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1 Introduction

In 1967 Clive Granger proposed a de�nition to decide if a variable in a time series was

causal or not. This de�nition has come to be known as Granger-Causality, or G-Causality

for short. Over the years, there has been much debate over whether this procedure should

be deemed �causal� at all (Granger, C., 1988). About 30 years later, Marco Reale and

Granville Tunnicliffe-Wilson, developed a method - Graphical Modelling for Time Series

(GMTS) for providing causal models of multivariate time series (Reale, M., 1998). Orig-

inally, this method was applied to economics, and here I extend its application to ecology

and environmental science.

The aims of this thesis split roughly into two parts. The �rst aim is in relation to causal-

ity, where I ask what, if any, place does causality have in statistics? In particular, I will

discuss the notion of G-Causality and whether I believe it can legitimately be deemed

causal. Finally, I will discuss GMTS and whether it provides a causally appropriate mod-

elling strategy.

The second aim relates to the practical application of graphical modelling in time series,

in particular its application to ecological and environmental time series. I explore whether

GMTS produces improved models of the data compared with a traditional approach.

Chapter 2 brie�y outlines some common concepts used in time series analysis as well as

introducing some graphical modelling terms that will be referred to subsequently. Chap-

ter 3 aims to provide some background to the causal debate and where I stand vis the

relationship that should exist between statisticians and the topic of causation. In addition,

the GMTS modelling strategy to be adopted for subsequent analysis is explained along

with some remarks on its suitability as a causally appropriate strategy.

Chapters 4, 5 and 6 provide three very different case studies from which to explore

and assess the GMTS methodology. The �rst, is an example from economics, where
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this methodology was originally applied. This example contains a number of variables

and hence posed a combinatorial challenge in terms of possible contemporaneous rela-

tionships. Through this case study however, not only was the combinatorial problem

resolved, but ways of possibly extending the automation of this process discovered.

Chapter 5 contains an environmental example of hydrological processes where, due to

automated recording of data, there are vast numbers of observations (in the order of 104)

for a number of different variables. This chapter is interesting both because it provided

evidence that the GMTS approach consistently generates better models than a traditional

approach, but also provides some interesting insight into the causal problem GMTS faces.

Finally, I adapted the newly developed SINful approach to graphical modelling, proposed

by Drton and Perlman (2004), to time series to see if it improved on GMTS.

Chapter 6 takes us to the other extreme, an ecological dataset built up over more than

20 years, which consists of only 90 observations. This dataset strongly violates all the

requirements a multivariate time series needs for sensible analysis and required some ma-

nipulation of the original GMTS method in order to create a functioning model. This case

study indicated that while GMTS was developed for time series with a few adjustments,

it may have relevance to other types of modelling.
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Figure 1: A time series showing the number of serious drug offences committed in New Zealand
from 1981-2000.

2 Introduction to Time Series and Graphical Modelling

This thesis is concerned with the causally appropriate graphical modelling of multivariate

time series - vector autoregressive (VAR(p)) models in particular. In this chapter some ba-

sic concepts are introduced. These are divided into three sections: time series modelling,

graphical modelling and model assessment methods.

2.1 Time Series

A time series is simply a set of data collected over time. For example, �gure 1 gives a

time series showing the number of serious drug crimes committed in New Zealand from

1981-2000.

Time series can model either discrete or continuous processes. In addition, the sampling

of the process can also be either discrete or continuous. Figure 2 gives examples of the

different sorts of time series. The All Blacks win/loss record is an example of a time series

with discrete sample space and discrete state space, a signal passing through a cable has

continuous sample space and discrete state space. The time series of temperature, is an

example of a process with continuous state space sampled discretely and an example of a

series with continuous state and sample space is the plot of seismic activity.
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a) The All Blacks Win Loss Record from 2003-2005 b) Signal Passing Through a Cable
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Figure 2: Examples of different types of time series

In this thesis we will focus on time series with continuous state-space and discrete

sample space. Hence, all de�nitions provided will be the discrete formulation.

2.1.1 Stochastic Processes, Stationarity and Ergodicity

Time series are �nite realisations of stochastic processes, that is, the data are a collec-

tion of random variables that are ordered in time. This means that each observed data

point is only one realisation in a distribution, and hence, each time series (a collection of

data points) is only one realisation of an in�nite number of possible time series (Chat�eld,

1989). As �gure 3 shows, at each time point the observed value is drawn from a different

distribution.

The task of modelling, given just one observation from each random variable might seem

like an impossible task. But, by making a few key assumptions, a sophisticated disci-

pline of time series analysis has developed. These key assumptions are stationarity and

ergodicity.
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Figure 3: Diagram of time series thought of as a sequence of random variables each from
a different distribution

Stationarity

Stationarity is de�ned with respect to the parameters of interest and in time series this

is usually the mean and variance. If a series is stationary it implies that there is no change

in the mean and variance over time (Chat�eld, C., 1989, 10).

There are two de�nitions of stationarity: a strict de�nition, which is very thorough but

dif�cult to assess and a weaker one which is commonly used.

A series is said to be strictly stationary if:

The joint distribution of Xt, Xt+1, . . . , Xt+n and Xt+τ , . . . , Xt+n+τ ,∀t, τ, n are the same

(1)

A series is said to be weakly stationary if:

E(Xt) = µ ∀t & Cov(Xt, Xt−τ ) = γ(τ) ∀t, τ. (2)

(Chat�eld, C., 1989, 28-29), where Xt refers to the observed variable of a series at time

t. If a series satis�es the condition of weak stationarity we say that its �rst two moments,

the mean, E(Xt), and covariance, Cov(Xt, Xt−τ ), are time invariant.
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Satisfying the requirement of stationarity allows the observed values to be considered

as points in the same distribution and this means the series can be considered to be a

�proper� sample to which we can apply standard statistical techniques.

In the development of time series theory, the condition of stationarity is very important,

and, where time series do not satisfy this requirement, effort is often spent trying to create

a stationary series from the data by methods such as differencing a series to create

∇Xt = Xt −Xt−1, or removing any deterministic trends and modelling the residuals.

Having said this, in practise whether a series is considered to be stationary or not is not

an exact science. There are formal tests for stationarity such as the Dickey-Fuller (Dickey,

D et al., 1979) and Phillips-Perron (Phillips, P et al., 1988) tests. In particular, if one is

interested in an AR(p) model the augmented Dickey-Fuller test can be used. This is a

hypothesis test where the null hypothesis is that the process is I(1) (Hamilton,1994,475-

531). If the process is I(1) (integrated of order 1) the series will be stationary when

differenced once. However, because time series data are only one realisation of an in�nite

number of series, it is sometimes argued that we may assume the series is stationary

even if this is not what we observe, and hence tests such as this are not always helpful

(Hamilton,1994, 444-447). In addition, some modelling strategies can in fact model I(1)

processes, which most non-stationary processes are, and hence, the lack of stationarity is

not necessarily a major concern.

Ergodicity

Ergodicity like stationarity is de�ned with respect to parameters of interest. The prop-

erty of a series being ergodic means that the expectation of observed variables up to time

n = t (where t is �nite) is representative of the expectation of the entire process, i.e. as

n →∞ (Reale:1998, Chat�eld:1989). For a discrete stochastic processes this is formally

stated as:
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If {xn, n ≥ 0} is a strictly stationary stochastic process with E{|x0|} ≤ ∞ and the

sequence {xn} mutually independent then:

lim
n→∞

x0 + x1 . . . xn

n + 1
= E{x0} (3)

(Doob, 1953, 464-466).

Equation 1.3 means that if a sequence of observations ordered in time from 0 to t,

{x0, x1, . . . , xt}, is a strictly stationary stochastic process with �nite mean, and, the obser-

vations are mutually independent, then, as the sequence of xn extends to ∞, the expected

value of {xn} remains the same.

2.1.2 A Univariate Example: AR(p) Models

Depending on the nature of the data and the objectives of the research there are many dif-

ferent types of time series models. One of the simplest is the generic autoregressive model

of order p, or AR(p). An AR(p) model predicts the current value Xt as dependent on past

values of the series X , i.e. Xt−1, Xt−2, . . . , Xt−p up to a speci�ed order p, exploiting the

serial correlation often present in time series data.

An AR(p) is de�ned as:

Xt =

p∑
i=1

αiXt−i + Zt where{Zt} ∼ (0, σ2). (4)

Here, α refers to the coef�cients of the dependent variables and {Zt} ∼ (0, σ2) refers to

the sequence of error terms with mean 0 variance σ2, with Cov(Zt,Zt−k)=0, ∀k 6= 0.

To model a process as an AR(p) model, the appropriate αi values and lag p must be

found.
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2.1.3 Finding p

Finding the order of an AR model is done by using the sample partial autocorrelation

function (PACF) denoted π(·). The order p is found as the point at which the condition

πτ = 0 for τ ≥ p is satis�ed.

The partial autocorrelation function πτ is de�ned as:

πτ = Corr(Xt, Xt−τ |Xt−1, . . . , Xt−τ+1)

=




γ0 γ1 . . . γm−1

γ1 γ2 . . . γm−2

... . . .
...

γm−1 γm−2 . . . γ0




−1 


γ1

γ2

...

γm




Where, γτ = Cov [Xt, Xt+τ ]

= E{[Xt − E(Xt)][Xt+τ − E(Xt+τ ))]}

and,γ(·)is known as the autocovariance function.

(5)

(Hamilton,J.,1994,111).

Example

To illustrate this, consider the dataset lh, provided by R version 2.1.0 (R Development

Core Team, 2005). This univariate time series is data collected at 10 minute intervals,

for levels of luteinizing hormones in a human female. For this dataset the PACF can be

calculated and plotted as in �gure 4.

The dotted lines are the boundaries of the con�dence interval around zero provided by the

Ljung-Box statistic.
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Figure 4: Plot of PACF up to lag 15.

From inspection of �gure 4 there appears to be only one signi�cant value, and hence

this equation is de�ned as an AR(1) process.

In some cases however, p is very large and this is where other models such as moving

average (MA) and autoregressive moving average (ARMA) models may be appropriate.

MA models represent {Xt} in terms of the lagged errors in {Zt}, while an ARMA models

a process in terms of both the lagged values in {Xt} and {Zt}. MA and ARMA models

are not discussed further as the focus of this thesis is on multivariate AR models.

2.1.4 Finding α: Likelihood Estimation

Continuing with the luteinizing hormone example, on deciding that this is an AR(1)

model, it will have the form: Xt = αXt−1 + Zt. Now we need to �nd α. Maximum

likelihood estimation can be used to �nd the value of α1 for AR models.

Maximum likelihood methods (MLMs) take a model g which describes a probability

distribution of the data, with model parameters θ and a model form model. We can

write this g(x|θ,model), where x is the data. The likelihood function is then denoted as

L(θ|data,model) - or in our case L(θ|x, g). With both x and g known, the likelihood
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function calculates the likelihood of θ being a certain value. The assumption is made that

the best estimate is the most likely estimate, and hence θ is sought which maximises L
(Burnham, K. et al., 2002, 7-8). This function is solved numerically using any one of a

variety of optimization methods (for a selection of these see Hamilton, 1994, 133-142).

One of the simplest ways of estimating is the method of ordinary least squares, and this

can be thought of as a special case of a MLM (Burnham, K et al., 1998, 9).

An ordinary least squares �t takes an input matrix A, in this case A = [Xt−1], where

Xt−1 is a vector of length n, a vector x of unknown regression coef�cients (in our case

αi), and, the resulting series b (Xt). This is a system Ax = b, where x is unknown. To

�nd x, A−1b must be evaluated.

Example

In our case the model is an AR(1) model. Given the data lh, the system Ax = b is:




2.4

...

3.4

3.0




α1 =




2.4

...

3.0

2.9




(6)

Solving A−1b = 0.98364. Hence, in this example the resulting model is

Xt = 0.98364Xt−1 + Zt. Once this process is modelled, residuals should be checked for

unexplained variation and any anomalous trends. Errors are shown in �gure 5. Each plot

gives different information. The residuals vs �tted plot is used to check for unexplained

variance and any trends in variance. In this example, other than the three labelled outliers

there are no obvious trends. The QQplot is a quantile-quantile plot, used to check for

normality, and should display a straight line except at each end where it curves slightly to
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Figure 5: Plot of errors after �tting of AR(1) process to dataset lh

form a slight S shape. In this case this plot shows some lack of normality. The studentized

residuals provide a different view of the data which can sometimes give a better idea of

outliers. The Cook's distance plot measures the in�uence each variable has on the model,

in this case observations 3,9 and 34 had a very high in�uence. Depending on the objective,

one may try to remodel this process without these points, or, look at these points in more

detail given that they are so different.

2.1.5 The Multivariate Case: Vector Autoregressive Models

The extension of univariate time series to multivariate time series occurs when we wish to

analyse multiple time series where the individual time series may be related in some way.

For example, consider the three time series (where observations are recorded simultane-

ously) Xt, Yt, Zt are series on mortality rates, smoking rates and cancer rates respectively.
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These series could each be modelled as an AR process, but given their possible interrelat-

edness it may be more meaningful to model these series together. This is where the AR

models extend to VAR models.

There are various different types of VAR models. The formulation of a canonical

VAR(p) (cVAR) looks much the same as an AR(p) except with the variables represented

as vectors and matrices rather than single values.

A cVAR is de�ned as:

Xt = α1Xt−1 + α2Xt−2...αpXt−p + Zt (7)

where, Xt =




X1,t

...

Xn,t




, αm =




α1,1,q . . . α1,n,q

... ... ...

αn,1,q . . . αn,n,q




, 1 ≤ q ≤ p, Zt =




Z1

...

Zn




,

Z ∼ i.i.d., where we are modelling n time series.

The other type of VAR is a structural VAR (sVAR) which has the form:

α∗0Xt = α∗1Xt−1 + α∗2Xt−2...α
∗
pXt−p + Zt, X, Z, α∗ de�ned as above. (8)

The difference between the two is that the vector Xt has a matrix of coef�cients in the case

of the sVAR. The structural VAR is more general and can provide a better understanding

of the system under study. In addition, there are two types of sVAR models, simultaneous

equation models and recursive, or causal, models. The difference relates to the matrix

of coef�cients α∗0. In a simultaneous equation model, the matrix of contemporaneous

coef�cients cannot be reduced to a matrix in upper triangular form, whereas in a recursive

model it can. Simultaneous equation models are tricky to deal with and for the duration of

this thesis, when I refer to an sVAR model I will be referring to a recursive sVAR model.

17



2.1.6 Modelling VAR Processes

A cVAR model, having the same form as a univariate AR model can be parametrised in

a similar way as the univariate AR. The sVAR however, is more complex because the

coef�cient matrix α∗0 prevents solving the equation 8 by the method described in section

2.1.4. In addition, although for a given sVAR model a unique cVAR can be found, the

converse is not true and, hence, trying to transform an sVAR model, which cannot be

solved, into a cVAR model, which can, is not an option.

For a given sVAR there is a unique cVAR:

Given a recursive sVAR as in equation 8:

α∗−1
0 exists and is unique. Multiplying both sides of equation 8 gives

Xt = α∗−1
0 α∗1Xt−1 + α∗−1

0 α∗2Xt−2 . . . α∗−1
0 α∗pXt−p + α∗−1

0 Zt

this is a cVAR model withV is the variance-covariance matrix of residuals ¤

(9)

For a given cVAR there exists more than one sVAR:

Set α∗−1
0 α∗kXt−k = βt−kXt−k, then equation 9 can be written as:

Xt = β1Xt + β2Xt−1 + ... + βt−kXt−k + Et

Where, Et = α∗−1
0 Zt V = D can be written as α∗−1V α∗ 6= D

Multiplying through by α∗ the cVAR in equation 9 can be recovered

however α∗is not unique, as multiple factorisations exist.

hence for each cVAR there will be more than one sVAR¤.

(10)

(Reale, M., 1998, 42). One method of solving sVAR models is by orthogonalization of

residuals. This method models a cVAR, takes the residual matrix Et, drawing on the

results given above, and uses a method such as Choleski decomposition to express the
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A

B

C

Figure 6: An undirected graph (UG)

residuals V = ADAT . The value of A is then an estimate of the matrix of contemporane-

ous coef�cients. However, this method is not unique as there may be several alternative

orthogonalizations, which would result in different values for A. Despite these dif�culties,

there are other advantages in modelling data as an sVAR model. This will be discussed

further in chapter 2.

