
Widening the Knowledge Acquisition Bottleneck for

Intelligent Tutoring Systems

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Doctor of Philosophy

in the

University of Canterbury

by

Pramuditha Suraweera

Examining Committee

Associate Professor Judy Kay (University of Sydney) Examiner

Professor Jim Greer (University of Saskatchewan) Examiner

Associate Professor Antonija Mitrovic Supervisor

Doctor Brent Martin Associate Supervisor

University of Canterbury

2006

This thesis is dedicated to my dear wife

Abstract

Empirical studies have shown that Intelligent Tutoring Systems (ITS) are

effective tools for education. However, developing an ITS is a labour-intensive

and time-consuming process. A major share of the development effort is

devoted to acquiring the domain knowledge that accounts for the intelligence

of the system. The goal of this research is to reduce the knowledge acquisition

bottleneck and enable domain experts to build the domain model required

for an ITS. In pursuit of this goal an authoring system capable of producing a

domain model with the assistance of a domain expert was developed. Unlike

previous authoring systems, this system (named CAS) has the ability to

acquire knowledge for non-procedural as well as procedural tasks.

CAS was developed to generate the knowledge required for constraint-

based tutoring systems, reducing the effort as well as the amount of expertise

in knowledge engineering and programming required. Constraint-based mod-

elling is a student modelling technique that assists in somewhat easing the

knowledge acquisition bottleneck due to the abstract representation. CAS

expects the domain expert to provide an ontology of the domain, example

problems and their solutions. It uses machine learning techniques to reason

with the information provided by the domain expert for generating a domain

model.

A series of evaluation studies of this research produced promising results.

The initial evaluation revealed that the task of composing an ontology of

the domain assisted with the manual composition of a domain model. The

second study showed that CAS was effective in generating constraints for the

three vastly different domains of database modelling, data normalisation and

fraction addition. The final study demonstrated that CAS was also effective

in generating constraints when assisted by novice ITS authors, producing

constraint sets that were over 90% complete.

