCTP does not allocate any

state. In addition to containing the parameters in an INIT chunk, a digitally

signed cookie is also included. The cookie contains all the information required

to establish an association, such as data in the received INIT chunk as well

as the outgoing INIT-ACK, timestamps and TTL values. These are combined

with a MAC or digital signature. As it is the server which ultimately processes

the cookie, potentially anything can be included in the cookie, as long as the

cookie can be successfully authenticated.

The client responds with a COOKIE-ECHO chunk, sending the cookie back

to the server. The server validates the echoed cookie to check its authenticity.

If the cookie is valid and has not been tampered with, the server considers

the client and its association request legitimate. The cookie contains all the
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Figure 3.12: SCTP’s four-way association initiation handshake. Use of a cookie

protects servers from DoS attacks.

information required for an association, and only when the server receives and

authenticates it, are resources allocated for the TCB. When the resources for

the association have been allocated, the association is considered established

on the server’s side. This enables the segment containing the COOKIE-ECHO

chunk to also contain data chunks as well (assuming the segment is sufficiently

less than the MTU). This results in a connection establishment delay of one

RTT, the same as TCP.

The server responds with a COOKIE-ACK chunk, in order to let the client

know the cookie was received and valid. When the client receives this, the

association is declared established on its end.

3.4.2 Association Shutdown

Unlike TCP, SCTP does not support ‘half-closed’ connections, where one end-

point shuts down while the other continues sending. Because of this reduced

complexity, SCTP’s shutdown is a three-way sequence, compared to TCP’s four-

way shutdown handshake. When an application wishes to close an association

(Figure 3.13), no more application data is accepted by the transport layer and

all queued data is transmitted. After this data is acknowledged, the client sends

a SHUTDOWN chunk. When the server receives this, the same is performed:

the application is notified, the transport layer stops accepting new data and any

queued data is transmitted. When this remaining data gets acknowledged, the

server sends a SHUTDOWN-ACK chunk. When the client receives this, the as-

sociation is closed on its end, and responds with a SHUTDOWN-COMPLETE,

closing the association on the server’s side. If any of these shutdown chunks are
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lost, they are simply retransmitted.

Figure 3.13: SCTP’s shutdown sequence. Unlike TCP, closing an SCTP associ-

ation closes it on both ends.

3.4.3 Implementations and Development

SCTP has kernel implementations5 on Linux, Free/Open BSD, NetBSD, Solaris

as well as many user space implementations. Many products currently use

SCTP, with most of these being commercial SS7 signalling platforms; Cisco,

Hewlett-Packard among others [53] have SCTP-based products to transport SS7

traffic over IP. Several end user applications6 exist which have implemented

SCTP, such as Mozilla and Apache. Unfortunately the Mozilla available for

download supports only SCTP, therefore its usefulness is extremely limited as

SCTP is not widely supported in webservers.

SCTP features in many research topics; current areas of research are de-

scribed in [6, 71, 53, 113].

Like TCP, SCTP can be secured with IPsec [25] and TLS [72]. RFC 3554

describes IPsec support for SCTP’s multihoming addresses. RFC 3436 describes

TLS over SCTP, enabling applications over TLS to use multistreaming and

multihoming. Other efforts to secure SCTP exist, such as Secure SCTP (S-

SCTP)[64] and Datagram Transport Layer Security7 for SCTP[63].

S-SCTP exists to overcome the scalability problems when TLS or IPsec

is used. With TLS, each stream requires its own tunnel. Use of TLS also

prohibits the use of several SCTP options, such as unordered delivery and partial

reliability. With IPsec, a security association (SA) must be created for each IP

address for multihoming. These will be discussed in Section 4.
5http://www.sctp.org/implementations.html
6http://www.sctp.org/download.html
7Datagram Transport Layer Security (DTLS) is a variant of TLS for use with datagrams

and is defined in RFC 4347.
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SCTP itself is still being optimised, with updates to its checksum algorithm

[116], as well as an Implementers Guide [112]. SCTP options and extensions

are also being developed:

Partial Reliability Extension ([42]): This enables SCTP to provide an un-

reliable, unordered service akin to UDP, as well as an ordered, unreliable

service.

Dynamic Address Reconfiguration ([92]): This allows adding network in-

terface cards without restarting the SCTP association.

Authenticated Chunks ([77]): Each SCTP packet contains a 32-bit verifi-

cation tag (set to the same value as the initiation tag during association

establishment) to help protect against blind ‘man-in-the-middle’ and se-

quence number attacks. It is also used to verify whether a packet belongs

to the current association or a previous one. Authenticated chunks allow

the sender to sign chunks, so the receiver can verify the authenticity of

the sender and the data. It goes one step further than TLS, as TLS only

secures application data.

PAD Chunk ([78]): This enables SCTP to discover the path MTU.

While SCTP has many attractive features and can be used in place of TCP

(for example for a web browser), it is not a replacement for TCP. Previous work

found that SCTP had lower overall raw throughput and higher latency than

TCP [93]. SCTP’s minimum retransmission timeout, a recommended value

of 1000ms, was deemed too high and was considered a contributing factor to

the slower performance. Another reason was that SCTP’s message orientation

(via chunks) added overhead. This overhead, however, becomes proportionately

smaller when message size is increased, thus reducing the negative impact on

SCTP performance.

When SCTP used only one stream, the performance was lower than TCP.

However, when multiple streams were used, SCTP was able to outperform TCP.

As packet loss and network latency increased, the throughput gap between

TCP and SCTP narrowed, and in some circumstances, the throughput and

resulting latency equalled or exceeded that of TCP. Despite having lower per-

formance (higher latency and lower throughput) than TCP, SCTP realises its

original purpose, of providing a reliable transport for SS7 traffic.
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3.4.4 Summary

SCTP’s original purpose was to transport SS7 signalling messages over IP. Such

a transport needed to meet the rigid timing and reliability requirements of PSTN

signalling. Both the main transport protocols, TCP and UDP, have limitations

which make them unsuitable for telephony signalling. SCTP was developed to

address these limitations, however SCTP’s features mean it is not limited to

this scope and it is considered a general-purpose transport protocol.

SCTP’s congestion and flow control are derived from TCP and is message

oriented like UDP. SCTP improves reliability and resilience by supporting mul-

tihoming and a heartbeat system to detect link failures. SCTP avoids HoL

blocking via multistreaming and out of order delivery. Another improvement

over TCP is SCTP’s four-way handshake initiation; SCTP has protection from

SYN-flood type DoS attacks integrated into the protocol, the same as TCP’s

SYN cookies. SCTP can also be secured with several security architectures,

including IPsec and TLS.

Implementations exist on several operating systems and SCTP is deployed

in commercial SS7 signalling architectures. It also features in many research

projects and continues to be refined and developed.

Given the features it brings, and in part combining the functionality of TCP

and UDP, SCTP is a suitable candidate transport layer protocol for a secure

transaction network.

3.5 Quick Transaction Protocol (QTP)

Quick Transaction Protocol (QTP) is a protocol designed specifically for mul-

tiplexing a high volume of short duration transactions (such as EFTPOS) over

IP. The requirements of an application such as EFTPOS are in Section 2.6, and

QTP meets these particular requirements well (the QTP specification was in fact

used in part to create these requirements). QTP, created by Alcatel, Ascend

(now Lucent) and INETCO [3], is not an RFC and remains as an IETF draft

[43]. QTP behaves closest as a session layer protocol, however does not fit neatly

into that classification as it implements some transport layer functionality as

well.

Because QTP is designed for low latency message transfer, UDP is the pre-

ferred transport protocol. QTP, however, can be run over TCP, as it is indepen-

dent of the transport layer. The specification assumes there is a Network Access

Server (NAS) between terminals and the transaction processor (Figure 3.14),

however terminals can have a direct connection to the network server. Termi-
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nals usually initiate sessions to the transaction processors, however transaction

processors can also initiate connections to terminals. Reasons for this include

requesting audit information from terminals, or sending stolen “hot card” lists

to terminals [43].

Figure 3.14: QTP assumes a Network Access Server is positioned between Trans-

action Terminals and Transaction Processors. QTP also permits Terminals to

connect directly to the Transaction Processor.

Each logical connection is a QTP session operating over UDP, using a single

port. Using UDP has the benefits of message orientation (as opposed to stream

oriented as TCP is) and low overhead (UDP is a lightweight protocol and does

not require a connection establishment or teardown phase as TCP does).

When an application uses UDP for its performance and simplicity, but re-

quires reliability and congestion control, the application must implement its

own transmission and flow control mechanisms, and QTP is an example of this.

QTP achieves reliability over UDP (or other unreliable transports, as QTP is

transport independent) with request-response message pairs.

QTP also has a rudimentary flow control system as part of its network

status mechanism. Flow control in QTP refers to “the ability of a QTP entity

to service further transactions with a remote QTP Entity” [43], unlike in TCP

and SCTP, which refers to changing the sending rate when network congestion

causes packet loss. A QTP entity has four states:

Available: operational and able to accept new QTP sessions.

Partially Congested: is nearing capacity, but can still accept new QTP ses-

sions.

Congested: at capacity and unable to accept new QTP sessions. Existing

sessions can continue without interruption however.
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Shutdown: the QTP entity is unavailable and cannot accept new QTP ses-

sions. Any existing sessions must be terminated immediately.

These flow control states are carried in Status Request and Report messages

(Figure 3.15). Status Report messages can be sent periodically as a heart-

beat/keep alive mechanism, as well as in response to a Status Request. If an

entity fails to receive a Status Report when one is requested, it can either resend

indefinitely, or declare the session down. When this happens, the entity termi-

nates all sessions with the entity and attempts to restart. Status messages can

also contain an advertisement of itself as a secondary QTP entity (with an at-

tribute called Station Status, with a value of 1 for Primary or 2 for Secondary).

Secondary QTP entities are used when the Primary QTP entity fails, for ex-

ample due to overloading. This provides multihoming like behaviour. Unlike

SCTP, which can have multiple alternate addresses and uses mutlihoming for

redundancy and network resilience, QTP has the entities advertise themselves

as Primary or Secondary entities, and uses this feature for load balancing. Ping

(to determine entity existence and network timing) and Call State (to determine

the state of a QTP session) attributes can also be carried in Status messages.

Figure 3.15: QTP Status Request and Report messages are used to report the

operational capacities of QTP entities.

3.5.1 QTP Startup

Before a QTP entity can create or receive QTP sessions, and when using UDP

or an unreliable transport, the draft recommends it request the status of the

remote QTP entity (Figure 3.16). This is called Safe Startup. The QTP entity

periodically sends Status Requests with a Flow Control value of “Shutdown”.

When a Status Report is received, the entity then periodically issues Status

Requests with a Flow Control value of “Available”. When this is acknowledged

with a second Status Report, start up is complete, and the entity can start

creating or receiving QTP sessions. When a reliable transport is used, QTP

can use a mode called Quick Startup, in which QTP sessions can be created
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and received immediately, that is, it is not required to request the status of the

remote entity; it is only recommended.

Figure 3.16: QTP “Safe” Startup sequence. This is used when the transport

protocol is unreliable.

3.5.2 Session Startup (Call Request)

Session establishment in QTP is a simple Call Request and Call Ack or Call

Reject pair (Figure 3.17). A Call Reject contains, as an attribute, the reason

for rejecting the call. If there is no response from the remote entity, the request

is sent again. If the second attempt fails, the application is notified.

Figure 3.17: QTP Call establishment.

3.5.3 Data Transfer

Data can be sent with or without requiring acknowledgements. Acknowledge-

ments, in addition to indicating successful delivery, can be withheld to throttle

the sender. Figure 3.18 shows a data transfer that requires acknowledgement.

An acknowledgement is simply sent in response to data. If no acknowledgement

is received (when one is required) the original message is retransmitted. If the
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retransmitted message is also unacknowledged, the call is cleared (the session

is torn down) and all session resources are released. Data that does not require

acknowledgement is simply Figure 3.18 without the acknowledgement.

Figure 3.18: QTP Data transfer with acknowledgements. Acknowledgements

are optional.

3.5.4 Session Shutdown (Call Clear)

To terminate the session (Figure 3.19), the entity sends a Clear Request (along

with a reason as an attribute). This Clear Request may also contain transaction

data. A Clear Ack is sent in response, clearing the session. If no acknowledge-

ment is received (or the Clear Request was lost), the entity resends the Clear

Request, and all session resources are released.

Figure 3.19: QTP Call Clearing.

3.5.5 Implementation and Development

The only available public implementation8 is obtainable only by request, via

email to qtp@inetco.com. The implementation is for Windows, and dates back

to 1998. The last draft expired in May 2005, therefore the protocol cannot be

considered still under public development.
8QTP is available under the open source model as stated in http://www.inetco.com/

technology/qtpfaq.html
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Several commercial products implement QTP, although likely to be in a

more advanced state than the publicly available implementation from 1998. IN-

ETCO9 System’s BankLink, POSway and INETCO Connect protocol converter

products support QTP. Vcomm’s Vista10 line of network access devices use QTP

to transport EFTPOS over IP based networks (such as GPRS and Ethernet).

Lucent also supports QTP in its MAX TNT dial gateway[3]. These companies

were also contributors to the QTP specification.

As for deployment in current systems, it is used in Telstra’s Argent system

which replaced the Transend network.11 PetroCanada also uses QTP based

systems to transport EFTPOS to backend transaction switches.

Other than the internet draft specification, there is not much public informa-

tion available regarding QTP. This gives the QTP protocol leverage to be used

as a competitive advantage by the companies that conceived it. This and the

specialised application for which QTP was developed has meant the companies

involved in its development have not pursued standardisation. This instils a

somewhat proprietary nature upon QTP, despite the availability of a stagnant

implementation. As stated in Section 2.6, proprietary systems have several

disadvantages. An organisation, which is not partnered with one of QTP’s de-

velopers has no guarantee that its own implementation can interoperate with

existing systems as the protocol was never standardised; extensions may have

been specified but kept private within the developing companies.

3.5.6 Summary

QTP was developed specifically for transporting transactions (such as EFTPOS)

over IP. Consequently it features low latency, reliable message transfer, with flow

control and load balancing mechanisms. QTP is designed to run over UDP in

order to utilise the protocol’s performance benefits. Reliability is built into QTP

itself, however QTP can also run over reliable protocols such as TCP.

A public implementation exists for Windows, however it has not been up-

dated since 1998. Commercial implementations exist, however the products are

produced by companies involved in QTP’s specificiation. Given QTP’s some-

what proprietary nature, it is not aligned with the goals of building an open,

standards based architecture. Consequently, it cannot be considered a suitable

component for this project.
9http://www.inetco.com

10http://www.vcomms.com/vista.html
11Incidentally QTP was originally designed for the Argent network.
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3.6 Session Initiation Protocol (SIP) - RFC 3261

Session Initiation Protocol (SIP) is an application layer protocol used to estab-

lish, modify and terminate multimedia sessions. SIP can operate over TCP and

UDP as well as SCTP [101]. As SIP provides its own reliability and retrans-

mission mechanism, it can operate over unreliable transports such as UDP. Like

QTP, it is an example of implementing reliability at the application layer. Note,

however, that no congestion control is implemented in SIP; SIP is a session layer

protocol, not a transport protocol.

SIP is defined in RFC 3261 [102] and is also extensively described in [32].

Accordingly its operation will only be described briefly.

There are a number of network entities defined by RFC 3261.

User Agents (UA): the two ‘final’ endpoints of a SIP session. Users interact

with each other via user agents, and these may reside in a VoIP or con-

ference application running on a computer or a hardware device such as a

SIP phone.

Redirect Server: in response to invitations, a redirect server responds with a

list of SIP Uniform Resource Identifiers (URIs12) or the address of another

server which may know where the user is located (Figure 3.20). Here, two

invitation requests are sent from the caller; one to the domain server,

Company.com (a redirect server, which responds with the location of the

callee) and one to computer2.company.com.

Proxy Server: a proxy routes requests on behalf of the UA, either to an-

other proxy server, or the destination UA. For example in Figure 3.21,

the domain server (Company.com) is a proxy server. If the user is located

at computer2.company.com, but the invitation request was sent to Com-

pany.com, the invitation would be proxied to computer2. With a proxy

server, the caller only needs to send an invitation to one location. Proxy

servers can also provide mid-call features and enforce policy (for example

limiting the destinations to which calls can be made)

Registrars: accepts REGISTER messages sent periodically from UAs. REG-

ISTER messages notify the registrar of where the user is currently logged

in, for example in Figure 3.22, caller@company.com can be contacted at
12A SIP URI is used to identify a SIP user, such as sip:caller@company.com. Company.com

is the domain of caller’s SIP service provider. URI’s are similar in form to email addresses. A

secure URI, SIPS, also exists (for example sips:caller@company.com). A SIPS URI requires

TLS be used to transmit SIP messages.
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Figure 3.20: A redirect server returns a list of possible locations where the user

may be. The caller then sends another invitation to where the user is located.

Figure 3.21: A proxy server forwards requests on behalf of the caller.
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caller@computer1.company.com. This binding is stored in the domain’s

location server. A user can register from multiple locations, for example

callee’s voicemail server could also register, so when callee is busy with a

call, incoming call requests can be directed to voicemail.

Figure 3.22: caller registers itself at computer1 with the SIP registrar.

Location Server: While not a SIP entity (as it does not use SIP to commu-

nicate with other SIP servers), location servers are used by a redirect or

a proxy server to determine the location of a user. Registrars use the

location server to store a user’s location. Users can register from multiple

locations, and the location server returns each location when queried.

These servers may be located in one physical server, that is, one server can

potentially play all four roles.

3.6.1 Session Initiation

SIP can operate over UDP, TCP and SCTP, however UDP is most widely used

[33]. Figure 3.23 illustrates the session initiation sequence. The caller sends an

INVITE request to the callee’s SIP URI (callee@companyB.com). This INVITE

request contains information such as the caller, the callee, as well as information

about the type of session. SIP does not actually provide session description

attributes (such as type of media, codec, and bitrate); these attributes are

described using another protocol such as Session Description Protocol (SDP)

for a multimedia conference; a network game may use its own protocol for

example. SIP separates the initiation of a session from its description, thus any

format of session description can be carried in the SIP payload.13

As the caller does not know the location of the callee, or the callee’s domain’s

SIP server, the INVITE is sent to the caller’s SIP server, companyA.com (a

proxy server). CompanyA.com responds with a 100 Trying to the caller. This

13RFC 3261 describes the SIP payload in a SIP message as comparable to an attachment

in an email message.
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Figure 3.23: SIP session initiation sequence.

notifies the caller that the INVITE request was received, and is being forwarded

on the caller’s behalf to the destination. If no 100 Trying is received and

an unreliable transport is used, the INVITE would be retransmitted (at the

application layer).

CompanyA.com locates the callee’s SIP server at CompanyB.com (for ex-

ample via DNS). CompanyA.com adds itself as a via attribute in the INVITE,

and proxies the INVITE request to CompanyB.com. The via attribute indicates

that responses should be sent back to this proxy. When the CompanyB.com

proxy receives this, it also responds with a 100 Trying back to CompanyA.com

(this second 100 Trying is not passed back to the caller as it is what RFC 3261

terms a ‘provisional response’). CompanyB.com uses the generically named

location service (possibly provided by a location server) to locate the callee.

CompanyB.com adds itself as another via attribute, and passes the INVITE to

the callee.

The proxy server could also fork the INVITE request. If the callee had regis-

tered itself from more than one location, CompanyB.com could send the INVITE

request to each possible location; this is known as forking. This provides a de-

gree of multihoming, as a single UA can register from multiple locations (these

locations can be logical, for example the secondary network interface card on a

host).

The callee’s UA alerts the user, for example a SIP phone would ring, or a

conferencing application could pop up with a message indicating a user wishes

to start a conference session. The UA responds with a 180 Ringing message,

which is passed back to the caller through the proxies by sending back to the

first address in the via attribute (CompanyB.com removes its via attribute and

passes it to the next via attribute and so on). Being a ‘provisional response’,
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the 180 Ringing message is not reliably transmitted back to the caller. If the

caller does receive it, however, it can notify the user.

If the callee answers the call, the UA sends a 200 OK through the proxies

back to the caller. A 200 OK is termed a ‘final response’ and is sent reliably.

This message contains a description of the session the callee can support, carried

in the same way as in an INVITE message. The 200 OK message also contains

a URI header, of the callee’s exact location.

When the caller receives this, the UA notifies the user (for example stopping

the ringing tone) and sends an ACK. This ACK is sent directly to the callee,

bypassing the two proxies. Both the caller and callee have learned each other’s

address; they are carried in the INVITE and 200 OK messages respectively. At

this point, the proxies do not need to be in the message exchange path, as each

user knows the other’s location. However, proxies can choose to remain in the

exchange path to provide mid-call features.

This is called a three-way handshake, as only three messages (INVITE, 200

OK and ACK are sent reliably. When this handshake is completed, the session

described in the SIP body (for example using SDP) can begin. RFC 3261 states

the media packets can take a different path from the SIP signalling messages.

This is similar to SS7 in a PSTN, where the signalling and voice take a different

path [32].

3.6.2 Session Modification

Characteristics of the media can be modified mid-session (Figure 3.24). An

INVITE sent during a session is known as a re-INVITE, and references an

existing session so users do not have to establish a new session. If the change

is not accepted, a 488 Not Acceptable Here is sent and the session continues

with its existing attributes, otherwise a 200 OK accepts the change.

Figure 3.24: SIP session modification.
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3.6.3 Session Termination

Sessions are terminated with the BYE message. In Figure 3.25, the callee ends

the session, and the caller responds with a 200 ACK message that terminates the

session. Strictly speaking, a BYE message indicates a user has left the session.

In a two user scenario, the session would be terminated, however in a multicast

conference, the session would not be affected as long as users were still in the

conference.

Figure 3.25: SIP session termination.

3.6.4 Implementation and Development

SIP is used in many applications, from instant messaging applications such as

PhoneGAIM to VoIP networks such as Gizmo. Cisco and Nortel among others

have SIP server platforms.14 SIP-based Private Branch Exchange (PBX) tele-

phone networks are available from Asterisk and 3Com among other vendors.15

As the SIP standard is well established, most activity is focussed on creating

products that are interoperable. SIP also features in many research projects,

ranging from mobile VPN and running VoIP through firewalls and NATs to

applying SIP in new ways.