2.2 Graphical Models

2.2.1 Language

Graphical models are diagrams which contain nodes and edges. Figure 6 is an example of

a graphical model and is an undirected graph (UG). In this model the circles containing

the letters A,B and C are referred to as nodes, and in our case are possible variables in a

model. The lines which join each node are referred to as edges.

If a direction is added to each edge such that a cycle is not created, the resulting graph

is a directed acyclic graph or DAG, as in �gure 7. In a DAG a node with an incoming

arrow is referred to as a child, the parent is the node with the associated outgoing arrow.

For example, in �gure 7 B is a parent of both A and C. In our case a DAG speci�es

a system of equations of one variable in terms of others. This DAG corresponds to the

19



A

B

C

Figure 7: A directed acyclic graph (DAG)

system of equations 11.
A = αB + βC

C = γB

(11)

2.2.2 Conditional Independence Graphs

If we wish to use graphical models in this way, then the important question is, given a set

of variables (nodes) what criteria must be satis�ed for an edge to be drawn between two

nodes. One possibility is to use the criteria of conditional independence.

Independence is de�ned as:

P (A|B) = P (A) (12)

If this condition is satis�ed then we say A is independent of B or A⊥⊥B, and interpret it

by saying that the occurrence of event B does not affect the probability of event A.

This principal of independence can be extended to an idea of conditional independence:

P (A|B, C) = P (A|C) (13)

If this condition is satis�ed then we may say that A is conditionally independent of B, or

A⊥⊥B|C. The interpretation is that given C, the occurrence of event B does not affect the

probability of event A.
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A B

A B

Figure 8: Top: A and B are conditionally independent. Bottom: A and B are conditionally
dependent.

Graphically, if two variables are conditionally independent, then there is no edge be-

tween two nodes (�gure 8, top). If two variables are conditionally dependent then there is

an edge drawn between each node (�gure 8, bottom). A conditional independence graph

(CIG) is a graphical model which represents these relationships between all variables

under study.

Another term that will be used is that of subgraphs. Subgraphs are parts of graphs, for

example �gure 8 (bottom) is a subgraph of the graph in �gure 6.

2.2.3 Turning CIGs into DAGs

To add direction to a CIG there are two cases to consider. Where there is a clear �arrow of

time�, the direction can be added automatically. In other cases subject matter knowledge

or methods of exhaustion need to be employed.

There is one exception to this. Referring to �gures 6 and 7, suppose events B and C

occur at the same time (contemporaneously) and both occur before A, adding the arrows

directed from B to A and C to A is straightforward. Further, suppose we have a priori

knowledge that event C could not cause event B. It would be natural to assume we have

created a DAG equivalent to the following CIG but this is not quite correct. The model is

also equivalent to the CIG in �gure 9. This brings us to the principal of moralisation.
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A

B

C

Figure 9: Another DAG equivalent to CIG in �gure 6

t-1

t-1

t-1

t

t

t

Figure 10: A diagram which shows the principal of moralisation when transforming a CIG into a
DAG. The DAG at the top is one example of a possible DAG permutation. The DAG at the bottom
with a missing link between parents, is also equivalent. A corollary of this is that the DAG shown
at the bottom is not equivalent the CIG formed simply by removing arrows.

2.2.4 Moralisation

Theoretically, in transforming a CIG into a DAG it is important that the dependence rela-

tions are unchanged. In most cases a CIG and its corresponding DAG i.e. the CIG with

arrows added, can be shown to be equivalent. However, in cases of subgraphs such as in

�gure 10, there are multiple DAGs which correspond to one CIG.

The language used in this process is de�ned as follows: When moving from a CIG with

a subgraph of the type in �gure 6 a graph is demoralised by identifying the links which
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join two parents without underlying conditional dependence. When moving from a DAG

to a CIG, a graph is moralised by adding a link between two parents of the same node.

For example, in �gure 9 both B and C are parents of A hence, to recover the CIG we add

an edge between the parents B and C.

2.3 Model Assessment, AIC, HIC and SIC

The �nal concept to be introduced is that of model comparison. Here, I present the

Akaike, Hannan-Quinn and Schwarz information criterion (AIC, HIC and SIC respec-

tively). There are various ways of assessing the �goodness of �t� of a model. When one

wishes to comparatively assess models constructed from the same dataset the AIC and

related criteria are good methods to use, (Burnham et al., 1998) the formal de�nition of

the AIC is:

AIC = −2 log(L(θ̂|y)) + 2K, (14)

(Akaike, H., 1973) where, K denotes the number of estimable parameters in the model

and L(θ̂|y) is the likelihood function for a model y with estimated parameters θ which

maximise L.

The AIC value is an estimate of �the expected, relative distance between the �tted

model and the unknown true mechanism that generated the observed data�. (Burnham, K.

et al., 2002,61).

In the case of least squares regression the AIC value is given as:

AIC = n log(σ̂2) + 2K, (15)
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Where K is the number of regression parameters �tted. σ̂2 is estimated as:

σ̂2 =

∑
ε2
i

n
. (16)

Here, ε2
i are the residual errors from the least squares �t and n refers to the sample size.

The AIC criteria can be thought of as picking the model which displays optimal trade-

off between �t and parsimony. A good model will have small errors i.e. σ̂2 will be close to

0, taking log(σ̂2) means that this value will be even smaller, and, if σ̂2 < 1, negative. AIC

then penalises for the number of parameters a model has, by adding 2 for each parameter

included, the �best� model will be the model with the lowest AIC score.

This criteria does fail sometimes. If there are a large number of possible model param-

eters, the AIC is a less reliable estimator i.e. it has a tendency to over�t. In this case other

information criteria can be used. The two other information criteria I will refer to are the

HIC (Hannan,et al.,1979) and SIC (Schwarz,G.,1978).

In the case of least squares regression the HIC value is given as:

HIC = n log(σ̂2) + 2 log(log(n))K (17)

For sample sizes larger than 15, (log(log(n)) HIC method penalises the addition of pa-

rameters more harshly than the AIC.

In the case of least squares regression the SIC value is given as:

SIC = n log(σ̂2) + log(n)K (18)

This penalises more severely than AIC for sample sizes over about 8, and more than the

HIC criteria.
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These criteria are very helpful however, it is important to remember that these criteria

can only give the best comparative model and it is the statistician's responsibility to ensure

that the set of models being tested are a set of suitable candidate models (Burnham, et

al,1998,72).
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3 Causality as a Statistical Concern

In the previous chapter, I developed a framework of basic information that will be utilised

in the following study of methodology for a causally appropriate graphical modelling

approach to time series. However, there are two more concepts to discuss -the concept of

causality and the GMTS approach.

3.1 Motivation

Statisticians, whether looking to describe or make some inference from data are often

concerned with looking for �relationships� between variables. This term is often consid-

ered synonymous with terms like association, correlation and even causation. However,

causation between two variables seems to be a much stronger sort of relation than simple

correlation. Unfortunately, whereas correlation is a well de�ned and understood concept,

de�nitions of causality will rarely be the same between two people. It is perhaps this

inability to tie-down a concrete de�nition of what causation is, especially compared with

concepts of correlation, that leads many statisticians to believe that causality should not,

or could not be, the concern of the statistician but rather a concern for the subject matter

specialist. For example, it is not a job of the statistician to make causal statements about

ecological systems, it is the job of the ecologist. Alternatively, those that do attempt to

provide a causal framework often make the the mistake of needing to �de�ne� what cau-

sation is. I argue that, while not all statisticians need to be concerned with causality, those

that do, need to be concerned with �nding causal links not de�ning what it is, the latter

being best left to the philosophers.

3.1.1 Does Every Statistician Need Causation?

A causal explanation is not always needed or desirable, and depends largely on the type of

data being dealt with and the sort of answers required. For example, suppose one wanted

to know how often a particular river �ooded in a certain area. In this case it would not
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matter what variables were used, or how many, so long as they improved the accuracy of

the predictions - a causal explanation is not required. Alternatively, suppose one wants

to know where the best place to spend money on stopbanks is, to prevent future �oods

in an area, in this case a model of the system which provided information on the causal

processes would be preferable, and that is what this work attempts to explain. This is

a slightly simplistic example to illustrate a point. There will be some duality between

prediction and causal ef�cacy, i.e. a good predictive model should say something about

causal mechanisms. However, in practise some compromise is usually required and a

decision to prefer one type of explanation over the other needs to be made.

3.2 The Mistake of De�ning Causation

There are a number of authors who begin their search for causation in statistics by de�ning

what causation is. This is an understandable thing to do, it certainly seems that by de�ning

terms carefully, one is being very scienti�c and precise in there work. However, there

must be a distinction made between metaphysics, philosophy of statistics and statistical

philosophy, and, by de�ning a concept of causality and then basing a statistical framework

around this I believe these important distinctions are lost.

3.2.1 Different Job Descriptions for Different Jobs

In our discussion of statistics and causality we are clearly bridging a gap between phi-

losophy and statistics, however, in developing causally appropriate statistical models, we

are developing statistical methodology, this is statistical philosophy. There is a related

(and very interesting) question, a question for a philosopher of statistics that is, can data

provide causal knowledge and can statistical methods justify these causal links? This is

an epistemic question because it is a question regarding our abilities to gain knowledge, in

this case, causal knowledge through statistical method. Related to this is a metaphysical

question for a philosopher, what is causation?
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While these are all interesting questions, in what follows, I hope to argue that a lot of

previous work on causality and statistics blurs these distinctions (especially the second

and third), and that I consider this to be in error.

3.2.2 Metaphysics and Counterfactuals

First a (brief) de�nition of some philosophical terms.

Metaphysics

Metaphysics is the study of things as they are. For example, a physicist studies certain

types of substances - particles, atoms, neutrinos etc., to discover physical laws, etc. A

person studying metaphysics asks what sort of thing a substance is. Another example is a

psychologist who searches for information about how our minds function, a person study-

ing metaphysics asks what is the mind? In other words, where a scientist or researcher

accepts the existence of the things their subject deals with, and works to learn how these

things function, a philosopher asks what the nature of these �things� are.

Counterfactual

A counterfactual statement is a statement about something that has not happened and can-

not happen. For example, if we take the statement, �A happened and then B happened�.

Then the counterfactual statement is, �If A did not happen then B did (would or could)

not happen�. If, in our world event A happened, by making a counterfactual statement we

are imagining a possible world, i.e. an imaginary place where A did not happen and the

imaginary consequence of this.

3.2.3 Counterfactual Accounts of Causation

In the early 18th century the famous philosopher David Hume put forward a number of

arguments that are still in�uential in philosophical thought today. One such argument

was his counterfactual de�nition of causality. This account of causation is surprisingly
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widespread in statistics. Basically, this view states that if A is a cause of B then if A did

not happen then B would not have happened.

Judea Pearl

A leading author on the subject of causality in statistics, Judea Pearl, strongly advances

the cause of counterfactual knowledge.

�...that our scienti�c, legal, and ordinary languages are loaded with coun-

terfactual utterances indicated clearly that counterfactuals are far from being

metaphysical; they must have de�nite testable implications and must carry

valuable substantive information. The analysis of counterfactuals therefore

represents an opportunity to anyone ... [to integrate] substantive knowledge

with statistical data so as to re�ne the former and interpret the latter.� (Pearl,

J., 2000, 34)

Rubin's Causal Model

The idea of causation, commonly referred to as Rubin's Model (Edwards, D., 2000, 225-

234) is based on the possibility of counterfactual reasoning. In this model causal effect

C(i) is de�ned as C(i) = Y (i, a) − Y (i, c) where Y (i, a) is the response a unit (i) has

to a treatment a and Y (i, c) is the response a unit (i) has to a treatment (or control) c.

However, because each unit can only be treated with one or other treatment we need a

way to infer about the other, i.e. develop a framework to make an accurate counterfactual

claim.

In making a counterfactual claim of causality, from which to build a statistical frame-

work these models make a metaphysical assertion, an assertion about what causation is

and this assertion is problematic for two reasons.

(1) While some philosophers accept this account of causality, it is by no means univer-

sally accepted. One search of the journal database, Philosopher's Index (Webspirs,2005),
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with search criteria counterfactual generated 829 results equally split both for and

against, with publications from 1940 until today. Given that this idea has been around

since the 18th century these works would constitute a small subset of the total literature

on this subject. Whether causation can be de�ned counterfactually is a highly contentious

topic. Hence, if a statistician wishes to advance a counterfactual account, they need to

acknowledge that anyone who does not share this strong attachment will �nd a causal

description of this sort entirely meaningless.

Statistics, along with other scienti�c disciplines, needs to focus on developing method-

ology to �nd causal links. This methodology must be robust enough that it is buffered

from the developments and changes philosophers make in de�ning causation because

these differ wildly. If this is not done, it is hard to see how statistical methodology for

causality will be accepted as a viable analytical tool, because it will always be necessary

for the user to have strong metaphysical attachments to a certain philosophical idea, or in

fact know what a strong metaphysical attachment is.

(2) On a more practical note - a statistician looks at data. How can data give coun-

terfactual information? How can data give information about something that cannot, by

de�nition, happen? It is impossible. This is quite different from the use of methodol-

ogy for �lling in missing data points. Hence, in subscribing to a counterfactual view, the

statistician has to provide a scheme to make decisions about what is not happening and

what might not have happened as a result. This introduces the possibility of bias in mak-

ing causal assertions. Consequently, any objectivity that a concrete de�nition of causality

might have provided is lost.

Overall, statisticians are best to avoid accounts of causality which require strong meta-

physical assertions. In addition, even if a counterfactual account of causation is true, the

problem of causation shifts to become a problem of �nding counterfactual information

from data - a problem which is impossible to overcome statistically.
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In making this assertion the obvious question to ask is, how cause can be discovered

if a de�nition of causation is not known? The short answer is that everyone knows what

causation is. Rain causes grass to grow, procrastination causes the deadline to be missed

and so on, an absolute de�nition is not required. This may seem very subjective, but there

are many philosophical theories which support a �pragmatic� approach. These tend to be

(and are not limited to) accounts of knowledge which appeal to human psychology and the

functioning of mind as well as de�ationist accounts which aim to justify beliefs without

the requirement of in�nite chains of reasoning. These types of issues are discussed at

length in two books written by Alvin Plantinga (1993).

3.2.4 Granger Causality

From the 1960's Granger has been interested in the notion of causation for time series

analysis and the notion of Granger-Causality (or G-Causality) has enjoyed wide popular-

ity as a method of analysis, not only in econometrics but in a wide variety of applications.

Granger displays a sound understanding of where a statistician's place is vis causation.

He has tried to create a scheme for �nding causal links, without needing to de�ne what

causation is.

The concept of causality Granger proposed (Granger, C.,1988, 199-200) is as follows:

Given Jt : xt−j, yt−j, wt−j, j ≥ 0 and J ′t : xt−j, wt−j, j ≥ 0 then, yt does not [Granger]

cause xt+1 w.r.t. Jt If

f(xt+1|Jt) = f(xt+1|J ′t)

If,f(xt+1|Jt) 6= f(xt+1|J ′t) (19)

then, yt is a 'prima facie' [Granger] cause of xt+1 w.r.t. Jt

This de�nition has two main assumptions:

• Cause occurs before effect,
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• That a causal series (of data) contains special information about the series being

caused that is not available in other available series, (here wt).

When f(xt+1|Jt) 6= f(xt+1|J ′t), it is implied that f(xt+1|J ′t) has a smaller variance of

forecast error.

This conception of causality is appealing because it does not promote a strong de�nition

of what causality is or is not, but rather it focusses on a way of �nding causal links.

Many argue that Granger-causality, is not about causation but rather forecasting ef�cacy

(Granger, C., 1988), and hence the term causation should not be used. It is easy to see

why one might form this view, because, central to the de�nition of Granger-causality is

an idea that if including a variable (yt) betters the explanatory power of the model then yt

is a Granger cause of the process xt. However, I disagree and believe Granger-causality

has the potential to be just that - causal.