Table of Contents

List of Tables v

List of Figures vi

Chapter 1: Introduction 1

1.1 Intelligent Tutoring Systems 2

1.2 Domain Knowledge . 3

1.3 The Problem: Authoring Domain Knowledge 5

1.4 A Solution: An Authoring System that Generates Constraint

Bases with the Assistance of a Domain Expert 6

1.5 Guide to the Thesis . 7

Chapter 2: Intelligent Tutoring Systems 9

2.1 ITS Architecture . 10

2.1.1 Domain Module . 11

2.1.2 Student Modeller . 13

2.1.3 Pedagogical Module . 14

2.1.4 Interface . 15

2.2 Model Tracing . 15

2.2.1 ACT-R Theory . 15

2.2.2 Production Rules . 16

2.2.3 Model Tracing Tutors 18

2.3 Constraint-based Modelling 18

2.3.1 Learning from Performance Errors 19

2.3.2 CBM in ITS . 20

2.3.3 Constraint-based Modelling and Model Tracing: A Com-

parison . 22

2.3.4 Constraint-based Tutors 23

2.3.5 WETAS: An Authoring Shell 36

2.4 Summary . 40

Chapter 3: Domain Knowledge Authoring Systems 42

3.1 Domain Knowledge Authoring Tools 43

3.1.1 KnoMic . 45

3.1.2 Diligent . 48

3.1.3 Disciple . 50

3.1.4 Demonstr8 . 54

3.1.5 CTAT . 56

3.2 Producing a Domain Ontology 60

3.2.1 Protégé . 61

3.2.2 OilEd . 64

3.2.3 SemanticWorks 2006 66

3.3 Summary . 69

Chapter 4: A Constraint-based Domain Model Authoring Sys-

tem 70

4.1 Domain Authoring Process . 71

4.2 Architecture . 73

4.3 Modelling Domain’s Ontology 75

4.3.1 Domain Ontology . 76

4.3.2 Ontology Workspace 77

4.3.3 Internal Representation 82

4.4 Modelling the Structure of Solutions 85

4.5 Syntax Constraints Generation 87

4.6 Adding Problems and Solutions 94

4.7 Semantic Constraints Generation 96

4.8 Constraint Validation . 109

4.9 Summary . 111

Chapter 5: Evaluation 112

5.1 Usefulness of Ontologies for Manually Composing Domain Mod-

els (Study 1) . 113

5.1.1 Process . 114

5.1.2 Results and Analysis 117

ii

5.2 Effectiveness of the Constraint Generation Algorithms (Study 2)123

5.2.1 Entity Relationship Modelling 124

5.2.2 Fraction Addition . 132

5.2.3 Normalisation . 138

5.2.4 Discussion . 144

5.3 Effectiveness of CAS with Novice ITS Authors (Study 3) . . . 146

5.3.1 Procedure . 148

5.3.2 Interaction Times . 150

5.3.3 Analysis of Produced Constraint Sets 155

5.3.4 Discussion . 161

5.4 Summary . 165

Chapter 6: Conclusions 167

6.1 Main Contribution . 167

6.2 Other Significant Contributions 170

6.2.1 Ontology Workspace 170

6.2.2 Problem/Solution Interface 172

6.2.3 Domain Model Authoring Tool for WETAS 172

6.3 Future Directions . 173

6.4 Concluding Remarks . 175

Appendices 177

Appendix A: Translating Pseudo-code Constraints into Lisp-

code: an Example 177

A.1 Solution Representation . 177

A.2 Syntax Constraints . 178

A.3 Semantic Constraints . 178

Appendix B: Study 3 Task Outline 181

Appendix C: ITS 2004 papers 193

Appendix D: AIED 2005 paper 215

Appendix E: ITS 2006 paper 224

iii

Appendix F: AIED 2007 paper 235

Appendix G: Relative Contributions to Published Papers 244

References 246

iv

List of Tables

4.1 Solution Structure for Applying Physics Equations 87

5.1 Interaction Times with WETAS Front End 118

5.2 Numbers of Constraints Composed by Students 119

5.3 Accuracies of Constraints Produced by Students 120

5.4 Interaction Times (hours) with CAS’s Ontology View 151

5.5 Interaction Times with CAS’s Text Editors 154

5.6 Total Numbers of Constraints Composed by Participants . . . 156

5.7 Number of Constraints Generated by CAS 159

v

List of Figures

2.1 ITS Architecture . 11

2.2 Set of Production Rules for Calculating the Third Angle of a

Triangle . 17

2.3 Buggy Rule for Calculating the Third Angle of a Triangle . . . 17

2.4 A Constraint Based on the Third Angle of a Triangle 21

2.5 SQL-Tutor Interface (web version) 25

2.6 A Set of Sample Constraints from SQL-Tutor 27

2.7 Interface of the Web Version of KERMIT 29

2.8 A Set of Sample Constraints from KERMIT 31

2.9 Problem-solving Procedure Adopted by NORMIT 32

2.10 Interface of the Web Version of NORMIT 33

2.11 A Set of Sample Constraints from NORMIT 34

2.12 A Sample Problem and Ideal Solution from SQL-Tutor 38

2.13 Sample Constraints from SQL-Tutor Written in WETAS Lan-

guage . 39

3.1 Classification of Authoring Systems 44

3.2 Interface of Protégé 3.0 . 62

3.3 Interface of OilEd . 64

3.4a Interface of SemanticWorks 2006 66

3.4b Concept Visualisation of SemanticWorks 2006 67

4.1 Architecture of the Constraint Acquisition System 74

4.2 Ontology for Entity Relationship Modelling 76

4.3 Interface of Ontology Workspace 78

4.4 Property Interface . 79

4.5 Relationship Interface . 80

4.6 Relationship Validation Interface 81

4.7 UML Class Diagram of Internal Representation 83

vi

4.8 XML Representation of ER Modelling Ontology 84

4.9 ER Modelling Solution Structure 86

4.10 Syntax Constraint Generation Algorithm 88

4.11 Syntax Constraint Templates for Relationship Restrictions . . 90

4.12 Example Syntax Constraint from a Relationship Restriction . 91

4.13 Syntax Constraint Templates for Relationships Labelled as In-

valid . 91

4.14 Example Syntax Constraint from Relationship Validation Di-

alogue . 91

4.15 Syntax Constraint Templates for Property Restrictions 92

4.16 Example Syntax Constraint from Property Restriction 93

4.17 Syntax Constraint Template for Procedural Task 93

4.18 Example Constraint for Procedural Task 93

4.19 Solution Composing Interface 94

4.20 Element Creation Interface . 95

4.21 Semantic Constraint Generation Algorithm 97

4.22 Algorithm for Generating Constraints from a Pair of Solutions 99

4.23 A Sample ER Modelling Problem and Two Correct Solutions . 100

4.24 Semantic Constraints from Matching Pairs of Elements 101

4.25 Sample Generalised Semantic Constraint 102

4.26 Example Semantic Constraints from a Relationship 103

4.27 Example Semantic Constraint for Procedural Task 104

4.28 Constraint Generalisation/Specialisation Algorithm 105

4.29 Equivalent ER models: A Weak Entity Represented as a Com-

posite Multi-valued Attribute 106

4.30 Generalising Violated Constraint by Adding a Disjunctive Sat-

isfaction Test . 107

4.31 Violated Semantic Constraint Resolved with New Relevance

Test . 108

4.32 Example Description of Constraint 109

5.1a Interface of Domain Model Composition Tool 116

5.1b Constraints List for Ending with ‘Y’ Concept 116

vii

5.2 Semantic Constraints Editor of Domain Model Composition

Tool . 117

5.3a Flat Ontology Composed by Participant S10 121

5.3b Complete Ontologies Composed by Participant S4 121

5.4 Comments by Participants on the Usefulness of Ontologies . . 123

5.5 Ontology for Domain of ER Modelling 126

5.6 Solution Structure for ER Diagrams 127

5.7 Syntax Constraints Produced from Properties and Relation-

ships of Binary Identifying Relationship Concept 128

5.8 Sample Semantic Constraints Produced by CAS 129

5.9 Equivalent ER Models: An Attribute Belonging to a Relation-

ship can also be Assigned to a Participating Regular Entity

with Cardinality 1 . 132

5.10 Problem Solving Procedure for Fraction Addition 133

5.11 Ontology for the Domain of Adding Two Fractions 133

5.12 Solution Structure for Adding Two Fractions 134

5.13 Input Form for Creating an Instance of Fraction 135

5.14 Example Syntax Constraints Generated for the Domain of

Adding Two Fractions . 136

5.15 Example Semantic Constraints Generated for the Domain of

Adding Two Fractions . 137

5.16 Problem Solving Procedure for Normalising Database Tables . 139

5.17 Ontology for the Domain of Normalisation 140

5.18 Solution Structure for Normalising Database Tables 141

5.19 Example Syntax Constraints Generated for the Domain of

Data Normalisation . 142

5.20 Example Semantic Constraints Generated for the Domain of

Data Normalisation . 143

5.21 Fraction Addition Tutor Interface 149

5.22 Solution Addition Interface Generated by CAS from a Com-

plete Ontology . 158

A.1 Solution Representation . 178

A.2 Example Lisp-code Template for a Syntax Constraint 179

viii

A.3 Semantic Constraint that Ensures the Student Solution Con-

tains all the Required Regular Entity Elements 179

A.4 Example Semantic Constraint Template for Lisp-code Mapping 180

ix

Acknowledgments

Thank you to my supervisor Associate Professor Tanja Mitrovic, for all

her invaluable guidance and making this period of study enjoyable. Thank

you to my associate supervisor Dr. Brent Martin, for all your helpful advice

and valuable feedback on my thesis.

I am grateful for the fruitful discussions with the members of the Intelli-

gent Computer Tutoring Group, especially Jay, Nancy, Konstantin, Moffat,

Amali and Nilufar.

Thank you also to all the participants involved in evaluating the different

versions of the authoring system.

Finally, I thank my wife Natashka for her support and encouragement

during this period. I also thank my parents and my brother for all their

support.