The H.323 standard, regulated by the International Telecommunication Union

(ITU) provides a similar function to SIP; H.323 is a signalling protocol for IP

networks. H.323 is older than SIP, however, and has a ‘monolithic’ architecture

[5], for example H.323 specifies everything from codec and session description

to QoS. This makes it difficult to add new or modify existing components. SIP

is considered simpler and more flexible as its core responsibilities are providing

call management (set up and termination) and user location. All other func-

tions such as QoS and session description are provided by other protocols. SIP’s

design has meant it can operate with HTTP and SMTP [4]. This enables SIP

to provide internet services such as sending an email to unreachable users.
14http://www.SIPcenter.com/SIP.nsf/html/SIP+Servers
15http://www.SIPcenter.com/SIP.nsf/html/IP+PBX
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SIMPLE

The Instant Messaging and Presence Protocol (IMPP) Working Group existed16

to define a generic Instant Messaging and Presence (IM&P) model such that

independently developed instant messaging (IM) applications could interoper-

ate with each other. A document has been produced [44], which specifies the

minimum requirements such a protocol must meet.

The SIP specification (RFC 3261, [102]) contains a rudimentary presence

feature in the form of periodic REGISTER messages. Using this feature for

presence, however, is rather crude as it is not its intended purpose.

The SIP for Instant Messaging and Presence Leveraging Extensions Working

Group (SIMPLE) defines a set of extensions that provides SIP with instant

messaging and a presence service. This is particularly applicable to this project;

instant messages are transferred in real time and the presence service provides a

degree of ‘network intelligence’ (where the presence and availability of a remote

device or peer can be determined). Having knowledge of the network conditions

can improve reliability.

SIMPLE, alongside the XML based Extensible Messaging and Presence Pro-

tocol (XMPP) are the two proposed IMPP’s developed by the IETF [36]. As

[36] explains SIMPLE, it will only be briefly described here.

Presence

Presence in SIMPLE [99] defines a Presence User Agent (PUA), or a presentity

[45] which provides presence information to a presence server (or service). UserB

(a PUA) REGISTERs its current status with the presence server in Figure 3.26

(such as “Available”) upon initialisation, as well as whenever the current status

changes.

UserA wants to know UserB’s current status, and SUBSCRIBES to UserB’s

presence information. Each time UserB’s status changes, the presence server

transmits a NOTIFY to each subscriber. When the subscribers receive this,

they are updated on the user’s current status. This behaviour closely resembles

MQTT as described in Section 2.5, where the presence server is the message

repository and the PUA is the remote device.

Instant Messaging

SIMPLE also defines a MESSAGE method in RFC 3428 [34], where a message

can be contained in a SIP body. A MESSAGE request is treated as a BYE
16The group concluded in September 1998.
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Figure 3.26: UserA registers to be notified of UserB’s status. When UserB’s

status changes, all subscribers are notified with a NOTIFY message.

request by proxies [32]. The advantage here is existing SIP infrastructure can

be reused to provide IM capabilities without any modification. Figure 3.27

illustrates this.

Figure 3.27: UserA sends an instant message (IM) to UserB.

These extensions to SIP would benefit a transport protocol that is not aware

of its own state of service, such as TCP. While TCP contains a keep alive

function (defined in RFC 1122 [29]), its implementation is optional, as it is not

in the TCP specification (RFC 793 [97]).

Multihoming can also be improved with these extensions; instead of forking

a request to every registered location for a user, a proxy server would only need

to forward requests to where the presentity is declared available. This would

give similar resulting functionality to SCTP’s multihoming, only here it is at

the application layer.
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3.6.5 Summary

SIP is an application layer protocol used for session establishment, modification

and termination. SIP is independent of the type of session created and these

sessions can be any type, from voice to video. SIP is part of a modular archi-

tecture, and can therefore be used in conjunction with other services to provide

new functions. SIP has reliability built in and is independent of the transport

protocol, so can operate over unreliable transport protocols.

SIP is currently used in many applications and features in many research

projects, leading to new ways to apply SIP. The SIMPLE extensions are relevant

to this project, as they provide an instant messaging functionality as well as a

degree of network service awareness through the presence facility. The benefit of

providing these services at the application layer is that any transport protocol

can be used to carry SIP.

A lot of activity surrounds SIP and many products will be deployed based

on SIP. SIP is an open protocol, and because of its simplicity, can be easily

extended and applied in many new ways. This flexibility and in particular the

SIMPLE extensions make SIP a worthwhile component for this project.

3.7 Simple Object Access Protocol - SOAP

Simple Object Access Protocol (SOAP) is a protocol based on XML and HTTP

that enables applications to invoke procedures on remote hosts and exchange

information. SOAP is a W3C standard and is up to version 1.2.17 It is part of

the web services architecture [20], comprising SOAP, Web Service Description

Language (WSDL) and the Universal Description, Discovery and Integration

(UDDI) registry.

WSDL uses XML to describe the capabilities and locations of web services,

such as the message format and parameters for the function or method [8].

The interfaces and services described by WSDL may be registered in a UDDI

directory [37]. Businesses can also search for web services in the UDDI directory

service. This enables business partners to share information more efficiently as

interoperability and integration of services is easier; W3CSchools18 uses a flight

reservation example. Airlines register their flight rate and reservation checking

systems into a UDDI directory. Travel Agents then search the directory for an

airline’s interface description. The travel agency can then immediately use the

airline’s interface.
17http://www.w3.org/2000/xp/Group
18http://www.w3schools.com/wsdl/wsdl uddi.asp
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Web services and e-commerce sites are usually built using a three-tier ar-

chitecture: a front end web server, an application server in the middle and a

backend database. As SOAP uses HTTP19, SOAP requests are sent to the or-

ganisation’s web server. These requests are routed to the application server,

where the SOAP processor resides, and parsed.

Frameworks exist so normal applications can be translated into a SOAP

based web application (for example Microsoft’s .NET and Sun’s Enterprise Java

Beans). This makes SOAP requests language independent, as the SOAP request

is translated and parsed by the SOAP/application server into the native lan-

guage. Responses are sent the same way as a SOAP response through the web

server.

As SOAP is based on XML, it is platform independent. The application

frameworks make it language independent as well. These contribute to SOAP’s

interoperability. SOAP uses web servers to communicate, and this can be con-

sidered an advantage. Businesses have experience deploying web servers and

web applications [80] and can utilise existing infrastructure. Firewalls permit

traffic on port 80 so the web server can receive requests. As SOAP uses exist-

ing web servers to communicate, firewalls do not need to open extra ports to

accommodate SOAP; SOAP uses the web server’s opened ports. With other

remote access architectures such as Remote Procedure Call (RPC), Common

Object Request Broker Architecture (CORBA) and Java’s Remote Method In-

vocation (RMI), additional ports on the firewall need to be opened, and this

increases risk. SOAP can operate unimpeded as the firewall sees SOAP requests

as regular web page requests.

However, this behaviour ultimately circumvents the purpose of a firewall.

Since SOAP requests appear as standard web traffic, the firewall now has no way

of determining whether the traffic is a harmless web request, or an application

request message that invokes a function on the server. Firewalls must then

filter at the application layer by inspecting the packet contents. This commonly

happens with email, where potentially harmful attachments are removed from

messages as noted in [20].

While SOAP is a valid architecture for this project, its focus is on interoper-

ability. This project’s goal is to define a protocol stack, which would be employed

universally throughout the entire transaction network. In a controlled deploy-

ment scenario, such as an EFTPOS system, all equipment and infrastructure

would be authorised and sanctioned by the network operator. Consequently,

interoperability problems would be avoided as the entire network would use the
19SOAP can also use SMTP
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same application layer protocol, in this instance AS2805, as well as the same

underlying network stack (the focus of this project). SOAP’s emphasis on in-

teroperability between different application vendors would be unnecessary in an

environment such as this.

It is conceivable that a payment system such as EFTPOS could be composed

of network infrastructure from different vendors, each using their own payment

card standard. In a relatively uncontrolled situation like this, where the inter-

face used by each vendor is unknown, SOAP would have value. Clients could

determine the interface of the vendor via a UDDI lookup and integrate seam-

lessly. However, allowing unknown devices to integrate into a payment network

and become part of the infrastructure would create security risks.

3.8 Versatile Message Transaction Protocol (VMTP)

- RFC 1045

Versatile Message Transaction Protocol (VMTP) is an experimental transport

protocol, defined in RFC 1045 [38]. VMTP is designed to support RPC and

transaction oriented traffic. Each request and response has a transaction identi-

fier. When a server receives a request, it locates the corresponding transaction

record for the client. If no record exists, the server queries the client to obtain

the necessary information. Thus VMTP establishes connections on demand

[39], and no separate connection establishment phase exists, such as TCP’s 3-

way handshake.

Each network entity has a unique and stable 64-bit identifier that is in-

dependent of the IP address. This facilitates process migration, mobility and

multihoming, as entities are no longer tied to an IP address.

Multicast, datagrams and security are other features of VMTP. Datagrams

in VMTP are simply requests that do not require a response. Acknowledgements

in VMTP are implicit [68]; a response implicitly acknowledges the request, and

a subsequent request implicitly acknowledges the response. VMTP also offers a

streaming mode resulting in similar functionality to TCP. A stream of requests

can be issued with the responses received asynchronously. These responses are

akin to a TCP ACK.

Regardless of these qualities, VMTP cannot be considered a suitable trans-

port protocol; it remains in experimental state and RFC 1045 has not been

updated since February 1988, nor has it been superseded by a newer document.

VMTP perhaps reflects the best practices of the time in terms of protocol de-

sign; it is a function rich protocol, which the RFC states “provides high data
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rates, low error rates and relatively low delay”. VMTP can even operate with-

out IP; it can be layered directly on top of a data link layer protocol. It is a

multipurpose protocol, in contrast with modern protocols. Current protocols

are typically single purpose and lightweight, for example SIP and TLS.

3.9 Xpress Transfer Protocol (XTP)

Xpress Transfer Protocol (XTP) combines the functionality of TCP, UDP and

TP4 [121]. While not an IETF RFC, XTP is defined in [10]. It has been adopted

as part of SAFENET, a U.S. military standard for naval network communica-

tions [9]. XTP is not designed as a replacement for TCP, UDP or TP4, but to

work alongside them. XTP, like VMTP, can operate over IP or directly over

the data link layer (for example Ethernet or ATM). XTP is designed to provide

low latency and high throughput for real time systems, for example weapons

control, and generally has higher throughput than TCP [121].

XTP is centred around the separation of error, flow and data transmission

control policies. These three properties can be configured independently of each

other. XTP has three selectable error control modes: reliable (similar to TCP),

unreliable (akin to UDP, where the sender does not receive acknowledgements)

and fast negative acknowledgement. Fast negative acknowledgement means a

receiver, upon identifying out of sequence packets, can immediately inform the

sender of the missing data. The sender then retransmits only the missing data.

This functionality is similar to TCP’s SACK mechanism. Flow control is also

selectable in XTP, and can either be traditional credit windows, a more conser-

vative policy called reservation mode and disabled (used for streaming data, for

example multimedia streams).

A receiver can control the data transmission of a sender by adjusting the rate

and burst parameters. Rate control limits the amount of data that can be sent at

a time while burst control determines the size of data that can be sent. Unlike

conventional flow control which is end-to-end (with no router intervention),

XTP’s flow control can include the routers. This enables a loaded router to

limit the rate of incoming traffic until the network is no longer congested.

XTP features multicast, priority/QoS and fast connection setup. XTP can

achieve with three packets what TCP accomplishes with six. The first packet

opens the connection, contains the data and also closes the connection. The sec-

ond packet contains the response (if any) and the acknowledgement of the close

request and the data. The sender to receiver connection is then closed. The

second packet also contains a close request in the reverse direction. The sender
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acknowledges this with a third packet, which closes the receiver to sender con-

nection. XTP also has a two packet exchange for transactions, where the sender

sends a connection request and the data (the transaction request). The receiver

responds with its data (the transaction response) and closes the connection

XTP was developed by the XTP forum, which has since disbanded. The

latest revision of XTP is 4.0b [10] from 1998, and development on the protocol

has stopped. A public implementation was once available from Sandia National

Laboratories, as were commercial implementations from Network Xpress and

Mentat, however these no longer exist; Network Xpress ceased operating in

1999 and Mentat was purchased by Packeteer in late 2004. Accordingly, XTP

is an unsuitable protocol for this project.
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Security Candidates

This section introduces several security architectures which could support the

security requirements defined in Section 2.6. The goal of any security proto-

col is to authenticate the end points as well as prevent eavesdropping through

encryption and message tampering through data integrity protection.

It is important to note that no security protocol can stop all denial of service

attacks or prohibit traffic analysis. These risks can be reduced, however, for

example SYN cookies can reduce the impact of SYN flooding DoS attacks.

Traffic analysis requires analytic skill to perform successfully. Knowing network

traffic exists between two sites can be useful to an analyst, for example between

a client and a transaction processor. Subsequent statistical analysis could be

performed which may reveal patterns in the volume, direction and timing of

traffic. This could suggest which end was a client and which was the transaction

processor. However, resistance to traffic analysis can be improved by encrypting

at the application layer, for example the application itself may encrypt the

transaction data, before being encrypted at the transport layer. Aggregating

several data streams onto a single stream can also make traffic analysis harder.

4.1 Secure Shell (SSH) - RFC 4251

The Secure Shell Protocol (SSH) is used for secure remote logins and tunnelling

through an unsecure network. Various methods exist to administer remote

systems from a console, such as Telnet, rsh and X [23]. However, these methods

transmit in cleartext and do not provide authentication. SSH2 was designed in

1996 in response to security flaws in SSH1 [12], such as CRC checksum attacks.

This made SSH1 vulnerable to Man-in-the-Middle (MITM) attacks. In 2006,

the Secure Shell working group (Secsh) proposed SSH2 (which obsoletes SSH1)

56
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as an IETF proposed standard. The architecture is defined in RFC 4251 [125]

and consists of three main components:

The Secure Shell (SSH) Authentication Protocol (RFC 4252)[123]: This

describes the authentication protocol framework and describes the public

key, password and host-based authentication methods. It runs over the

SSH Transport layer protocol and authenticates the user to the server.

The Secure Shell (SSH) Transport Layer Protocol (RFC 4253)[126]:

This runs over TCP/IP and thus is not a ‘transport layer protocol’ in the

network stack sense. This protocol can provide a secure network service

and offers encryption, data integrity and authentication as well as key ex-

change methods and algorithm negotiation. It provides only host-based

authentication and relies on higher layers for user authentication.

The Secure Shell (SSH) Connection Protocol (RFC4254)[124]: This pro-

vides secure interactive login sessions, remote execution of commands and

forwarding of TCP ports. These different logical channels can be multi-

plexed onto a single secure connection. This also operates over the SSH

transport layer and authentication protocol.

SSH’s port forwarding capability enables it to create secure TCP tunnels

between endpoints. These tunnels can be created on any port, and can therefore

be used to transmit data securely for any TCP application. Tunnels are created

with the -L and -R options, used for local forwarding and remote forwarding

respectively.

Figure 4.1: Anything sent to 127.0.0.1:5000 on the client is forwarded securely

to server:80 by SSH.

Figure 4.1 shows a tunnel created between two hosts. Using local forwarding

(the -L option), the tunnel would have been established on the client with the

command:
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client:$ ssh -L 5000:server:80 server

On the client, this command forwards anything directed to localhost (the

client’s 127.0.0.1):5000 to server:80 through the SSH secured tunnel.

Figure 4.2: A tunnel created with the command ssh -L 5000:mailserver:110

server. The traffic is encrypted between client and server, but is in plaintext

between server and the mailserver.

Connections can also be created to hosts behind the SSH server, for example

in Figure 4.2. Using local forwarding again, the tunnel would have been estab-

lished on the client with:

client:$ ssh -L 5000:mailserver:110 server

This command works as follows.

1. Upon typing the command on the client, the SSH client binds to port 5000

on the loopback address 127.0.0.1 on the client

2. When a process on the client connects to 127.0.0.1, the SSH client accepts

the connection

3. The SSH client informs the server through the encrypted tunnel to create

a connection to mailserver:110

4. The SSH client forwards any data directed to 127.0.0.1:5000 to the server

through the encrypted tunnel.

5. The server decrypts the data and forwards the plaintext data to mailserver:110.

6. The mailserver sends responses back to the server in plaintext.

7. The server forwards these through the encrypted tunnel back to the SSH

client.

8. The SSH client on the client decrypts these and sends the plaintext back

to the process.
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9. When the connection is closed, it is torn down in the tunnel as well.

With this method, only data between the client and server is encrypted;

the data transferred between the mailserver and the server will be in plaintext.

In a sense, the server is operating as a gateway, as all data leaving the server

destined for the client is encrypted, and all data leaving the server destined for

the mailserver is decrypted. A secure tunnel must be explicitly created between

the server and every destination which requires encryption.

However, an encrypted tunnel can also be created between the SSH server

and the mailserver. Note that while the data is encrypted between endpoints,

the tunnel is not end to end between the client and the mailserver; the SSH

server decrypts the data from the client and re-encrypts it before sending it to

the mailserver and vice versa.

Remote forwarding (using the -R option) has the same effect, but the tunnel

is initiated from the remote side. Where the -L option forwards data to a

remote port, the -R option forwards data from a remote port to a port on the

local machine.

4.1.1 Connection Setup

SSH runs over port 22, officially assigned by the Internet Assigned Numbers

Authority (IANA1). Establishing an SSH connection consists of four phases:

protocol version exchange, key exchange, user authentication and opening the

channel. The first two phases are defined in RFC 4253 [126], while the user

authentication phase is defined in RFC 4252 [123]. The final phase, opening a

channel is defined in RFC 4254 [124].

The protocol version exchange phase consists of the two sides exchanging

an identification string (Figure 4.3). This phase is used to establish whether

both sides support SSH2 (indicated by 2.0 in Figure 4.3), as well as triggering

compatibility extensions or notifying implementation capabilities (noted via the

software version, SSH 3.6.3q3 in Figure 4.3).

The key exchange phase negotiates the MAC and encryption algorithms as

well as the key exchange method. The encryption key is also exchanged dur-

ing this phase, which the standard states should have an effective length of

at least 128 bits. RFC 4253 requires only the 3DES-CBC cipher with a 168-

bit key, as all known implementations support it. The standard recommends

AES128-CBC, as the 3DES 168-bit key has an effective length of 112 bits, less

than the minimum. Other ciphers supported are the CBC modes of Blowfish,
1http://www.iana.org
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Figure 4.3: SSH Protocol Version Exchange. The client and the server exchange

SSH version information; in this instance, SSH 2.0 is used, with SSH 3.6.3q3

the software version.

Twofish, Serpent, Arcfour, IDEA and CAST. As for MAC algorithms for data

integrity, only SHA-1 is required, however MD-5 is also supported. Two key

exchange methods are defined in RFC 4253: diffie-hellman-group1-sha1 and

diffie-hellman-group14-sha1. These exchange methods define the generation of

session keys used for encryption and authentication as well as the server authen-

tication method. Additional methods may defined for each of the above three

categories.

Figure 4.4 illustrates the key exchange phase. The SSH MSG KEXINIT

message contains a list of all supported and preferred algorithms for each cat-

egory (encryption, MAC and key exchange). Following this exchange, the se-

lected key exchange method is carried out (in Figure 4.4, the Diffie-Hellman

method is used, but other methods may be defined). The client sends a nonce

value x (a function applied to a random number) in SSH MSG KEXDH INIT.

When the server receives this, the server generates a nonce value y (also a

function applied to a random number), and derives a session key (computed

over the client’s x and the server’s y value). The server responds with its

public host key, the value y (so the client can also derive the same key) and a

digital signature in SSH MSG KEXDH REPLY. The digital signature is hashed

over the client and server’s version strings, the two SSH MSG KEXDH INIT

messages, the server’s public key, x, y and the derived key. This hash, H, is also

used as the unique session identifier.

The client checks that the public key corresponds to the server (discussed

in weaknesses, Section 4.1.4). The client also derives a session key computed

over x and y then verifies the signature. If the server is authentic, the client

and the server exchange the SSH MSG NEWKEYS message. This ends the key

exchange phase and all subsequent messages use the newly negotiated keys and

algorithms.

The key exchange phase establishes a session key, creats a secure channel

and verifies the identity of the server to the client. The user authentication
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Figure 4.4: SSH Key Exchange. In this example, the Diffie-Hellman key ex-

change method is used, and uses two messages; messages 3 and 4. Other

key exchange methods may use a different number of messages. When the

SSH MSG NEWKEYS messages have been exchanged, all subsequent messages

use the newly negotiated keys and algorithms.

phase verifies the user to the server. Three methods are available: Public key

(required by RFC 4252), Password or Host-Based (both optional).

Authentication requests use SSH MSG USERAUTH REQUEST messages

and each of these messages contain the username on the client as well as authen-

tication method specific fields. The server responds with SSH MSG USERAUTH

SUCCESS if the authentication is completed and a channel can then be opened.

If the request failed, the server replies with SSH MSG USERAUTH FAILURE,

with the partial success flag set to false. If the previous request was successful

but further authentication is required, the server responds with SSH MSG USER

AUTH FAILURE with the partial success set to true.

The public key method authenticates based on the user’s possession of a

private key. Using the private key is relatively computationally expensive, so

clients can check whether public key authentication is acceptable (Figure 4.5).

This avoids unnecessary processing on the client. If it is acceptable, the server

responds with an SSH MSG USERAUTH PK OK. The actual authentication

(Figure 4.6) consists of the client sending the username, public key and a dig-

ital signature (a hash calculated over several values including the username,

the user’s public key, the session identifier2 and encrypting it with the user’s

private key) to the server. The server checks whether the public key is a valid

2The hash H generated during the key exchange phase
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authenticator for the user and the validity of the signature. If both succeed and

no further authentication is required, the user is authenticated.

Figure 4.5: The client can check whether public key user authentication is ac-

ceptable, before performing computationally expensive public/private key op-

erations.

Figure 4.6: SSH User Authentication. While the actual content of the messages

are different, the messages exchanged are the same for public key, password and

host based user authentication.

The password method transmits the password in plaintext within the SSH

packet, however all packets are encrypted since the successful key exchange. Fig-

ure 4.6 shows this method. If the password has expired, the server can request

a password change (Figure 4.7) with the SSH MSG USERAUTH PASSWD

CHANGEREQ message. The SSH client can use a different authentication

method or request a new password from the user. The server may respond

with either SSH MSG USERAUTH SUCCESS if the password was changed

successfully and the user is authenticated; SSH MSG USERAUTH FAILURE

with partial success if the password was changed but further authentication is

required; SSH MSG USERAUTH FAILURE without partial success if the pass-

word was not changed due to the server not supporting password changes or the

old password was incorrect; or SSH MSG USERAUTH CHANGEREQ if the

new password is unacceptable (for example being too short).

The host-based authentication method authenticates on the username and

the host the user is connecting from. This method is similar to the public key

method, except it authenticates on the host’s public key rather than the user’s.