3.2.5 Why G-Causality is Causal

What I refer to as a sensibly selected subset is, as Granger puts it, �...variables for which

the researcher has some prior belief that causation is, in some sense, likely.� (Granger,

C., 1988, 201). In addition, the term �better forecaster� would undoubtedly be tempered

by the preference for more parsimonious models, i.e. the selective inclusion of links

according to the degree of improvement they provide. Hence, if a sound statistical method

for selecting possibly causal variables, and, a way of comparatively assessing appropriate

models on their �t can be found, then there would be no reason to think that this is not at

the very least causally sensitive.

3.3 Causal Modelling of Multivariate Time Series

In chapter 1, univariate AR(p) models and the various multivariate, VAR models were

introduced. More so than other types of time series models, autoregressive models, where
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current variables are modelled in terms of past variables, lend themselves to a causal

interpretation. In particular, sVAR models are a favoured type of model, especially in

econometrics (Hamilton,1994,324-327). There are two main reasons for this. First, sVAR

models can provide a better explanation of the process than a cVAR model. Second, al-

though at �rst glance it may seem as though a cVAR model is more causally appropriate,

with present variables explained solely in terms of past variables, there are some cases in

which a causal description which includes relationships between contemporaneous vari-

ables is superior to one which excludes such variables.

3.3.1 Contemporaneous Causality

What is contemporaneous causality? Hicks (1979) provided an explanation of contempo-

raneous causality as the intrinsic link of two processes so that when one process changes,

so does the other. An analogy to this might be a boat on the water, when the water swells

the boat goes up, when the swell goes down so does the boat, clearly the swell causes

the boat to rise, and, there is no time lag between the two events, hence the causality is

deemed contemporaneous.

Granger (1988) gives three alternative possible explanations of causality in economics,

although these principals appear quite general. The �rst is similar to that forwarded by

Hicks (1979). The second is that there is no true instantaneous causality, but there is a

small lag between cause and effect, which is much smaller than the interval over which

the data are collected and the third is, that the observed contemporaneous causal link is

due to a common cause of variables not included in the model.

3.4 Conditional Independence and Causal Sensitivity

In the previous section I discussed the relationship between conditional independence

graphs (CIGs) and directed acyclic graphs (DAGs). Obviously, the idea is that the direc-

tion of the DAG is the causal direction of variables in a model. But why would we wish to
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derive a DAG from conditional independence relationships? In his paper �Conditional In-

dependence in Statistical Theory� Dawid (1979) described the way in which he believed

conditional independence could give insight into the underlying processes of situations

that a statistician is concerned with. In particular, Dawid noted that conditional indepen-

dence was a key in attaining causal information from data. This view that, �conditional

independence assumptions are the primary vehicle for expressing substantive knowledge�

(Pearl, 1998, 79) has been quite pervasive. It is easy to see why this is the case. If A⊥⊥B

then, �the occurrence of B does not affect the probability of A�, and if there is no affect

then there can be no causal affect. Of course, the converse is not necessarily true, if A⊥⊥/B
then it cannot be said that there is de�nitely a causal effect. Hence, it is quite natural to

think of conditionally independent variables as a subset of all non-causal relationships.

3.5 The GMTS approach

One particular approach to causally appropriate graphical modelling of multivariate time

series is the approach to modelling �rst proposed by Marco Reale and Granville Tunnicliffe-

Wilson (Reale, M., 1998) known as Graphical Modelling for Time Series (GMTS).

GMTS consists of three steps: (1) creation of the CIG, (2) creation of equivalent di-

rected acyclic graphs (DAGs), and �nally, (3) regression analysis and model selection.

3.6 Step 1: Conditional Independence Graph

As stated in chapter 2, creation of the CIG allows for the removal of all non-causal links.

To construct this, all possible input variables need to be tested pairwise for conditional

independence. In the case of time series this means that p needs to be known, so that a

matrix of lagged variables can be constructed. As mentioned in chapter 1, the order of

an AR process is de�ned by the sample PACF. This is interesting because, if we assume

that our data follow a multivariate normal distribution then conditional independence is

equivalent to the partial correlation of two variables being 0.
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Formally,
If, X ∼ MV N(µ, V )

xi⊥⊥xj ↔ πi,j = Corr(xi, xj|X {xi, xj}) = 0

(20)

Hence, the CIG will de�ne the order of the VAR.

As this relationship holds, the CIG can be found by invoking the inverse variance

lemma to �nd the matrix of partial correlations.

Suppose X is a vector following a multivariate distribution with mean µ and variance

V. If,
W = V −1 and,

τi,j = − wi,j√
wi,i, wj,j

, where wi,j ∈ W then

τi,j = Corr(xi, xj|X {xi, xj})

(21)

This lemma shows that if the covariance matrix V (or alternatively the matrix of correla-

tion coef�cients, which is equivalent to the covariance matrix scaled so that the diagonal

contains unit vectors) is known, then the matrix of partial correlations can be found by

taking the inverse and scaling row-wise and column-wise, so that the diagonal elements

equal 1.

Once the matrix of partial correlations is found, where all values are between 0 and 1, a

critical value must be de�ned, based on a user given t-value. Once this is done each value

must be tested against the threshold value, where the correlation is deemed statistically

signi�cant the variables are considered conditionally dependent, and where it is below, the

variables are considered conditionally independent. In this way a parsimonious structure

is de�ned.

The threshold value of signi�cance is de�ned as:

crit =
t2

t2 + v
(22)
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(Reale, 1998) where, v is the residual degrees of freedom.

From the CIG, the order of the VAR model can potentially be identi�ed, although the

problem of multiple testing should be properly addressed. Alternatively, we could use the

information criteria discussed earlier, I refer to this method more fully in chapter 4.

3.7 Step 2: Creating Alternative Models

After the CIG has been found, the process of identifying possible DAG models begins.

This is easily done with most edges, simply by adding the �arrow of time� from past to

present variables. However, this cannot be done with the relationships among contempo-

raneous variables.

As mentioned in chapter 1, adding direction to the CIG of contemporaneously linked

variables can be carried out by invoking subject matter knowledge. However, when the

causal direction is unknown, methods of exhaustion, where models of all combinations

are created and assessed are required.

Following the speci�cation of possible contemporaneous DAG models possible moral

edges need to be identi�ed because these will be possible candidates for removal from

the model. This is because their inclusion in the CIG maybe due to the relationship each

parent has to a common child, rather than to each other and hence a possibly moral link

may not represent a causal relationship. Once this has been carried out, all alternate

possible DAGs corresponding to the CIG will have been found. Each graphical model

can then be written down as a system of equations, and regression analysis and model

selection performed.

When referring to models I use the terms saturated model and models with saturated

moral links. This refers to all possible edges of a model being included. For example,
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a traditional modelling approach models are completely saturated. In a GMTS model,

edges up to or at a certain lag, may be saturated, and if subset selection has not been

performed, or, the best model selected preserves all moral links then this is a model with

saturated moral links. Occasionally, the term effectively saturated is used to denote the

fact that certain directions are omitted on physical grounds but all physically possible

edges are included.

3.8 Step 3: Regression and Model Selection

For each alternate model the unknown coef�cients are estimated and each model assessed

by AIC, HIC and SIC criteria.

In this thesis the process is carried out in MATLAB and the system of equations speci�ed

as follows.

A matrix G of lagged variables is created. For example, a VAR(5) model which models

3 variables would have the associated matrix:

G = [Xt, Yt, Zt, Xt−1, Yt−1, Zt−1, . . . , Xt−5, Yt−5, Zt−5] (23)

If one alternative DAG corresponded to the system of equations:

Xt = α1Xt−1 +α2Xt−2

Yt = β1Xt +β2Yt−4

Zt = γ1Xt +γ2Xt−2 + γ3Yt−4 +γ4Zt−5

(24)

These equations would be represented as G(:,[1, 4, 7]),G(:,[2, 4, 14]),G(:,[1, 7, 14, 18])

in MATLAB. The numbers refer to the column of G equal to the variable written in the sys-

tem of equations.
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Once the models are speci�ed least squares regression is performed, coef�cients tested

for signi�cance using the t test, and AIC, HIC and SIC values calculated. Following this,

subset selection is performed on possible moral edges. If the removal of an edge causes a

decrease in the information criteria values, then the moral edge is omitted from the model.

In chapter 3 a fully worked example of this process is given.

3.9 Is GMTS Causally Appropriate?

It certainly seems plausible that GMTS is a causally sensitive approach and further, it

appears that it should select models whose variables satisfy the de�nition of G-causality.

First, in deriving the CIG a subset of non-causal links are removed hence remaining links

will be a �sensibly selected subset�. Second, the model selected is the model which

performs best according to the information criteria. Arguably, given the model selected by

the information criteria will provide the smallest reasonable errors, without the inclusion

of spurious edges, this would have to at least preserve the causal sensitivity introduced

in selection. However, I will reserve any conclusive judgement on the matter until after I

have seen how it performs in the case studies to come.

3.10 Other Advantages of GMTS

Apart from providing a framework to derive causally appropriate time series models using

graphical modelling, there are two main advantages for using the GMTS methodology.

(1) As previously mentioned in section 3.3 sVAR models are often preferred over cVAR

models. However, deriving them is usually done by orthogonalisation of residuals, a

process which is not unique. The GMTS approach, however, provides a straightforward

way of modelling sVAR processes.

(2) One of the major assumptions required for time series analysis to take place is

an assumption of stationarity i.e. the series must be an I(0) process. However, it has
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been shown that GMTS can model non-stationary (integrated of order 1 - I(1)) processes

effectively (Reale, M. and Tunnicliffe-Wilson, G., 2002).
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4 Case Study I: Economics

�The great thing about being a statistician� Mr Tukey once told a colleague,

�is that you get to play in everyone's backyard�. -Davis Leonhardt of John

Tukey

The purpose of this case study is to present a worked example of the GMTS methodology

in the area in which it was �rst applied i.e. economic time series. This dataset posed a

dif�culty in that it contained a large number of variables. This presented a combinatorial

problem in the speci�cation of alternate models. In the process of modelling these data

I began to notice some interesting patterns, which lead me to conclude that more of the

GMTS process is algorithmic, and hence, potentially computational, than was previously

recognised.

4.1 The Data

Monthly �nancial data were collected from April 1987 to April 2002 (180 observations)

by the Reserve Bank of New Zealand. These data were retrieved from their �nancial

statistics database, http://www.rbnz.govt.nz/statistics/.

Data on nine variables were collected:

• Interest rates on money at call (Rt). This value was found as weighted average of

$10,000 at call. Institutions surveyed were weighted according to their NZ dollar

funding.

• 90 day bank bills (St). These are �IOUs� issued by banks, usually in denominations

of $1 million or more, to raise capital until longer term �nancing can be found.

90 day bank bills are considered the benchmark for pricing other interest rates.

These are averaged at 11am daily among banks, and in this case, the value averaged

monthly.
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• Yield of government stock at 1 year (Tt). Government stock is issued by the gov-

ernment at a �xed interest rate for a �xed term, although stock can be traded on the

stock exchange. Government stock is issued as a way for the government to borrow

money and is a low risk investment.

• Yield of government stock at 3 years (Ut)

• Yield of government stock at 5 years (Vt)

• Base lending rates (Wt). This is the weighted average of lending rates offered to

new business borrowers, weighted by each surveyed institution's total NZ dollar

claims.

• First Mortgage housing rates (Xt). This is a weighted average of �rst mortgage

interest rates offered to new borrowers for residential properties. Weighted by each

surveyed institution's total lending outstanding for housing property.

• United States of America interest rates (Yt). This is a weighted average of interest

rates from surveyed US institutions.

• Uncovered Interest Rate Parity (Zt). The UIP can be written as:

Et(st+1)− st = i∗t − it + u. (25)

(Stephens, D., 2004,3). The UIP is derived based on the theory that if the interest

rates in one country increase compared to another then the two countries exchange

rates should vary accordingly, this is so a person cannot borrow in one country to

invest in another and hence make an instantaneous risk-free pro�t. Here i∗t refers to

the foreign interest rate (Australian interest rate in this example), it is the compar-

itive domestic interest rate and u is the risk premium associated with holding NZ

dollar assets.
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Figure 11: Plot of 9 variables in the dataset.
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The plots in �gure 4.1 display two trends. Plots 1-7 (reading left to right, top to bottom)

display an overall decay with a local minimum between 1993 and 1994. This is followed

by a small recovery over the next two years but then further decay. The �rst plot, of rates

of money at call, contains the maximum interest rate of 31% as well as the maximum

range from 5-31%, this is as expected because money at call is the most volatile of interest

rates. The plot of 90 day bank bills has only a slightly smaller range than money at call.

The plots of US interest rates and the UIP display a different behaviour to the other 7

plots. These plots appear more stable over time with two peaks at about 1989 and 2001.

The plot of US interest rates has the smallest range from 2-10%.

The number of observations (180) provides reasonable degrees of freedom for analysis

of 9 variables, so there was no need to reduce the number of variables in the dataset to be

modelled.

4.2 Step 1: Deriving the CIG

To derive the CIG the function cigts in MATLAB, written by M.Reale (appendix A.1)

was executed with the input arguments being: X-the full data set as described above,

lags=5. The t-value was de�ned as tv=1.98 which corresponds to an α level probability

of 0.05 for 160 degrees of freedom. From this set of input values the table 1 is derived

(a complete table is given in appendix C). The de�nition of a lag of 5 was arrived at

following exploration of the behaviour of different CIGs, starting with a high lag speci�ed

and reducing the lag systematically, until I was satis�ed that the CIG had terminated at

p + 1. Other methods for �nding the order, based on information criteria, would have

selected a VAR(2) model, however, as the interest here was with a causal model, this

was considered too small. The t-value varied according to the degrees of freedom, but

in effect, with 180 observations and 9 × 6 variables being modelled, the t-distribution is

approximately a normal distribution and hence a value of 1.96 would have suf�ced.
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variables lags pc pc pc pc pc pc pc pc pc
1 0 1 x x x x x x x x
2 0 1 1 x x x x x x x
3 0 0 1 1 x x x x x x
4 0 0 0 1 1 x x x x x
5 0 0 0 0 1 1 x x x x
6 0 0 0 0 0 0 1 x x x
7 0 0 1 0 0 0 1 1 x x
8 0 0 0 0 0 0 0 0 1 x
9 0 0 0 0 0 0 0 0 1 1
1 1 1 1 0 1 0 0 0 0 0
2 1 1 1 1 1 0 0 0 0 0
3 1 0 1 1 1 0 0 0 0 0
4 1 0 0 1 1 1 0 0 0 0
5 1 0 0 0 1 1 0 0 0 0
6 1 1 0 0 0 0 1 0 0 0
7 1 0 0 0 0 0 0 1 1 1
8 1 0 0 0 0 0 0 0 1 1
9 1 0 0 0 0 0 0 0 1 1
1 2 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0
3 2 0 1 1 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

Table 1: MATLAB output of CIG, an entry of 0 indicates conditional independence and an
entry of 1 indicates conditional dependence i.e. that an edge can be drawn between two
nodes. Full table of values contained in appendix C

This table (1) provides all the information required to create the CIG. The �rst two

columns in each row refer to a potential variable in the model, while columns 3-11 re-

fer to the 9 variables at time t we wish to �nd equations for. For example, row 4 of the

table contains the information 4 0 0 0 1 1 x x x x x. This means that the node of variable 4

at lag 0, Ut in this case, has an edge which links to variable 3, (Tt), and trivially to itself.

The x's simply prevent doubling up of information regarding contemporaneous variables.

Row 10 of the table is 1 1 1 1 0 1 0 0 0 0 0. In this case variable 1 at lag 1 (Rt−1) has

an edge linking it to variables 1, 2 and 4 (Rt, St and Ut). Reading the entire table in this

way the CIG in �gure 12 can be derived. As previously mentioned, the order of the CIG

speci�es the order of the VAR and hence in this case we have a VAR(5) model.
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4.3 Step 2: Creation of Alternative DAGs

To create alternative DAG models, and hence alternative models, the �rst step is to de�ne

the two �causal� directions, and add direction to the CIG in accordance to these. With

time series, the �rst step is to add the �arrow of time�. The vertical direction (the contem-

poraneous direction), is not always known. In this case, there is one known relationship,

the relationship between Yt and Zt. This edge must be directed from Yt to Zt because it

does not make sense to think that the UIP (a parity measure between New Zealand and

Australia) would be a cause of interest rate changes in the United States of America. Be-

yond this however, all other causal directions are unknown. To �nd the possible DAGs in

this case will require a method of exhaustion. This arrow has been inserted in �gure 12.