This research was supported by a University of Canterbury Doctoral

Scholarship.

x

Chapter I

Introduction

Intelligent Tutoring Systems (ITS) are effective educational programs

that assist students in their learning. A number of empirical evaluation stud-

ies [Koedinger, Anderson, Hadley & Mark 1997, Mitrovic & Ohlsson 1999]

have demonstrated that ITSs are effective tools for teaching students with

possible learning gains between 1 and 2 standard deviations in comparison

to traditional classroom-based teaching. The main reason for the success

of ITSs is their ability to customise pedagogical support to each individ-

ual student, similar to a human one-on-one tutor. ITSs keep an up-to-date

model of the student’s knowledge and provide pedagogical support based on

its domain model, which is a formal representation of the domain. The task

of building a domain model is a difficult process and it requires much time

and effort [Murray 1997]. This difficulty has imposed a major bottleneck in

producing ITSs.

Constraint based modelling (CBM) [Ohlsson 1994] is a student modelling

approach that eases the knowledge acquisition bottleneck to some extent

by using a more abstract representation of the domain compared to other

commonly used approaches [Mitrovic, Koedinger & Martin 2003]. However,

building a knowledge base for CBM still remains a major challenge. This

process requires multi-faceted expertise, such as knowledge engineering, pro-

gramming and the domain itself. It also consumes a major portion of the

time required to build a constraint-based tutoring system. The goal of this

research is to reduce the knowledge acquisition bottleneck for CBM tutors

while opening the door for domain experts with little or no programming

expertise to produce ITSs. In this research, we investigated authoring sup-

port for composing a domain model for constraint-based tutoring systems.

We present an authoring system, named CAS, that reduces the workload

1

for composing domain models. It also enables domain experts with little or

no programming and knowledge engineering expertise to produce constraint

bases.

This introductory chapter presents a high-level overview of the thesis. In-

telligent Tutoring Systems are introduced in Section 1.1. The central compo-

nent of ITSs, the domain model is introduced in Section 1.2. The knowledge

acquisition bottleneck, which is the central problem faced by ITS authors

is discussed in Section 1.3. Section 1.4 proposes a solution: an authoring

system for producing domain models with the assistance of a domain expert.

Finally, a guide to the rest of the thesis is outlined in Section 1.5.

1.1 Intelligent Tutoring Systems

Educational software systems came to light over three decades ago. These

initial systems [Last 1979, Ayscough 1977], called Computer-Aided Instruc-

tion (CAI) systems, presented the same educational material to all users.

Users of these systems had some control over the navigation within the cur-

riculum. Later systems organised feedback into blocks called frames. The

feedback presented in these systems was dependant on the solution to a mul-

tiple choice question chosen by the student. These systems achieved only

modest gains over classroom-based teaching.

Students learn by applying skills or “learning by doing”. One-on-one

human tutoring is extremely effective because the human tutor is able to

scrutinise the student’s solution, identify their misconceptions and provide

explanations [Bloom 1984]. While providing explanations, human tutors also

take into account the student’s strengths and weaknesses. They customise

their explanations to the student’s knowledge level. CAI systems, on the

other hand, present the same feedback to all students regardless of their ca-

pabilities. They do not take into account the student’s emerging knowledge.

CAI systems are also unable to target the learning material to a particular

audience. This may lead to frustration among the students as they may either

be presented with content they already know. The worse case scenario is

when the system incorrectly assumes that the students already know content.

The systems may present problems at the end of a topic to ascertain the

2

competency level of the student. However, the system may make invalid

assumptions about the competency of the student and offer problems that

the student may not be able to solve. Furthermore, as the system is unaware

of how far the student has misunderstood the concepts, it cannot provide

supplementary exercises.

Researchers have been exploring ways of simulating human tutors, to

achieve the same level of effectiveness as in human one-on-one tutoring. The

resultant software systems are called Intelligent Tutoring Systems (ITS). ITSs

customise their feedback to the individual by dynamically reasoning about

the student. They possess the flexibility to identify an array of correct solu-

tions rather than a single ideal solution. This enables the system to respond

to the unique behaviour of individual students.

ITSs have been developed for a variety of domains including mathematics,

programming and vocabulary. There have been many successful ITSs devel-

oped, such as PACT Algebra tutor [Corbett, Trask, Scarpinatto & Hadley

1998], Andes Physics Tutor [VanLehn, Lynch, Schulze, Shapiro, Shelby, L.,

Treacy, Weinstein & Wintersgill 2005], SQL-Tutor [Mitrovic 1998b] etc. ITSs

have also been developed for teaching design tasks such as database mod-

elling [Suraweera & Mitrovic 2002] and object-oriented design [Baghaei &

Mitrovic 2006a].

1.2 Domain Knowledge

The adaptive nature of ITSs enable them to be far more effective in student

learning than CAI systems. This is made possible by their deep model of the

domain and a model of the student. The model of the domain (i.e. domain

model) represents the subject being taught in a way that can be used for

reasoning. The model of the student (i.e. student model) is used to keep

track of what parts of the domain model the student does and does not

know.

The domain model represents the subject matter of an ITS as a dynamic

model that governs the system’s reasoning process. It has the ability to

identify a range of correct solutions rather than a single idealised solution,

and is able to infer the student’s domain knowledge. This enables an ITS

3

to dynamically generate a path through the domain in order to respond to

the unique behaviour of each individual student. The domain model also

supports important pedagogical actions such as generating feedback and se-

lecting problems.

The representation used for modelling a domain depends on the student-

modelling technique used. Constraint-based modelling [1994] (CBM) is a

student-modelling technique introduced by Ohlsson from his theory of “learn-

ing from performance errors” [Ohlsson 1996]. He proposes that we often make

mistakes when performing a task, even when we have been taught the correct

way to carry it out. He asserts that this is because the declarative knowl-

edge that we have learnt is not internalised in our procedural knowledge. We

make mistakes due to the large number of decisions that have to be made.

However, by practising the task and identifying mistakes by ourselves (or

someone else), our procedural knowledge is modified to incorporate the rules

that have been violated. The number of mistakes decline over practice as the

declarative knowledge gets internalised.

Unlike in other popular student-modelling techniques, such as model trac-

ing [Anderson, Corbett, Koedinger & Pelletier 1996], that compare the set of

actions carried out by the student against the system’s correct set of actions,

CBM is not interested in the path followed by the student. CBM is only

interested in the state that the student is currently in. This is supported

by the fact that correct solutions cannot be arrived at traversing a problem

state that violates the principles of the domain.