The client authenticates by sending the username, hostname, the host’s public
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Figure 4.7: If an expired password is used to authenticate a user, the server can

request the user to change the password.

key, the username logged onto the host and a digital signature calculated over

these values and the session identifier (Figure 4.6). The server verifies the host’s

public key and validates the signature to complete authentication. The server

may also check whether the user is authorised to log in.

Keys can be renewed at any time as long as a key exchange is not already

in progress. Rekeying is identical to the initial key exchange with the exception

of creating a new session identifier, which remains the same. The client or the

server can initiate rekeying. RFC 4243 recommends rekeying after 1GB of data

is transferred or one hour, which ever comes first. However, as public/private

key encryption is used during the key exchange, it is computationally expensive,

so should not be performed too frequently.

When the three phases of authentication are complete, a channel can be

opened. Multiple channels are multiplexed on a single tunnel. Figure 4.8 il-

lustrates opening a channel. A channel can be opened from either side, and

in Figure 4.8, the client sends an SSH MSG CHANNEL OPEN message, which

contains a local channel number. The server replies with SSH MSG CHANNEL

OPEN CONFIRMATION or SSH MSG CHANNEL OPEN FAILURE with a

reason code of either:

• SSH OPEN ADMINISTRATIVELY PROHIBITED

• SSH OPEN CONNECT FAILED

• SSH OPEN UNKNOWN CHANNEL TYPE

• SSH OPEN RESOURCE SHORTAGE

When a channel is opened, data transfer can begin using the SSH MSG CHANNEL

DATA message.
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Figure 4.8: After the key exchange and user authentication phases, a channel

can be opened, and data transfer can begin. Channels can be opened from

either side.

4.1.2 Connection Closing

Like connection setup, closing a connection is performed at the connection layer

(RFC 4254) and at the ‘transport layer’ (RFC 4253). At the connection layer,

two messages exist; SSH MSG CHANNEL EOF and SSH MSG CHANNEL CLOSE.

SSH MSG CHANNEL EOF is used when no more data is sent to a channel.

This message has no response, unlike the other messages described. The chan-

nel remains open, and data can still be received on the channel.

When either end wishes to terminate a channel, SSH MSG CHANNEL CLOSE

messages are exchanged. When a host has sent and received an SSH MSG

CHANNEL CLOSE message, the channel is considered closed and the channel

number can be reused. This message can be transmitted without having sent

or received an SSH MSG CHANNEL EOF message.

To terminate the connection at SSH’s ‘transport layer’, the SSH MSG DIS-

CONNECT message is used. This has no response, as the sender stops sending

and receiving after this message, and the receiver stops accepting data after

receiving this message.

4.1.3 Advantages

Using SSH’s port forwarding capability to create tunnels is relatively simple

compared to other tunnelling methods. A secure tunnel can be created with the

-L and -R options without requiring a reboot. SSH is available on all3 Linux

distributions, and is freely available as OpenSSH.4 As the tunnels are defined

not only by destination and source host but by port as well, traffic between the

hosts can be limited to the specific tunnelled ports when used in conjunction

with a firewall. The firewall prohibits other arbitrary, unsecured connections

from being established between the two hosts. This would ensure secured traffic
3http://www.openssh.com/users.html
4http://www.openssh.com
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is permitted traffic.

SSH can also be used to tunnel all traffic between two hosts, by tunnelling

PPP over SSH. However, this is not considered an efficient VPN solution [24, 31].

4.1.4 Drawbacks

The architectural defects of SSH are investigated in [103]. One flaw identified

is the key management mechanism. SSH has the concept of a certification au-

thority (CA) to verify the authenticity of remote servers, however no widely

deployed key infrastructure is available [125]. The host key of a server cannot

be authenticated when a client connects to it for the first time, so clients cannot

be sure if the server is authentic. When users connect to a remote server for the

first time, they are presented with the following:

client:$ ssh server.company.com

The authenticity of host ’server.company.com (123.123.123.123)’ can’t

be established.

RSA key fingerprint is 86:e0:c0:f9:e8:2b:df:c6:1f:f4:bb:d9:13:2d:47:11.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’server.company.com,123.123.123.123’ (RSA)

to the list of known hosts.

user@client’s password:

client:$

When the user types ‘yes’, the key is saved to $HOME/.ssh/knownhosts.

On all subsequent connections, the fingerprint of the remote host is compared

with the entry in the knownhosts file. It is up to the user to determine the

authenticity of remote hosts; the knownhosts file is essentially the user’s own CA

[61]. Users can verify the authenticity of the host key via out of band methods

(for example publishing the key fingerprints on a private webpage). Failing that,

users can also compare the key fingerprint of the host after they have logged on,

with the fingerprint presented. If the user was able to successfully connect to

an intruder, however, it is likely their password has been compromised. Clients

connecting to an intruder masquerading as a legitimate server form the basis of

a ‘Man-in-the-Middle’ attack.

The option of not checking the remote server host key on the initial connec-

tion reduces the security of the protocol. Unfortunately this option is required

as no key verification infrastructure exists, and the Secsh working group consider

the ease of use critical to user acceptance of new security solutions.
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The password user authentication method was also identified as vulnerable in

[103], assuming clients connected to a fake server. SSH exchanges keys before the

user is authenticated, so the intruder would be able obtain the user’s password.

This is because the password would have been encrypted using a session key

negotiated between the client and the intruder. Again, this rests on the client

being unable to verify whether the server was authentic in the first place, and

connecting regardless.

The public key authentication method however is not vulnerable to this flaw.

The server authenticates the user’s public key with a valid user and checks the

validity of the signature before authenticating the user. An intruder would not

be able to carry out an attack as:

• The intruder’s public key would not correspond to a valid user or;

• The signature would be computed over the client’s username, public key

and the negotiated session key between the client and the intruder, then

encrypted with the client’s private key. When using the victim’s (client)

public key, a valid signature would not be created, as the intruder must

compute the signature over the session key between the intruder and the

server, not the session key between the client and the intruder. This would

then need to be encrypted with the client’s private key, which the intruder

does not have.

Finally a flaw in the authentication method negotiation was identified in

[103]. If both the server and client cannot agree on an authentication method,

the connection is closed. The server could then force the client to use an arbi-

trary method (such as the password method) of the server’s choice if the user

wanted to keep the connection.

Essentially these flaws rely on a user connecting to an intruder instead of the

server. If users are vigilant and verify the fingerprint of the server’s key before

connecting the MITM attacks described would not be possible.

A disadvantage of using SSH tunnels is that only TCP traffic can be tun-

nelled securely; UDP applications cannot be used.

4.1.5 Implementations and Development

SSH is available from SSH Communications Security5 as a commercial product.

As a proposed internet standard, SSH requires at least one free implementation
5http://www.ssh.com
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and this exists as OpenSSH.6 OpenSSH is developed by the OpenBSD devel-

opers and has been part of OpenBSD since version 2.6. OpenBSD has a strict

source code auditing process, ensuring the security of the operating system. Se-

curity problems are fully disclosed, enabling rapid fixes, usually within an hour.7

Being part of OpenBSD, OpenSSH is subject to the rigorous auditing process

as well. Both OpenSSH and OpenBSD are open source projects, and have the

benefits as stated in Section 2.6.

4.1.6 Summary

SSH provides a secure method to administer remote systems. SSH can be used

to create secured TCP tunnels between two hosts via port forwarding. This

allows secure traffic for any TCP application. Establishing tunnels is simple

and the OpenSSH implementation is freely available. As OpenSSH is open

source, public code reviews ensure security flaws are rectified promptly.

Flaws in SSH rely on the user’s inability to verify the authenticity of remote

servers and consequently connecting to fake servers. Following this, if password

authentication is used, the intruder can obtain the user’s password. However,

this can be prevented when public key authentication is used. MITM attacks are

only possible when users connect and authenticate themselves to fake servers.

Methods are available to verify the identity of a remote server before connecting,

making MITM attacks preventable. SSH provides a simple, secure means of

creating encrypted TCP channels and is a candidate tunnelling method.

4.2 IP Security (IPsec) - RFC 4301

IPsec defines a security architecture for the internet protocol in RFC 4301 [75].

IPsec is a widely deployed architecture for securing traffic over a public net-

work and is well researched. Consequently, its features and capabilities are not

introduced or described here. Section 3 of RFC 4301 [75] contains a sufficient

overview.

Network Address Translation (NAT) can cause problems for IPsec [67].

When IPsec is operating in AH mode, the source address is hashed with other

data for data integrity. When the packet passes through a NAT device, the

source address will be changed. When the IPsec host receives this and validates

its integrity, the resulting hash will be different and the packet will be blocked

or dropped as it appears modified. IPsec can use ESP to traverse a NAT device,
6http://www.openssh.com
7http://www.openbsd.org/security.html
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as the encapsulated source address is not changed by the NAT device; only the

outer source address is modified.

4.2.1 Establishing a Security Association (SA)

The Internet Key Exchange Protocol version 2 (IKEv2) is the default protocol

used by IPsec for automated key management and authentication. RFC 4306

[74] defines IKEv2. IKEv2 does not interoperate with IKEv1, however they both

run over UDP port 500. This is actually an advantage, as it is impossible for

IKEv2 to negotiate or roll back to IKEv1. This means flaws and vulnerabilities

in IKEv1, which IKEv2 fixed, can no longer be exploited.

A Security Association (SA) is a unidirectional link secured by Authen-

tication Header (AH) or Encapsulating Security Payload (ESP). To secure a

connection, two SAs (one in each direction) are required and IKE creates SAs

in pairs for this.

Messages are exchanged in pairs; a request and a response. The first two

pairs of messages exchanged are the IKE SA INIT and IKE AUTH messages.

These four messages are enough to create the IKE SA and the first CHILD SA

and are known as Phase 1 in IKEv1. A CHILD SA is created through the

IKE SA, and represents a connection secured by AH or ESP.

Figure 4.9 illustrates the basic exchange. The initiator sends the first IKE SA

INIT message. This message contains the cryptographic algorithms supported

by the initiator, their Diffie-Hellman value and a nonce value. IKEv2 is required

to support at least 3DES-CBC and AES-128-CBC for encryption, and HMAC-

SHA-96 and AES-XCBC-MAC-96 for integrity [62]. IKEv2 may also support

HMAC-MD5-96 for data integrity [106].

The responder replies with an IKE SA INIT message. This message contains

the responder’s choice of algorithms selected from the initiator’s list as well as

the responder’s Diffie-Hellman value and nonce. This message may also request a

certificate from the initiator. At this point, both sides can generate SKEYSEED

from the nonces and the Diffie-Hellman values. All other keys are derived from

SKEYSEED, and subsequent messages are encrypted and integrity protected.

The second pair of messages sent are IKE AUTH messages. This exchange

authenticates the previous two messages, authenticates identities and establishes

the first (and often only) CHILD SA. Identities are authenticated using one of

three methods: a pre-shared key (PSK); a digital signature generated from a

certificate issued by a CA; or a digital signature created from a self-generated

public/private key pair. Each peer the initiator intends to communicate with

must be configured with the PSK or public key when using a PSK or self-
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Figure 4.9: IKE SA and CHILD SA negotiation. These four message estab-

lish the IKE SA and the first CHILD SA. The first pair of messages negotiate

algorithms and exchange nonces and Diffie-Hellman values. The IKE AUTH

messages are integrity protected and encrypted, as are subsequent messages

(denoted by the {}).

generated key respectively. Consequently, these two methods do not scale well.

The initiator sends its authenticated identity, and 2 digital signatures; one

for the current message (encrypted with the session MAC key), and one for the

first message (encrypted with the private key). Traffic selectors8 and an SA

offer are also sent to start negotiation of the CHILD SA. An SA offer lists the

algorithm suites supported for the CHILD SA. ESP is required to support at

least 3DES-CBC, but may also support AES-128-CBC [49]. RFC 4305 requires

DES-CBC not to be supported, as it is no longer secure. HMAC-SHA1-96

is the only required data integrity algorithm required by ESP, however AES-

XCBC-MAC-96 and HMAC-MD5-96 are also supported. ESP also supports

combined mode algorithms, which provide both encryption and data integrity.

Combined mode algorithms can improve throughput and efficiency and may be

required in ESP in the future. An example is AES-CCM; it is already used in

WPA2/IEEE 802.11i [16] to secure wireless networks. AH has the same data

integrity algorithm support as ESP.

The initial IKE AUTH message may also contain the initiator’s certificate

and a list of trusted CAs - this is essentially a request for the responder’s certifi-

cate. The digital signature used to verify integrity of the first message may be

a private or shared key integrity code. The key used to generate the signature

is associated with the identity of the sender (for example their private key).

The response contains the responder’s identity (which is also authenticated

by means of a pre-shared or a digital signature), a certificate (if required) and a

8These define the protocol carried in the SA, for example TCP, UDP and the start and

end ports



CHAPTER 4. SECURITY CANDIDATES 70

digital signature over message 2 to assert its integrity. This second IKE AUTH

message also completes negotiation of a CHILD SA, by choosing the set of sender

supported algorithms. Signatures and MACs are verified, and this completes

establishment of the IKE SA and the first CHILD SA.

Figure 4.10: IKE negotiation with cookies. This mechanism is invoked when

the responder detects a large number of half open IKE SAs. The initiator

must prove it can receive from the address it claims to be sending from, before

the responder allocates resources. After the first two messages, the rest of

the exchange continues unchanged. Messages in {} denotes payloads that are

encrypted and integrity protected.

A DoS attack is possible where the responder is flooded with SA initiation

requests from forged IP addresses. The first response requires the responder

derive a Diffie-Hellman key; this consumes CPU time and memory. When a

responder is flooded with these requests in a DoS attack, legitimate clients are

denied service. IKE uses cookies to protect against these types of DoS attacks.

The concept is identical to the SYN-cookies used to secure TCP [118] and the

DoS protection built into SCTP. Before the receiver commits any resources to

the sender, it checks whether the sender can receive at the address it claims to be

sending from. This defeats DoS attacks from forged IP addresses. Unlike SYN-

cookies and SCTP’s mechanism, which are always required, IKE only invokes

the cookie mechanism when it detects a large number of half-open IKE SAs

(where the responder is waiting to receive the first IKE AUTH message). Fig-

ure 4.10 shows the SA establishment when cookies are invoked. When cookies

are required, responder rejects the initial IKE message (IKE SA INIT) unless it

contains a COOKIE payload. This rejection message contains a COOKIE pay-

load that must be included in future SA initiation requests. The initiator then

resends the same IKE SA INIT, but this time includes the COOKIE payload,
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and the exchange continues the same as the standard exchange (Figure 4.9).

When the responder receives the cookie, it knows the initiator’s address has not

been forged. Like the transport layer cookie mechanisms, cookies in IKE are

computationally cheap to create and are stateless (no state is required to store

them; they are simply recomputed). Another property of cookies is they cannot

be forged; only the creator has the knowledge to construct a valid cookie, as it

will be the creator verifying them.

Figure 4.11: IKE creating a CHILD SA. This may be initiated by either end

of the IKE SA after the initial exchanges. As these must take place after the

IKE SA negotiation, they are encrypted and integrity protected (denoted by

the {}).

Additional CHILD SAs can be created and this is referred to as Phase 2

in IKEv1. Like the IKE AUTH messages, these messages are protected by the

algorithms negotiated for the IKE SA. Either end of the IKE SA can initiate

this exchange after the initial exchanges. Figure 4.11 illustrates this exchange,

which is similar to the IKE AUTH exchange. The CREATE CHILD SA request

contains an SA offer, a nonce and proposed traffic selectors. The request may

also contain a Diffie-Hellman value. The response contains the accepted SA

offer, a nonce and traffic selectors. If a Diffie-Hellman value was in the request, a

Diffie-Hellman value is included in response as well. Keys for the CHILD SA can

now be derived from the keys created during the establishment of the IKE SA,

the exchanged nonces and the output of the optional Diffie-Hellman exchange.

This completes negotiation of the CHILD SA.

The CHILD SA exchange can also rekey the IKE SA, in which case it would

not contain the traffic selectors. Rekeying CHILD SAs consists of creating a

new CHILD SA, then deleting the old one. Unlike IKEv1, IKEv2 relies on each

end of the SA to initiate rekeying; IKEv1 negotiated an SA lifetime.

4.2.2 Deleting a Security Association (SA)

INFORMATIONAL exchanges are used to delete SAs, report error conditions

and other administrative maintenance. They can also be used to check for

liveness, which can be used in part for network reliability (Section 2.6). In
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Figure 4.12, the requester sends an INFORMATIONAL message, listing the

outgoing SAs to be closed. As SAs exist in pairs, the responder replies with the

SAs to be closed in the other direction.

Figure 4.12: Deleting an SA. INFORMATIONAL messages contain control mes-

sages. When deleting an SA, they are closed in pairs. The responder closes the

listed SAs in the INFORMATIONAL message, and the reply to the responder

lists the SAs in the opposite direction to be closed.

4.2.3 Advantages

IPsec offers application independent security. Any protocol above IP is secured

over any medium [1]. Applying security at a higher level protects only a single

protocol, for example PGP only secures mail. Applying security at a lower layer

protects only a single medium. IP is the most general protocol as it is common

to all network stacks. Applications do not need to be modified to take advantage

of IPsec, as it is often integrated into the operating system. This enables the

application to function normally as the security is applied transparently.

Another benefit of IPsec compared to security applied at the higher levels is

the packet drop performance [67]. IPsec blocks packets at a lower level in the

network stack compared to higher level security protocols. This means relatively

less processing is performed on the packet which can affect performance. This

may have advantages during DoS attacks and heavy load scenarios.

IPsec is also very flexible; traffic passing through an IPsec client can be

blocked, left unchanged or protected according to the SA on a host and port

basis. This fine granularity enables a single SA to protect all traffic between

two hosts or, conversely, each application or TCP connection can be protected

by their own SA. As IPsec is designed for connecting networks, overhead is low

when a single tunnel/SA is used to secure traffic between two security gateways.

This adds to IPsec’s scalability, as a single gateway and SA can serve many users.

IPsec is considered better than other IP Security protocols such as Mi-

crosoft’s Point to Point Tunnelling Protocol (PPTP, RFC 2637 [57]) and Layer



CHAPTER 4. SECURITY CANDIDATES 73

2 Tunnelling Protocol (L2TP, RFC 2661 [120]9) [51].

With PPTP, Microsoft Challenge Authentication Protocol (MS-CHAP, RFC

2433 [129]) authenticates the two endpoints of the tunnel and RC4 encrypts the

payload as PPTP itself does not provide authentication or encryption [26]. How-

ever, an analysis of PPTP found several flaws [108]. Weak password hashing

meant eavesdroppers could discover the user’s password. Flaws in the authen-

tication protocol meant an attacker could masquerade as the server. Flaws in

the encryption implementation meant encrypted data could be recovered and

keys generated from common passwords were breakable. Furthermore, attackers

could use unauthenticated messages to crash PPTP servers. Microsoft resolved

these issues with MS-CHAPv2 (RFC 2759 [128]) and Microsoft Point to Point

Encryption (MPPE, RFC 3078 [88]). The security of PPTP however is still only

as secure as the user’s password, as MS-CHAPv2 is still vulnerable to offline

password cracking. PPTP, however, can also be used with EAP-TLS, a robust

and secure certificate based authentication method.

L2TP is often combined with the IPsec, as L2TP itself has no security func-

tions and relies on IPsec to provide these [89]. L2TP’s main advantage is it

allows secure tunnelling of non-IP based protocols (when used in conjunction

with IPsec).

4.2.4 Drawbacks

A cryptographic evaluation of IPsec is in [51], with the main criticism being

IPsec’s immense complexity. Complexity makes the system harder to configure

or implement correctly, as well as increasing the probability of weaknesses and

vulnerabilities. Security reviews on complex systems are also difficult, as the

number of options make possible an exponentially large number of possible

configurations to test.

IPsec’s complexity is due to its development process. The ipsec working

group10 developed IPsec through a committee process. The “committee ef-

fect” (where the committee as a whole, makes poor decisions that no individual

member of the committee would make themselves) manifests itself in IPsec as

there are several ways of achieving the same thing. This unnecessary flexibility

contributes to complexity, making it harder to test. IPsec’s development pro-

cess was compared to the committee process used by NIST, which organised a

contest to develop the Advanced Encryption Standard (AES). NIST requested

worldwide, algorithms meeting certain criteria, and selected one of the proposals
9The latest version of L2TP is L2TPv3, defined in RFC 3931

10The ipsec group concluded in April 2005
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as the winner. This method is similar to the selection process used to procure

equipment by the military.

The complexity of IPsec consequently results in complicated documenta-

tion. The working group produced over 30 RFCs, however the main RFCs are:

4301 (Security Architecture for the Internet Protocol), 4302 (IP Authentication

Header), 4303 (IP Encapsulating Security Payload) and 4306 (Internet Key Ex-

change (IKEv2)). The IPsec documentation is also criticised in [51], as being

incomplete (as they lack introductory material) and not specifying IPsec’s ob-

jectives. The revised RFCs were released in December 2005 to address these

issues, and in terms of readability, are an improvement (the evaluation in [51]

was performed in 1999 using the RFC revisions which were produced in Novem-

ber 1998).

IPsec exists as an open standard so implementations from different vendors

can interoperate. Despite this, most IPsec implementations do not interoperate

well; both ends of the connection typically need to use IPsec implementations

from the same vendor [22, 67]. This is because the IPsec documents allow for

considerable leeway and variation concerning design choices and implementation

details, resulting in IPsec compliant products from different vendors that do

not interoperate. The December 2005 revisions improved on this somewhat,

by specifying mandatory-to-implement algorithms. These are RFCs 4305 [49],

4307 [106] and 430811 [62]. At the time of writing, however, no interoperability

tests or cryptographic analysis have been performed on the latest (December

2005) revisions of the IPsec standard.

Another disadvantage of IPsec is its close integration with the OS kernel

[67]. This violates the secure OS Ring Architecture, where only the kernel and

essential processes can run in Ring 0 (with the highest privilege), and other

processes run in outer rings (which have a lower privilege, for example user

processes run in Ring 3). Processes in outer rings cannot interfere with processes

in the lower numbered, higher privilege inner rings. IPsec requires integration

with the OS kernel (Ring 0) in order to have sufficient privileges to secure traffic.

Operating with the highest privileges means if IPsec is compromised (due to an

attack or a vulnerability exploited), the attacker will have full permissions to the

system and have unlimited ability to damage the system. Requiring integration
11RFC 4308: “Cryptographic suites for IPsec” defines two cryptographic suites which are

simply a collection of algorithms. For example, suite VPN-B is AES based, using AES for

encryption and data integrity for both ESP and IKE exchanges and for the pseudo-random

function. This simplifies IPsec as instead of having to negotiate the algorithms for each

purpose separately (as in IKEv1), IKEv2 permits a suite to be chosen, which contains pre-

defined algorithms for each purpose.
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with the OS also makes installation difficult.