4.3.1 Step 2(a): Finding Possible Contemporaneous Models

The problem of specifying alternative models when large numbers of variables were in-

volved appeared to be quite tricky because it was not simply a matter of specifying al-

ternate models but, specifying alternate models which were acyclic and consistent with

the rules of moralisation. However, after some thought it became clear that because the

speci�cation of all possible models was equivalent to generating a list of binary words it

was computationally ef�cient to carry out and hence systematic methods of elimination

from an exhaustive list were easily implemented.

Computationally, specifying alternate contemporaneous models is straightforward. Each

edge only has two possible outcomes, oriented up or down. Hence, to �nd all possible

con�gurations of the contemporaneous variables simply requires the generation of a list

of the 26 binary words of length 6, with an additional row for the known edge (Yt, Zt)

which is oriented down. There are 26 words because there are 6 contemporaneous edges

each with two orientations. In these words the digits 0 and 1 are assigned an orientation.

For example, a 1 refers to a downwards orientation and 0 refers to upwards orientation. If

we consider a graph with only 2 possible edges there are 22 possible combinations of ori-
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Figure 13: A simple example of a graph with two edges. There are 22 binary words corresponding
to a different set of possible orientations.

entations as given in �gure 13. In order for this method to work, it is important that each

edge is speci�ed in a consistent way. In this case the default speci�cation is downwards.

For example in �gure 13 [B,A] refers to the variable A being directed into B. This way

when the orientation is upwards the pairs can simply be �ipped to re�ect this. Once all

combinations are generated, these need to be checked for cycles and DAG representations

inconsistent with the stated CIG (code written by C Meurk written for MATLAB contained

in appendix A.3). In this case, there are no cycles, however there are a number of dis-

allowed DAG con�gurations which correspond to the subgraph in �gure 14. Removing

such inconsistencies reduces the number of possible contemporaneous DAGs from 64 to

13, a more manageable number to deal with. The possible contemporaneous DAG struc-

tures for this case study are given in �gure 15. Once each of these models are speci�ed

is found these can be written as systems of equations. For example, Model A corresponds
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Figure 14: DAG representation inconsistent with corresponding CIG. Any graph containing this
subgraph is removed from the set of possible models.

to the equations:
Rt = αSt

St = β1Tt + β2Xt

Tt = γUt

Ut = δVt

Vt = 0

Wt = εXt

Xt = 0

Yt = 0

Zt = ζYt

(26)

For MATLAB to perform regression, these equations need to be written in terms of columns

of the matrix of lagged variables G = [Rt, St, . . . , Zt, Rt−1, . . . , Zt−1, . . . , Zt−5]. The

column numbers of each variable are given inside their corresponding nodes. Hence, all

alternate contemporaneous models corresponding to these subgraphs can be speci�ed as

in table 2.

4.3.2 Step 2(b): Adding Edges with De�nite Lagged Variables

Once the possible contemporaneous relationships are found, these need to be added to the

lagged variables and any possible moral links identi�ed. At this point, any edges judged

48



1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

1 2 3 4 5 9876

R S T U V W X Y Z

M
od

el
 A

M
od

el
 B

M
od

el
 C

M
od

el
 D

M
od

el
 E

M
od

el
 F

M
od

el
 G

M
od

el
 H

M
od

el
 I

M
od

el
 J

M
od

el
 K

M
od

el
 L

M
od

el
 M

Fi
gu

re
15

:T
ab

le
of

al
l1

3
po

ss
ib

le
co

nt
em

po
ra

ne
ou

sD
AG

co
n�

gu
ra

tio
ns

w
hi

ch
co

rre
sp

on
d

to
th

e
co

nt
em

po
ra

ne
ou

sC
IG

.N
um

be
rs

in
sid

e
ea

ch
no

de
re

fe
rt

he
co

lu
m

n
of

th
em

at
rix

G
th

ey
co

rre
sp

on
d

to
.

49



to be non-existent on subject-theoretic grounds can be removed. In this case all edges

which lead to Yt (US interest rates), except Yt−k values, were removed.

The lagged edges fall into two categories, those which are possibly moral, and those

which are real. Edges which are de�nitely real are identi�ed if they ful�ll one of two

criteria:

Either

A node contains only one outgoing edge.

Or

A node contains multiple outgoing edges, but the outgoing edges do not meet contempo-

raneous variables, which themselves are joined, i.e. the edge is NOT part of a subgraph

of the form in �gure 6.

The subgraph containing edges which satisfy either of these conditions is referred to

as the generic part. This is because it will, in its entirety, be part of all the possible

models speci�ed in section 4.3.1. The generic part of our model, with its corresponding

representation as a system of equations is given in �gure 16, where variablest, refers to

the contemporaneous relationships and moralt−k refer to the possible moral links, to be

found in section 4.3.3.

4.3.3 Step 2(c): Identi�cation of Possible Moral Edges

The �nal step in model speci�cation is the existence of possible moral edges. This in-

volves the edges of our original CIG from section 12, not included in the model �gure

16. Again, this step has been considered a dif�cult step, because it needs to be carried out

by hand. But, as I discovered, there is a relationship between different variables and their

possible moral links, and this allows for alternate models to be speci�ed algorithmically

and hence can be automated.
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Rt = variablest + αWt−1 + αYt−3 + αRt−4 + αSt−5 + moralt−k

[1, 15, 35, 37, 47, v, m]
St = variablest + 0 + moralt−k

[2, v,m]
Tt = variablest + γRt−3 + +moralt−k

[3, 28, 51, v, m]
Ut = variablest + δRt−1 + δSt−1 + δTt−1 + . . . + moralt−k

[4, 10, 11, 31, 40, v, m]
Vt = variablest + generict,t−k + moralt−k

[5, 26, v, m]
Wt = variablest + generict,t−k + moralt−k

[6, 15, 27, 29, v,m]
Xt = variablest + generict,t−k + moralt−k

[7, 16, 28, 37, 44, v, m]
Yt = variablest + generict,t−k + moralt−k

[8, 53, v, m]
Zt = variablest + generict,t−k + moralt−k

[9, 16, 18, 27, 29, 36, v, m]

Figure 16: Generic DAG and corresponding equations.

Consider �gure 17. There are 16 different subgraphs containing a possible moral edge,

and hence each model will have 16 possible moral edges, corresponding to the number

of subgraphs of the type given in �gure 6. The identi�cation of which is the moral edge

will depend on the contemporaneous link between variables. For example, in �gure 18,

the lagged input variable is the same for the equations of both A and B, but which edge

is the possible moral edge swaps when the orientation between A and B changes. Hence,

once one model speci�cation is known all others can be derived automatically. This is

shown in table 3 where bracketed () expressions denote possible moral edges and then

concatenated with each possible contemporaneous model.

4.3.4 Alternative Models

Finally, the information from each of these three parts, the contemporaneous part, the

generic part and the moral part can be combined to give the speci�cation of all possible
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Figure 17: Subgraph containing all possible moral edges. This subgraph + the generic part
represent the full model.
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Figure 18: This �gure shows the way in possible moral edges can be found from a graph. Brack-
eted () values denote possible moral edges.
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models (table 4). Notice that, in specifying the saturated forms, i.e. with all possible

moral links included, the number of models is speci�ed by the number of viable contem-

poraneous models. Moral links are subsequently removed through subset selection.
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4.4 Step 3: Regression and Best Model Selection

Using the MATLAB code DAGfit (written by M Reale, appendix A.2) regression can be

performed on all models as speci�ed in table 4. Each model was assessed by three criteria

- AIC, HIC and SIC, as discussed in section 2.3. The results for the 13 alternate models,

with comparisons to the saturated case are given in table 4.4.

By both AIC and HIC criteria the saturated sVAR was selected as best model, but using

the SIC it was the second worst. It was decided that the saturated sVAR should not be

selected in this case because its rankings were inconsistent among the criteria, a known

problem for these criteria (refer chapter 1). Ignoring the sVAR model, the �rst, second,

third and fourth models respectively are Models I,J,K and L. These models maintain their

ranking in all three criteria and hence were selected for further subset selection. This de-

cision to look at these four models was taken with the understanding that should models

show large improvement when subsets were selected, a new strategy of selection would

need to be used. Also, it is important to note that the 13 models, which at this stage include

all possible moral links were identical except for their contemporaneous links. It was im-

portant to check all speci�ed models to see if there were any who had SIC values that

were not too much larger than Model L and that had very different moral con�gurations

because this could cause a dramatic change in subset selection. Referring again to table 4

models I,J,K and L are of a very similar form, compared with Model M for example. This

difference refers to the layout of possible moral links. This method of narrowing down

possible models, found by GMTS, means that the models in table 4 are the set of possible

candidate models (Burnham, K., et al., 1998, 19) from which the �best models� are taken,

and further subset selection carried out, to see if initial ranking changes. If rankings are

unchanged the best of the original candidate models is selected and thorough subset se-

54



lection undertaken. This method of model selection differs from that proposed by Reale

(1998) where following the speci�cation of the CIG, alternate models for contempora-

neous variables were found and assessed, and subsequently subset selection, carried out

prior to regression analysis. I believe the method that I have outlined is an improvement

because it requires less manual analysis in early phases (not to be mistaken with an indi-

vidual statistician's active analysis of the model at each stage), allowing for models with

more variables and a higher lag to be assessed.

Initial subset selection showed very little change in information criteria values, and

no change in rankings. Hence, model I was selected for thorough subset selection and

the model in �gure 19 corresponding to equation 27 was selected. This subset selection

only looked to remove possible moral links. Obviously, in conjunction with more knowl-

edge about the economic study it could be possible to remove more links. Adding the

regression coef�cients some links were considered insigni�cant according to the t-value

of their regression coef�cient. Note that thorough subset selection resulted in very little

model improvement.

Rt = 1.1342St + 0.5104Rt−1 − 0.7148St−1

St = 0.9471Tt + 1.1225St−1 − 1.1482Tt−1 − 0.3535St−2 + 0.4360Tt−2

Tt = 0.9364Ut + 0.1146St−1 + 1.0095Tt−1 − 1.0125Ut−1 − 0.3383Tt−2 + 0.3161Ut−2 − 0.0203Wt−5

Ut = 0.9722Vt + 1.0920Ut−1 − 1.0099Vt−1 − 0.2786Ut−2 + 0.1394Ut−3 − 0.0789Ut−4

Vt = 1.3445Vt−1 − 0.3682Vt−2 + 0.0287Yt−2

Wt = 0.4582Xt + 0.6783Wt−1 + 0.0333Zt−2 − 0.1505St−3 + 0.0633Wt−4 − 0.0898Ut−5

Xt = 0.3123St + 0.7906Xt−1 − 0.1197Rt−4 + 0.1017Wt−4 − 0.0527Ut−5

Yt = 1.1710Yt−1 − 0.1741Yt−5

Zt = 1.6392Yt − 1.5177Yt−1 + 1.1364Zt−1 − 0.2908Zt−2 + 0.1138Zt−3

(27)

Finally, the errors were plotted and appear stable (�gure 20), with the possible exception

of the UIP where the errors appear to diverge over time. Although, the maximum error is
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Figure 19: The information criteria values corresponding to this model are -4.6934+e003
(AIC), -4.6214e+003 (HIC) and -4.5159e+003 (SIC)
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Figure 20: Plot showing residuals errors after VAR modelling

1, I would be careful in trying to predict the UIP from this model, because it is possible

that the divergence continued.

4.5 Interpretation

The interpretation of this model is that the long term interest rates drive the short term

interest rates, i.e. government stock at 5 years, determines government stock at 3 years,

all the way down to the interest rates of money at call.

The US interest rates have a lagged effect on both short term and long term interest

rates consistent with the previous statement. For example, there is a 3 month lag between

US interest rates and its affect on interest rates on money at call, while only a 2 month lag

to affect government stock at 5 years.

There is some possible �feedback� with the edge from 90 day bank bills to �rst mort-

gage lending rates, because it is only due to a missing link between base lending rates
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and �rst mortgage rates that a cycle is not created. Base lending rates appear to affect

government stock with lag of 5 months, and it is possible that a higher order model may

have shown links with other lending rates.

There is a repeated pattern between 90 day bank bills, government stock at 1 year,

3 years and 5 years which is obvious when viewing the graphical model in �gure 19,

implying that these are all highly similar processes, or alternatively, driven by the same

processes. It would be interesting to model this system where these four variables are

represented by one process to see if this changes the model. In addition, the US interest

rates, with no input from other variables, may be best left unmodelled and only included

in terms of its affect on other variables.

4.6 Conclusion

Initially, this case study seemed to pose an intractable combinatorial problem. But, by

splitting up the problem into three parts, it quickly became algorithmic, as can be seen in

�gure 21. However, once this was done, it turned out that the removal of possible moral

links made little improvement to the model, and no change in rankings. The stability of

rankings may be due to the fact that possible moral edges are determined by contempora-

neous relationships, both mathematically and causally. That is, if there is a link between

Xt and Yt it is more likely that there will be a link between Xt and Yt−k values. Hence, the

initial ranking candidate models is likely to be preserved in subset selection. In addition,

if this is the case then the strategy of model selection used by Reale (1998) where subset

selection occurred prior to regression following analysis of contemporaneous models, and

the strategy used here, where all candidate models are created and then regression analysis

performed, will both select the same best model. This is because even if the relationship

between lagged variables is included, model ranking is dependent on the contemporane-

ous con�guration. However, as mentioned, the method described here has the advantage

that it can be automated.
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As specified in 3.3.1
For full generality, cycles, 
inconsistent DAGs and
possible moral links would

have to be found by path analysis
but algorithms exist to do this

Calculate CIG using 

cigts function
function written by M Reale

Split graph into

contemporaneous part
generic part
moral part

Find possible
contemporaneous
models

Specify possible
moral edges

Recombine three parts

Regression and Model

Selection

finding generic part
as specified by
C Meurk in 3.3.2.
Moral part as specified

in 3.3.3

This simply requires the specification
of the three nodes each subgraph of 

combinations are generated.

code written by M Reale.  Selection of subset of
models for rigorous subset selection

the form in figure 19.  The relationship
given in table 3 shows how the possible

Figure 21: Flowchart showing strategy for automating GMTS.

5 Case Study II: Hydrological Data

These data were collected from the Pukemanga catchment near Hamilton New Zealand.

The study was �part of a larger project ... designed to investigate sediment and nutrient

loss from steep hill country sheep and cattle farmland� (Davie, T., 2004). Thanks to Tim

Davie from Manaaki Whenua, Landcare Research, Lincoln, for providing these data and

a working paper.

5.1 Data Description

The data consisted of soil moisture readings, rainfall data and water depth measurements

from weirs along the catchment. Recording devices for soil moisture were located in the

upper, mid and lower basins of the catchment (�gure 22).
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Figure 22: Simpli�ed diagram showing the layout of recording devices in the catchment
area.

Soil Moisture

Six runoff plots were instrumented using three Time Domain Re�ectometers to record

soil moisture at three depths 5cm, 10cm and 15cm. The six runoff plot sites provide two

replicates over three different types of soil and slope. Data loggers (Campbell Scienti�c

Instruments CR10X) at the plot sites took soil moisture readings every minute from which

the mean was calculated every 30 minutes. The resulting time series was created from

these means.

These data were collected electronically over the period from the 1st of September 2002

to the 1st of March 2004. For each of the six soil moisture plots there are approximately

26, 000 observations at each of three depths.

Rainfall

Rainfall data were collected continuously at the site. Two gauges were used, a Texas Elec-

tronics rain gauge (0.1mm/tip), and an OTA tipping bucket rain gauge (0.5mm/tip). A tip-

ping bucket �lled and emptied automatically whenever the water depth in the bucket was

0.2mm. During non-storm events data (summed over the 30 minute period) were recorded

every 30 minutes, however over a certain threshold of rainfall, data were collected every

minute, and in pre and post-storm periods data were collected every 10 minutes. Conse-
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quently, the rainfall data are unevenly spaced. Due to the spacing of the other series, it

was necessary to group the data into even intervals. This was done by running the R code

spacedata written by C. Meurk(B.1). To be consistent with the soil moisture data the

smallest interval of time that could be modelled was 30 minutes. Data were grouped by

taking the sum of rainfall in each 30 minute interval. In total, the rainfall data consisted

of about 16,300 observations prior to grouping.