A number of tutoring systems have been developed using constraint-

based modelling by the Intelligent Computer Tutoring Group at the Uni-

versity of Canterbury. They cover a wide range of domains, demonstrating

the expressibility of constraints. Constraint-based tutors have been imple-

mented for programming-type domains such as the database query language

SQL [Mitrovic 1998b], design tasks such as database modelling [Suraweera &

Mitrovic 2002], and procedural tasks such as database normalisation [Mitrovic

2002]. All constraint-based tutoring systems have been implemented as

problem-solving environments. The system evaluates solutions composed

by students and provides feedback.

4

1.3 The Problem: Authoring Domain Knowledge

The task of building an Intelligent Tutoring System is difficult and requires

much time and effort. The majority of the effort is consumed in encoding the

domain knowledge in the chosen student-modelling representation [Murray

1997]. Constraint-based modelling somewhat eases the knowledge acquisition

bottleneck by using a more abstract representation of the domain, compared

to other commonly used student modelling approaches [Mitrovic et al. 2003].

However, building a set of constraints still remains a major challenge. For

example, SQL-Tutor contains over 700 constraints, each taking over an hour

to develop [Mitrovic 1998a]. Therefore, the task of composing the knowledge

base of SQL-Tutor would have taken over four months to complete.

Typically, a domain model is a result of a collaborative effort between a

knowledge engineer, an Artificial Intelligence (AI) programmer, and a domain

expert. The knowledge engineer has to interact with the domain expert to

extract the domain knowledge and encode it in some formal notation. The

knowledge engineer and the programmer collaborate to produce the final

domain model, encoded in the format required for an ITS. Although domain

experts are fairly common, knowledge engineers and AI programmers are

a rare commodity, which also adds to the difficulties in producing domain

models. It is very rare to find individuals with all three facets of expertise.

The logical solution to the knowledge acquisition bottleneck is to provide

domain experts with authoring systems that enable them to produce domain

models with minimal training. Research attempts at developing such au-

thoring systems that automatically produce knowledge for ITSs have met

with limited success. Although several authoring systems have been devel-

oped1, they have only focussed on acquiring procedural knowledge and fail

to acquire knowledge required for non-procedural tasks. Consequently, these

systems cannot be used for design-type domains that do not have a strict

problem-solving procedure.

The majority of existing authoring systems have focused on certain types

1 Examples of authoring systems include CTAT [Koedinger, Aleven, Heffernan, McLaren
& Hockenberry 2004, Jarvis, Nuzzo-Jones & Heffernan 2004], Disciple [Tecuci & Keeling
1999] and Demonstr8 [Blessing 1997]

5

of domains. For example, Demonstr8 is effective in acquiring knowledge for

algebraic domains, but is restricted to only such domains. Even authoring

tools developed for acquiring knowledge required for simulated domains, such

as KnoMic [van Lent & Laird 2001], are restricted to the environment it was

developed for.

1.4 A Solution: An Authoring System that Generates Con-

straint Bases with the Assistance of a Domain Expert

The aim of this research is to reduce the time and effort required to produce

domain models for constraint-based ITSs and empower domain experts to

build such domain models. In pursuit of this goal, an authoring system

capable of producing a domain model with the assistance of a domain expert

(called CAS) was developed. Unlike previous authoring systems, CAS has

the ability to acquire domain models for non-procedural as well as procedural

tasks. CAS was developed to generate knowledge required for constraint-

based tutoring systems, due to the abstract representation of constraints

that assists in easing the knowledge acquisition bottleneck to some extent.

CAS enables domain experts to produce complete web-based ITSs in con-

junction with WETAS [Martin 2002, Martin & Mitrovic 2002a], an authoring

shell that provides all the domain independent functionality required by an

ITS. As WETAS provides all the domain-independent functionality, CAS can

be used to generate the required domain-dependent components. This would

result in a significant reduction in the time and effort required for producing

ITSs.

CAS has been developed with the goal of minimising the expertise in

knowledge engineering and programming required for creating an ITS. It is

designed to hide the details of constraint implementation such as the con-

straint language and constraint structures. The user is required to model an

ontology of the domain and provide example problems and their solutions.

CAS uses machine learning techniques to reason with the information pro-

vided for producing constraints. Although implementation is hidden from

novices, experts can directly modify the generated constraints using the pro-

vided tools.

6

Authoring knowledge using CAS is a semi-automated process that re-

quires the assistance of an expert of the domain. The domain expert initi-

ates the process of producing a domain model by composing a model of the

domain as an ontology. Then the domain expert has to model the structure

of solutions for problems in the domain. CAS’s constraint generators use

the ontology and the solution structure to produce constraints that ensure

syntactic validity of solutions. The domain expert is also required to provide

sample problems and their solutions, which are used by the constraint gen-

erators to produce constraints. These constraints are used to verify that a

solution for a problem composed by a student is semantically equivalent to

its correct solution. Finally, the author has to be involved in validating the

generated set of constraints.

The effectiveness of CAS was evaluated in three studies, that produced

promising results. The first evaluation revealed that the task of creating a

model of the domain as an ontology assists even in the process of manually

composing constraints. A second study evaluated the system’s effectiveness

in generating constraints, where CAS was used to generate constraints for the

three vastly different domains, namely database modelling, data normalisa-

tion and fraction addition. Analysis of the generated constraints revealed the

generated constraint sets were over 90% complete. The final study demon-

strated that CAS was also effective in generating constraints when assisted by

novice ITS authors, producing constraint sets that were over 90% complete.

It also confirmed that CAS dramatically reduced the total effort required to

produce constraints.

1.5 Guide to the Thesis

Chapter 2 provides the context of this research by introducing Intelligent

Tutoring Systems. In particular, it outlines the typical architecture of ITSs

and describes the two popular domain modelling techniques of model trac-

ing and constraint-based modelling. This chapter also includes a section on

comparing the strengths and weaknesses of the two modelling techniques.