IPsec’s fine granularity is also identified as a disadvantage in [51]. When

an SA is created for each application or port (as opposed to using a single SA

securing traffic on all ports), there is increased overhead, as many SAs must be

negotiated. This drawback however is not limited to IPsec; it affects any VPN

where each application has its own secure tunnel. Making more information

available for traffic analysis is also mentioned as a drawback in [51].

While IPsec is designed to connect entire networks securely, its fine granu-

larity enables secure tunnelling of a single application or port. Given IPsec’s

immense complexity, using it to tunnel a single port is excessive.

IPsec encrypts then performs the authentication on the ciphertext. This is

also identified as a flaw in [51], as authentication should be applied to “what

was meant, not what was said”. In IPsec, this is not a serious flaw, as the

encryption and authentication key are part of the same key in the SA. However,

the ordering of operation (encrypting first and authenticating the ciphertext)

makes it possible for a message to be authenticated as valid, however decrypted

incorrectly.

Another drawback of IPsec is that it does not provide end-to-end application

layer security [1]. IPsec only secures the link between hosts; data is not secured

between users or applications. As IPsec operates on the network layer, traffic

is encrypted and decrypted as it passes through the network interface. Hence,

when a host receives encrypted data, IPsec decrypts it, then the plaintext is

passed to the receiving process. Sending works the same; the application sends

plaintext to the IPsec client running on the host. This is then encrypted before

being sent out the network interface. Often IPsec is implemented in a security

gateway to serve an entire LAN. A coarse end-to-end link is possible by giving

each host its own tunnel to the local gateway, however this places additional

load on the gateway. IPsec can also be implemented in the host’s network stack

(known as a Bump-in-the-stack implementation) to create an end-to-end link.

However, in both these situations the traffic is still in plaintext within the host.

Systems such as PGP can provide true end-to-end security; even within the host,

the data is encrypted until the user explicitly decrypts it using a password.

Finally, IPsec does not perform user authentication [1]. IPsec only authen-

ticates machines and relies on other independent mechanisms to authenticate

users. The lack of user authentication and true end-to-end application layer

security is a characteristic of IPsec providing security at the network layer. The

network layer has no knowledge or concept of users.
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4.2.5 Implementations and development

IPsec is ubiquitous; it has wide support in hardware devices (such as Cisco

PIX, Juniper Netscreen and Watchguard Firebox appliances) and operating

systems; Windows includes support and a free implementation exists for Linux

as OpenS/WAN.

The third version of the IPsec documents were created in December 2005.

These updates set to simplify, fix ambiguities and bugs as well as general im-

provement [60]. For example the IKEv2 document (RFC 4306) combined the

Internet Domain of Interpretation (DOI, RFC 2407 [95]), the Internet Security

Association and Key Management Protocol (ISAKMP, RFC 2408 [82]) and the

Internet Key Exchange (IKE, RFC 2409 [59]) documents into one. RFC 4306

also contains elements concerning NAT traversal, legacy authentication and re-

mote address acquisition from other documents. The main IPsec document,

RFC 4301, also improved on readability (for example including Objectives and

a System Overview section). The main documents also do not mention any

algorithms; these are placed in separate documents (RFC 4305, 4307 and 4308).

The ipsec working group recognised that algorithms may be superseded. By

placing required algorithms in separate documents, when weaknesses are dis-

covered in existing algorithms, or new ones designed, the main documents do

not need to be modified; only the algorithm RFCs need to be updated.

4.2.6 Summary

IPsec is a mature security architecture for IP. IPsec operates at the network

layer, providing security to any protocol operating above IP. This makes IPsec

application independent. IKEv2 is used to perform mutual host authentication

when creating Security Associations - a secured unidirectional connection.

IPsec offers better performance than security protocols operating at higher

layers, as fewer resources are used to process packets (packets are discarded

earlier). IPsec is flexible, so a single SA can secure an entire LAN, or each host

or application can be given its own tunnel. This allows IPsec to offer the same

granularity of security as other systems.

Unfortunately, IPsec suffers from system complexity as a result of the process

used to standardise it. As a result, it spans several RFCs, however revisions have

aimed to simplify and consolidate the documents. Improvements have also been

made to develop the functionality.

Interoperability is another problem with IPsec. Even with standardisation,

IPsec implementations from different vendors often do not interoperate. Again,
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development in the IPsec standard has aimed to rectify this.

IPsec also requires close integration with the operating system kernel. This

makes the system vulnerable if IPsec is compromised. IPsec does not provide

true end-to-end security; it can be approximated by giving each host its own

tunnel, but within the host, data is still in plaintext. Finally, IPsec does not

perform user authentication and relies on other mechanisms to provide this.

Despite these drawbacks, IPsec is a widely deployed architecture. Evalu-

ations on IPsec have concluded that complexity harms its security. However,

compared to other network level security protocols (PPTP, L2TP), IPsec is con-

sidered the ‘least vulnerable’, rather than the preferred method. Nevertheless,

IPsec is capable of providing a secure connection and is a candidate tunnelling

method.

4.3 Transport Layer Security (TLS) - RFC 4346

Transport Layer Security (TLS) is based on Secure Sockets Layer (SSL) 3.0, a se-

curity specification published by Netscape. The objectives of TLS are to provide

cryptographic security, interoperability between independent applications, ex-

tensibility (in terms of incorporating new encryption algorithms) and efficiency

in terms of processor requirements and network activity. TLS operates over re-

liable transport protocols such as TCP, and protects higher layer protocols such

as HTTP (forming HTTPS). TLS secures traffic between two applications on

a particular port. Netscape developed SSL to secure e-commerce transactions

over the internet [76]. The SSL specification is developed into version 3 (SSLv3)

and is supported in web browsers. This makes secure web transactions possible,

with SSL the standard security for this. The IETF used SSLv3 as a basis to

develop TLS. TLS is not interoperable with SSLv3, however it can roll back for

compatibility with SSLv3.

TLS consists of two main components or layers: The TLS Record Protocol

and the TLS Handshake Protocol. More accurately, it is the TLS record pro-

tocol that operates over a reliable transport protocol. The TLS record protocol

provides encryption and data integrity for higher layer protocols. The TLS

Handshake Protocol is one such higher layer protocol, and provides server and

client authentication as well as secure negotiation of encryption algorithms and

cryptographic keys.

The record layer protocol works by fragmenting the application layer data

into blocks no larger than 214 (16384) bytes (Figure 4.13). This is then op-

tionally compressed according to the compression algorithm negotiated during
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Figure 4.13: The TLS encryption process (from [110]). Compression is optional.

connection establishment. A MAC is calculated over the MAC key, the data

fragment (that may be compressed), the sequence number, the fragment length,

its type and the TLS version. This MAC is appended to the message frag-

ment. The message is then encrypted. Instead of authenticating the ciphertext

as IPsec does, TLS authenticates the plain text. Applying integrity protection

to the plain text is preferable to protecting the ciphertext, as the ciphertext is

dependent on encryption key used [51].

4.3.1 Connection Setup

TLS uses the TLS Handshake protocol to establish a connection. This requires

the hosts to authenticate themselves (in at least one direction) along with instan-

tiating and negotiating security parameters for the record layer. The TLS Hand-

shake protocol has three sub protocols: the Handshake protocols, the Change

Cipher Spec protocol and the Alert protocol.

The session is established with the Handshake protocol, shown in Figure

4.14. The client and the server exchange hello messages. The hello messages

establish capabilities between the client and the server, such as the protocol

version, session ID, cipher suite and the compression method. Each cipher

suite defines a key exchange, encryption and MAC algorithm. The Client Hello

message lists supported cipher suites, and the Server Hello contains the server’s

choice from the list. The messages also contain the nonces used for generating

the key. The server follows with a certificate if it is to be authenticated. A

server key exchange may also be sent if required; it is needed when the client

is unable to transmit the pre-master secret via RSA public key encryption or



CHAPTER 4. SECURITY CANDIDATES 79

Figure 4.14: TLS Handshake. The messages enclosed in brackets are optional.

a Diffie-Hellman exchange (for example if the server has no certificate, or if it

is for signing only). The server can also request a certificate from the client.

The server then sends the Server Hello Done message, and waits for the client’s

response

The client verifies the validity of the server’s certificate (via a CA) and

the server’s chosen parameters. The client’s response contains a certificate if

requested and a Client Key Exchange message. This message sets the pre-

master secret by sending an RSA encrypted secret (using the server’s public key

from the server’s certificate or one provided in the ServerKeyExchange message)

or by exchanging the Diffie-Hellman parameters, depending on the negotiated

method. The master secret is generated from the pre-master secret. The master

secret is used to generate a total of four values: a MAC secret and encryption

key for the client and another set for the server.

If the client sent a certificate, a Certificate Verify Message is sent. This

message is a digital signature of all messages starting from Client Hello up to

but not including the Certificate Verify Message.

The Change Cipher Spec protocol is initiated at this point. This protocol

is comprised of a single ChangeCipherSpec message. When a host receives

this message, the newly negotiated cipher suites will be used for subsequent

messages (that is, messages after this ChangeCipherSpec will be protected by the

new algorithms). The ChangeCipherSpec message itself is protected under the

current cipher suite, which is null or unprotected during the initial connection

establishment.

The client then sends a Finished message immediately after the Change Ci-

pher Spec message to verify the success of the key exchange and negotiation.

This message contains a hash (using the session and MAC key) of all messages

sent and received during the exchange up to this point. This message prohibits
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a downgrade attack by ensuring that the Client Hello’s cipher list was not in-

tercepted and modified such that only weak ciphers were available to establish

a cryptographically weak connection. The Finished message is the first to be

protected under the new algorithm suites, as it follows immediately from the

Change Cipher Spec message.

The server sends its own Change Cipher Spec and Finished messages in

response. These messages play the same role as they do in the client. The

server’s Finished message, however, includes the client’s finished message in the

hash. The key exchange and negotiation is considered successful if the client

can validate the hash contained in the server’s Finished message. At this point

both sides have sent and received Finished messages. The handshake is now

complete and application data can be exchanged.

Figure 4.15: TLS Abbreviated Handshake. This flow can be used to resume or

re-establish previous sessions, or rekey an existing session.

Client Hello messages are also used to rekey existing sessions, using the ex-

change illustrated in Figure 4.15. The Client Hello includes the session identifier

of an existing session to rekey, as well as a new nonce. The server checks the

session identifier for a match and if one is found, responds with a Server Hello

with the same session identifier and an independently generated nonce value as

well. Both the client and the server exchange Change Cipher Spec and Finished

messages, and application data can then be exchanged. If the server cannot

find a matching session identifier, a new one is generated and a full handshake

is performed. The client can also use this abbreviated exchange to resume pre-

vious sessions and if the server is configured to re-establish old connections, the

exchange that takes place is the same as that of rekeying.

RFC 4057 [104] defines an extension that enables the resumption of TLS

sessions without state (such as session identifiers and cipher suites) stored on

the server. The RFC lists four situations where stateless TLS session resumption

would be useful:

• servers that handle a large number of transactions from different users
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• servers that desire to cache sessions for a long time

• ability to load balance requests across servers

• embedded servers with little memory

The first three are applicable to this project; when a server must handle a

large number of sessions from different clients, a lot of state is required which

manifests itself through larger memory usage. This can lead to reduced perfor-

mance. Sessions may be cached to avoid performing a full handshake each time

a connection is established; this improves performance. Finally load balancing

contributes to higher network availability and reliability.

Figure 4.16: TLS Handshake with the SessionTicket extension. The NewSes-

sionTicket message contains a ticket which stores the session state. This ticket

is cached by the client, relieving the server of storing session state.

If this mechanism is supported by both the client and the server (by including

an empty SessionTicket extension), the initial handshake includes a New Session

Ticket message as indicated in Figure 4.16. The New Session Ticket message

contains a ticket and is sent before the server’s Change Cipher Spec message,

after the client’s Finished message is verified. A ticket is generated by the

server and contains the session state (such as cipher suite and master secret).

It is encrypted and integrity protected using a secret key known only by the

server.

The client caches the ticket with other session parameters. When the client

resumes the session, it includes the ticket in the SessionTicket extension in the

Client Hello message (Figure 4.17). The server decrypts the ticket and verifies its

validity. The server then resumes the session based on the state and parameters

retrieved from the ticket. The server may also renew the ticket by including a

NewSessionTicket message after the ServerHello. If the server chooses not to,
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the “empty SessionTicket extension” and NewSessionTicket messages are not

included in Figure 4.17.

Figure 4.17: TLS Stateless Abbreviated Handshake. In this instance the server

renews the session ticket.

If the ticket cannot be validated, the server performs a full handshake, and

may issue a new ticket (Figure 4.16) except the “empty SessionTicket extension”

message in the Client Hello contains the invalid ticket.

4.3.2 Connection Closing

The Alert protocol is used for describing various alerts, from handshake failure

to illegal parameters, as well as the severity. Connections are closed using a

close-notify message, carried using the Alert protocol. TLS uses the close-notify

message to explicitly end a session and to avoid a truncation attack. SSLv2

closed the TCP connection to end the SSL session [2]. A truncation attack is

possible in SSLv2, as attackers could forge TCP FINs to the recipient. The SSL

connection would close as the recipient has no way of determining whether the

TCP FIN was legitimate or not.

Either end of the connection can send a close-notify message. Once all

pending data is transmitted, the close-notify message is sent, and the sender

can close the write side of the connection. The receiver responds with a close-

notify and closes the connection. The initiator of the close is not required to

receive the responder’s close-notify before closing the read side of the connection.

4.3.3 Implementations and Development

TLS is supported in all current web browsers, and has made e-commerce possi-

ble. TLS has been well tested and an inductive analysis of TLS concluded that

it is a well designed protocol that meets its security goals [91]. TLS’s maturity

and its lack of known security weaknesses have made a widely used protocol.
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The IETF’s tls working group12 was established in 1996 to standardise a

transport layer security protocol. From SSLv3, the group published TLS [47].

The first revision of the TLS standard was in April 2006, updating TLS to

TLS 1.1 [48]. The changes are small security improvements and clarifications.

The tls working group plan to publish a TLS 1.2 revision, which removes TLS’s

dependency on the MD-5 and SHA-1 digest algorithms, includes new encryption

modes and defines new cipher suites.

The following SSL-VPN and OpenVPN sections describe security architec-

tures based on TLS.

SSL-VPN

An emerging trend offered by VPN vendors is the ‘SSL-VPN’. A VPN securely

connects entire networks together over a public, unsecured network. It enables

traffic from any application, protocol or port to be transferred as if it was on the

same private LAN. However, most ‘SSL-VPN’ products do not meet the above

definition of a VPN at all.

Most products that claim to be an ‘SSL-VPN’ are marketed by the vendors

as a clientless VPN solution. Vendors promote enabling employee access to the

VPN via unknown clients, for example public airport or library kiosks [50], as

the main benefit of an ‘SSL-VPN’. There are several problems with this.

A popular understanding among IT publications [41, 50, 94] of the difference

between IPsec and ‘SSL-VPNs’ is that IPsec a provides a secure layer 3 pipe to

connect networks together or an extension of the network; the remote network

can be treated as if it were on the same LAN. ‘SSL-VPNs’ are understood to

provide secure access to a selected group of applications and services within the

private LAN. Use of the term ‘VPN’ in this instance is incorrect, as a VPN

provides secure tunnelling for any application.

Products declaring themselves as an ‘SSL-VPN’ fall under one of four cate-

gories: proxying, application translation, port forwarding or network extension

[67]. Proxying is when an intermediary (such as an application layer gateway,

ALG) is positioned between an internal and external application. The proxy is

seen as the end point for both sides of the connection; it accepts client requests,

rewrites them and forwards them to the server. Responses are returned the same

way. The ALG can inspect the packet and examine the data to ensure it is well

formed before forwarding the traffic. This additional processing by the proxy

reduces the performance. The proxy does not support arbitrary protocols; each

protocol supported requires separate coding.
12http://www.ietf.org/html.charters/tls-charter.html (Accessed October 2006)
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Application Translation is when a protocol such as FTP is translated to

HTTP and HTML for the display in a web browser. This can break the look

and feel of applications as they are limited to the presentation capabilities of

HTML. Like proxying, this method cannot support arbitrary protocols; each

protocol that is to be supported requires creating a translator.

Port forwarding securely forwards traffic to a specified destination based on

the port (for example SSH’s port forwarding, described in Section 4.1). Like

the other two methods, this does not support arbitrary applications, as each

application requires forwarding of its own port. This requires client software on

the host client to forward the traffic.

Network extension is the only method that provides a true VPN. Like IPsec,

client software is required on the host to create a secure tunnel. This tunnel

supports any traffic on any port, and is the only method that meets the definition

of a VPN.

Vendors claim clientless access by using SSL/TLS enabled web browsers.

This only works with proxying and application translation. Even then, it only

works well with browser based applications. Applications that cannot be dis-

played using HTML typically require a ‘desktop agent’ or a client downloaded

to the client host in order to be presented properly [94]. These small Java or

ActiveX clients can also be used to secure SSL unaware applications [41]. Thus

the vendor’s claim of providing clientless access is misleading, as these small

thin clients encapsulate application traffic through secure tunnels.

Vendors claim the clientless solution gives remote employees access form

anywhere. This itself has several problems. The web browser’s security policy

may prohibit Java applets, ActiveX controls, plugins or other active content

[94]. This means browsers may need to be reconfigured to allow these, other-

wise these thin clients would be blocked. However, this reduces the security

as Java and ActiveX controls are applications, much like a normal executable.

The Java applet or ActiveX code from other sites may contain instructions to

download and execute software, all without the user’s knowledge, permission

or intervention. Because these are applications, they have a high potential to

cause damage, especially when the user does not know they are being executed.

A second more serious issue is that the remote employee can connect from

any public client. This carries a huge risk, as public hosts are by definition un-

trusted and uncontrolled. Public hosts (such as airport kiosks) may be infected

with trojans, viruses, worms and other malware [41]. An active attack can take

place, for example a trojan can start a worm attack on the network through the

secure tunnel. A passive attack can also take place in the form of a keystroke
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logger; when the remote employees authenticate themselves to the network with

a username and password, the keystroke logger would have recorded this, nulli-

fying the credentials. Networks are only as secure as the devices connected to

it.

Another problem with using public uncontrolled hosts is that session state

is left behind after the session has ended such as cached credentials, browser

history, cookies and temporary files. Many SSL-VPN solutions address this by

using applets to delete this state [94]. These applets also mitigate risk by check-

ing the capabilities of the public host, for example ensuring antivirus protection

is present. The applets can also use access rules to restrict permissions and

limit the functions available when the VPN is accessed from a public host, for

example restricting uploads. However, administrative access to the machine is

required to carry out these tasks [67]. If administrative permissions are avail-

able on a public machine, it is likely to already contain keystroke loggers, remote

control software and other malware.

Finally the ‘SSL-VPN’ solutions are proprietary. Section 2.6 discusses why

proprietary protocols are rarely better than public open standards. An ap-

plication or applet developed for one ‘SSL-VPN’ product, such as Juniper’s

Netscreen, is unlikely to work on another, such as AEP Networks’ Netilla Secu-

rity Platform, without modification.

OpenVPN

OpenVPN13 is an implementation providing a true VPN via network exten-

sion using TLS. OpenVPN uses the OpenSSL toolkit14 for cryptography. Both

projects are open source.

OpenSSL implements SSLv2/3 and TLS 1 as well as a general purpose cryp-

tography library. The TLS mode of OpenSSL was certified by the National

Institute of Standards and Technology (NIST) as FIPS 140-2 compliant in Jan-

uary 2006 [70]. The Federal Information Processing Standard (FIPS) 140-2 de-

fines security requirements for cryptographic modules. OpenSSL met the Level

1 requirements under the Cryptographic Module Validation Program (CMVP).

U.S. Government agencies and regulated industries (such as finance and health

care) are required to use FIPS compliant products to store, collect and transfer

data that is ‘sensitive but unclassified’ [13]. In July 2006, however, the certifi-

cate (#642) was revoked [69]. It is still available from the Computer Security

13http://openvpn.net
14http://www.openssl.org
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Resource Centre (CSRC) Validated Modules page.15

Figure 4.18: OpenVPN and a ‘TUN’ device. Applications see the virtual ‘TUN’

device as a network interface. Traffic sent to the virtual ‘TUN’ device is for-

warded to the OpnVPN service. OpenVPN then encrypts the traffic before

sending it out the network interface.

OpenVPN uses virtual networking interfaces to create encrypted tunnels. A

‘TUN’16 device is a virtual network adapter that appears as a point-to-point

device to the operating system [7, 127]. Data sent to an ethernet device is

sent out the wire by the ethernet driver, whereas data sent to a TUN device

is sent to user space applications. Applications can open the TUN device like

a folder or socket, and can read from and write IP packets to it. A ‘TAP’17

device is also a virtual adapter, but simulates an ethernet device. Figure 4.18

illustrates how a TUN device is used with OpenVPN. Data is sent to the TUN

device, which is forwarded to OpenVPN. OpenVPN uses the OpenSSL library

to encrypt the data, and then sends it out the real network device. Decryption

is the opposite; OpenVPN reads data from the real network device and decrypts

it before sending it back to the TUN device. The application then reads the

data from the TUN device.

OpenVPN encapsulates the IP data into a UDP datagram before sending it

out the real network interface. When TCP data in an IP packet is encapsulated

back into TCP (Figure 4.19), the traffic reliability mechanisms provided by

TCP are duplicated, for example retransmissions and acknowledgements. This

reduces efficiency, as the lower TCP layer guarantees delivery, so the higher

TCP layer does not need retransmissions. TCP’s retransmission algorithm uses

adaptive timeouts; when an ACK is not received after the timeout period, the

sender retransmits the packet and increases the timeout. This behaviour lets

TCP operate on connections with varying bandwidth, latency and packet loss
15http://csrc.nist.gov/cryptval/140-1/1401val2006.htm
16TUN does not appear to be an abbreviation, but is accepted to mean a virtual point-to-

point network device.
17Like TUN, TAP also does not appear to be an abbreviation, but refers to a virtual ethernet

network device.
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rate.

Figure 4.19: When TCP is encapsulated back into TCP, the upper layer is not

required to send retransmissions or perform other reliability functions, as the

lower layer ensures this.

The two TCP layers in Figure 4.19 have independent retransmission timers.

As described in [119], if the actual connection loses packets, the lower TCP layer

will retransmit, and increase the retransmission timeout. The upper TCP layer

will not have received an ACK, so it too will send a retransmission and increase

its own retransmission timeout. The retransmission timeout of the upper layer

will always be less than that of the lower layer, however, as the increases began

slightly after. Consequently the upper layer TCP will queue retransmissions

faster than the lower layer can process them. Hence OpenVPN encapsulates

data into UDP; TCP expects an unreliable carrier and UDP provides a carrier

close to the native IP environment.