5.2 Preliminary Data Analysis

Given that there were so many series (six runoff plots at three depths and rainfall), con-

taining such a large number of observations, it was not computationally possible to model

all the series. Hence, exploratory data analysis was carried out to identify possible trends

and variability in the data so that a subset could be selected which would provide an

appropriate and interesting series for GMTS modelling.

5.2.1 Analysis by Plotting

To begin, simple descriptive techniques were used to explore the data. The quickest and

easiest way to get a feel for the data was to plot it (�gure 23).

Soil moisture at sites 1,2,5 and 6 showed very high correlation both among sites and

depths. The soil moisture series at 5cm depth showed the highest variability while the soil

moisture series at 15cm depth showed the lowest variability and overall soil moisture lev-

els, but with a similar pattern of �uctuation as the 5cm series. There were few exceptions

to this, the most noticeable being between February 2003 and May 2003 where there was

a period of low variability and reduction in soil moisture levels and a change in the order

of comparative moisture at each site depth. Overall, at the sites 1 and 2 soil moisture

�uctuated between 30% and 75%, while at sites 5 and 6 it �uctuated between 22% and

63%.
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Figure 23: Plots showing soil moisture levels at all sites and rainfall data, plotted as scatter plot
with 0 values removed for ease of inspection.
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Soil moisture at sites 3 and 4 behaved differently from the others, though high corre-

lation remained. There was also high variability however the overall behaviour appeared

more stable than with sites 1,2,5 and 6. Between February 2003 and May 2003 there

is some unusual behaviour displayed with a spike from 45%-72% occurring around late

March-early April not matched in any other plots. Soil moisture at sites 3 and 4 �uctuated

between 29% and 80%.

Rainfall showed approximately the same distribution throughout the study with the

notable exception from February 2003 to May 2003. During most rainfall events 0-0.5mm

rain fell per half hour, with the highest recorded at 2.5mm per half hour.

5.2.2 Analysis of Correlation

The series in this dataset were further explored using the MATLAB commands autocorr,

which �nds the sample autocorrelation function for a series up to a speci�ed lag and

crosscorr, which �nds the sample cross-correlation function between two series up to

a speci�ed lag (�gure 5.2.2). The autocorr analysis shows that correlation within site

series (results for site 1 and site 6 at 10cm depth shown in �gure 5.2.2) was very high,

i.e. none less than 0.97 up to lag 20 (t − 10 hours). The rainfall series was not so highly

autocorrelated between 0.056 and 0.565 (3dp) up to lag 20.

The crosscorr analysis showed very high correlation of series between sites, with

correlation being between about 0.922 and 0.950, for both series shown. The exception

to this was the cross correlation of the rainfall series with soil moisture which ranged

from 0.027 to 0.1. Unlike the autocorrelations which appeared to decrease linearly, the

cross correlations displayed a bell shape with the highest correlation occurring between

t − 9 and t − 11. These behaviours are not atypical in hydrological time series (HTS)

display. HTS often display high serial correlation (or partial correlation), and in practise

hydrological series are often �pre-whitened�, i.e. some of the correlation removed, prior

to modelling (Yue, S. et al., 2003, 51).
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Figure 24: Printout of MATLAB code for the autocorr and crosscorr analysis for soil mois-
ture and rainfall. Note that, when executing crosscorr, MATLAB evaluates the CCF at
±1..p. For time series analysis we are only interested in correlation with past values and
so all future values have been omitted.

As mentioned in The GMTS methodology can model both I(0) and I(1) processes

(refer section 3.10). Nevertheless, checks for stationarity of the series were done using

the augmented Dickey-Fuller test (ADF) in R with the order p estimated at 200 following

Hamilton (Hamilton, 1994, 530) and with type speci�ed as none for all tests. The ADF

tested the hypothesis Hφ :The series is I(1) vs HA :The series is I(0).

5.2.3 Selection of Variables

Given the high correlation at each site among different depths it was a relatively easy

decision to reduce the number of variables being studied to just the 10cm depth series.

This reduced 6× 3 series to 6. In addition, due to the high correlation between replicates

the number of series to study was reduced further from 6 (3 sites ×2 replicates) to 3 sites

excluding replicates. Finally, because this study was interested in the causal implications

of the GMTS methodology it was desirable to include the rainfall series. Hence, the

64



decision was made to look at only 3 variables in total, rainfall (Xt), the series of soil

moisture data at runoff plot 1 (Yt) and at runoff plot 6 (Zt) at 10cm depths. Choosing

these variables, allowed the added advantage of de�ning a vertical direction of causation

from from Xt → Yt → Zt i.e. water always �ows downhill.

5.3 Modelling the Data with GMTS

This dataset was used to thoroughly explore the GMTS approach to time series models.

This exploration split roughly into three questions. The �rst question posed was how does

modelling of these processes with GMTS compare with a traditional modelling approach?

Second, how do the GMTS models change as the data are aggregated and/or when differ-

ent seasons are modelled. Finally, the question is asked whether this can be thought of as

a causally sensitive modelling procedure, and an indepth discussion on the application of

the principal of moralisation in time series analysis is undertaken.

5.3.1 Specifying the Order of the VAR

In chapter 4, it was seen that the order of the VAR is given by the order of the CIG.

However, after extensive investigation of the CIGs that were generated, I found it very

dif�cult to decide on a value for the order, because models were all initially saturated

followed by a small but steady number of subsequent edges with no obvious termination

up to lag 96. It was not possible to generate CIGs any larger than this because even

generating a CIG up to lag 96 could take half a working day to compute. It was decided

that another method for determining the order of the VAR must be devised. The method

for �nding the order involved �tting successively higher order (saturated) models using

least squares regression and �nding the model's associated AIC, SIC and HIC values. The

order was de�ned at the lag at which the suitable information criteria values converged

within a reasonable range. Two values for the order, one generous the other conservative,

were often produced by the different criteria. In all cases I took p to be the generous value.

This was because the conservative estimates of order did not give suf�cient lag for an
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Figure 25: Best model selected for data spaced at 30 minute intervals

interesting causal interpretation to be given and by consistently using the more generous

estimate not only were subtle patterns observed in the graphical model, but there was a

consistency among models which gave some basis for giving comparative interpretations.

5.4 Results for Data Spaced 30 Minutely

The resulting best DAG for the data spaced 30 minutely is given in �gure 25 and corre-

sponds to the system of equations in 28.

Xt = 0.5258Xt−1 + 0.0054Xt−3 + 0.0323Xt−4 + 0.0336Xt−5 + 0.0403Xt−6 + 0.0312Xt−11

Yt = 0.1959Xt−1 + 1.1512Yt−1 − 0.0689Xt−4 − 0.1825Yt−4 − 0.0088Xt−5 + 0.0321Yt−5

+ 0.0321Yt−5 − 0.0065Yt−12 + 0.0083Yt−20

Zt = 0.005Xt + 0.3809Yt + 0.0659Xt−1 − 0.4397Yt−1 + 1.1311Zt−1 − 0.0327Xt−3

+ 0.0995Yt−4 − 0.2053Zt−4 − 0.0091Xt−5 − 0.0606Yt−5 + 0.1128Zt−5 − 0.0033Xt−6

+ 0.0208Yt−6 − 0.0315Zt−6 − 0.0069Xt−7 − 0.0207Zt−8 + 0.0132Yt−10 − 0.0244Yt−11

+ 0.0166Yt−12 − 0.0054Xt−16 + 0.0257Zt−18 − 0.0296Zt−19 − 0.0031Xt−20 − 0.0031Yt−20

+ 0.0146Zt−20

(28)

The chosen �best� model was the contemporaneous causal model (CCM) with all moral

links included. In this case the contemporaneous DAG did not correspond to the CIG

generated i.e. the CIG did not have an edge joining Xt with Yt (refer �gure 14). Under

most circumstances this would imply that the orientation of at least one of the edges is

directed upwards, but in this application the causal direction is �xed, hence in selecting

this model I had to make the decision that the edge (Xt, Yt) was omitted due to error,
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Figure 26: Fitted values plotted against residuals for the data aggregated 30 minutely.

rather than being truly conditionally independent.

This model performed quite a lot better than a traditional saturated model as assessed

by all information criteria (table 6). Further, plotting the residuals (�gure 26) against �tted

values showed that the errors were stable and the absolute errors were quite low (mostly

within approximately 3%-6% of the observed data), for both soil moisture plots. The

modelling of the rainfall data were not so good, clearly the residuals were not independent

and identically distributed. This was not unexpected because the rainfall data contained

many zero's and in fact was probably �best� modelled by Xt = 0. It is also not of

particular concern, a good model of rainfall would be desirable, but in reality the main

interest in rainfall was only in its affect on soil moisture levels.
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5.4.1 Interpretation

The causal interpretation is that soil moisture levels at the bottom of the hill are contempo-

raneously affected by both rainfall and soil moisture levels in the top of the hill. Between

t and t− 1 (30 minute lag) the model is effectively fully saturated, i.e. all causally plausi-

ble links are �lled. Between t− 3 and t− 6 (11
2
, 3 hour lag) the model is nearly saturated.

Interestingly, there are no links from variables at t−2. From t−7 to t−20 the behaviour

becomes more distinctive. There is a 41
2
− 6 hour lagged effect of soil moisture at the top

of the hill and soil moisture at the bottom. At the same lag soil moisture levels at the top

of the hill have an affect on their current value. At a lag of 9 − 10 hours soil moisture

levels at the bottom of the hill affect their current state.

For the most part this interpretation seems very plausible from a causal point of view,

with one exception. Does it make sense for rainfall and soil moisture at the bottom of the

hill to be causally linked contemporaneously, and not soil moisture levels at the top? My

suspicion is that this is probably not the case. In addition, the omission of links at t− 2 is

surprising. A possible interpretation of this is that the observed relationships of variables

at t and t − 1, are non-causal relationships, while the actual causal affects have a lag of

11
2

or more.

5.5 Aggregated Models

Hydrological processes (along with other sorts of processes) are likely to display differ-

ent causal patterns on different scales. In addition, given the problem of initial model

saturation it was hoped that data aggregation would create more sparse models.

5.5.1 Data Aggregation

As the rainfall data were collected continuously, aggregation could be done simply by

summing successive 30 minute observations. The soil moisture observations however,
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Figure 27: The best model selected by all information criteria for data aggregated hourly.

were sampled minutely but averaged for each 30 minute interval by the recording de-

vice. To aggregate these data averages from the relevant number of successive 30 minute

observations were calculated. In doing this the form of the data remained the same. To ag-

gregate data R code spacedata and CREATEX appendix B.2,B.1 (written by C Meurk)

were used. Models for data aggregated hourly and 2 hourly are presented.

5.5.2 Best Model when Data Aggregated Hourly

Xt = 0.4174Xt−1 + 0.0648Xt−2 + 0.0740Xt−3 + 0.0326Xt−4 + 0.0436Xt−5

Yt = 0.0582Xt + 0.1786Xt−1 + 1.4383Yt−1 − 0.0989Xt−2 − 0.5091Yt−2 + 0.1347Yt−3

− 0.0193Xt−4 − 0.0762Yt−4 + 0.0221Yt−6

Zt = 0.0208Xt + 0.4044Yt + 0.0472Xt−1 − 0.5959Yt−1 + 1.4016Zt−1 − 0.0388Xt−2

+ 0.2594Yt−2 − 0.5028Zt−2 − 0.0094Xt−3 − 0.1089Yt−3 + 0.1755Zt−3 − 0.0071Xt−4

+ 0.0626Yt−4 − 0.1119Zt−4 − 0.0294Yt−5

(29)

The chosen �best� model was the CCM with all moral links included (�gure 27). The lag

has shrunk dramatically to 6 (a lag of 6 hours). This relates strongly to the model in �gure

25 which became very sparse at t − 12 (a lag of 6 hours). This model is one link away

from being fully saturated between t and t − 4. Unfortunately, saturated models do not

provide too much causal insight.
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Figure 28: Best Model as selected by all information criteria for data aggregated 2 hourly.

5.5.3 Best Model For Data Aggregated 2 hourly

The model aggregating the data 2 hourly produced a much sparser model, and a model

with a larger lag. The model is near saturated from t to t − 2 (consistent with previous

models) but then becomes very sparse. In addition, this model was unusual because unlike

most other models, regression removed a large number of links included in the original

CIG (�gure 29). Arguably, this could be because it is actually a VAR(2) process, but to

model it as such provides no causal insight.

This was the only model where the best model was not the CCM. It does not appear that

this model provides too much causal insight. At t−9 (18 hours) there is a link between soil

moisture at the top of the hill and soil moisture at the bottom, this is plausible. Between

t − 12 and t − 13 (24-26 hours) there is a link between rainfall and soil moisture at the

bottom (which seems unlikely given there is no close link to soil moisture at the top) and,

at the same point, zt links with itself, but there is no similar process for yt with itself. It

would be expected that one of the main differences in soil moisture processes would be

the time delay between a variable having an affect at one position on the hill over another.

Xt = 0.4435Xt−1 + 0.0089Xt−2 + 0.0393Xt−12

Yt = 0.1642Xt−1 + 1.3444Yt−1 − 0.0696Xt−2 − 0.3825Yt−2

Zt = 0.1034Xt−1 − 0.0377Yt−1 + 1.3113Zt−1 − 0.0595Xt−2 + 0.0609Yt−2 − 0.3567Zt−2

− 0.0062Xt−4 + 0.0969Zt−11 − 0.0146Xt−12 + 0.0751Zt−12 − 0.0091Xt−13 − 0.1243Zt−13

(30)
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Figure 29: CIG corresponding to the DAG of 2 hourly data. This model was unusual because
regression removed a number of links.

Overall, aggregation of the data did not give as much insight into the causal processes of

this system as was hoped. However, it did shed light on some of the intricacies of GMTS.

5.6 Models for Different Seasons

So far, modelling has focussed on the data in its entirety. However, it is possible that there

is signi�cant seasonal variation. In particular the plot (�gure 23) showed a distinctive

period of calm behaviour over Autumn 2003 followed by a highly variable period over

the following Winter and Spring. Subsets of the data (at 30 minute intervals) which corre-

spond to seasons Autumn and Spring were used to create models of these seasons. These

subsets contained approximately 4350 observations each, of data grouped at 30 minute

intervals.

5.6.1 Autumn

The chosen model for Autumn was the CCM model with saturated contemporaneous

causal links. This model was highly saturated and hence not conducive to a causal inter-

pretation except perhaps to say that the model re�ects the stability of the system as seen

in the plots.
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Figure 30: Resulting Best Model DAG for Autumn 2003
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Figure 31: Resulting Best Model DAG for Spring 2003

Xt = 0.4672Xt−3 + 0.0584Xt−6

Yt = 0.0330Xt + 0.0410Xt−1 + 0.00629Xt−2 + 1.1944Yt−2 − 0.0463Xt−5 − 0.1946Yt−10

Zt = 0.0082Xt + 0.6669Yt + 0.0051Xt−1 − 1.0919Yt−1 + 1.8346Zt−1 − 0.0057Xt−2

+ 0.4775Yt−2 − 1.2789Zt−2 − 0.1245Yt−3 + 0.8325Zt−3 − 0.0080Xt−4 + 0.3066Yt−4

− 0.8744Zt−4 + 0.0101Xt−5 − 0.5179Yt−5 + 0.9102Zt−5 − 0.0080Xt−6 + 0.5023Yt−6

− 0.7566Zt−6 − 0.4037Yt−70.5268Zt−7 + 0.0042Xt−8 + 0.2266Yt−8 − 0.3536Zt−8

+ 0.0033Xt−9 − 0.0412Yt−9 + 0.1881Zt−9 − 0.0029Xt−10 − 0.0654Yt−10

(31)

5.6.2 Spring

The model selected for spring is also a CCM. This model is virtually saturated from t to

t− 5. Between t− 6 and t− 9 Zt links to itself. Rainfall appears to affect Yt at a lag of 6

hours while it affects Zt at a lag of 7-8 hours.
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Xt = 0.4133Xt−1 + 0.0429Xt−2 + 0.0742Xt−3 + 0.0685Xt−4 + 0.0643Xt−5

Yt = 0.1530Xt−1 + 1.6098Yt−1 + 0.0553Xt−2 − 0.8633Yt−2 − 0.1012Xt−3 + 0.4111Yt−3

+ 0.0089Xt−4 − 0.2150Yt−4 + 0.0573Yt−5

Zt = −0.0076Xt + 0.4994Yt + 0.0783Xt−1 − 0.7693Yt−1 + 1.5034Zt−1 − 0.0303Xt−2

+ 0.4262Yt−2 − 0.6333Zt−2 − 0.0258Xt−3 − 0.2146Yt−3 + 0.1644Xt−4 − 0.0946Yt−4

− 0.0193Xt−5 − 0.0650Yt−5 − 0.0134Xt−6 + 0.0644Yt−6 − 0.0704Zt−6 + 0.0076Xt−7

− 0.0333Yt−7 + 0.0891Zt−7 − 0.0128Xt−8 − 0.1053Zt−8 + 0.0493Zt−9

(32)

5.6.3 Model Comparison Between Seasons

In environmental and ecological applications often difference is more important than sim-

ilarity. For example, it is of interest to know what the difference is between the full season

model, the model of Spring and the model of Autumn.