Details of a survey of currently available domain knowledge authoring tools

is provided in Chapter 3, including their strengths and weaknesses. As the

7

task of modelling concepts of the domain is an integral part of authoring do-

main models, a section outlining a collection of tools available for modelling

domain concepts is included in this chapter. Chapter 4 describes CAS, the

authoring system developed as part of this research. It outlines the author-

ing process and the system’s architecture. It includes examples to illustrate

the outcomes of the different phases involved in authoring. The extensive

evaluations conducted to evaluate the effectiveness of CAS and their results

are presented in Chapter 5. Finally, Chapter 6 outlines the conclusions and

presents future directions for research in this area.

8

Chapter II

Intelligent Tutoring Systems

Researchers have been exploring ways of utilising computers as a means

of enhancing the efficiency of learning for over three decades. The first

Computer Aided Instruction (CAI) systems [Last 1979, O’Shea & Self 1983,

Ayscough 1977] presented the educational material to students in a static

form, where every student received the same material but had some control

over the navigation through the curriculum. Later systems included “branch-

ing” where their responses dependent on student’s answers. Their feedback

was organised into blocks of information called frames, which define both

the topic and the feedback to be presented. For example, if the student pro-

vides correct answers for a set of questions, the next frame in the sequence

is presented; if the student could not answer correctly then an alternative

screen is presented. These sequences are static and predefined. These sys-

tems could only provide questions that required a limited set of solutions,

such as ‘yes’/‘no’, multiple choice or numerical solutions.

Although CAI systems managed to achieve modest gains over traditional

classroom based teaching [Kulik, Kulik & Cohen 1980], they failed to match

the effectiveness of human one-on-one tutoring1. With the view of achieving

the success of human one-on-one tutoring, researchers have been exploring

ways of simulating human tutors. These systems, called Intelligent Tutor-

ing Systems (ITS), customise their feedback to the individual student by

dynamically reasoning about the student’s knowledge.

The subject matter of ITSs is represented as a dynamic model with a set

of rules which governs the way the system reasons. They have the ability to

identify an array of correct solutions rather than a single idealised solution.

1 Human one-on-one tutoring can enhance students learning up to two standard devia-
tions [Bloom 1984]

9

They are also capable of approximating the student’s pedagogical knowledge.

This enables ITSs to dynamically generate their own path through the do-

main knowledge in order to respond to the unique behaviour of individual

students.

ITSs have been developed for numerous domains using a variety of ap-

proaches. Some tutors have been developed for individual learning, whereas

others have focused on collaborative learning. Model-tracing tutors [Anderson

et al. 1996] provide problem-solving environments with rich feedback to the

learner. Simulation-based tutors [Alexe & Gescei 1996, Munro, Johnson,

Pizzini, Surmon, Towne & Wogulis 1997] guide learners in simulation envi-

ronments to perform tasks of the domain. Collaborative tutors [Dillenbourg

& Self 1992] on the other hand, try to facilitate positive interaction be-

tween learners by encouraging participation, supporting collaboratively solv-

ing problems and encouraging tutoring between peers.

In this research we mainly focus on tutoring systems similar to model

tracing tutors that support learning by solving problems. These systems

consist of a problem-solving environment where the student solves a given

problem and receives rich feedback as they progress. These systems are

designed to support individual students learning at their own pace while

receiving customised feedback.

The following section outlines the typical architecture of an Intelligent

Tutoring System. It details the general features of the four main compo-

nents of an ITS: domain module, student modeller, pedagogical module and

interface. Since the focus of this research is on domain models, the remain-

ing sections concentrate on the two popular domain modelling techniques:

model tracing and constraint-based modelling. Both sections include details

of the psychological theories that form the basis for the domain modelling

techniques and provides a selected set of example tutoring systems. A brief

comparison of the two modelling techniques is also included.

2.1 ITS Architecture

The architecture of a typical ITS consists of a domain module, student mod-

eller, pedagogical module and an interface (see shown in Figure 2.1). Typ-

10

Domain
knowledge

Domain
module

Student
modeller

Pedagogical
module Interface

Student
models

Student

Figure 2.1: ITS Architecture

ically, these four components combine to provide a customised learning ex-

perience for the student.

As shown in the diagram, the student interacts with the system through

the interface. The interface is typically a problem-solving environment. The

system evaluates the student’s attempt and provides customised feedback.

This evaluation is triggered either by the system or the student depending

on the chosen pedagogical approach. The domain module contains the do-

main knowledge required to compare a solution composed by the student

against the correct solution contained in the system. The correct solution is

compared against the student’s solution by the student modeller using the

domain knowledge. In turn the student model is updated by the student

modeller to reflect the student’s new state of knowledge. Finally, the ped-

agogical module either selects feedback to be presented to the student or,

in the event of the problem being solved correctly, a new problem that best

suits the student’s knowledge level is selected. A detailed account of each

component of a typical ITS is presented in the next four sections.

2.1.1 Domain Module

The domain module contains all the required domain knowledge (facts and

rules of the domain) to validate a student’s attempt. The nature of the

11

domain knowledge may vary. Some domain models encode expert knowledge

required for solving problems. The extent of encoded knowledge could range

from expert knowledge required to solve the problems to a subset of expert

knowledge required for the purpose of teaching. In certain cases, the domain

module is capable of generating the correct solution according to the problem

solving path chosen by the student. The domain model of PACT Algebra

tutor [Corbett et al. 1998] is an example of a system that generates the

solution path based on the student’s actions. Conversely, the domain module

may contain the domain knowledge necessary to validate a student’s attempt

by comparing it to the correct solution stored in the system. The domain

model of SQL-Tutor [Mitrovic 2003a] is capable of validating and providing

feedback on a solution composed by a student by comparing it to the system’s

stored ideal solution.

There are also domain models used for teaching that contain knowledge

capable of solving problems using methodologies different from experts. The

Guidon system [Clancey 1982] encoded knowledge in a form that was needed

for learning medical diagnosis. In addition to expert problem solving rules, it

included knowledge such as procedural knowledge about how to use the rules

of problem solving. It also took into account the rules that helped students

remember a particular rule.

Domain knowledge can be represented in various ways such as frames,

production rules, and constraints. Since domain knowledge is used to solve

problems as well as to explain solutions, the mode of representation should

be powerful enough for solving problems and be comprehensive enough for

providing pedagogical explanations.