4.3.4 Advantages

This section and the following Drawbacks section refers to OpenVPN and the

TLS protocol, not ‘SSL-VPNs’. OpenVPN runs in user-space. This makes

OpenVPN more secure than VPN products that are closely integrated with the

OS, for example IPsec. OpenVPN conforms to the secure OS Ring Architecture

as explained in Section 4.2.4. OpenVPN uses the virtual network device, instead

of the actual network device, which requires low level access. As low level

access is not required, OpenVPN does not require integration with the OS

kernel. OpenVPN runs as a user process (Ring 3) and this simplifies installation,

configuration and portability; OpenVPN can run alongside IPsec without any

conflicts [67]. Because OpenVPN runs as a user process, its permissions can

be restricted to that of a limited user. This means if the OpenVPN service is
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compromised, the attacker will only be able to perform the same actions as a

limited user. Another benefit of running as a limited user (opposed to an OS

kernel process) is that OpenVPN can be ‘constrained’ to a specified directory.

This ‘containment’ denies OpenVPN access to the rest of the system. This

layering of protection (defence in depth) protects the system if OpenVPN is

compromised, as the attacker’s potential to damage the system will be extremely

limited.

OpenVPN encapsulates IP packets into UDP datagrams. Overall, UDP

based VPNs add less overhead, have better bandwidth utilisation and have a

lower latency than TCP based VPNs [76]. OpenVPN can also be configured for

load balancing using IPtables. Rules can be created to share the traffic between

a range of addresses, transparently to the applications [67].

As OpenVPN provides a secure VPN tunnel similar to IPsec, applications

can be secured without modification. This is because the TUN virtual device

appears and functions as a normal network adapter. The OpenVPN architecture

is analogous to a Bump-in-the-Stack (BITS) or a Bump-in-the-Wire (BITW)

IPsec implementation, and therefore offers similar functionality.

TLS can perform user authentication as TLS operates at a higher layer

than IPsec. Servers can authenticate users by requesting a certificate, however

this is rarely used in e-commerce sites as no Public Key Infrastructure (PKI)

exists to validate users (PKI is currently used to only authenticate servers in an

e-commerce environment). TLS, however, cannot perform user authorisation,

and relies on the upper layers.

End-to-end security is possible with TLS, as TLS encrypts at the applica-

tion layer. Applications that are natively TLS enabled benefit from end-to-end

security as data is only decrypted when it reaches the receiving application.

However, when OpenVPN is used, the connection is no longer strictly end-to-

end. Encrypted data passes through the network interface to OpenVPN, which

decrypts it, and forwards it to the virtual TUN device. Any application listen-

ing on the TUN device (for example ethereal or wireshark) will see the data in

plaintext. Applications listening on the actual network interface, however, will

still see the ciphertext as OpenVPN has not decrypted it yet.

TLS connections can successfully traverse NAT devices. NAT devices typ-

ically change source addresses and ports. TLS is not affected, as the MAC is

calculated over the data, the MAC key and a sequence number; the MAC does

not include the address and ports.

TLS is also application independent as higher layer protocols can be layered

on top (for example HTTPS for HTTP and SIPS for SIP URIs). OpenVPN
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extends this so that applications do not need to be aware they are using an

encrypted tunnel. TLS’s only requirement is that it operates over a reliable

transport protocol.

Finally hardware accelerated SSL/TLS devices exist to offload the computa-

tionally expensive cryptographic functions from the main CPU. OpenSSL can

be accelerated with these devices, and OpenVPN can benefit as well as it uses

OpenSSL for its cryptography functions.

4.3.5 Drawbacks

As TLS operates at a relatively high level, the packet drop performance will be

lower than security protocols that operate at lower layers (for example IPsec).

Packets are processed by more layers in the network stack before they are dis-

carded. However, hardware accelerators can be used to improve overall TLS

performance.

Another drawback is client authentication. As no PKI exists for clients,

e-commerce websites only authenticate the server with certificates, and authen-

ticate the user with a username and password. In a VPN this is less of a problem,

however, as users can obtain certificates from their own corporate CA. For the

purposes of this project, this is not a problem as the remote devices (instead

of users) would preloaded with certificates distributed by the corporate CA (for

example the trusted manufacturer of the transaction terminal).

4.3.6 Summary

TLS is based on SSLv3. It is widely deployed and developed and is the standard

way to secure e-commerce transactions over the internet.

This section described three systems: ‘SSL-VPNs’, OpenVPN and TLS/Open-

SSL. ‘SSL-VPNs’ are generally products that use the term VPN incorrectly.

These products are usually nothing more than proxies or application transla-

tors and fall far short of the definition of a VPN. The advantage ‘SSL-VPNs’

have over other VPN products is that no client software is required. However,

when port forwarding or network extension is the method used, clients are re-

quired. ‘SSL-VPNs’ have flaws in their security model and are also proprietary.

OpenVPN is an open source VPN product that offers application/port in-

dependent tunnelling functionality similar to IPsec. However, OpenVPN runs

in user space. Running in user space gives OpenVPN several advantages over

IPsec, such as ease of installation and configuration as well as being able to

contain the damage by an attacker if compromised. OpenVPN uses OpenSSL,
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an open source cryptographic library that implements TLS.

TLS is capable of authenticating users via certificates however this is rarely

used in e-commerce due to a lack of an appropriate PKI. While TLS may have

lower performance than other systems due to operating at a higher layer, per-

formance can be accelerated with specialised hardware.

TLS is still under active development. These continued improvements will

ensure the security of e-commerce. TLS’s advantages and lack of drawbacks

make it candidate tunnelling method.



Chapter 5

Architectural Analysis

A transaction network can operate over two contrasting network models: the

open Internet model and the controlled IP PSTN model. This section discusses

the merits of each and the challenges they bring.

5.1 Open Internet

In this model, access is via an Internet Service Provider (ISP, Figure 5.1).

Clients are generally registered only with the ISP and are otherwise anony-

mous on the Internet; clients have no fixed identifier when connecting with a

dynamic IP address.

Figure 5.1: The Open Internet model. Clients access the Internet via an ISP

and are otherwise anonymous.

Once a client is directly connected, it is by default exposed to every other

client on the Internet. Conversely a client can attempt to access any other con-

nected client in the world, as there is no access control or logging other than

91
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those performed by the ISP for billing purposes. This unregulated environ-

ment brings risk as all types of network attacks are possible, such as intrusion,

information theft and DoS attacks.

Firewalls can be implemented at the endpoints to reduce these risks and NAT

is often used to conceal internal network infrastructure information. NAT, how-

ever, often causes connectivity problems in applications when the application

inserts private non-routable addresses in the packet payload. NAT devices also

remove the end to end significance of the IP addresses of the hosts on the two

ends of the connection. This poses a problem for communications that rely

on peer to peer connections such as VoIP and file sharing applications. Hosts

behind a NAT device cannot receive unsolicited incoming connections; hosts

behind a NAT must initiate the connection. Several solutions exist to work

around this, such as Universal Plug and Play (UPnP) and Simple Traversal

of UDP through NATs (STUN). However, these solutions are not scalable or

widely implemented [18].

5.1.1 Advantages

The advantage of an open peer to peer model is not having a single point

of failure; for example, in peer to peer file sharing networks, nodes are both

clients and servers. However, a transaction network does not benefit from this

advantage as it uses a client-server model as noted in Section 2.6.

The Internet is also generally fault tolerant and when paired with a presence

architecture (for example SIMPLE, used in IM applications), real time knowl-

edge of the status of network components is possible. This can contribute to

network availability as clients will know which servers are available, and vice

versa if required (transaction servers typically do not need to know the status

of transaction clients).

5.1.2 Drawbacks

There are several drawbacks to operating a transaction network over the Inter-

net. A major disadvantage is the lack of security; in an uncontrolled environ-

ment, data can be monitored as it passes through intermediaries. Encryption

and data integrity protection largely protect from this risk however.

As every directly connected device is exposed to every other device, DoS at-

tacks on transaction processing servers are possible. Attackers are anonymous

and untraceable as source IP addresses can be spoofed. Network infrastructure

can be protected from DoS attacks by using class based queuing and real time
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traffic monitoring as detailed in [73]. Such measures can also contribute to scal-

ability; a load balancer placed between the transaction servers and the Internet

can tunnel transactions to the transaction processors with the least number of

connections. The load balancer can also use the class based queuing mechanism

to throttle transactions during congestion or peak load situations.

The Internet model also lacks QoS guarantees; it is typically a best effort

service. A transaction network requires a low latency, reliable network. These

parameters cannot be guaranteed in the open Internet model.

As the Internet is uncontrolled, real time network management functions

are limited to the server’s side; successful transactions can be measured on the

server only. Unsuccessful transactions, however, cannot be measured in real

time without co-operation with the client’s ISP. Statistics on failed transactions

initiated by the client can however still be reported ‘offline’, for example at

the end of each hour or day.1 However, other management functions such as

knowing which transaction servers are congested or offline are still available, by

using a presence architecture such as SIMPLE.

5.2 Controlled IP PSTN

The term “IP PSTN” refers to a private IP network desgined for VoIP, rather

than a public switched telephone network. In this model, access is via an IP

PSTN provider (Figure 5.2). Clients reside on their own subnet and access the

private network through the provider’s Session Border Controller (SBC). SBCs

are also known as back-to-back user agents (B2BUA) and are essentially an

application layer gateway and proxy and are situated between the participants

of a session. They control access to the private network and this gives the

provider complete control over policies for admission to the service.

Each client has a common identifier (a SIP URI) and must register with a

SIP registrar before accessing the network. This assists in NAT traversal, as

the SBC becomes the source and destination for all signalling messages and

media streams entering and leaving the provider’s network [15]. SBCs can be

considered an implementation of the mechanism defined in [100].

When a client registers with a SIP registrar/call agent (Figure 3.22), the

SBC maps the source IP address and port of the REGISTER message to the

client’s SIP URI. The IP address and port mapped however do not actually

belong to the client; they belong to the client’s firewall/NAT device. The SBC

1Offline here means “not in real time” (that is, not reporting failure as it occurs), rather

than being disconnected from the Internet.
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Figure 5.2: The Controlled IP PSTN model. Clients (which may be IP tele-

phones) connect to the IP PSTN Core network via Session Border Controllers

(SBC), which are under the control of the service provider.

modifies the REGISTER message so the CONTACT and VIA fields point to

the SBC [18]. The SIP registrar then binds the client (via the SIP URI) to the

SBC’s address.

When the call agent is queried on the location of the client (Figure 3.20), the

SBC’s address is returned. Hence signalling messages addressed to the client

are directed to the SBC. When the SBC receives a signalling message addressed

to the client (for example an INVITE), it is forwarded to the IP address and

port associated with that client’s URI.

When the client initiates a call, the INVITE request is sent to the SBC. The

SBC replaces any relevant fields in the INVITE request such that it appears

to originate from the SBC. The modified INVITE is then forwarded to the call

agent. The response will go back to the SBC, which will forward it to the client

behind the firewall/NAT device. This makes the SBC the source and destination

for all sessions.

Media streams are also proxied through the SBC. The SBC knows which IP

and port the firewall/NAT device allocated for the client’s outgoing media. This

IP address and port is associated with the client’s URI. The SBC then forwards

incoming media addressed to the client’s URI to the same IP address and port.

By performing application layer gateway functionality (by modifying the fields

in SIP messages) and proxying (by making itself the source and destination of all

messages), SBC’s can successfully traverse NAT devices without modifications

to existing hardware, software, firewall configurations or security policies.
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5.2.1 Advantages

There are other benefits to having a provider controlled SBC situated in the

signalling and media path. SBCs have the topology hiding security benefits of

NAT, as the SBC conceals the details of the client’s internal network topology.

Clients receiving session invites will always see the SBC as the source, not the

originating network or client. Outgoing calls are proxied through the SBC,

which replaces the real source address with its own.

Clients can only access other clients permitted by the SBC, unlike the In-

ternet model, where any other client is accessible by any other. As clients must

initiate sessions through the SBC, the SBC can deny any session invite via policy

if required. The SBC can also completely deny access to unauthorised clients.

SBCs enable service providers to provide a VoIP service, while replicating the

traditional phone networks. Service providers can retain their existing business

models in a VoIP network as they have full control over the network.

The SBC can also protect network and service infrastructure from attack.

As the client’s real address is not exposed, it is protected from port scans and

DoS attacks. Conversely a client cannot initiate port scans or DoS attacks on

other clients, as the SBC will not allow the traffic onto the core network.

SBCs also enable the service provider to manage and control sessions. This

can be in the form of logging failed transactions in real time for example. As all

traffic must pass through the SBC, it can also throttle traffic if it is abnormally

excessive (for example during a DoS attack). This may also happen during peak

load scenarios; the throttling mechanism enables clean failure. Transaction

processors will gracefully reject new requests, but continue to service current

requests. This highly regulated private network environment also makes QoS

possible; SBC’s can provide a link with a guaranteed level of service (for example

minimum latency).

5.2.2 Disadvantages

Operating a transaction network over an IP PSTN also has disadvantages. The

SBC, with all the benefits it brings to an IP PSTN is also the source of all

the drawbacks in this model. The SBC represents a single point of failure, as

all connections and sessions run through it. Having multiple redundant SBCs

reduces this risk.

As all connections access the IP PSTN through the SBC, it can become a

bottleneck, limiting performance and security. The SBC breaks the end to end

transparency as it acts as the called client, then places a second call to the actual
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destination. This can introduce latency. Ensuring sufficient SBCs are deployed

to handle peak, not average load scenarios can reduce these drawbacks.

The capabilities of clients are also limited to the capabilities of the SBC,

as the SBC functions as a proxy. This may not be a problem in a regulated

transaction network, as all clients will be uniform in capability and specification.

Control of the session is mediated by the SBC. This is a drawback if the

clients do not trust the service provider. End to end encryption cannot be used,

as SBCs need to be able to modify packet contents. Encryption of the payload,

however, is possible as long as the headers the SBC modifies is in plaintext, or

the SBC has the ability to decrypt the headers.

5.3 Conclusion

The open Internet model offers clients relatively anonymous and unregulated

access to every other client connected. Clients are also exposed to every other

connected client. This brings security risks. Firewalls can be used to reduce the

risk, however this introduces NAT traversal issues. While solutions exist, they

are not scalable or widely implemented. Even if an elegant solution to NAT

traversal was developed, the Internet model lacks QoS abilities, a requirement

for a transaction network.

The IP PSTN however offers a highly regulated QoS enabled service. The

high level of control wielded by the service provider (via the SBCs) ensures

security, as clients can only access other clients allowed by the SBC. As the

SBC’s separate the clients by acting as a proxy, no network topology information

is revealed. This protects against DoS attacks. SBCs can also throttle traffic, as

they are QoS enabled. This also protects against DoS attacks, but also enables

the network to function during peak load scenarios; the transaction processing

rate will drop, but not fail completely.

Some disadvantages of running a transaction network over an IP PSTN can

be overcome by ensuring enough SBCs are deployed, such that they do not

become a potential bottleneck or present a single point of failure. Security

also relies on the clients trusting the service provider and SBCs. Table 5.1

summarises the difference between the two models.

Overall the advantages of an IP PSTN over the Internet make it the prefer-

able network architecture on which to operate a transaction network.
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Property Open Internet IP PSTN

Access Public via ISP Controlled via SBC

Connection Direct connection Proxied via SBC

Client Anonymous? Yes No

Client Accessible to Others? Yes No unless permitted by SBC

Client can Access Others? Yes No unless permitted by SBC

QoS Possible? No Yes

Network Management Functions? Partial Yes

End to End transparency? Yes No

NAT Traversal? Needs additional server Yes

Table 5.1: Summary of differences between the open Internet model and an IP

PSTN

5.4 Architectural Options

This section describes architectures built on the two different models, and how

they would meet the requirements.

5.4.1 IP PSTN Solution

A solution based on the IP PSTN could be arranged as in Figure 5.3. Clients

access the core network via an SBC. The SBC forwards the transaction from

the client to the receiver’s SBC (SBC2). The receiver in this case is a trans-

action processor. There may be a concentrator physically placed between the

transaction processor and the SBC as illustrated, however the concentrator and

transaction processor can be logically considered a single component. A concen-

trator combines transactions from many connections into a single connection.

The concentrator also operates as a firewall, protecting the transaction pro-

cessor from harmful traffic. Multiple transaction processors may be positioned

behind the concentrator for load balancing, for example, the concentrator may

allocate transactions on a round robin basis.

SIP would be required to access the core network via the SBC. The SIMPLE

extensions could also be used, giving the network a degree of service awareness

(for example notification of which servers are unavailable, offline or congested,

described in Section 3.6.4).

A total VPN solution providing transparent network access (using the remote

network as if it were a local network) is not required in this situation; clients

send transactions to the transaction processor and receive acknowledgements.
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Figure 5.3: One possible IP PSTN based solution. The connections between

clients and SBCs would be dynamic, while the connection between trusted in-

frastructure (SBCs, trusted concentrators) could be persistent SCTP associa-

tions. Concentrator C is untrusted and cannot decrypt the data to aggregate

traffic. The Concentrator in front of the Transaction Processor and the Trans-

action Processor itself can be considered a single logical unit.

Consequently, the VPN candidates (IPsec and TLS based VPNs) described in

Section 4 are excessive when the network requires only a single port to be

tunnelled or secured.

SSH port forwarding and TLS are both protocols for securing a single port.

However, SSH port forwarding assumes a client can log into the SBC to establish

the receive end of the SSH tunnel. Even when using public/private key authenti-

cation, permitting login access to the SBC exposes it to unnecessary risks. Once

logged in, an intruder could execute malicious code, or induce denial of service

by rebooting the SBC (assuming the intruder had overcome any restrictions to

administrative access and execute permissions). Other DoS attacks against SSH

are described in [56].

TLS then becomes the preferred security protocol, as it does not require

the SBC to allow login by clients. Authentication would be two-way via pub-

lic/private key authentication. In the case of EFTPOS, a trusted vendor issues

the clients (EFTPOS terminals) and would therefore issue them with a certifi-

cate at the time of manufacture. This avoids the client authentication problem

present in e-commerce due to the lack of client side PKI. The TLS tunnels

must terminate and begin at the SBCs, as SBCs must be able to modify packet

contents as described in Section 5.2.2.

One issue here is whether or not a single manufacturer issues the same certifi-

cate to all the clients (such as EFTPOS terminals) it manufactures. If a single

certificate is used and the key is broken or the terminal is somehow compro-
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mised, the entire system would also be compromised. Global secrets are a bad

design feature, and once compromised, are difficult to recover from [107]. The

contrary requires the manufacturer to install different certificates/keys/secrets

in each terminal.

This raises another related issue of whether the terminals can be modified or

upgraded. If they can be upgraded, then in the event of key compromise, they

can be installed with a new secret key. However, this also enables tampering of

the terminals; it could be possible for malicious third parties to upload their own

certificate or secret into the terminal. Conversely, if the terminals were made

tamperproof and not upgradeable, it would not be possible for malicious parties

to read the contents of its secret, nor install their own keys. Obviously, in this

situation, manufacturers would not be able to upgrade or install new secrets.

One solution could be to have terminals that are upgradeable, but unreadable.

The terminals would have to be tamperproof to avoid malicious interference.

While these last two client terminal issues (global secrets and upgradeability)

are important, they stray beyond the scope of this project.

The connection could operate over either TCP or SCTP. While TCP is

stream based, SIP’s SIMPLE (more specifically the MESSAGE function) pro-

vides the application layer framing to distinguish between separate messages.

Both are reliable transport protocols with flow control mechanisms.

When a client requires access to the core network, it must register with the

SBC (as described in Section 5.2) to support NAT traversal. This would involve

the following steps:

1. TCP/SCTP establishment

2. TLS establishment

3. SIP REGISTER

4. SIP SUBSCRIBE (optional; this would let the client know the status of

the transaction processors)

5. TLS close notify

6. TCP/SCTP close

After a client has registered with the SBC, it may send transactions. One

issue is whether clients should use a single secured SIP session for every trans-

action, or establish and close a secured SIP session each time a transaction is

sent (Figure 5.4).
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Figure 5.4: With a persistent session, the session is established and every trans-

action uses the same session. This avoids the overhead of establishing and

closing a session for each individual transaction. Dynamic sessions mean every

transaction gets its own session. This frees resources on the receive end, which

may otherwise need to maintain multiple idle sessions.

The IP PSTN model replicates the operation of the traditional telephone

networks, for example in Figure 3.23, the 180 Ringing message may be con-

veyed to the caller using an IP telephone as a ringing tone. Current EFTPOS

terminals dial into the telephone exchange each time a transaction is sent; the

telephone exchange then re-routes the call to a Network Access Controller. Af-

ter the transaction is sent, the EFTPOS terminal hangs up the connection and

relinquishes the line.

Accordingly, transaction terminals in the IP PSTN model would use new

sessions for each transaction as a result of using a network which replicates a

traditional telephone network. This gives the new terminals the same usage

model (creating and ending a session for each transaction) as current terminals

using the traditional telephone network.

Establishing a new secured SIP session for each transaction then ending

the session after the transaction is complete offers several advantages over a

persistent session that is used for all transactions. Note that clients would

never need to send multiple transactions in parallel; in the case of an EFTPOS

pin pad terminal for example, only a single customer would be using it at a

time.
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A persistent transport layer connection (and therefore session) may be dropped

if no traffic is sent after a long period. Thus, when the client comes to use the

connection, it will find that the connection is down and would need to establish

a new connection regardless. With a dynamic connection, the application can

be sure that the connection exists and works when it comes to use it, as it has

just established it.

Applications that use persistent connections may use keep alives or heart-

beats to ensure the connection is not dropped. Using frequent keep alives,

however, gives passive observers more ciphertext data for traffic analysis.

Establishing a new secured connection for each transaction ensures a dif-

ferent key is used for each. With a persistent connection, a rekeying interval

needs to be specified (for example after n transactions, or perhaps even after

every transaction). This issue is avoided altogether when using a new ses-

sion/connection for each transaction. This assumes that the underlying random

number generator in the TLS implementation does not generate random num-

bers that were recently used.

The only disadvantage of using a new session/connection for each transaction

is the overhead in establishing and ending each one (see Figure 5.4). Whether

establishing a single connection is time consuming will be revealed in the testbed.

Consequently, the connection between clients and the SBC are dynamic;

they are established when needed, and closed when the transaction is finished.