Comparing the �gures 25,30 and 31, the full season model with the omission of the

t − 2 links is virtually saturated up to t − 6, similar to the model of Autumn, although

the Autumn model includes the links between Xt and Yt. The model for Spring is also

virtually saturated up to about t− 5. The exception is the links between Zt and its lagged

variables. In this way the Spring model appears more closely related to the full season

model. In addition, the contemporaneous subgraph is the same for both Spring and the

full season model, which is unusual because both these subgraph DAGs resulted from a

similar problem of CIG con�guration (refer section 5.4).

After t−6, all models become very sparse quite quickly. In the full season model there

is a progression from Y affecting Z to Y affecting itself to Z affecting itself. The Autumn

model shows that from about t − 5 Y has a continued affect on Z, followed by X with

Z. Throughout this model Z affects itself. This model is half the order of the full season
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model with an order of 10. Again, Spring shows a similar behaviour to the full season

model displaying a slight progression of effect. For example, at t− 5 and t− 7 Y affects

Z and at t − 7 and t − 8 X affects Z. The model of Spring displays the lowest order

of 9. Viewing the dataset in light of the subtle similarities the model for Spring has with

the full season model it was noted that the full dataset spanned 18 months or 6 seasonal

changes. Of these 6 seasons Spring and Summer were studied twice. It may be possible

that this observed similarity is due to a bias towards Spring and Summer. It would be

interesting to model all the seasons in light of this and look at the model progression that

occurs, unfortunately, as with this assessment it would be highly subjective. In order to

undertake a study, which could be of great use to the hydrologists, a way of measuring

the difference or distance between models would be required.

5.7 Causal Relevance of These Models

Interestingly, in all but one case (the 2 hour model) the saturated CCM was selected as

the best model. Is this because hydrological processes are contemporaneously linked, or

could there be another reason? Through this case study I came to an interesting conclusion

about the place of moralisation and the bias that arises with testing using the information

criteria.

5.7.1 Moralisation in Practise

In chapter 3 the best model selected including all possible moral links had an SIC value

of -4502.4. After performing subset selection this had �improved� to -4515.9 and a total

of 4 moral edges had been removed. In the hydrological case the saturated models were

almost always favoured, there were no possible moral edges whose removal caused an

improvement. From a practical point of view, it appears that, in these cases at least, simply

adding a temporal arrow and deciding on contemporaneous con�gurations from a CIG

model represents a close to optimal �t/parsimony trade-off. For the small improvement

that the removal of moral links may provide is does not really seem worth the effort to
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Figure 32: An example of an effectively saturated model to lag 2, possible moral links are given
by the dashed lines

carry out extensive subset selection.

In fact, in these models, where moral edges are known in the graphical model is not

where possible edge removal might help. For example, if we refer to the subgraph in

�gure 32 the list of possible moral links are:(Xt, Yt),(Xt, Xt−1),(Yt, Yt−1),(Xt, Xt−2) and

(Yt, Yt−2).

But what about Z? Z is at the bottom of the causal chain, and as a result there are no

possible moral links. This is because any value of Zt−k can only be a parent to one node,

Zt, and as shown in section 4.3.3, for a moral edge to exist, a lagged variable must be the

parent of two joined contemporaneous variable as in �gure 18.

Referring to the equations for the best models given in this chapter each equation for

Z is very lengthy. Surely some of these edges could be removed, however, unlike X and

Y there is no theoretical justi�cation for doing so. Practically, edges which feed into Zt

could be removed if they caused model improvement. However, this would weaken the

causal appropriacy of the model. In addition, in a case like this where there is a well

de�ned causal direction, the removal of moral edges amounts to the removal of serial

links in the X and Y direction only, e.g. Xt, Xt−k and Yt, Yt−k links, and this systematic

removal of a certain type of edge, undermines the validity of moralisation because it
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Figure 33: A demonstration of the possible causal bias due to moralisation

introduces a bias towards the selection of certain sorts of relations over others. Hence,

in this case the principal of moralisation has not helped in the removal of edges where

needed i.e. in the case of Zt, and further, it is doubtful the extent to which moral links

should be removed as an edge selection bias has been introduced.

5.7.2 The Contemporaneous Boundary

Theoretically, there is another problem which concerns the combination of contemporane-

ous causality, moral edges and the use of information criteria to assess alternative causal

models. Looking solely at the contemporaneous part of �gure 32 the rule of demoralisa-

tion only allows for the potential removal of one edge - the edge from (Xt, Yt). It is con-

ceivable however, that contemporaneous causality is not present. As Granger states, the

decision whether to include contemporaneous links or not �...cannot be achieved by purely

statistical means� (Granger,C.,1988,208). With GMTS it appears that, if it is known that

contemporaneous causality is de�nitely present or de�nitely not present, then there is

not too much problem in concluding the best model selected is the best causal model.

However, if we are unsure whether contemporaneous causality is present it appears the

contemporaneous causal model will be favoured by the information criteria. Figure 33 de-
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scribes the possible bias of information criteria to select contemporaneous causal models

as �best� models. This diagram indicates why a model with saturated contemporaneous

causal links will be favoured, it has the maximum �choice� of links for explanatory power,

and the maximum ability to remove them to increase parsimony. In contrast, the model

on the right does not have this choice and hence all edges must be included. Therefore,

regardless of causal superiority there is a potential bias of the information criteria to ac-

cept the CCM. For example, the link between Xt and Xt−1 in �gure 33 is dependent on

the existence of an edge between Xt and Zt, a contemporaneous edge. If this edge does

not exist, then the link Xt and Xt−1 must be real. In this case, the same relationship will

occur with Yt−1 and Zt. Supposing that this model was a VAR(1) process, it may not

make too much difference, because the inclusion of only 2 possible edges are at stake,

however, referring to �gure 32 which goes to lag 2, contemporaneous saturation allows

for maximum of 6 possible moral edges (not 7, if the edge between Xt and Yt is removed,

then the possible moral links Yt, Xt−k will become real), and as the order increases this

trend will continue.

5.8 A SINful Alternative

In many of these cases causal interpretations of the model could not be given, or were lim-

ited, because models were highly saturated. Hence, a method which removed more edges

and hence produce sparser graphs was desired. In 2004 Drton and Perlman proposed

a method for creating undirected graphs UG. This method takes a covariance or corre-

lation matrix and �nds the partial correlation matrix and then uses Fisher's z-transform

and Sidak's correlation inequality (1967) and develops a simultaneous testing procedure

which aims to reduce errors and produce sparser models. The term SINful refers to the

fact that this method separates edges into Sign�cant, Indeterminate and Non-signi�cant

edges, in quite a clear manner. This method has not been used in time series analysis.

Given the problem of model saturation in these case studies it seemed worthwhile to try

and apply this method to VAR modelling.
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Figure 34: A SINful model. The dashed lines refer to the Indeterminate edges.

The data used was the full dataset spaced at 30 minute intervals hence this model can

be compared to the model derived in �gure 25. Drton and Perlman have written a suite of

programmes available in the latest release (2.1.0) of R (Drton,M., 1994). The appropri-

ate procedure was modi�ed so that the output contained only the relationships between

current variables, and current with lagged variables. In non-temporal models, SINful will

produce a graph with relationships between all pairs of variables which is undesirable for

time series analysis.

The resulting model in �gure 34 had an AIC value of -164980 (other information criteria

values were consistent with this) compared to the GMTS model for 30 minute data which

had an AIC of -272840. The SINful model has removed more edges however, this does

not correspond with a more interpretable model. In addition, much explanatory power

has been lost as is evident in the AIC value and the error plots 35. In fact, the AIC for the

saturated model was -238790 in light of this it was concluded that the SINful approach
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Figure 35: Plot of residuals for SINful model of 30 minute data

has not provided a viable model in this case.

Xt = 0.53Xt−1 + 0.0555Xt−2 + 0.0622Xt−7 + 0.0184Xt−14 + 0.0198Xt−15

Yt = 0.0245Xt + 0.3065Xt−1 + 1.1298Yt−2 − 0.055Xt−7 − 0.1340Yt−7 − 0.055Xt−8

− 0.134Yt−8 + 0.0141Yt−14

Zt = 0.0401Xt + 0.4462Yt + 0.0708Xt−1 + 0.1266Xt−1 − 0.0572Yt−1 + 1.0776Zt−7

− 0.5819Yt−8 − 0.0648Zt−8 − 0.1185Xt−9 + 0.1619Xt−14 − 0.0289Xt−12 + 0.1107Yt−13

− 0.1690Zt−14 − 0.0154Xt−15 − 0.0375Yt−16 + 0.1187Zt−19 − 0.0453Xt−20 − 0.0292Yt−20

(33)

5.9 Conclusion and Problems for Future Research

This case study highlighted some unexpected behaviours in the applying the principle of

moralisation and further research needs to be undertaken to establish under what condi-

tions (if any) it provides a signi�cant improvement in modelling. In addition, in cases

where the removal of moral links can improve the model it is apparent that contempo-
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raneous causal models will be preferred over non contemporaneous causal models, by

information criteria methods. Hence, if we wish to comparatively assess these types of

models there is a need for the development of a causal test.

Data aggregation did not provide causal information as had been hoped, this is largely

due to the fact that models were highly saturated over a short lag. The seasonal models

were interesting because it appeared that the model for Spring and the full season data

were �closer� than they were to the Autumn model. This analysis is supported by the

plots in �gure 23. Analysis of the difference between models is very important in envi-

ronmental and ecological applications and hence the development of a metric to measure

the �distance� between alternative models in a way which provides insight into what these

differences are would be a very worthwhile study.

It does appear that GMTS satis�es the requirement of G-Causality, that is, it takes a

sensibly selected subset, a CIG, and assesses it with information criteria, with a method-

ical way of removing edges (by moralisation). Further, in cases where the existence of

contemporaneous causal links is known one way or the other GMTS does appear causally

appropriate. However, when contemporaneous causal models are being compared with

non-contemporaneous causal models this modelling strategy appears only to be causally

sensitive for reasons outlined above, perhaps Granger was right.

Finally, in the case of the 30 minute data the SINful approach was adapted to time se-

ries. In this case it created a model which was not favourable compared with the GMTS

model and the traditional modelling approach. It appears that, despite being a procedure

which reduces selection errors, it has provided too strict a criteria and important explana-

tory links have been removed. It is likely that this criteria could work with other datasets,

however, given that it has removed a number of important explanatory variables in this

case, it is unlikely the resulting model could be considered causal.
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6 Case Study III: Ecological Data

Statistical inference is particularly dif�cult in ecology. Statistical populations

are not biological populations ... biological populations and communities

change in space and time in such a complex manner that if we specify a

statistical population very broadly, we cannot sample it in a random manner.

This fundamental problem undercuts the very foundation of normal statistical

inference in ecology.

-Charles J Krebs, Ecological Statistician

The data for this case study was kindly provided by Mike Fitzgerald who, along with

Brian Karl, was responsible for collecting these data for nearly 23 years, while working

for DSIR/Landcare Research.

6.1 The Causal Question

These data poses an interesting causal question, does beech seed masting cause substantial

increase in mouse populations? This view was proposed following similar studies in

the Northern Hemisphere starting in the 1970's. More recently, this �traditional view�

has been challenged by the view that the observed relationship between seed masting

and mouse numbers is not the causal relationship, that in fact, �owerfall and seedfall

may provide a food source for invertebrates, and it is the rise in invertebrate numbers

which cause mouse population growth (Fitzgerald, M., et al., 2004, and Choquenot, D.,

et al.,2000). Hence, this dataset appeared to be an interesting case to study using GMTS.

6.2 About the Data

These data were collected in the Orongorongo valley near Wellington between August

1971 and November 1996. From the data provided, three variables, suitable to test the

81



ecological research question, were chosen. These were: mice numbers, beech seedfall

and mouse breeding numbers.

Mice Numbers

Mice were trapped in snap-traps which had metal-covers to exclude possums. In total,

there were 116 trap sites set up at 50m intervals, throughout hard beech forest. Trap-

ping took place over 3 consecutive nights, four times a year (February, May, August and

November). Between 1971 and 1993 this was carried out by Fitzgerald and Karl. From

1994 to 1996 data were collected by Alley and Berben. However, when the data were

analysed it was noticed that the data had changed signi�cantly from one pair of collectors

to the next, and it is unlikely this is due to differing conditions, but simply different styles

of collection. Hence, analysis excluded the �nal 2 years, and only analysed the data up

until the end of 1993 (Fitzgerald, M., 2004, pers comm).

Once trapped each mouse was counted and autopsied. The number of mice captured

was then transformed into a density index, and it is these values used in this analysis. The

formula for density is given as:

Nt =
−100a2

(a1 + a2)
log

a0

T
, (34)

(Fitzgerald, et al.,2004,170) where, Nt is the population density at time t, a0 is the number

of traps not sprung, a1 is the number of traps sprung but empty, or containing another

species and a2 is the number of traps containing a mouse. T = a0 + a1 + a2. This

estimate had a standard error given as:

SE(Nt) = 100

√
a1a2[log a0

T
]2

(T − a0)3
+

a2
2

a0T (T − a0)
(35)

(ibid). This index was found assuming a Poisson distribution of trap rates and that trap-

pability was constant for all ages and sexes. The authors acknowledge that these assump-
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tions may have caused some bias. In total there are 90 mouse density measurements.

Beech Seed

Beech seedfall, along with other �ower and leaf litter, were measured using traps left

under mature trees with an area of 0.28m2. Traps were cleared monthly, but data were

reported annually. From 1971 three traps were used, but this was increased to 21 in 1974.

The mean of the initial three traps appeared representative of subsequent data from all 21,

and data from these three traps were used to provide a density estimate seedsm−2. Seedfall

occurred from February through until May. In total there are 24 seedfall observations.

Mouse breeding

Breeding mouse data were given both as a number of pregnant females and as a percentage

of adult females. Adulthood was assessed based on Lidicker's toothwear classes. A

mouse with toothwear class above 3 i.e. greater than 4 months old was considered an

adult. A mouse was considered pregnant if the autopsy found live or resorbing embryos in

utero. There are 23 observations for breeding, although the last was discarded because it

recorded an incomplete breeding cycle. Breeding took place in the Orongorongo Valley in

both Spring and Summer but only one value was reported annually. The data used for the

subsequent analysis was the percentage of breeding mice because it gave a very different,

but I believe more accurate, description of the process. For example, in the November

1971-August 1972 observation 50 breeding mice were recorded, this corresponded to

4.0% of the adult female population. In 1974-1975 year 16 breeding mice were recorded

corresponding to 56.2% of the adult female population.