Knowledge in ITSs have been represented in either black-box form or

glass-box form. In earlier systems knowledge was represented in the black-

box form where the problem-solving methodology was undisclosed to the

student. Although these systems were able to determine the solution for a

particular problem, they were unable to provide the rationale behind it. The

system by the name SOPHIE I [Brown, Burton & Bell 1975] is a classic exam-

ple, developed for the domain of electric circuits. SOPHIE I could calculate

an electrical measurement at any point in a complex circuit, but is unable

to explain the reasoning behind the reported values. As such explanations

12

are extremely important for learning domain concepts, this type of system is

more likely to encourage shallow learning.

More recent systems have adopted the glass-box form of knowledge rep-

resentation. Here the knowledge is represented in such a way that it closely

resembles the human capability. These systems offer richer explanations to

the student. For example, the model-tracing tutors developed by the ITS

researchers at the Carnegie Mellon University trace the students’ actions

within a tree of correct and typical incorrect solutions. This tree of possible

actions is composed by observing typical students solving problems in the do-

main. The model-tracing tutors force students to follow the correct solution

path by providing hint messages when they divert from the correct solution

path. Constraint-based tutors developed by the University of Canterbury

researchers use a set of constraints to describe the underlying concepts of

the domain. The constraints are used to identify domain concepts that are

violated by the student’s solution and provide feedback messages.

2.1.2 Student Modeller

The student modeller performs two functions. It evaluates the student’s

solution and dynamically maintains a model of the state of the student’s

knowledge and skill level. The representation called the student model is

developed by deducing the student’s knowledge level through their interac-

tions with the system and the quality of their solutions. The student model

contains an estimation of the student’s long-term knowledge (e.g. estimation

on student’s domain mastery) and short-term knowledge (e.g. the mistakes

made by the student during their last attempt).

The student model should also include the system’s opinion of strengths

and weaknesses of the student, as well as their misconceptions. Maintaining

a good approximation of the student’s knowledge is essential as all pedagog-

ical decisions depend on the information found in the student model. The

pedagogical decisions taken by the system is a direct reflection of the quality

of the student model.

ITS researchers have developed a variety of student-modelling techniques

for modelling both the short-term and long-term knowledge of the student.

13

Model tracing (MT) [Anderson et al. 1996] and constraint-based modelling

(CBM) [Ohlsson 1994] are two important short-term student modelling tech-

niques. MT focuses on representing procedural knowledge of the domain,

whereas CBM deals with declarative knowledge.

The well grounded methods for modelling long-term student knowledge

include overlays [Holt, Dubs, Jones & Greer 1994] and stereotypes [Rich

1989]. Overlay models represent the knowledge of the student as a subset of

the domain expert’s knowledge. The initial state of an overlay model assumes

that the student has no knowledge. The model is populated as the student

interacts with the system. Stereotype modelling also models the student’s

domain knowledge with respect to the desired knowledge. It overcomes the

problem of starting from an empty model by classifying the student into

levels of expertise, usually based on the pre-test score.

2.1.3 Pedagogical Module

The pedagogical module acts as the driving engine of the tutoring system.

It decides what to present to the student. The decisions are derived using

information available in the student model and the domain model. The

pedagogical actions, initiated by the pedagogical module, range from low-

level decisions (such as deducing the difficulty of a problem) to high-level

decisions (such as selecting the next topic for the student).

Pedagogical strategies vary from traditional didactic methods to more in-

formal discovery-oriented learning. The didactic approach involves instruct-

ing the learner, in which the tasks are strongly goal-oriented [Anderson 1993].

Tutoring systems that adopt the didactic approach initiate and control stu-

dent activity. Novices find this method of teaching effective as they require

close guidance. However, more knowledgeable students find such systems

restrictive and not sufficiently challenging. In contrast, discovery-oriented

learning involves learning from experience [Lesgold 1987, Shute, Glaser &

Raghavan 1989]. It promotes new knowledge to be constructed through self-

explanation, induction and ontology based on concrete experiences with the

concepts and capabilities possessed by the learner. Although this approach

is effective for knowledgeable students, novices may take a long time to make

14

the discoveries that attribute to achieving the pedagogical objectives. Re-

searchers have been exploring ways of guiding the discovery process with the

view of increasing the efficiency of the learning process.

2.1.4 Interface

The interface is the mediator between the student and tutoring system. Typ-

ically, the students use the interface to solve problems presented to them and

the system presents feedback to students through the interface.

There has been considerable research effort towards developing efficient

interfaces. In this respect a number of characteristics that would increase

the student’s perception of the system and enhance learning efficiency have

been identified. For example, reducing the student’s working memory load

is an important characteristic that leads to improved learning efficiency. All

parts of the problem which are not part of the teaching focus should be made

available to the student through the interface. The interface should also be

able to visualise the goal structure for solving the problem in order to assist

the student towards task completion. Since the student motivation is an

essential ingredient of the success of the system, the interface should also be

able to motivate students.

2.2 Model Tracing

In this research we are primarily interested in domain models. Model Trac-

ing is a well grounded domain modelling technique based on Anderson’s

ACT-R [Anderson et al. 1996] theory. Tutoring systems that are imple-

mented based on this theory are called model-tracing tutors or cognitive

tutors [Corbett & Anderson 1995]. Their domain model is runnable and is

capable of mapping out all the possible paths a student may follow in order

to solve a problem.

2.2.1 ACT-R Theory

The ACT-R cognition theory claims that there are two long-term memory

stores: declarative memory and procedural memory. Anderson contends that

15

a person needs the relevant procedural knowledge in order to perform a task,

and he/she needs to know the underlying declarative knowledge before being

able to perform the task. According to this theory, learning is a three step

process: initially students must acquire declarative knowledge, then they

must transform it into procedural knowledge and finally, in order to inter-

nalise the knowledge they must practice the task several times. Although we

can perform the tasks of which we have forgotten the declarative knowledge

that led to acquiring the skill, Anderson asserts that we must have had the

exposure to the declarative knowledge at some stage.

According to the ACT-R theory, the declarative knowledge (which in-

cludes factual knowledge that the student uses such as theorems in the math-

ematical domain) is represented as ‘chunks’. Procedural knowledge (which

includes goal-oriented knowledge such as how to apply a mathematical theo-

rem) is represented as ‘production rules’. Incorrect knowledge or misconcep-

tions are represented as ‘buggy rules’.