When the client wishes to send a transaction (having registered with the SBC),

it would take the following steps:

1. TCP establishment

2. TLS establishment

3. SIP INVITE

4. SIP MESSAGE (to transfer the transaction data)

5. SIP BYE

6. TLS close notify

7. TCP close.

The connection does not need to be the same between SBCs, or between the

SBC and the transaction processor (Figure 5.3) as it is between clients and the

SBC. This is because the trust model is different; every node in the IP PSTN

core network is trusted (as the SBCs control access). While the connection
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characteristics (more specifically the use of dynamic TCP sessions) could be the

same, the SBCs could also use persistent SCTP associations to other SBCs.

In Figure 5.3, SBC1 aggregates three TCP sessions into a single SCTP asso-

ciation to SBC2. SBC2 could have a persistent SCTP association to the trans-

action concentrator. The concentrator terminates connections from multiple

SBCs, ensuring the transaction processor experiences no overhead from client

connects/disconnects; the processor only sees a continuous stream of transaction

messages.

Trusted concentrators can also be placed before the SBC as shown in Figure

5.5 (for example at a large shopping mall). The connection between the trusted

mall concentrator and the nearest SBC could also be a persistent SCTP con-

nection. This can contribute to scalability, resulting in the SBC viewing the

concentrator still as many parallel transactions (for example two shops at the

mall can send a transaction at once), but without the overhead of establishing

an independent connection for each. SCTP has the advantages as described in

Section 3.4, such as multistreaming and multihoming.

Figure 5.5: In this instance, C is a trusted concentrator, and can therefore

decrypt the transaction traffic. If a concentrator on the client end is warranted,

the connection between the trusted concentrator and the client’s SBC would be

a persistent SCTP association.

While encrypted keep alives can give observers more data for traffic analysis,

SBCs would not grant IP PSTN access to potential intruders/observers.

Since SBCs and transaction processors deal with many sessions at once, the

overhead in establishing and ending multiple connections may become signifi-

cant. Using a persistent SCTP association avoids this overhead. SCTP’s mul-

tistreaming may contribute to the performance (as each exchange between the

client and SBC would in effect get its own dedicated stream) and multihoming

would contribute to reliability between SBCs.
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A persistent TCP connection could also be used, which would also avoid this

overhead. It would have SCTP’s benefits of aggregating multiple sessions into a

single TCP session, although to a lesser extent, as TCP cannot replicate multiple

SCTP streams in a single connection (see the Head of Line blocking discussion in

Section 3.4). If dynamic TCP sessions were used between SBCs or between SBCs

and the transaction processor (Figure 5.6) and were not aggregated, dedicated

hardware accelerators may be required to handle the establishment and closing

of multiple TLS connections at once. To replicate the multihoming function of

SCTP, the responsibility and knowledge of using an alternative address would

be moved up from the transport layer to the application, using the presence

information provided by SIMPLE.

Figure 5.6: A solution using only dynamic TCP connections. As there is no

aggregation before the concentrator, the infrastructure must be powerful enough

to handle large numbers of TLS connections.

As stated in Section 5.2.2, end to end encryption cannot be used because

SBCs need to be able to modify the packet contents. The terminals would have

a tunnel to the SBC; the SBC would have a different tunnel to the destination

SBC and the destination SBC would have its own tunnel to the transaction

processor network. Using separate independent tunnels means if SBCs do use

persistent connections, the tunnel between the client and the client’s SBC can be

established and closed when transactions need to be sent, while the tunnels be-

tween SBCs remain persistent. This adds to reducing connection establishment

and closing overhead.

5.4.2 Open Internet Solution

While the Internet model is not the preferred solution, it is still worth analysing

how capable it could be when compared to a network based on an IP PSTN.
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While the Internet is ubiquitous, the infrastructure for an IP PSTN may not

always be available. A solution based on the open Internet model could be ar-

ranged as in Figure 5.7. Clients connect via their ISP directly to the transaction

processor/concentrator.

Figure 5.7: As no infrastructure is trusted on the Internet, the TLS tunnels

span from the client directly to the concentrator.

Unlike the IP PSTN solution, SIP and the associated infrastructure for es-

tablishing sessions is not necessary. This is because there are no SBCs to tra-

verse, or explicit SIP sessions needed. Take for example an internet banking

transfer; the customer’s computer does not need to establish a SIP session with

the banking website before transferring the funds. However, this solution would

still benefit from SIMPLE’s MESSAGE (to frame messages when using a stream

protocol such as TCP) and presence functionality (to bring network availability

knowledge).

TLS would be used as the security protocol for the same reasons as used in

the IP PSTN model. A full VPN solution is not required, as arbitrary network

access is not necessary when the only application is transaction traffic. TLS does

not require login access to the receiving server to create a tunnel. As noted in

the IP PSTN solution, the creation of SSH tunnels require login access to the

receiving server. This opens the receiving server to unnecessary risk. This risk

is greater in the Internet model, as any client connected to the Internet can

attempt to access the transaction processor.

Authentication is also two way, via certificates, to ensure that only permitted

clients can create a connection to the transaction processor. In an e-commerce

situation, only the server is authenticated, as there is no universal, efficient way

to distribute client side certificates. In this situation, however, the transaction

terminals will have been issued with a certificate at the time of manufacturer

by the trusted device vendor (see Section 4.3.5).
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Figure 5.7 shows the encrypted tunnels span from the client device directly

through to the transaction processor. Like the IP PSTN solution, a concentra-

tor may be physically placed between the network and the actual transaction

processor. The tunnel is not terminated in any way before it arrives at the

transaction processor, as no infrastructure connected to the Internet is trusted

(unlike the SBCs in the IP PSTN model).

Again, like the IP PSTN solution, the connection between the terminals and

the concentrator could be either TCP or SCTP. Both are reliable transport pro-

tocols with compatible flow and congestion control mechanisms. Transactions

would not be aggregated while being routed through the Internet, as no infras-

tructure would be trusted to decrypt the transactions and combine them. This

is not a major problem, however, because the devices connect directly to the

concentrator; each device can only send a single message at a time (for example

only one customer can be entering their PIN into a keypad at a time).

The concentrator would then aggregate these connections onto a single SCTP

association, directed to the transaction processor. The connection between the

concentrator and the transaction processor could also be a TCP connection as

in the IP PSTN solution. This would require SIMPLE’s MESSAGE application

layer framing in order for the transaction server to determine where each trans-

action started and ended. The concentrator would require hardware that could

handle multiple TLS tunnels at once to ensure adequate performance.

For high transaction rate sites (for example a large shopping mall), a con-

centrator can also be placed in front of the transaction server’s concentrator

(Figure 5.8). This is identical to the site concentrator in Figure 5.5. If the

transaction rate is high enough to warrant a site concentrator, then it would

use a persistent SCTP connection to the transaction processor’s concentrator.

Once more like the IP PSTN solution, the connection between the devices

and the destination (the concentrator in this case) would be dynamic. A con-

centrator would be unable to support a persistent TLS secured tunnel for every

possible transaction device on the network. The justifications for using a dy-

namic connection in the IP PSTN solution also apply in this solution. Idle

connections may be dropped after a certain period. Heartbeats or keep alives

may be used to keep connections alive, but these offer more ciphertext data for

traffic analysis. On the open Internet, where nothing is trusted, this becomes a

significant risk.

When a client wishes to send a transaction, it would take the following steps:

1. TCP establishment

2. TLS establishment
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Figure 5.8: In this instance, C is a trusted concentrator, so has the ability to

decrypt transaction traffic. It aggregates these onto a single SCTP association,

reducing the load on the transaction processor’s concentrator.

3. SIP MESSAGE (to transfer the transaction data)

4. TLS close notify

5. TCP close

Unlike the IP PSTN model, where only trusted clients could access the core

network and other clients, the Internet has no access restrictions. This opens

the Internet based solution to all forms of DoS attacks, including Distributed

DoS (DDoS) and Distributed Reflection DoS attacks (DRDoS). DoS attacks

are identified as either exploiting a network problem or an individual problem

in [90]. Network problems are based on abusing flaws in Internet protocols

and infrastructure. Individual problems focus on taking advantage of poorly

configured systems and harnessing them for use as attack zombies.

Improving the infrastructure can mitigate network problems, for example

load balancing and traffic queuing [73]. Protocols can be altered as well, for

example using SYN cookies to avoid SYN flooding (as described in Section

3.3.3). Cryptographic puzzles can be used to impose a computational cost to

clients wanting to establish a TLS connection with a server; a method to reduce

the computational load on the server when performing a TLS handshake is

described in [35]. As the TLS receive rate increases, the complexity of the

puzzle increases, giving the server a constrained means to limit the send rate of

clients.

Honeypot or Honeynet diversion networks can be deployed within the DMZ

part of the network as described in [90]. IDSs can be installed on the network,

triggering alerts when unusual network activity occurs.
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Improvements in network infrastructure and protocols alone, however, can-

not protect from DoS attacks completely; individual computers and users must

also take measures to protect against DoS attacks. Antivirus and anti-malware

software should be used to ensure computers and equipment do not become

infected and are used as launch pads for DoS attacks. Firewalls should be con-

figured for ingress/egress filtering (for example ensuring that traffic leaving the

network does not have an external source address and incoming traffic does not

have an internal source address). Operating systems and software must also be

kept up to date with the latest patches and bug fixes.

Ultimately, the problem stems from the inability to identify and separate

malicious traffic from legitimate traffic. Previous work found the best solution

was to detect the attack as early as possible, trace the IP address of the source

then notify the administrators of the zombie machines [90]. However, they

concluded there was no 100 percent effective method for defending against DoS

attacks.

5.4.3 Conclusion

A transaction network can be based on an IP PSTN or the open Internet model.

The two architectures described meet all of the qualitative requirements set out

in Section 2.6. Whether these architectures meet the quantitative requirements

(such as scalability, throughput and response time) can only be determined

after a proof of concept testbed has been created and benchmarked. Table

5.2 summarises the mapping of these solutions to the requirements set out in

Section 2.6. It is interesting to note that despite the differences in the network

models, the solution architectures are very similar. The main point of difference

is in the QoS guarantees and security. Only the IP PSTN can provide QoS

guarantees; the Internet is a best effort service. In Table 5.2, the Send Rate

Limited row alludes to DoS attacks, as DoS attacks rely on overwhelming the

server’s bandwidth or system resources. As the Internet is an uncontrolled

network, the risk of DoS attacks can never be removed, only reduced.
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Requirement IP PSTN model

(client to SBC)

IP PSTN model

(between trusted

infrastructure)

Open Internet

Model

Transport Protocol TCP or SCTP SCTP TCP or SCTP

Security Protocol TLS TLS TLS

Connection Type Dynamic Persistent Dynamic

Message Oriented Yes* Yes Yes*

Transaction Aggre-

gation

Yes** Yes Yes**

Reliable Transport Yes Yes Yes

Network Reliability Yes* Yes (via multihom-

ing)

Yes*

Link Failure

Alarms

Yes* Yes (via built in

keep alives)

Yes*

Flow and Conges-

tion Control

Yes Yes Yes

Vulnerable to SYN

flood DoS?

No (when used with

SYN cookies)

No No (when used

with SYN cook-

ies)

Send Rate Limited? Yes (by SBC) Yes (by SBC) No

Table 5.2: Mapping of the IP PSTN and Internet solution architectures to the

requirements in Section 2.6. **not needed when a client can only send a single

transaction. *SIMPLE required for TCP.



Chapter 6

Architectural

Implementation

This section describes the architectural validation via a proof of concept net-

work and justifies design decisions in the implementation. The network aims

to demonstrate the viability of the two architectures: IP PSTN and Internet,

described in the previous section.

Validating the architectures required the use of a live test bed network in-

stead of a simulation. This is because network simulations cannot accurately

model specific application level protocol exchanges. A network simulation also

does not demonstrate the chosen messaging and security protocols in operation.

The client, concentrator and trasaction processor were all written in Java.

The JAIN-SIP library1 was used. JAIN-SIP is an open source implementation

of RFC 3261. The client was initially written in C, using the Sofia-SIP library2,

also an open source SIP library. A native C/C++ implementation is gener-

ally faster than runtime compiled implementations (for example Java and C#).

However, Java was ultimately chosen, as the JAIN-SIP library was easier to

use. Performance differences between the languages are also insignificant when

compared to the impact imposed by encryption, digital signatures and network

latency.
1https://jain-sip.dev.java.net
2http://sofia-sip.sourceforge.net
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6.1 The Client

The client software initiated sessions to send transactions. The most accurate

approach to demonstrate the network would be to utilise a large number of

physical clients, each running a single instance of the client software. This

was not feasible, however, so the client software was multithreaded, using each

thread to represent a single instance of the client. A rudimentary user interface

was created to separate transaction progress from error messages (Figure 6.1).

The ‘Start’ button initialised and ran a number of threads, specified by the

number entered in the ‘Threads’ field. From herein, ‘client’ refers to a particular

instance of a thread. Thus, clicking ‘Start’ for 200 threads approximated 200

clients. Each ‘client’ or thread ran through the exchange in Figure 6.3 or Figure

6.4 (depending on the architecture selected) in parallel with the other threads

(that is, the threads were not run sequentially one after the other). Message

payloads were 300 bytes long (as stated in [14]). Timeouts were set to 5000ms;

if the client did not receive a response to any request within 5000ms, it assumed

the server was down and tried another (in the Internet model) or retransmitted

(in the IP PSTN model). The transaction timeout was set to 5000ms as it was

considered an acceptable time to wait for a transaction to go through; transac-

tion terminal users can take this long to enter their PIN. While lower timeouts

would improve performance in the event of transaction processor failure, lower

times could also unnecessarily congest the network; the client could potentially

consider the transaction processor nonfunctional, when in reality it was simply

taking longer than usual to complete the transaction.

The network implemented here differs slightly from the architectures de-

scribed in Section 5.4. Section 5.4 described the use of SIMPLE infrastructure

to provide service awareness. In this network, a SIP Registrar provides service

awareness. This is because SIMPLE is designed primarily for IM systems, which

this system is not, although it has some IM-like attributes.

Section 3.6.4 described the SIMPLE infrastructure; users (or servers in the

case of this network) would send periodic REGISTER messages indicating their

status (for example online or offline). The presence server, upon receipt of these

messages, would send NOTIFY messages to each user (clients, or transaction

terminals in the case of this network) which had subscribed to receive notifica-

tions.

IM systems, for which SIMPLE was designed, benefit from knowing at all

times, which users are online. For example, a user who has signed onto their

IM application will benefit from knowing which friends on their contact list are

online, regardless of whether he or she wishes to send them an IM.
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Figure 6.1: The server at the top of the window (in this case 132.181.14.193)

is the server currently being used by the client. The list underneath contains

back up servers. The messages window shows transaction progress; errors are

printed to the command line. The redirect and proxy buttons switch the client

between the IP PSTN model (Proxy) and the Internet model (Redirect).

Clients in this network, on the other hand, only need to know the status of

the receiving server when sending a transaction. SIP Registrars are sufficient to

provide this service, making periodic alerts (in the form of NOTIFY messages)

an unnecessary use of bandwidth and processor load.

6.2 The Concentrator

The concentrator aggregated sessions onto a single session. The aim was to re-

duce the computational load on the transaction processor associated with multi-

ple connects/disconnects. The concentrator appeared as a transaction processor

which clients connected to. As a result it sent periodic REGISTER messages to

the SIP registrar like a transaction processor. Concentrators, however, did no

actual processing and simply proxied transactions between transaction proces-

sors and clients. Like the other components, the concentrator was multithreaded

to enable the parallel processing of requests.

When the concentrator first came online, it established a session with the

transaction processor it was associated with, regardless of whether transac-

tions were arriving. When a client connected to the concentrator, a session

was established between each client and the concentrator. When the clients
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sent their transactions in MESSAGE payloads, the concentrator forwarded only

these MESSAGE requests to the transaction processor. Responses were also for-

warded back to the client. When the transaction was complete, the clients ended

their session with the concentrator, however the session between the transaction

process and the client remained.

This was expected to reduce the load on the transaction processor, as only a

stream of MESSAGE requests were received; the transaction processor was not

exposed to the overhead of multiple client connects and disconnects. The con-

centrator and transaction processor thus had a persistent session as illustrated

in Figure 5.4.

Unlike the solutions described in Section 5.4, where the persistent connec-

tions associated with concentrators used SCTP, the concentrators here used

TCP. This was because the JAIN-SIP library did not support SCTP on the op-

erating system used (Fedora Core 6). The functionality was the same, however,

as the MESSAGE requests provide application level message framing for TCP,

which is provided at the transport layer in SCTP.

6.3 The Transaction Processor

The transaction processor sent REGISTER messages every 10 seconds to the

SIP server, each with an expiry of 15 seconds. For a network of the size

demonstrated, these times were low enough to get reasonably fast notification of

transaction processor status, without overwhelming the network. More frequent

REGISTER messages with a shorter expiry time offered more accurate trans-

action processor status information at the cost of higher network bandwidth

and system load. Less frequent REGISTER messages with a longer expiry time

would have resulted in a lower system and network bandwidth load, but a higher

chance of a client attempting to contact an offline transaction processor. For

example, if expiry timers were set to 1 minute, the SIP registrar would consider

the transaction processor available for at least a minute, even if the transaction

processor went offline immediately after sending the REGISTER message.

The transaction processor received transactions and returned replies. The

transaction processor was also multithreaded, enabling the processing of multi-

ple clients simultaneously. In the testbed network, clients could connect directly

to transaction processors, rather than through a concentrator as transaction pro-

cessors and concentrators can be considered a single logical unit (as noted in

Section 5.4). They have been separated here in order to analyse the benefit of

aggregating sessions.
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6.4 The SIP Server

The SIP server used was OpenSER 1.2.0-tls.3 OpenSER is an open source

variant of Sip Express Router (SER).4 OpenSER has a focus on new features,

frequent minor releases and was created in response to SER’s slow development

and long release cycles. OpenSER also has integrated TLS support, while SER’s

TLS support is in a separate patch.

The SIP server operated as a SIP registrar. In the Internet model, it also

operated as a redirect server, while in the IP PSTN model, it operated as a

proxy server.

To be faithful to the models proposed, a true SBC should have been used.

However, no SBC appliances or appropriate SBC software was available. Open-

SipStack’s OpenSBC was considered5 however it did not support SIPS or TLS

connections. As security was a requirement, OpenSBC was not used.

6.5 IP PSTN Network

In this architecture, the client sent and received all messages to and from the

SIP server. The client communicated with the SIP server through a secure TLS

session. The SIP server also maintained an independent TLS session with each

transaction processor it communicated with. The architecture explained here is

an implementation of Figure 5.6. This was because the SIP server software did

not support SCTP at the time of writing. The JAIN-SIP library also did not

support SCTP on the operating system used (Fedora Core 6).

Application Protocol

SIP

TLS-TCP

IP

Figure 6.2: The protocol stack used in the test bed network.

The solution stack used in this model is shown in Figure 6.2. The Ap-

plication Protocol layer represented the purpose of the network, for example

EFTPOS has its own protocol, AS2805. In a deployment, AS2805 would be

the application protocol, that is, AS2805 could be carried as the payload in a

MESSAGE request. In this test bed network, however, 300 bytes of text was
3http://www.openser.org
4http://www.iptel.org
5http://www.opensipstack.org
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used as the MESSAGE payload, as the goal of this project was to define and

demonstrate a suitable protocol stack for short generic transaction networks as

opposed to implementing EFTPOS over IP.

The client created an INVITE for a transaction processor and sent it to

the SIP server (message 3 in Figure 6.3). The SIP server performed a look

up, and relayed the INVITE (4) to the transaction processor. The transaction

processor responded with a 200 OK (7), which was relayed back to the client,

which completed the handshake with an ACK request (13 and 14).

Figure 6.3: A typical exchange in the proxied IP PSTN model. This is an

implementation of the solution illustrated in Figure 5.6.

The client then sent a MESSAGE request with the transaction payload (15).

The SIP server relayed this to the transaction processor, which responded with

a 200 OK (17 and 18), to acknowledge it had received the MESSAGE request.

The transaction processor then checked whether the request was successful or

not, and sent its reply in the payload of a MESSAGE request (19). The SIP

server relayed this back to the client (20), which also responded with a 200 OK

(21 and 22). Regardless of whether the transaction was successful or not (for
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example ‘insufficient funds’), the client ended the session by sending a BYE

request (23 and 24) for the transaction processor to the SIP server. When the

transaction processor received this, it responded with a 200 OK (25 and 26) and

the session was terminated.

The SIP server forked the client’s INVITE to each transaction processor that

had registered (4). The SIP server returned the first 200 OK it received to the

client (7). Thus the first transaction processor that replied with a 200 OK was

given the call. The client then responded with an ACK request which was sent

to the SIP server (13) and proxied to the transaction processor (14), to establish

the session. This provided a degree of load balancing as servers which respond

to a 200 OK first are less likely to be heavily loaded, and it is these servers

which accept the call.

When a transaction processor received an INVITE request, it replied with

a 100 TRYING message (6), then a 200 OK message (7). A 200 OK message is

classed as a final response, while 100 TRYING is a provisional response. RFC

3261 stipulates that proxies must return all 200 OK and other final responses

for a forked INVITE to the client, while provisional responses (such as 100

TRYING) do not need to be returned.

If the SIP server has not received a final response to its forked INVITE,

it can use a CANCEL request to cancel establishment of the session (9). If it

has received a final response, however, it must be passed back to the client,

which must use a BYE request to terminate the session; CANCEL requests can

only be used to cancel sessions for which no final response has been received.

Consequently, when a transaction processor responded with a 200 OK, the SIP

server relayed the response back to the client and sent CANCEL requests to

all the other transaction processors it forked INVITE requests to, in order to

terminate the pending INVITE requests.

Transaction processors could have returned 200 OK messages instead of 100

TRYING messages in response to an INVITE. However, if the SIP server had

forked to many servers which were online, it would have relayed many 200 OK

messages back to the client. The client would then need to ACK one 200 OK

response, and send a BYE request to every other 200 OK response it received.

If there were many servers online, this may have placed a heavy load on the

client. Thus 100 TRYING messages gave the SIP server an opportunity to

cancel requests, thereby relieving the client from having to send multiple BYE

requests for each online server which received a forked INVITE. TRYING and

other provisional messages are used to indicate that an operation is in progress; if

there were no provisional messages available, clients would only know the server
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on the other end was online when the operation was completed. Operations

that require a slightly longer time maybe interpreted by the client as a timeout.

The SIP server forked the INVITE requests in parallel; it relayed the IN-

VITE message to every registered transaction processor simultaneously. The

first transaction processor to respond with a 200 OK accepted the call, re-

sulting in lower response times. The disadvantage is that multiple transaction

processors may respond with a 200 OK before the SIP server has a chance to

CANCEL the pending INVITE request. This placed responsibility on the client

to terminate the unnecessary sessions with BYE requests, which resulted in

extra load for the client.