6.3 The Problem of Ecological Data

The dataset presented in this case study is not atypical of ecological datasets. Ecological

data can be expensive to collect, and hence there can be fewer observations than might

be ideal. The processes under study can be slow to develop and processes may have
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different periodicity which is an important part of the data and needs to be preserved. In

this case while one series, Xt (mouse numbers), persist over each season, other dependent

processes such as mouse breeding (Zt) occurs over only two seasons, with breeding being

0 (or not signi�cantly different from 0) for the other two seasons. The two variables (Yt

and Zt) are approximated by Poisson process and hence is not conducive to �nding a set

of equations of the form [Xt, Yt, Zt]
T , where each variable is modelled at the same time

period. Beech seed fall, the main causal interest of this study only occurs once per year

AND mast years, years of excessive beech �owering and seedfall (which ideally we would

like to be able to model separately and compare with non-mast years) only occur every

4-7 years. This means that over the 23 years of study, a maximum of about 6 mast year

observations are possible. In cases like these, all the research funding in the world cannot

provide more data in any hurry. In addition, over such a long period of time theories

change. In this case the �seed mast� view was challenged by the �invertebrate� view but

by then it was too late to get a corresponding invertebrate series of suf�cient length to

test.

Furthermore, in this dataset (as with many others) it is not possible to go out into the

�eld, and �nd out exactly how many mice there are, especially if each mouse needs to

be autopsied �rst. Hence, ways of estimating the population must be devised, and this

process is susceptible to bias.

6.4 So What Can We Do?

The easy answer would be to walk away from this dataset in disgust due to the fact that

it does not really display the properties that time series analysis requires. However, one

cannot always choose the data one gets to analyse, and, one way or another the scientist

who spent their time and effort collecting the data will want some answers.
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Before presenting the method used in this case it pays to mention the initial analysis

carried out. To begin, it was intended that ordinary GMTS analysis take place using the

three series mouse numbers Xt, seedfall Yt and mouse breeding Zt. It quickly became ap-

parent that this was highly problematic. In order to carry out the ordinary GMTS method

it was proposed that, for the two variables with only one value per year, i.e. the breed-

ing and seedfall data, we generate data from the observation according to an appropriate

distribution to simulate values for seasons within each year, and hence remove the zeros.

However, after various attempts, results did not provide any useful output. At the same

time I became more convinced that the 0 entries were justi�ably 0. For example, 0 seedfall

in July is a real value because seed does not fall in July. In addition I came to realisation

that the loss of seasonal information which occurred when applying the original GMTS

approach was a large drawback in this case. That is, a model where a present value is

given in terms of the past value for all time periods looks to �nd the unchanging rela-

tionship between past and present variables. In ecological data, we are often interested in

looking at the changing relationships, in this case the seasonal change, and in particular

the comparison with extreme events such as seed masting.

6.5 Modelling with GMTS

There are a number of reasons GMTS modelling will be problematic in this application.

• Due to the staggering of activity periods each series has, e.g. mouse breeding occurs

from November to February and seedfall occurs in February, the model will have to

investigate, and deal with, the relationship among lagged variables. This is because

whereas in ordinary time series modelling the present is modelled in terms of the

past, in this case there are relationships between different past variables which are

essential to preserve. For example, in �gure 36 seedfall (Yt) and mouse breeding

(Zt), display a relationship between lagged variables Yt−1 and Zt−2 which is of

equal importance to the relationship mouse numbers have with themselves Xt and

Xt−1.
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Figure 36: This �gure represents 3 processes which occur at different periods. The edge between
Xt and Xt−1 is the sort of link GMTS is concerned with. However in this case the link between
Yt−1 and Zt−2 is also important.

• Although aggregating yearly would allow a conventional time series approach to

be applied, the results of this would be uninformative because (a) seasonal effects

would be lost and (b) what was a small number of observations would become even

smaller, for not much gain in informativeness.

Nevertheless, there are other reasons for wanting to carry out this procedure.

• Graphical modelling of this process, and in particular, a causally sensitive GM ap-

proach could potentially be very useful given the causal question being discussed.

• Bad time series or not, this is still a time series and so a model which preserves

the �arrow of time� is still preferable. However, seasonality is a VERY important

property to preserve. The model would be deeply �awed if it gave a model of

Xt = α1Xt−1...αkXt−k, for example where the difference between time t and t− 1

could not be given a seasonal interpretation.

6.6 A Possible Modi�cation to the GMTS approach

It was clear that GMTS would require some manipulation. First, to preserve seasonality,

the matrix G of lagged variables was created, so that each lag denoted a season. For ex-

ample, the vector X = [xt, xt−1, xt−2, xt−3, xt−4...xt−k]
T , where xt was an observation of
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Figure 37: Schematic diagram of the construction of the matrix G to remove 0 but preserve the
right direction of time

each of the three variables from August 1993 and xt−k was an observation from Novem-

ber 1970, was split into 4 vectors Xaug = [xt, xt−4...]
T , Xmay = [xt−1, xt−5...]

T ,

Xfeb = [xt−2, xt−6...]
T , Xnov = [xt−3, xt−7...]

T . These were compiled so that G =

[Xaug,Xmay, Xfeb, Xnov] and the CIG found as usual. Wherever there was a row/column

of 0's, the partial autocorrelation matrix would output complete rows and columns of

NaN (Not a Number) as a result of division by 0. This was unavoidable, however it is

straightforward to assume that when beech seed does not fall it has no effect on other

variables, and similarly when mice do not breed mouse breeding has no effect on other

variables, hence all 0 rows/columns were removed and the process proceeds. Figure 37

shows schematically how the matrix G is modi�ed to create a new G with 0 rows and

columns removed.

Second, this process was repeated with different leading season's until four graphical

models are produced. This is done ensuring that the model is temporally faithful. For

example, when the leading season changes from August to May, in our example xt is

dropped from the top of the vector and xt−k−1 is added at the bottom. Doing this, as

opposed to aggregating the whole season's values and reverting to an ordinary regression,

loses a couple of degrees of freedom, but this is unavoidable if a temporal interpretation
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is to be preserved.

In the analysis which follows the only data points imputed for this modelling were

that of the breeding percentage. This is because only one value was given to cover two

time periods, even though breeding were possible in both. This differs from the case

of seedfall where one yearly value referred to one seasons activity. The breeding data

needed to be �split� between the two seasons because there was no information to more

accurately model breeding differences between seasons. Initially, this was done simply

by dividing each observation equally between the two seasons. However, this meant

that there were linearly dependent rows and hence the CIG could not be calculated. To

overcome this problem normal random variables were generated by MATLAB. This was

done by sampling repeatedly and taking means from a uniform distribution with mean

0.5 and range (0,1). Hence, for each observation pN the spring value was de�ned as

pN ∗ rand and the summer value de�ned as pN ∗ (1− rand).

The remainder of the process does not differ from the ordinary GMTS method and the

resulting model from the above analysis is given in the top left of �gure 38.

A model was generated for each permutation of seasons and these the remaining models

as well as the combined model are given in �gure 38.

6.7 Results

Regression coef�cients were �tted using the R procedure lm. Care must be taken in using

this procedure for time series because lm does not always maintain the order of variables,

especially in the residual plots. The subsequent graphs were checked thoroughly to make

sure this had not occurred.

The models presented in �gure 38 are interesting because there is very little interac-

tion between variables. With the omission of the link from February to May the mouse
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a) Model for August b) Model for February
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c) Model for November d) Combined model for all seasons
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Figure 38: Graphical models for each different permutation of seasons. Note that there is no
model for May

population displays a Markov property, i.e. each node in the X direction is linked with

the node of its previous variable. For example, Xaug is linked to Xmay and Xfeb is linked

to Xnov. The regression coef�cients for the X series does not appear to imply growth,

which is unusual. There is a surprising omission of a link between breeding and mouse

numbers. The relationship breeding has to itself, is probably an artefact of the way in

which the data were split. On discovering this, I reverted to modelling this as one event

but this did not create any interaction, and hence the above model was retained, without

the inclusion of the regression coef�cient (which was about 1). Under this model, there

does appear to be a causal link between beech seedfall and mouse numbers. In addition

there is a distant effect by mouse numbers on breeding. It maybe more appropriate (in

light of the way breeding data was imputed), to shift the link from joining mouse numbers

in August and mouse breeding the following February, so that it joins mouse breeding in

November instead.

The errors in �gures 39, 40,41 and 42 are not particularly stable and display a divergence

in errors. The Cook's distance plot indicates that mast years have very high in�uence on
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Figure 39: Errors for August model
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Figure 40: Errors for February,X
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the model. Unfortunately, to remove these from the model would leave a dataset which

is already too small, unuseable. It would be desirable to model the mast years separately,

however this really is impossible with the dataset as it is.

6.8 Conclusion

Modelling these data using GMTS was not an overwhelming success. However, it would

be interesting to further investigate this type of method in further non-time series applica-

tions.

While the graphical model did not give too much new insight and omitted some unusual

links, like a link from mouse breeding to mouse numbers, it was basically sensible, i.e. it

re�ected what we know to be the true system and this is encouraging.

In regards to this particular case it would be interesting to retry the approach stated

after some careful simulation of further data. This would probably require access to the

raw data.
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7 Summary

In this thesis I have had two main tasks, to discuss causation in statistics and in particular

GMTS as a causal model as well as the practical application of GMTS methodology in

environmental and ecological datasets.

Causality

• The development of statistical methods for �nding causal links is different from a

philosophical approach to causality and it is important that this distinction is under-

stood if progress in this discipline is to be made and statistical methods adopted. In

short, statistical treatments of causality need to focus on �nding causal links rather

than trying to de�ne what causation is.

• The de�nition of G-causality provides a causally sensitive approach to modelling,

so long as the set of input parameters are selected in a manner which ensures causal

links are not excluded, such as is the case with conditional independence.

• GMTS provides a practical and causally sensitive approach to modelling and is

consistent with the notion of Granger Causality. However, as was discovered in

case study II it appears that there may be some bias in the selection of structural

VAR models.

• Further research is required in order to discover if moralisation is really as impor-

tant in practise as the theory suggests, i.e. in what type of models will the removal

of moral edges produce signi�cant improvement in a model with respect to infor-

mation criteria. In addition, theory needs to be developed to govern the principle

of moralisation, when in conjunction with a certain causal direction it entails the

removal of a particular type of edge, for example the removal of serial links.

• Ultimately, there is a need for the development of a causal test, similar to the infor-

mation criteria tests, which will not be biased towards contemporaneous models in
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the way that the information criteria are.

Application to Ecology and the Environment

• In practice, GMTS improved over traditional modelling in case study I and all cases

in case study II.

• Much of the potential hassle, which has occurred when manually specifying alter-

native DAGs from the CIG, is removed as it has been shown that this process can

be automated.

• Even in the most unlikely scenario, as with case study III, GMTS was still able to

generate a model which, although �awed in some ways looked basically sensible.

Further research into GMTS type strategies for linear models and generalized linear

models would be a worthwhile avenue to explore, especially in this case if careful

data generation can be carried out to compare mast years with non mast years.

• In environmental and ecological applications change can be more important than

similarity, and, a measure of change in processes as seasons progress etc. would

be of bene�t to scientists in these disciplines. Hence, the development of a metric

which can provide a measure of change between seasons is a worthwhile task for

future study.

• Although it appears that CIGs do not provide an optimal set of causal variables, i.e.

they contain some links which may not be causal, it does seem that it is nearly op-

timal. As already mentioned CIG based models performed better than the saturated

models, but also, in case study II where the SINful approach was adapted a CIG

based model prevailed as the best model.
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A List of MATLAB Code Used

A.1 cigts

function [R,crit,Rsig,IRsig]=cigts(X,lags,tv)

%CIGTS Conditional independence graph for time series models

% Ver 6.1 (April, 2001)

%

% [R,crit,Rsig,IRsig]=cigts(X,lags,tv) computes the conditional

% independence graph (CIG) for vector autoregressive

% time series models (VAR).

%

% You need to specify:

% X - the matrix containing the time series as column vectors;

% Example: if you wish to analyze the CIG between the time

% series Y, W, Z and their lagged series, then your X is

% X=[Y W Z];

%

% lags is the number of lags you want to consider in the model;

% Example: if you set lags equal to 1, cigts will analyse the

% conditional independence or partial correlation between

% Y(t), W(t), Z(t), Y(t-1), W(t-1) and Z(t-1);

%

% tv is the t-value corresponding to the alpha level

% of probability;

% Example: if you wish alpha=0.05 then your t-value (for

% large samples) is 1.96.

%

% CIGTS returns:
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% R - the "conditional independence/partial correlation" matrix

% (R) between the current and lagged time series;

% Example: if X=[Y W Z] and lags=1, R is the

% "conditional independence/partial correlation"

% matrix between the variables Y(t), W(t), Z(t), Y(t-1),

% W(t-1) and Z(t-1);

%

% crit - the critical value to reject the null hypothesis of

% independence/incorrelation, calculated according

% the statistics exposed by Reale and Tunnicliffe Wilson.

%

% Rsig - is a "conditional independence/partial correlation"

% matrix where the significant partial correlations are

% indicated as ones and the non signicant ones as zeroes.

%

% IRsig - is equivalent to Rsig but with the variables

% and the lags indicated on the left of the partial

% correlations to facilitate the reading.

%

% With this procedure only the relations with current variables

% are tested.

%

%Reference: Reale and Tunnicliffe Wilson, Journal of the Italian

% Statistical Society (2001)

[rows cols]=size(X);

for i=1:lags+1

G(1:rows-lags,i+(cols-1)*(i-1):i*cols)=X(lags+2-i:rows+1-i,:);
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end

[nv m]=size(G);

if nv-(m-1)<30

warning('You have less than 30 degrees of freedom')

end

if nv-(m-1)<0

warning('You have not enough observations: ...

reduce the number of lags')

break

end

V=corrcoef(G); W=inv(V); S=sqrt(diag(W)); R1=W./(S*S');

R=2*eye(m)-R1; crit=tv/sqrt(tv�2+nv-(m-1)); Asig=abs(R)>crit;

P1=ones(length(V)); P2=triu(P1); P3=P2-tril(P1).*triu(P1);

nodisplay=sym('x'); P4=P3*nodisplay; Bsig=tril(Asig)+P4;

Rsig=Bsig(:,1:cols); Vars=(1:cols)'*ones(1,lags+1);

FVars=reshape(Vars,(lags+1)*cols,1); Ind=ones(cols,1)*(0:lags);

FInd=reshape(Ind,(lags+1)*cols,1); variables=sym('variables');

index=sym('lags'); pcs(1:cols)=sym('pc');

IRsig=[variables index

pcs(1:cols);FVars FInd Rsig];
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A.2 DAG�t

%Code DAGfit by M Reale. Modified for presentation by C Meurk

%

%Input:

%

%

%G - Matrix of Lagged Variables

%edges - equations for regression

%k-number of parameters

%

%fit - function by M Reale (omitted), performs OLS

n=length(G); hq=2*log(log(n)); sz=log(n);

'model a' %All tentative links included

k=13; [s1,b1,t1,e1]=fit(G(:,[1,edges]));

[s2,b2,t2,e2]=fit(G(:,[2,edges]));

[s3,b3,t3,e3]=fit(G(:,[3,edges]));

[s4,b4,t4,e4]=fit(G(:,[4,edges]));

%corrcoef([e1,e2,e3])

dev=n*(log(s1)+log(s2)+log(s3)+log(s4)); aic=dev+2*k;

caic=aic+(2*k*(k+1))/(n-k-1); hic=dev+hq*k; sic=dev+sz*k;

[k,dev,aic,caic,sic] tv=[t1;0;t2;0;t3;0;t4];

bv=[b1;0;b2;0;b3;0;b4]; [bv,tv]
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A.3 Case Study I, Code For Generating Contemporaneous Models

%Creation of Matrix

d=[]; for n=1:10

a=[ones(1,2�(n-1)),zeros(1,2�(n-1))];

b=a'*ones(1,2�(10-n));

c=reshape(b,1,2�10);

d=[c;d];

end

UD=[ones(1,2�10);d];

[r c]=size(d);

%Removal of Cycles and DAGs where no moral link in CIG

xx=[]; for n=1:2�10; if �((UD(2,n)==1 & UD(3,n)==0 &

UD(4,n)==1)|(UD(2,n)==0 & UD(3,n)==1 & UD(4,n)==0))

xx=[xx,n];

end end

UD=UD(:,xx);

[r c]=size(UD);

xx=[]; for n=1:c;

if �((UD(6,n)==0 & UD(7,n)==1 & UD(9,n)==1) | ...