2.2.2 Production Rules

The principal claim of the ACT-R theory is that cognitive skills are realised

by production rules. Accordingly, tutoring becomes the process of transfer-

ring production rules from the system to the student, so the students are

tutored specifically on productions.

Production rules are modelled as goal-oriented if-then rules. As an ex-

ample, consider the set of production rules for computing the third angle of

a triangle when two of the angles are known. The theorem governing the

three angles of a triangle asserts that the sum of the three angles is 180o.

The set of production rules, as shown in Figure 2.2, consists of two if-then

rules. The first rule checks whether the current goal is to ascertain all three

angles of a triangle in which two of the angles are already known. If the

first condition is satisfied, the rule sets a sub-goal to calculate the unknown

angle of the triangle. Since production rules are procedural in nature, the

second production rule triggers only when the goal is to calculate the third

angle of the triangle. In other words, the second rule will only be activated

after the first rule has been completed. The second rule specifies the action

16

of determining the value of the third angle, calculated as (180o − θ1 − θ2).

IF the goal is to find the sizes of all three angles (θ1, θ2

and θ3) of a triangle and two of the angles (θ1, and θ2)
are known

THEN set a sub-goal to calculate θ3 of triangle

IF the goal is to calculate θ3 of triangle
THEN set a sub-goal to write out θ3, where θ3 is 180o −

θ1 − θ2

Figure 2.2: Set of Production Rules for Calculating the Third Angle of a
Triangle

The set of if-then rules used to calculate angles of a triangle (itemised in

Figure 2.2) should also include buggy rules to detect incorrect solutions. A

simple buggy rule which identifies such an erroneous solution, as illustrated in

Figure 2.3, can be added. The rule catches the popular misconception where

students assume that the two base angles of a triangle are always equal. As

a consequence, they determine θ3 to be of the same value as θ2.

IF the goal is to calculate θ3 of a triangle
AND NOT θ2 = (180o − θ1 − θ2) THEN set a sub-goal to

write out θ3, where the value of θ3 is θ2

Figure 2.3: Buggy Rule for Calculating the Third Angle of a Triangle

Composing the set of production rules that make up the domain model

of a cognitive tutors is a labour-intensive and time-consuming process. An-

derson and co-workers reported the estimated time to produce a single pro-

duction rule was ten hours or more [Anderson et al. 1996]. Furthermore,

Koedinger and co-workers estimated that an average of 200 hours of develop-

ment time was required to produce one hour of educational content [Koedinger

et al. 2004]. Domain models for complex domains may be composed of hun-

dreds or perhaps thousands of production rules. Using the ten-hour estimate,

building a domain model for a domain such as SQL would take years. The

17

effort required for building the domain model for cognitive tutors posess a

serious bottleneck to building tutors for complex domains, where the need

for ITSs is at its greatest.

The need to compose a library of typical misconceptions as a collection

of buggy rules is also a major limiting factor in the development of cognitive

tutors [Soloway, Guzdial & Hay 1994]. Furthermore, a bug library com-

posed for a particular group of students may not be appropriate for another

group [Mitrovic et al. 2003], as different groups of students tend to have var-

ied misconceptions and make different mistakes. Thus, composing a robust

library of bugs is an extremely difficult task, if not impossible. The task of

identifying typical misconceptions is tedious and laborious, since the space

of incorrect knowledge is limitless.

2.2.3 Model Tracing Tutors

Model-tracing tutors are able to solve problems in the domain and trace the

solution path of a student through a complex problem-solving space. The

tutors provide immediate feedback on the student’s problem-solving perfor-

mance, in addition to assisting the student to follow the correct problem-

solving path. Additionally, they have an explicit goal-structure of the prob-

lem, in order for the students to master the abstract as well as the concrete

skills of the domain.

Model-tracing tutors have been developed for a number of domains. For

example, the PACT Algebra tutor [Corbett et al. 1998] and PACT Geometry

tutor [Aleven & Koedinger 2000] are designed to teach high school students

to solve algebraic and geometric problems respectively. They are able to

trace the student’s solution path and offer feedback on their performance.

These tutoring systems have been coupled with knowledge tracing to model

the student’s long-term knowledge in the domain. Knowledge tracing is a

long-term student modelling technique.

2.3 Constraint-based Modelling

Constraint-based modelling (CBM) [Ohlsson 1994] is a method for domain

and student modelling proposed by Ohlsson, based on his psychological learn-

18

ing theory. Both the learning theory and domain modelling method vastly

differ from Anderson’s ACT-R theory. This section outlines the theory be-

hind constraint-based modelling and introduces its constraints. A brief de-

scription of selected constraint-based tutoring systems and particular exam-

ples of their constraints are also presented in here.

2.3.1 Learning from Performance Errors

CBM is based on Ohlsson’s theory called “learning from performance er-

rors” [Ohlsson 1996]. This asserts that we learn when we catch ourselves (or

are caught by a third party) making mistakes. Moreover, the theory says

that we often make mistakes even though we know what to do, as a result

of having too many things to consider and that we are unable to make the

correct decision because we are overloaded. In other words, though we may

posess the required declarative knowledge, there may be too many possibili-

ties to consider in a given situation. Hence, in order to be able to make the

correct choice, we have to learn how to apply the declarative knowledge in

addition to learning it.

Ohlsson uses constraints to represent the application of declarative knowl-

edge items to a particular situation. Each constraint consists of two clauses:

a relevance condition and a satisfaction condition. The relevance condition

identifies the appropriate problem states and the satisfaction condition iden-

tifies states where this piece of knowledge has been correctly applied. A

generic constraint can be represented as:

IF <relevance constraint> is true

THEN <satisfaction condition> has to be also true

Consider a person starting to drive a car in a new country. Among a

number of factors, he/she has to consider whether the road system is designed

for left-hand side driving or right-hand side driving. For example, consider

a person from New Zealand (left-hand side driving) starting to drive in the

United States (right-hand side driving). When the driver first enters the

road, he has to make a decision whether to steer the car on to the left-hand

side of the road or the right-hand side. A constraint for this situation can be

encoded as follows:

19

IF driving in the United States

You better be on the right-hand side of the road

The constraint is specified as a predicate. It is relevant for all occurrences

of driving in the United States. The analogous production rule would contain

a goal as the ‘if’ part and an action for the ‘then’ part of the rule. A

production rule may read, “IF entering a road in the United States THEN

steer to the right-hand side”.