The alternative was serial or sequential forking, where the SIP server sent the

INVITE to the transaction processors one at a time. If request failed, timed out

or the transaction processor went offline, the SIP server sent the INVITE to the

next registered server in the list. The advantage of this is that the client would

only ever receive one 200 OK in response to sending a single INVITE request.

The disadvantage is that transaction processors at the top of the list may have

gone offline before their registration had expired. The SIP server would then

contact the offline servers and wait for them to timeout before sending the

INVITE to the next one. This would have resulted in a longer response time.

Forking brings fault tolerance during the session initiation stage; if a trans-

action processor fails before its registration expires, the SIP server will have

forked other transaction processors (in the case of parallel forking) or will do so

when the current forked INVITE times out (in the case of sequential forking).

However, transaction processors can also fail during a transaction. Eventu-

ally the session will time out, signalling the failure of the transaction processor

to the client. As long as the transaction did not complete or commit, the client

will resend the INVITE to the SIP server, which will relay it to the next avail-

able transaction processor. If there were no available transaction processors, the

SIP server would redirect the client to another SIP server/SBC (described in

Section 6.6), which may have operational transaction processors registered with

it. Failure of all SIP servers/SBCs would constitute a major network disaster;

the SIP servers/SBCs are a crucial network infrastructure in this model. The

SIP servers/SBCs represent a central point of failure and are a drawback of this

architecture, as discussed in Section 5.2.2.



CHAPTER 6. ARCHITECTURAL IMPLEMENTATION 117

6.6 Open Internet

In this architecture, the client sent and received messages directly to and from

the transaction processor (Figure 6.4). Clients may be configured with the

addresses of transaction processors, or SIP redirect servers. The architecture

explained here is an implementation of the solution illustrated in Figure 5.7.

TCP was used, for the same reasons as in the private IP PSTN model; SCTP

was not supported in the SIP server, nor did the JAIN-SIP library provide

SCTP connections on the operating system (Fedora Core 6). The solution stack

was the same as the IP PSTN model, in Figure 6.2.

Figure 6.4: A typical exchange in the Internet model, which uses redirects.

If clients had no knowledge of the addresses of transaction processors, they

would contact the SIP redirect server first. The SIP server in this model oper-

ated as a registrar and location server. Clients would need to contact the SIP

server in order to get a list of available transaction servers. SIP’s method is

to use an INVITE request, and as illustrated in Figure 6.4, a 300 REDIRECT

message would be sent in response by the SIP server. The awkward alternative

would be to use a MESSAGE request, and have the SIP server store the list in

a MESSAGE payload in response.

REDIRECT responses contain contact bindings for a particular user, that is,
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addresses of ‘users’ that have registered as transaction processors. The REDI-

RECT response can also include the address of other SIP servers. The client

stored this list internally, and sequentially forked INVITE requests until it lo-

cated an operational server. The client differentiated between a SIP server and

a transaction processor by the response it received in addition to the URI; if

it received a 200 OK in response to an INVITE request, it had contacted a

transaction processor.

The client could dispense with needing to create a session altogether and

send MESSAGES immediately as required. MESSAGE requests could be sent,

without first establishing a session with an INVITE request, even with no infor-

mation on available transaction servers. If this method was used, Message 3 in

Figure 6.4 would be a MESSAGE request instead of an INVITE request. A 300

REDIRECT message with contact bindings would still be sent in response. The

client would then repeat, sending the MESSAGE request to a server in the list.

However, using MESSAGE requests (which contain the sensitive transaction

details as a payload) to probe for online servers creates unnecessary risk.

Regardless of requiring strict two way TLS authentication (which ensures

the client is communicating with a trusted entity), revealing transaction pay-

load details unnecessarily to any network entity other than the proper receiving

transaction processor opens the possibility for fraud. For example while only

trusted infrastructure will have the required certificates to enable successful TLS

negotiation, the proxy software could be modified to record all traffic sent and

received. This would result in giving a trusted entity, which has nothing to do

with the processing of transactions, knowledge of the transaction data.

The subsequent messages exchanged are identical to the IP PSTN model,

except messages are sent directly to the transaction processor, instead of being

proxied through the SIP server.

If a transaction processor fails during the INVITE stage, the client will use

the next server in its list (TransactionProcessor2). If all the servers in the

list have been exhausted, the client will contact the SIP server again (as other

transaction processors may have come online since the last contact).

If transaction processors fail mid transaction, as long as the transaction did

not complete or commit, the client will start a new session with the next server

on the list. If the client tries all servers on the list without success, it will contact

the SIP server again to get an updated list. In this model, the SIP servers are

analogous to DNS servers, which provide a look up location service. If the SIP

redirect servers failed, as long as the addresses of the transaction processors

were known, the system would still function as usual. This is much like DNS,
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where even if the DNS service failed, web browsing would still work if the IP

addresses were known.



Chapter 7

Architectural Validation

and Evaluation

7.1 Network Setup

The Client was a Pentium III 500MHz with 512MB RAM. The SIP server was a

Pentium 4 2.4GHz also with 512MB RAM. The Concentrator and Transaction

Processor were both Athlon 800MHz machines with 768MB RAM. The machines

were connected to a 10Mbps hub/Ethernet repeater to create an isolated LAN.

All of the computers ran Fedora Core 6 without running any other processes

which could have affected processor or network utilisation. Java 5.0 (1.5.0) was

used to run the client, concentrator and server software.

7.2 Experimental Design

As described in Section 1.1, this project’s main aim was to define a generic

IP based transaction architecture and demonstrate a proof of concept system.

Experiments were run to gauge the performance of each architecture. AES

and 3DES ciphers were used to encrypt, as 3DES is commonly implemented

in hand held payment terminals, while AES is commonly adopted as 3DES’s

successor. To avoid the effects of memory caching, disk paging and Java’s JIT

dynamic compilation optimisations, the first five readings of each experiment

were not recorded. Each experiment was then repeated 10 times with the times

recorded. Several experiments were conducted, and methodology for each are

detailed below. Results were analysed using ANOVA at the 95% confidence

interval.
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7.2.1 Single Transaction Measurements

This experiment recorded the total and CPU time as well memory usage on the

client when sending a single transaction to a transaction processor. This exper-

iment was performed with both the IP PSTN and Internet architectures with

various security levels. As only a single transaction was transferred, concentra-

tors were irrelevant to this test. The total time was recorded from the creation of

the client thread to the acknowledgement of the client’s BYE, terminating the

session. Thus, this included network latency and transaction processor time.

The CPU time was recorded as the sum of the user and system time. This

provided details on the loading of the client.

Memory usage was measured using Java’s jmap memory map utility. The

heap usage was recorded as the sum of all heapstores used (Eden, From, To, PS

Old Generation and PS Perm Generation spaces). While the memory footprint

of a Java implementation will always be larger than a native implementation,

this test gave details on the relative effect of enabling encryption. That is, if

encryption had a larger Java heap footprint than the unsecured exchanges, under

the same circumstances (for example no hardware acceleration or dedicated

hardware support), encryption would also have a larger footprint in a native

implementation. Thus, the memory tests did not aim to give an indication of

how much memory the implementation required on an embedded device as any

deployment would use a native implementation.

This experiment also provided insight into how transaction time was pro-

portioned, that is, how much time was spent establishing the session, perform-

ing the actual transaction and ending the session. This experiment was per-

formed with no security (to provide a base case), AES+SHA TLS encryption

and 3DES+SHA TLS encryption to ascertain the extent of processing overhead

imposed by encryption and message authentication.

Figure 7.1: Transaction path for the IP PSTN architecture. The SIP server

represents the SBC.

The 500MHz client machine has similar performance to high end embedded

processors. Intel XScale processors running at 1GHz achieve approximately

1250 Dhrystone 2.1 MIPS [40], while a 500MHz Pentium III achieves between



CHAPTER 7. ARCHITECTURAL VALIDATION AND EVALUATION 122

Figure 7.2: Transaction path for the Internet architecture. The client populates

the server list by contacting the SIP server before it can connect to a transaction

processor.

1200-1700 MIPS.1 The transaction path is illustrated in Figures 7.1 and 7.2 for

the IP PSTN and Internet architectures respectively. Figure 7.1 represents an

implementation of Figure 5.6 without the concentrator; clients connect directly

to the SBC (SIP server in this case) and the SBC proxies the connection to

the transaction processor. Figure 7.2 represents Figure 5.7 also without the

concentrator; clients first contact the SIP server (not shown in Figure 5.7) before

connecting directly to the transaction processor. The factors in this test were

consequently three security schemes x two architectures.

7.2.2 Multiple Transaction Measurements

This experiment also measured the total and CPU time and memory usage on

the client, but this test transferred 50 threaded transactions. This approxi-

mated 50 transaction terminals on the client machine. This test gave a rough

indication of how long slower embedded processors would take with encryption

and message authentication. As a rough guide, a Motorola MC68040 processor

is approximately 1/50th the performance of a Pentium III 500MHz.2

This experiment was also performed using both the IP PSTN and Internet

architectures, as well as the same three security levels in the previous test: no

security, AES and 3DES. This experiment used the same transaction path as the

single transaction experiments; Figures 7.1 and 7.2 show the transaction path

for the IP PSTN and Internet architectures respectively. The only difference

was the number of threads run on the client.

Note that only one transaction processor was operating. This ensured that

the load balancing provided by the SIP Proxy/SBC had no effect here. The

1http://www23.tomshardware.com/cpu 2004.html
2http://www.tahi.org/lcna/docs/cpu-performance/processor.html,

http://www.skepticfiles.org/cowtext/comput∼1/486vs040.htm
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time was recorded from the creation of the first thread to the termination of the

last session, while CPU time is again the sum of user and system time on the

client. The factors in this test were three security schemes x two architectures.

7.2.3 Impact of Concentrators

While the first two tests only measured total and CPU time as well as memory

usage on the client, this test also measured CPU time and memory usage on

the transaction processor. This test revealed whether a concentrator had any

benefit for transaction processors by hiding client connects/disconnects (as de-

scribed in Section 6.2). The client transferred 50 transactions as in the second

experiment. The architecture was not important here as the concentrator does

not care whether the transaction comes directly from a client terminal or a SIP

Proxy/SBC. Thus the Internet architecture was used in this test to remove any

effects the SIP Proxy may have had. When unconcentrated, the transaction

path is that depicted in Figure 7.2. Figure 7.3 shows the transaction path with

a concentrator. This set up represented an implementation of Figure 5.7. The

factors in this test were three security schemes x Concentrated/Unconcentrated.

Figure 7.3: Transaction path with concentrated sessions. The concentrator

maintains a persistent session with the transaction processor.

7.2.4 Recovery Time

This test demonstrated the feasibility of the recovery mechanism and measured

the time required to recover from a transaction server failure for the two ar-

chitectures. The CPU time on the client was also measured. Unlike the other

experiments where only one transaction processor was operating, this test had

two transaction processors operating. AES encryption was used for both tests

as security was not assumed to be a factor in recovery time. The client sent

a single transaction and the first transaction processor was made to fail after
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receiving the MESSAGE request from the client. The opposing method would

be to have one server fail randomly, however this could have reduced the com-

parability between the two models. The transaction path is shown in Figures

7.4 and 7.5 for the IP PSTN and Internet models respectively.

Figure 7.4: Transaction path with transaction processor failure in the IP PSTN

architecture. After the client times out, it starts a new session. The SIP server

then proxies the transaction to the working transaction processor.

Figure 7.5: Transaction path with transaction processor failure in the Internet

architecture. After the client times out, it starts a new session with the next

transaction processor in the list.

While a transaction timeout of 5000ms was used for all previous experiments,

three timeout values were used here. Network architecture was also a factor in

this test. Therefore, the factors in this test were three timeout values x two

architectures. Testing with 50 threads would have given information on how the

architecture handled a relatively larger number of transactions, unfortunately

not all threads timed out properly.



Chapter 8

Results and Discussion

8.1 Single Transaction

In the first experiment, the client was configured to send one transaction using

both the IP PSTN and Internet architecture. Figure 8.1 shows the mean phase

and total times.

Figure 8.1: Mean times for a single transaction.

For a single transaction, the Internet architecture’s total time was slower.

This was due to the additional phase of populating the server list. This step

was not required in the IP PSTN model. Enabling encryption resulted in slower
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Security Server List

Populated

Session Es-

tablished

Transaction

Completed

Session

Terminated

Total

Time

S.D.

Unsecured 112.9 94.1 160.5 84.6 452.1 17.9

AES 227.8 217.6 144.2 80.6 670.2 53.8

3DES 217.6 237.7 120.8 88.9 665.0 54.8

Table 8.1: Mean total times for a single transaction using the Internet model.

All figures are in ms.

Security Session Es-

tablished

Transaction

Completed

Session

Terminated

Total

Time

S.D.

Unsecured 132.6 173.3 80.2 386.1 54.9

AES 225.9 260.2 79.8 565.9 46.7

3DES 228.4 251.2 75.3 557.8 54.1

Table 8.2: Mean total times for a single transaction using the IP PSTN model.

All figures are in ms.

times for both architectures.

The differences between the architectures were statistically significant (F1,54 =

53.70, p < 0.01) as were the differences between the encryption schemes (F2,54 =

106.84, p < 0.01). The mean values for each phase are in Table 8.1 and 8.2 for

the Internet and IP PSTN architectures respectively. There was no statistically

significant interaction between architecture and the encryption scheme.

Figure 8.2 shows the mean CPU times used. The CPU times mirror the total

times; the Internet architecture required more CPU time than the IP PSTN

architecture due to the additional phase of discovering available transaction

processors. Enabling encryption also resulted in more CPU time used for both

architectures.

Again the differences between the architectures for CPU time used were

Security Internet S.D. IP PSTN S.D.

Unsecured 260.4 19.0 224.0 30.8

AES 374.8 20.1 343.2 19.0

3DES 384.4 25.7 337.7 22.1

Table 8.3: Mean client CPU times for a single transaction. All figures are in

ms.
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Figure 8.2: Mean client CPU times for a single transaction.

statistically significant (F1,54 = 40.77, p < 0.01) as were the differences between

the encryption schemes (F2,54 = 172.12, p < 0.01). There was no statistically

significant interaction between architecture and the encryption scheme in terms

of CPU time. The mean values are in Table 8.3.

Figure 8.3: Mean client heap usage for a single transaction.
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Memory/Java Heap usage followed the same pattern as the CPU time used

(Figure 8.3). The Internet architecture required more heap space under all

security schemes. This is also assumed to be a consequence of the additional

phase. Enabling encryption increased memory usage, with AES requiring the

most under both architectures. Despite Java’s periodic garbage collection, the

variance in heap space used was not as large as expected.

Security Internet S.D. IP PSTN S.D.

Unsecured 6.16 0.94 4.60 0.53

AES 9.79 0.93 8.27 0.92

3DES 8.92 0.83 7.64 0.72

Table 8.4: Mean client heap usage for a single transaction. All figures are in

MB.

Like the other tests, the differences here between the architectures were

statistically significant (F1,54 = 46.70, p < 0.01) as were the differences between

the encryption schemes (F2,54 = 109.14, p < 0.01). There was no statistically

significant interaction between architecture and the encryption scheme. The

mean values are in Table 8.4.

8.2 Multiple Transactions

In this experiment, the client was configured to send 50 simultaneous transac-

tions using both the IP PSTN and Internet architecture. Figure 8.4 shows the

mean total times.

While the differences between the two architectures were minimal with no

security, they were notable when encryption was enabled. The IP PSTN archi-

tecture was clearly slower than the Internet architecture when encryption was

used. Both architectures required more time when encryption was enabled.

The differences between the architectures were statistically significant (F1,54 =

171.47, p < 0.01) as were the differences between the encryption schemes (F2,54 =

472.10, p < 0.01). There was also a statistically significant interaction between

the architecture and encryption (F2,54 = 43.78, p < 0.01). This interaction is

clear in Figure 8.4; while the IP PSTN architecture was slower than the Inter-

net architecture, the Internet architecture suffered a larger performance penalty

when switching from AES to 3DES than the IP PSTN architecture. The mean

values for the total times are in Table 8.5.

Figure 8.5 shows the mean CPU times when 50 transactions were sent. Like
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Figure 8.4: Mean times for 50 transactions.

Security Internet S.D. IP PSTN S.D.

Unsecured 3244.1 460.8 3250.1 409.5

AES 6557.0 818.8 10187.7 810.9

3DES 7572.5 782.2 10577.6 502.7

Table 8.5: Mean total times for 50 simultaneous transactions. All figures are in

ms.

the single transaction experiment, the CPU times mirrored the total times. The

IP PSTN model was slower than the Internet architecture when encryption was

enabled. Encryption required more CPU time in both architectures.

The differences in CPU time between the architectures were statistically

significant (F1,54 = 32.93, p < 0.01) as were the differences between the encryp-

tion schemes (F2,54 = 302.05, p < 0.01). The interaction between the archi-

tecture and encryption was also statistically significant in terms of CPU time

(F2,54 = 8.67, p < 0.01). This effect is the same as the interaction in the to-

tal times; the Internet architecture had a larger performance degradation when

moving from AES to 3DES than when the IP PSTN architecture was used. The

mean values for the CPU times are in Table 8.6.

Heap usage (Figure 8.6), surprisingly, did not follow the same pattern as

total and CPU time. While enabling encryption increased the memory used,
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Figure 8.5: Mean client CPU times for 50 transactions.

Security Internet S.D. IP PSTN S.D.

Unsecured 3128.6 449.5 3227.8 461.9

AES 6391.2 808.0 8242.5 809.9

3DES 7428.5 795.8 8434.9 545.8

Table 8.6: Mean client CPU times for 50 simultaneous transactions. All figures

are in ms.

there was no statistically significant difference between the architectures. The

relatively larger variance in the encrypted exchanges was likely to be a result of

Java’s periodic garbage collection.

While there was no difference between the architectures in terms of heap

usage, the differences between security schemes were statistically significant

(F2,54 = 240.97, p < 0.01). ANOVA also reported a statistically significant

interaction between architecture and encryption (F2,54 = 4.09, p < 0.05). While

statistically significant, it is unlikely to be of practical significance, as the archi-

tectures cannot even be statistically differentiated. The mean values for heap

usage in this test are in Table 8.7.
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Figure 8.6: Mean client heap usage for 50 transactions.

Security Internet S.D. IP PSTN S.D.

Unsecured 9.12 0.35 8.90 0.77

AES 26.95 2.87 23.91 4.08

3DES 25.67 3.29 27.77 3.49

Table 8.7: Mean client heap usage for 50 transactions. All figures are in MB.

8.3 Impact of Concentrators

While this experiment measured the total and CPU time as well as memory

usage on the client like the previous two, the CPU time and memory usage

on the transaction processor was measured as well. The client was configured

to send 50 simultaneous transactions using the Internet architecture, with and

without concentrators. Figure 8.7 shows the mean CPU time on the transaction

processor.

The impact of a concentrator is clear in Figure 8.7; concentrating sessions

onto a single session reduced the CPU time on the transaction processor by

almost half in the instance of no security, and by over two thirds when security

was enabled. Security had significantly less impact on the CPU time required

when the sessions were concentrated.

The differences between concentrated and unconcentrated connections was

statistically significant (F1,54 = 1041.36, p < 0.01), as were the differences be-
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Figure 8.7: Mean Transaction processor CPU times for 50 transactions.

tween the encryption schemes (F2,54 = 84.76, p < 0.01). The interaction be-

tween concentration and encryption was also statistically significant (F2,54 =

67.88, p < 0.01). This interaction is clear in Figure 8.7; the CPU time required

changed very little when security was enabled with concentrated sessions, how-

ever, when sessions were not concentrated, the encryption had a significant

impact on CPU time used. The mean values for the CPU times are in Table

8.8.

Security Concentrated S.D. Unconcentrated S.D.

Unsecured 775.6 107.3 1536.9 116.9

AES 775.2 111.4 2693.8 245.9

3DES 892.0 126.1 2873.8 307.8

Table 8.8: Mean transaction processor CPU times for 50 simultaneous transac-

tions using the Internet architecture. All figures are in ms.

Heap usage on the transaction processor is shown in Figure 8.8. Like the

CPU times, placing a concentrator in the transaction path had a noticeable

effect; memory usage was lower when the sessions were concentrated. This

effect was noticeable when the sessions were encrypted.

The differences between the concentrated and unconcentrated sessions was

statistically significant (F1,54 = 158.95, p < 0.01), as were the differences be-
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Figure 8.8: Mean transaction processor memory usage for 50 transactions.

tween the encryption schemes (F2,54 = 60.10, p < 0.01). There was also a sta-

tistically significant interaction between concentration and encryption (F2,54 =

26.05, p < 0.01). This effect was similar to the interaction in the transaction

processor CPU times. The heap usage almost doubled when encryption was

enabled in the unconcentrated sessions. The same increase in concentrated ses-

sions was significantly less. Table 8.9 contains the mean values.

Security Concentrated S.D. Unconcentrated S.D.

Unsecured 5.69 1.23 6.41 1.26

AES 6.93 0.99 12.36 1.36

3DES 6.74 0.91 11.53 0.89

Table 8.9: Mean transaction processor memory usage for 50 transactions. All

figures are in MB.

Figure 8.9 shows the impact of concentration on the total time required for

50 transactions on the client. The differences between concentrating and not

concentrating sessions were not statistically significant. Like in the previous

experiments, the differences between the encryption schemes were statistically

significant (F2,54 = 132.55, p < 0.01). There was no statistically significant

interaction between concentration and encryption. The mean values for the

total times are in Table 8.10.
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Figure 8.9: Mean times for 50 transactions.

Security Concentrated S.D. Unconcentrated S.D.

Unsecured 3344.6 515.4 3244.1 460.8

AES 6479.0 940.2 6557.0 818.8

3DES 6806.7 1131.9 7572.5 782.2

Table 8.10: Mean total times for 50 simultaneous transactions using the Internet

architecture. All figures are in ms.

Figure 8.10 shows the impact of concentration on the CPU time used by the

client. The CPU times echo the total times; the differences between concen-

trating and not concentrating were not statistically significant. The differences

between encryption schemes, however, were statistically significant (F2,54 =

132.41, p < 0.01). There was no statistically significant interaction between

concentration and encryption. The mean values for the CPU times are in Table

8.11.

The effect of concentration on the client’s heap usage was similar (Figure

8.11); there were no statistically significant differences between concentrating

and not concentrating sessions. Differences between the security schemes were

statistically significant (F2,54 = 225.18, p < 0.01). There was a statistically

significant interaction between concentrating and security reported by ANOVA

(F2,54 = 3.37, p < 0.05). However, as the concentrations cannot even be sta-
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Figure 8.10: Mean client CPU times for 50 transactions.