(UD(6,n)==1 & UD(7,n)==0 & UD(9,n)==1))

xx=[xx,n];

end

end UD=UD(:,xx); [r c]=size(UD); xx=[]; for n=1:c;

if �((UD(8,n)==1 & UD(9,n)==0 & UD(10,n)==0 & UD(11,n)==0)|...

(UD(8,n)==0 & UD(9,n)==1 & UD(10,n)==1 & UD(11,n)==1))
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xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD); xx=[]; for n=1:c;

if �((UD(1,n)==1 & UD(2,n)==1))

xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD); xx=[]; for n=1:c;

if �(UD(3,n)==0 & UD(5,n)==1)

xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD) xx=[]; for n=1:c;

if �(UD(8,n)==1 & UD(9,n)==1)

xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD) xx=[]; for n=1:c;

if �(UD(10,n)==0 & UD(11,n)==1)

xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD) xx=[]; for n=1:c;

if �(UD(6,n)==0 & UD(10,n)==1)

xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD) xx=[]; for n=1:c;

if �(UD(5,n)==0 & UD(9,n)==0)

xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD) xx=[]; for n=1:c;

if �((UD(1,n)==1 & UD(3,n)==1))
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xx=[xx,n];

end

end UD=UD(:,xx) [r c]=size(UD); xx=[]; z=[1,2]; y=[1,3]; x=[1,4];

w=[3,4]; v=[4,8]; u=[5,7]; t=[5,6]; s=[6,9]; r=[6,7]; q=[7,8];

l=[8,9];

zz=[z;y;x;w;v;u;t;s;r;q;l]; zzz=[zz,zz,zz,zz,zz,zz];

for m=1:c

for n=1:11

if UD(n,m)==0

zzz(n,[(2*m-1),2*m])=fliplr(zzz(n,[(2*m-1),2*m]));

end

end

end aa=zzz; [r c]=size(aa); bb=zeros(r,r,c);

for m=1:2:c

for n=1:r

bb(aa(n,m),n+1,m)=aa(n,m+1);

end

end

bb;

bb=bb(:,:,[1:2:c])
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B List of R Code Used

B.1 spacedata

#spacedata written by C Meurk

rm(list=ls()) data<-read.table("H:rainfall_data.txt",h=T)

library(survival)

datetime <- as.POSIXct(strptime(paste(data$V1, data$V2), ...

"%d/%m/%Y %H:%M"), tz="GMT")

mindata<-seq(from=min(datetime),to=max(datetime),by="mins")

newdata<-matrix(0,length(mindata),1)

newdata[match(format.POSIXct(datetime,"%Y %m %d %H %M",...

tz="GMT"),format.POSIXct(mindata,"%Y %m %d %H %M",tz=...

"GMT"))]<-data$V3

nr<-as.numeric(newdata) lnr<-length(nr)

nr<-matrix(nr[1:(lnr)],nrow=30) clump<-colSums(nr)

write.table(clump,file="H:x30.txt",sep=" ",row.names=FALSE)

As a brief aside, it is important to note some of R's foibles when it comes to time. The

rainfall data were all recorded in one timezone (New Zealand Standard Time, NZST).

However R, in conjunction with my computer's operating system, was determined to

convert the times into New Zealand Daylight Savings Time (NZDT) where appropri-

ate. This was problematic as when trying to align values by the minute, the command

match could not match the data correctly surrounding time changes causing either a

resulting vector 2 observations (i.e. an hour) shorter than my other series, or error mes-

sages. After extensive search and helpful comments from the [R] help mailing list

104



(https://stat.ethz.ch/mailman/listinfo/r-help), I was able to solve

the problem to the extent that I had a correct vector of values. Nevertheless (and this is

acknowledged as a general problem for R especially when run from a Windows operating

system), R still outputs values in NZST and NZDT but also is 12 hours behind the actual

observed time. Although a small annoyance when storing time, R actually stores the date

as seconds past 1/1/70 and hence it did not cause errors in my results.
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B.2 CREATEX

#CREATEX, creates matrix of column vectors for analysis with

#MATLAB function cigts, eg for 60 minute aggregation takes x60

#from modified code spacedata

x<-read.table("H:x60.txt",h=T)

y<-read.csv("H:plot_1_theta1.txt",h=T)

z<-read.table("H:plot_6_theta1.txt",h=T) y<-y[,4] ly<-length(y)

y<-y[1:(ly-1)] ny<-matrix(y,nrow=2) ny<-colMeans(ny) z<-z[,4]

lz<-length(z) z<-z[1:(lz-1)] nz<-matrix(z,nrow=2) nz<-colMeans(nz)

X<-cbind(x,ny,nz)

write.table(X,file="H:X60.txt",sep="",row.names=FALSE)

#This code is easily adapted for any time aggregation
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C Full CIG for Chapter 3
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Model A Model B Model C
[1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38]
[2, 3, 7, (10), 11, (20), (38), 12, 21] [2, 3, 7, (10), 11, (20), (38), 12, 21] [2, 3, 7, (10), 11, (20), (38), 12, 21]
[3, 4, 28, 51, (11), (21), 12, 13, 22] [3, 4, 28, 51, (11), (21), 12, 13, 22] [3, 4, 28, 51, (11), (21), 12, 13, 22]
[4, 5, 10, 11, 31, 40, (12), (22), 13, 14, 23] [4, 5, 10, 11, 31, 40, (12), (22), 13, 14, 23] [4, 10, 11, 31, 40, (12), (13), (22), (14), (23)]
[5, 26, (13), (14), (23)] [5, 26, (13), (14), (23)] [5, 4, 26, 13, 14, 23]
[6, 7, 15, 27, 29, 42, 49] [6, 15, 27, 29, (42), (49)] [6, 7, 15, 27, 29, 42, 49]
[7, 16, 28, 37, 44, (42), (49)] [7, 6, 16, 28, 37, 44, 42, 49] [7, 16, 28, 37, 44, (42), (49)]
[8, 53, (17)] [8, 53, (17)] [8, 53, (17)]
[9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17]
Model D Model E Model F
[1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38]
[2, 3, 7, (10), 11, (20), (38), 12, 21] [2, 3, 7, (10), 11, (20), (38), 12, 21] [2, 3, 7, (10), 11, (20), (38), 12, 21]
[3, 4, 28, 51, (11), (21), 12, 13, 22] [3, 28, 51, (11), (12), (21), (13), (22)] [3, 28, 51, (11), (12), (21), (13), (22)]
[4, 10, 11, 31, 40, (12), (13), (22), (14), (23)] [4, 3, 10, 11, 31, 40, 12, 13, 22, (14), (23)] [4, 3, 10, 11, 31, 40, 12, 13, 22, (14), (23)]
[5, 4, 26, 13, 14, 23] [5, 4, 26, 13, 14, 23] [5, 4, 26, 13, 14, 23]
[6, 15, 27, 29, (42), (49)] [6, 7, 15, 27, 29, 42, 49] [6, 15, 27, 29, (42), (49)]
[7, 6, 16, 28, 37, 44, 42, 49] [7, 16, 28, 37, 44, (42), (49)] [7, 6, 16, 28, 37, 44, 42, 49]
[8, 53, (17)] [8, 53, (17)] [8, 53, (17)]
[9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17]
Model G Model H Model I
[1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38]
[2, 7, (10), (11), (20), (38), (12), (21)] [2, 7, (10), (11), (20), (38), (12), (21)] [2, 3, (10), 11, (20), (38), 12, 21]
[3, 2, 28, 51, 11, 12, 21, (13), (22)] [3, 2, 28, 51, 11, 12, 21, (13), (22)] [3, 4, 28, 51, (11), (21), 12, 13, 22]
[4, 3, 10, 11, 31, 40, 12, 13, 22, (14), (23)] [4, 3, 10, 11, 31, 40, 12, 13, 22, (14), (23)] [4, 5, 10, 11, 31, 40, (12), (22), 13, 14, 23]
[5, 4, 26, 13, 14, 23] [5, 4, 26, 13, 14, 23] [5, 26, (13), (14), (23)]
[6, 7, 15, 27, 29, 42, 49] [6, 15, 27, 29, (42), (49)] [6, 7, 15, 27, 29, 42, 49]
[7, 16, 28, 37, 44, (42), (49)] [7, 6, 16, 28, 37, 44, 42, 49] [7, 2, 16, 28, 37, 44, (42), (49)]
[8, 53, (17)] [8, 53, (17)] [8, 53, (17)]
[9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17]
Model J Model K Model L
[1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38] [1, 2, 15, 35, 37, 47, 10, 11, 20, 38]
[2, 3, (10), 11, (20), (38), 12, 21] [2, 3, (10), 11, (20), (38), 12, 21] [2, (10), (11), (20), (38), (12), (21)]
[3, 4, 28, 51, (11), (21), 12, 13, 22] [3, 28, 51, (11), (21), (12), (13), (22)] [3, 2, 28, 51, 11, 12, 21, (13), (22)]
[4, 10, 11, 31, 40, (12), (22), (13), (14), (23)] [4, 3, 10, 11, 31, 40, 12, 13, 22, (14), (23)] [4, 3, 10, 11, 31, 40, 12, 13, 22, (14), (23)]
[5, 4, 26, 13, 14, 23] [5, 4, 26, 13, 14, 23] [5, 4, 26, 13, 14, 23]
[6, 7, 15, 27, 29, 42, 49] [6, 7, 15, 27, 29, 42, 49] [6, 7, 15, 27, 29, 42, 49]
[7, 2, 16, 28, 37, 44, (42), (49)] [7, 2, 16, 28, 37, 44, (42), (49)] [7, 2, 16, 28, 37, 44, (42), (49)]
[8, 53, (17)] [8, 53, (17)] [8, 53, (17)]
[9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17] [9, 8, 16, 18, 27, 29, 36, 17]
Model M
[1, 15, 35, 37, 47, (10), (11), (20), (38)]
[2, (10), (11), (20), (38), (12), (21)]
[3, 2, 28, 51, 11, 12, 21, (13), (22)]
[4, 3, 10, 11, 31, 40, 12, 13, 22, (14), (23)]
[5, 4, 26, 13, 14, 23]
[6, 7, 15, 27, 29, 42, 49]
[7, 2, 16, 28, 37, 44, (42), (49)]
[8, 53, (17)]
[9, 8, 16, 18, 27, 29, 36, 17]

Table 4: Alternative model speci�cation. In cases where an edge was represented twice - once as
real, once as moral, the edge was deemed to be real. Edges are not necessarily in order, however,
ordering is carried out prior to regression.

Model Type AIC HIC SIC
Sat cVAR -3.3594e+003 -2.8990e+003 -2.2244e+003
Sat sVAR -5.2648e+003 -4.7119e+003 -3.9015e+003
Model A -4.5644e+003 -4.4873e+003 -4.3742e+003
Model B -4.5147e+003 -4.4375e+003 -4.3244e+003
Model C -4.5711e+003 -4.4940e+003 -4.3809e+003
Model D -4.5118e+003 -4.4346e+003 -4.3216e+003
Model E -4.5447e+003 -4.4676e+003 -4.3545e+003
Model F -4.4854e+003 -4.4082e+003 -4.2952e+003
Model G -4.5474e+003 -4.4703e+003 -4.3572e+003
Model H -4.4881e+003 -4.4109e+003 -4.2979e+003
Model I -4.6927e+003 -4.6155e+003 -4.5024e+003
Model J -4.6898e+003 -4.6126e+003 -4.4996e+003
Model K -4.6634e+003 -4.5862e+003 -4.4732e+003
Model L -4.6595e+003 -4.5824e+003 -4.4693e+003
Model M -4.5127e+003 -4.4355e+003 -4.3224e+003

Table 5: table of AIC,HIC and SIC values for candidate models.
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Series Test-Statistic Outcome Deduced status (α = 0.05)
Rainfall -7.5191 reject H I(0)
Soil Moisture 10cm, site 1 -0.3862 −(reject H) I(1)
Soil Moisture at 10cm depth site 6 -0.2525 −(reject H) I(1)

Model AIC SIC HIC
TradSat -238790 -238470 -237810
CCM -272840 -272720 -272460
CCnoml -269880 -269770 -269550
noCC -262230 -262140 -261760

Table 6: TradSat refers to a saturated sVAR, CCM is a contemporaneous causal model with all
moral links included. CCnoml is a contemporaneous causal model with no moral links included
and noCC is the non-contemporaneous model. This table indicates that CCM was favoured by all
criteria.

Model AIC SIC HIC
TradSat -64095 -64005 -63826
CCM -96117 -96032 -95863
CCnoml -44139 -41187 -41367
noCC -89066 -88988 -88834

Table 7: TradSat refers to a saturated sVAR, CCM is a contemporaneous causal model
with all moral links included. CCnoml is a contemporaneous causal model with no moral
links included and noCC is the non-contemporaneous model. This table indicates that
CCM was favoured by all criteria.

Model AIC SIC HIC
TradSat -10303 -10092 -9692
CCM -18053 -18187 -18440
CCnoml -13336 -13271 -13146
noCC -22906 -22826 -22675

Table 8: TradSat refers to a saturated sVAR, CCM is a contemporaneous causal model with all
moral links included. CCnoml is a contemporaneous causal model with no moral links included
and noCC is the non-contemporaneous model. This table indicates that noCC was favoured by all
criteria.

114



variables lags pc pc pc pc pc pc pc pc pc
1 0 1 x x x x x x x x
2 0 1 1 x x x x x x x
3 0 0 1 1 x x x x x x
4 0 0 0 1 1 x x x x x
5 0 0 0 0 1 1 x x x x
6 0 0 0 0 0 0 1 x x x
7 0 0 1 0 0 0 1 1 x x
8 0 0 0 0 0 0 0 0 1 x
9 0 0 0 0 0 0 0 0 1 1
1 1 1 1 0 1 0 0 0 0 0
2 1 1 1 1 1 0 0 0 0 0
3 1 0 1 1 1 0 0 0 0 0
4 1 0 0 1 1 1 0 0 0 0
5 1 0 0 0 1 1 0 0 0 0
6 1 1 0 0 0 0 1 0 0 0
7 1 0 0 0 0 0 0 1 1 1
8 1 0 0 0 0 0 0 0 1 1
9 1 0 0 0 0 0 0 0 1 1
1 2 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0
3 2 0 1 1 0 0 0 0 0 0
4 2 0 0 1 1 0 0 0 0 0
5 2 0 0 0 1 1 0 0 0 0
6 2 0 0 0 0 0 0 0 0 0
7 2 0 1 0 0 0 0 0 0 0
8 2 0 0 0 0 1 0 0 0 0
9 2 0 0 0 0 0 1 0 1 1
1 3 0 0 1 0 0 0 1 1 0
2 3 0 0 0 0 0 1 0 1 1
3 3 0 0 0 0 0 0 0 0 0
4 3 0 0 0 1 0 0 0 0 0
5 3 0 0 0 0 0 0 0 0 0
6 3 0 0 0 0 0 0 0 0 0
7 3 1 1 0 0 0 0 0 0 0
8 3 1 0 0 0 0 0 0 0 0
9 3 0 0 0 0 0 0 0 0 1
1 4 1 0 0 0 0 0 1 0 0
2 4 1 1 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0 0 0
4 4 0 0 0 1 0 0 0 1 0
5 4 0 0 0 0 0 0 0 1 0
6 4 0 0 0 0 0 0 0 0 0
7 4 0 0 0 0 0 1 0 0 0
8 4 0 0 0 0 0 0 0 0 0
9 4 0 0 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0 0 0
2 5 1 0 0 0 0 0 0 0 0
3 5 0 0 0 0 0 0 0 0 0
4 5 0 0 0 0 0 1 1 1 0
5 5 0 0 0 0 0 0 0 1 0
6 5 0 0 1 0 0 0 0 0 0
7 5 0 0 0 0 0 0 0 0 0
8 5 0 0 0 0 0 0 0 1 0
9 5 0 0 0 0 0 0 0 1 0

Table 9: MATLAB output of CIG, an entry of 0 indicates conditional independence and an entry
of 1 indicates conditional dependence i.e. that an edge can be drawn between two nodes
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