Security Concentrated S.D. Unconcentrated S.D.

Unsecured 3273.8 526.7 3128.6 449.5

AES 6343.6 885.3 6391.2 808.0

3DES 6658.0 1124.0 7428.5 795.8

Table 8.11: Mean client CPU times for 50 simultaneous transactions using the

Internet architecture. All figures are in ms.

tistically differentiated, the effect of this interaction is small. The mean heap

usage for the client are in Table 8.12.

Security Concentrated S.D. Unconcentrated S.D.

Unsecured 8.96 0.52 9.12 0.35

AES 24.41 4.30 26.95 2.87

3DES 28.00 3.87 25.67 3.29

Table 8.12: Mean client heap usage for 50 transactions. All figures are in MB.
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Figure 8.11: Mean client heap usage for 50 transactions.

8.4 Recovery Time

In this experiment, the failure recovery of the system was tested. Two transac-

tion processors registered with the SIP server. The first transaction processor

which received the transaction was made to fail after receiving the MESSAGE

request from the client. This meant the client had to fallback to the second

transaction processor. Figure 8.12 shows the total time required to complete a

transaction when a transaction processor failed.

Figure 8.12 shows that the transaction recovery time is highly dependent on

the transaction timeout. The total transaction time is simply the time required

to start a transaction, the timeout period, then performing the transaction with

a working transaction processor. Like the single transaction test, the Internet

architecture was slower due to the additional phase.

Time Out Internet S.D. IP PSTN S.D.

One second 1988.9 61.4 1775.3 19.2

Three seconds 3955.1 31.0 3734.5 47.0

Five seconds 5979.7 61.1 5703.2 110.9

Table 8.13: Mean transaction times for a single transaction with a transaction

processor failing mid-transaction. All figures are in ms.
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Figure 8.12: Mean transaction time for a single transaction with a transaction

processor failing mid-transaction.

The differences between the architectures were statistically significant (F1,54 =

216.35, p < 0.01) as were the differences between the timeouts (F2,54 = 20144.60, p <

0.01). There was no interaction between the architecture and delay. Table 8.13

shows the mean values.

Figure 8.13 shows the CPU usage on the client. The CPU times were not

affected by the transaction timeout period. Like the single transaction exchange,

the Internet architecture required more CPU time. The differences between the

architectures were statistically significant (F1,54 = 313.13, p < 0.01). There was

no other significant effect in this test. The values for the mean CPU times used

are in Table 8.14.

Time Out Internet S.D. IP PSTN S.D.

One Second 514.5 33.6 400.5 16.3

Three seconds 515.2 34.1 388.4 18.0

Five Seconds 514.8 33.7 383.2 20.1

Table 8.14: Mean client CPU time for a single transaction with a transaction

processor failing mid-transaction.
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Figure 8.13: Mean client CPU time for a single transaction with a transaction

processor failing mid-transaction.

8.5 Discussion

In the single transaction experiments, the Internet architecture was slower than

the IP PSTN model. This was because it had the additional phase of populating

the server list and negotiating two sessions: one with the SIP server, then

another with the transaction processor. In the instance of a single transaction,

this had a larger performance impact than having to maintain two sessions at

the proxy; consequently, the Internet model placed a smaller load on the SIP

proxy.

In the 50 transaction experiments, however, the Internet architecture was

faster than the IP PSTN model as the messages did not need to be proxied. The

IP PSTN model placed extra load on the SIP server and had additional latency

because the messages were proxied. The larger volume of proxied transactions

had a greater effect on transaction time than the impact of the Internet model’s

additional phase of populating the server list. A faster SIP proxy may have

alleviated this.

Using concentrators to aggregate multiple SIP sessions onto a single session

reduced the load on the transaction processor in terms of CPU time. Doing this

improves the scalability and reliability of the transaction processor. Despite

the introduction of an additional entity in the transaction path, concentrating



CHAPTER 8. RESULTS AND DISCUSSION 139

sessions had no statistically significant impact on the transaction time, CPU

time or heap usage on the client.

In all experiments, enabling encryption increased the transaction time as well

as memory usage. AES was generally faster than 3DES. This has been verified

in other studies [84, 86, 122], which found that AES provided faster performance

than 3DES. Research showed that, as AES was less processor intensive, it had

lower energy consumption [98], which is an important factor in battery life in

mobile embedded devices. AES had a larger memory footprint than 3DES in

the single transaction exchange; it was found that AES code was larger than

3DES code, but a dedicated hardware solution would reduce this [86].

The heap usage on the client in the 50 transaction exchanges (Figures 8.6

and 8.11) was affected differently by the security schemes, architecture and con-

centration. For instance, Figure 8.6 shows that, when encrypted with AES,

the Internet architecture appeared to use more heap space than the IP PSTN

architecture. However, this was reversed when the encryption was changed to

3DES. A similar, although opposite, pattern appeared on the client with con-

centrated/unconcentrated sessions. Despite the appearance of differences, the

large variance made any differences statistically insignificant. The large variance

was probably due to Java’s periodic garbage collection; the heap usage increases

until a garbage collection is performed. This made accurate measurements of

memory usage difficult.

Recovery time was found to be highly dependent on the transaction time-

out. When the timeout was low, the transaction recovered from transaction

processor failure faster. However, this test did not examine stress loading on

the transaction processors because when the client was run with a relatively

large number of threads, for example 50, not all threads timed out according to

the specified timeout and instead fell back to the SIP timeout. The standard

SIP timeout is approximately 32 seconds, which was considered too long for this

project.

These results demonstrate that the proposed solution stack on either network

model provides a viable architecture on which to run a transaction network.

The slowest transaction time, 50 transactions using 3DES encryption on the

IP PSTN model, was 10.6 seconds. This is below the current system’s total

transaction time of 15 seconds, as noted in Section 2.1.

8.5.1 Single Transactions

When the client was sending a single transaction, the IP PSTN model was faster.

This was because the Internet model had the additional step of populating the
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server list. In the IP PSTN model, the SIP server operated as a proxy and

performed this step on behalf of the client. However, Figure 8.1 shows that,

without the additional step, the same set of phases in the Internet model was

faster than the corresponding phase in the IP PSTN architecture. While the

differences between the architectures were small, they may be significant on an

embedded device with limited processing ability.

The Internet model also had to negotiate two TLS connections (two TCP

connections in the unsecured test): one with the SIP server/registrar and an-

other with the transaction processor. In contrast, a client in the IP PSTN model

only needed to negotiate a single TLS connection with the SBC/SIP Proxy. TLS

connection negotiation used approximately a third of the total connection time

in these instances. This additional phase accounted for the Internet model’s

higher CPU time and larger heap usage.

In the IP PSTN model, over one third of the time was spent on establishing

the single TLS connection. With the Internet model, almost half, and in the

instance of encrypted sessions, over two thirds, of the total time was spent

establishing the sessions - this consisted of populating the server list and the

actual session establishment. In a high volume transaction environment, the

benefit of a concentrated, persistent session is clear; a session does not need

to be established for each transaction. Rather than having to establish a new

session upon each request, a concentrator can forward transactions on the session

it maintains with the transaction processor.

This benefit mainly applies to proxies such as SIP servers and concentrators,

as the transaction rate from a single transaction terminal is still low, that is, only

a single person can use a transaction terminal at a time. If individual transaction

processors were to maintain persistent sessions with transaction processors, a

significantly larger amount of state stored on a transaction processor would be

required.

The transaction phase (the two MESSAGE request and OK response pairs)

when encrypted, required almost twice as much time in the IP PSTN architec-

ture than in the Internet architecture. This was due to the proxy behaviour

where the messages were handled twice. Thus even if the transaction processor

responded immediately, the response may have been delayed and held up at the

SIP proxy.

It is interesting to note that the transaction phase was slower when there

was no security in the Internet model. The delay between receiving the MES-

SAGE from the transaction processor and sending the 200 OK response was

substantially shorter in the secured exchanges than in the unsecured exchange.
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This delay (Delay 1 in Figure 8.14), when secured, had a wide range of values.

AES had a mean delay of 36.4ms (s.d. 40.9) and 3DES a mean of 20.6ms (s.d.

24.6). Delay 1 in the unsecured transfers had a mean of 76.7ms (s.d. 5.5).

Figure 8.14: Messages 1-4 is the Session Establishment phase, 5-8 is the Trans-

action Phase and 9 and 10 make up the Session Termination phase.

The Delay 1 difference between the secured and unsecured exchanges was also

present in the IP PSTN architecture; unsecured had a mean delay of 76.4ms (s.d.

6.4), AES was 28.3 (s.d. 24.0) and 3DES was 22.9 (s.d. 17.9). As indicated by

the large standard deviation, the values for Delay 1 in the secured exchanges also

had a wide range of values. However, as the IP PSTN model proxied messages,

the delay between receiving the 200 OK and the subsequent MESSAGE request

(Delay 2 in Figure 8.14) from the transaction processor was large enough to

hide Delay 1 in Figure 8.1. Delay 2, in the IP PSTN model, required almost

twice the length of time that the Internet model required. This was because of

the IP PSTN’s proxying behaviour. The code to handle incoming MESSAGE

requests was identical in all tests yet Delay 1 was longer when unencrypted; this

is assumed to be an issue with the SIP library.

Terminating the session was similar across all transfers regardless of ar-

chitecture or whether encryption was enabled. Depending on the volume of

transactions, a concentrated, persistent session could also bring benefits here in

terms of transaction time; after each transaction, the session will not need to

be terminated.
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8.5.2 Multiple Transactions

The Internet model was faster than the IP PSTN architecture when the client

was made to send 50 transactions, in contrast to the single transaction tests,

where the Internet architecture’s additional phase caused it to be slower. Here,

the load imposed by the additional phase in the Internet model was eclipsed by

having to proxy the transaction in the IP PSTN model.

The effect of the proxy was evident in the secured exchanges. The proxy had

to maintain two TLS sessions for each client; one to the client and another to

the transaction processor. The additional latency of having to handle messages

twice also had an effect: CPU time is a smaller proportion of total time in the

IP PSTN model. This signified that the client had more idle time in the IP

PSTN architecture. This is because of the additional latency of waiting for the

request and response to be proxied back.

This did not explain, however, the increased CPU time in the IP PSTN ex-

changes; the IP PSTN’s CPU usage was higher than the corresponding exchange

in the Internet model. This increased CPU time was unexpected as the client in

the IP PSTN architecture sent fewer messages than in the Internet architecture;

thus, fewer messages had to be handled and secured. It was possible that the

SIP library did not relinquish the CPU when waiting for a response.

To investigate this, an additional test was run. The aim was to investigate

whether the SIP library/JVM really did relinquish the CPU when waiting for a

response. The Internet architecture with AES encryption was used. The client

was run with 10 threads and the CPU time was recorded. This was repeated

15 times. The transaction processor software was then modified to wait 1000ms

before responding to a request. The client was run again with 10 threads.

Without the 1000ms delay, the client CPU time was 1220.6ms (s.d. 213.5).

When the transaction processor had the delay, the CPU time on the client

increased to 1542.2ms (s.d. 265.5). This difference was statistically significant

(t28 = 13.37, p < 0.01). This result showed that, despite exchanging the same

messages, when the transaction processor was delayed, the client continued to

use a small amount of CPU time when apparently idle.

This explained the increased CPU usage in the IP PSTN model. There was

more idle time in the IP PSTN model, due to the proxying behaviour. Idle time

contributed a small amount of CPU time, resulting in a higher CPU time. This

effect is probably only present when the client is executed with multiple threads;

the CPU time used did not change in the recovery tests with different timeouts.

This was because the recovery tests were run with only a single thread.

There was a statistically significant interaction between architecture and
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encryption. The Internet model experienced a noticeable increase in total and

client CPU time when switching from AES to 3DES; the IP PSTN model had

little difference. As noted above, there was more idle time in the IP PSTN model

than in the Internet model. The SIP server was a Pentium 4 2.4GHz, while the

transaction processor was an Athlon 800MHz. This suggested the transaction

processor was the bottleneck; the SIP server was forwarding and processing

requests faster than the transaction processor could handle them. This meant

the SIP server and therefore the client were waiting on the transaction processor

to return responses. Switching from AES to the more processor intensive 3DES

meant less idle time on the SIP server. That is, some of the server’s idle time in

AES was consumed as CPU time when switching to 3DES, resulting in a similar

total transaction time.

Contrast this with the Internet model. The client and transaction processor

communicated with each other directly after populating the server list. Any

increase in processing time on either end resulted in an overall increase in time.

As 3DES is a more processor intensive cipher, client CPU time increased, as

indicated in Figure 8.5. Total time increased as well because the transaction

processor took longer to respond as a result of the slower cipher.

There was no statistically significant difference between the two architectures

in terms of heap usage. This was because with a larger number of threads, a

larger proportion of the heap would have been used to store objects; with the

single transaction test, a larger proportion of the heap would have been used

to store classes. That is, once the classes have been loaded, the cost of storing

additional objects is low. This explains that despite sending 50 times more

transactions with 50 times more threads, heap usage only increased by half

in the unsecured transactions and only approximately tripled in the secured

exchanges.

8.5.3 Impact of Concentrators

Concentrating sessions onto a single session to the transaction processor signifi-

cantly reduced the CPU time and heap space used on the transaction processor.

This was expected, as the transaction processor no longer had to deal with in-

coming sessions, their termination or allocate memory for their maintenance.

The transaction processor maintained a single persistent session with the con-

centrator and only had to deal with the actual MESSAGE requests.

There was a statistically significant interaction between concentration and

encryption. When the sessions were concentrated, there was little change in

the CPU time required on the transaction processor. Heap usage increased
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by a relatively small amount as well. However, the CPU time required with

unconcentrated sessions increased significantly when encryption was enabled.

Memory usage, in the encrypted exchanges, almost doubled. There were several

factors which caused this. One was that the transaction processor simply did not

need to maintain a session for each client; it only maintained a single session with

the concentrator. This reduced the amount of state required by the operating

system to maintain network connections. The second was that since sessions

did not need to be created and terminated, fewer packets were exchanged. This

included the INVITE and BYE sequences. Fewer packets meant the transaction

processor did not need to encrypt as much traffic, resulting in less CPU time

used.

Concentrating sessions had no performance impact on the client. That is,

when the sessions were concentrated, total time, CPU time and heap usage

could not be statistically differentiated from the unconcentrated sessions. This

was despite having the concentrator positioned in the transaction path.

A concentrator reduces the processing load and memory usage on a transac-

tion processor while serving the same number of clients. This enables the same

transaction processor to process transactions from more clients than if sessions

were not concentrated. This can reduce costs as well as improve reliability; if

the transaction processor is not running at full load, the additional spare pro-

cessing capacity means it can still process transactions in the event of a sudden

jump in transaction rate. These benefits come at no cost to the client.

8.5.4 Recovery Time

Recovery time for a single transaction was found to be highly dependent on

the transaction timeout. Total transaction time was approximately 700-1000ms

(the normal time required for a single transaction) added onto the transaction

timeout value. The Internet architecture’s additional phase caused it to have a

longer transaction time, resulting in a longer recovery time than when the IP

PSTN model was used. When compared to the total transaction time (includ-

ing the transaction timeout), however, the extra time required for the Internet

model’s additional phase was small. This test demonstrated the fault tolerance

mechanism of the solution stack was indeed viable.

CPU time on the client was unaffected by the transaction timeout value.

Like in the single transaction test, the CPU time was higher when the Internet

model was used because of the additional phase. CPU usage was higher (when

a transaction processor failed) than the CPU times in the single transaction test

as the client had to establish a session with a different transaction processor and
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retransmit the transaction after failure of the first transaction processor.

A test with 50 parallel transactions was not performed. This was because the

timeout task associated for each thread did not work correctly on all threads.

When this timeout task failed, the corresponding thread would wait for the SIP

timeout before timing out (approximately 32 seconds). The standard SIP time-

out is defined in RFC 3261 as 64 * the retransmit time (usually 500ms). SIP’s

retransmit timer, however, is defined for UDP and other unreliable transports,

and retransmissions are not performed at the application layer when a reliable

transport protocol is used (such as TLS/TCP in this instance). Testing a large

number of parallel transactions would have provided details on the performance

of the transaction processor when subjected to a heavy load. These results

would have been dependent on the hardware used, nevertheless, they still would

have had value.

Transaction timeouts when set too low could potentially congest the net-

work. Clients could mistakenly assume a server was down when the cause of

the timeout was a latency spike. That is, clients may not be able to distin-

guish server failure and transaction queuing/processing delays. Further work

is required as the transaction timeout must be tuned to the latencies of the

network on which the transaction network is deployed. Transaction timeouts

would also depend on the processing capacity of the network, that is, the com-

bined transaction processing capacity. Transaction timeouts also need to keep

within reasonable levels of responsiveness, for example an EFTPOS terminal

must complete the transaction within reasonable time before the user finds the

wait too long.

8.5.5 Limitations

There were several major limitations with these experiments, however none of

them affected this project’s main goal of defining a protocol stack suitable for

short duration transactions. Some of these provide avenues for future work.

One assumption was that running 50 threaded transactions on the client

machine approximated a processor with 1/50th of the speed. This resulted in

the client maintaining 50 connections, instead of a processor 1/50th of the speed

maintaining a single connection. Therefore, the increased CPU time was not

only attributed to encrypting 50 times more data, but also administering 50

times the number of connections and sessions as well. Using an actual embed-

ded device with the processing capability typical of a hand held transaction

terminal would have provided the most accurate results. Fortunately, regard-

less of whether this assumption was valid or not, using 50 threaded sessions
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provided details of the performance of the SIP server and transaction processor

when presented with a large number of simultaneous transactions.

Therefore, a major limitation of this project was the failure to assess the

solution stack on an actual embedded device. This would have provided accurate

details on the performance of the solution stack and the impact of encryption

on an embedded processor. Using an actual embedded device could also have

provided specific details such as power usage, memory consumption and code

size. However, this would have required a native implementation, which could

have increased development time.

Another limitation was that no SBC was actually used, despite it being a

crucial part of the IP PSTN architecture. This was because no appropriate SBC

was available as explained in Section 6.4. In its place was a SIP proxy server.

The SBC would have provided NAT traversal and would have broken the session

between the client and the transaction processor; as described in Section 5.2,

the clients address messages to the SBC and the SBC forwards these to the

destination. SBCs also provide firewall and authentication functionality. None

of these were tested in this project. Fortunately these factors were largely

external to the function of the protocol stack.

Related to this was the testbed network; it was too simple to represent

an actual deployment. In a real scenario, there would be various routers and

switches in the path, each adding their own processing and network latency. In

addition, there was no real network infrastructure, for example the transaction

processor simply returned 300 bytes of data, instead of connecting to a back

end database.

While transaction processor failure recovery tests were performed, there was

no stress testing of the network and of the transaction processors. This would

have provided details on the scalability of the network; while the system works

if a transaction processor fails mid-transaction for a single client, there are no

guarantees the system will continue to function when there are a large number

of simultaneous transactions in the network and a transaction processor fails.

SCTP was also a viable transport protocol for the solution stack. The SIP

library in conjunction with the operating system used, however, did not support

SCTP.

Finally these results are limited to the hardware used. Faster hardware will

give different results. While the absolute values may change, the relative values

are expected to be similar; if encryption, for example, requires more time than

unsecured exchanges, it is expected that encryption will still require more time

than the unsecured exchanges using different hardware.
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Conclusions

This research projected aimed to define a generic IP based protocol stack suit-

able for short duration transactions and to evaluate the performance of the

architectures. Enabling encryption expectedly increased CPU and heap usage

as well as time to complete the transaction.

The single transaction experiments approximated a high performance em-

bedded processor. While the differences in time between the two architectures

were small, the differences will be significant if: there are a large number of

transactions, or embedded devices with limited processing capability are used.

Here, the Internet model had slower performance because of the additional

phase.

In the multiple transaction tests, the IP PSTN model had slower perfor-

mance. This was despite the IP PSTN architecture sending fewer messages.

This slower performance was due to the proxying behaviour; messages were

handled twice, introducing more latency and processing time.

Using concentrators to aggregate multiple sessions onto a single session had a

significant impact on the transaction processor. When concentrated, the trans-

action processor had lower CPU and heap usage compared with unconcentrated

sessions. The cost of encryption was also considerably lower on the transaction

processor when the sessions were concentrated. Although the concentrator rep-

resented another entity in the network path and subsequently introduced more

latency and processing time, this had no effect on the total transaction or CPU

time used by the client.

Recovery time was found to be highly dependent on the transaction timeout

value. Further work needs to be completed to analyse the network availability

and reliability under heavy load conditions. This test, however, still demon-

strated that the solution stack was robust in the event of a transaction processor

147
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failure.

Further work includes assessing the solution stack on an actual embedded

device, to attain an indication of real world performance. A more complex

and comprehensive testbed network could also be used, to provide a more re-

alistic model of performance. This includes using an SBC appliance, back end

databases and additional routers and switches to introduce realistic latency

typical of WANs. While TCP was the only transport protocol used, SCTP was

also a candidate transport protocol. Measuring the performance using SCTP

in place of TCP as well as the additional reliability provided by multihoming

is another possibility. With wireless networks becoming more pervasive, work

could also be performed on the feasibility of wireless payment networks and the

security challenges introduced.

The proposed SIP based solution has been demonstrated to be a viable

protocol stack on both the open Internet and the controlled private network

model. Both architectures support transactions within reasonable time and

demonstrate the ability to recover in the event of transaction processor failure.
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Appendix A

Generating Certificates

OpenSSL and Java’s Keytool were used to generate the public/private key pairs.

To generate the CA certificate and private key:

openssl req -x509 -new -out ca/cacert.crt -keyout ca/cakey.key -days

9999

To generate the SIP server’s certificate request and private key:

openssl req -config openssl.cnf -out proxy.csr -pubkey -new -keyout

privkey.pem -outform PEM -nodes

To sign the SIP server’s certificate request:

openssl x509 -req -in proxy.csr -CA ca/cacert.crt -CAkey ca/cakey.key

-CAcreateserial -outform PEM -out proxy.pem -days 9999

To generate the client’s public/private key pair:

keytool -genkey -alias clientKey -validity 9999 -keystore clientKey

-keyalg RSA

To export the client’s certificate signing request:

keytool -certreq -alias clientkey -keystore clientKey -file clientKey.csr

To import the CA’s certificate into the client’s keystore:

keytool -import -keystore clientKey -file cacert.crt -alias ca

Signing this request is the same as for the proxy.

Importing this signed certificate is the same as importing the CA’s certificate.

Generating the transaction processor’s keys require the same steps as generating

certificates for the client.
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