According to Ohlsson’s theory, a driver who is new to the conditions, but

is knowledgeable about the right-hand driving rule, may still steer the car to

the left. They will internalise the constraint only after catching themselves

violating it or by being reminded by someone else. However, a driver who is

accustomed to right-hand driving, may “intuitively” steer the car to the right

hand side of the road as a result of repeated application of the constraint.

The constraint has been internalised as procedural knowledge in the case of

an expert driver.

2.3.2 CBM in ITS

The domain model of constraint-based tutors is represented by a set of con-

straints, where each constraint represents a pedagogically significant set of

problem states. If a constraint is relevant to the student’s solution and its

satisfaction condition is violated, the principle represented by the constraint

needs to be taught to the student. Violation of a constraint by a student

means he/she has a misunderstanding about a principle of the domain that

needs to be corrected. Misconceptions of the student are corrected with

feedback actions. Consequently, a basic constraint includes the following

components:

• Constraint identifier

• Relevance condition

• Satisfaction condition

• Feedback

20

Since the space of incorrect knowledge is much greater than correct knowl-

edge, a domain is represented in CBM as a set of constraints on correct so-

lutions. The set of constraints have the ability to identify correct solutions

from the space of all possible solutions. Constraints represent only declara-

tive knowledge of the domain, such as theorems. Incorrect solutions can be

identified as solutions that contravene the semantic and syntax rules of the

domain.

Consider the same example presented in Section 2.2.3, the theorem gov-

erning the sum of the three angles of a triangle in the domain of geometry.

Suppose the applicability condition (Cr) of the hypothetical constraint is

the condition where two (θ1 and θ2) of the three angles (θ1, θ2 and θ3) are

known. The Cr would match any triangle with two known angles. The Cs

that defines the correct solution is of the form θ3 = 180o − (θ1 + θ2). In

other words, Cs defines that the unknown angle (θ3) should be the result

obtained by subtracting the sum of the two known angles from 180o. The

relevance condition (Cr) and the satisfaction condition (Cs) of the constraint

are illustrated in Figure 2.4.

Cr: The student computes the third angle (θ1) of a trian-
gle where two angles (θ1 and θ2) are known

Cs: The third angle (θ3) should be equal to 180o− θ1− θ2

Figure 2.4: A Constraint Based on the Third Angle of a Triangle

A constraint can be represented as a pair of patterns, where each pat-

tern is a list of elementary propositions combined with negation, conjunction

and/or disjunction. Alternatively, constraints can be implemented as pairs

of functional predicates. For example, consider the example illustrated in Fig-

ure 2.4. The Cr may be implemented as knownAngles(triangleIdentifier) =

2, where knownAngles is a function that takes the identifier of a specific tri-

angle as its argument and returns the number of known angles of the triangle.

A complete constraint-base of a tutoring system accounts for all signifi-

cant pedagogical states of the domain. The important principles of compos-

ing a solution for problems presented by the system are encoded as syntax

21

constraints. They ensure that the solutions composed by students are syntac-

tically valid. The correctness of a solution to the given problem is verified by

semantic constraints. They ensure that the solution composed by the student

contains all the required items and nothing extra. The semantic constraints

achieve this by comparing the student’s solution (SS) against the system’s

solution to the problem (referred to as the ideal solution). The ideal solution

(IS) can be either generated by a problem solver or be stored along with the

problems. Typically only a single ideal solution is stored. In cases where

the ideal solution is stored, the constraints have to be sufficiently flexible to

permit correct solutions arrived at using alternate solution paths.

2.3.3 Constraint-based Modelling and Model Tracing: A Comparison

A key assumption in CBM is that diagnostic information is in the problem

state rather than the path taken to arrive at the problem state. This as-

sumption is supported by the fact that a correct solution cannot be arrived

at by traversing a problem state that violates the principles of the domain.

Unlike in MT, where all possible correct paths of solving a problem should be

outlined, the domain model in CBM is only interested in pedagogically signif-

icant problem states. Consequently, the domain model of a constraint-based

tutor is far simpler than that of a cognitive tutor.

The domain model in model tracing describes the student’s knowledge.

It includes correct knowledge as well as common misconceptions in the form

of buggy rules. In contrast, CBM only focuses on correct knowledge. This

ensures that the space of knowledge modelled in CBM is considerably smaller

than in MT. As a result, the size of domain models in CBM tutors is signif-

icantly smaller than that of cognitive tutors.

It is crucial when using model tracing that the domain model be com-

prehensive or the tutor will not be able to trace the actions of the student.

With CBM, the effect of a missing constraint is highly restricted. A miss-

ing constraint simply results in failing to identify a particular error. As the

constraints are modular in nature, the solution can be analysed with the re-

maining constraints. This reduces the need for large-scale evaluations about

the correctness of the domain model involving domain experts and allows

22

the domain to be incrementally developed by incorporating it in a tutoring

system.

The difference between the effort required to compose domain models us-

ing the two student modelling techniques is evident in the domain of database

modelling. In order to assess a simple database modelling problem, KER-

MIT [Suraweera & Mitrovic 2004], the constraint-based tutor for database

modelling, requires 23 constraints and ideal solutions to the problems. In con-

trast, a cognitive model requires 25 production rules, 10 general chunks and

30 problem-specific chunks, or a total of 65 elements [Mitrovic et al. 2003].

Moreover, the 30 problem-specific chunks are specific to the problem and can-

not be used outside that particular problem. On the other hand, constraints

are not problem-specific and they cover a wider range of domains.

It has also been documented that the time required to acquire constraints

is significantly less than that of identifying production rules. Mitrovic [1999]

reported that the time required to identify a constraint was only 1.1 hours.

This is a significant saving in effort compared to the ten or more hours spent

on identifying a single production rule [Koedinger et al. 1997].

2.3.4 Constraint-based Tutors

A number of tutoring systems based on constraint-based modelling have been

developed by the Intelligent Computer Tutoring Group (ICTG) of the Uni-

versity of Canterbury. They cover a wide range of domains demonstrating

the expressibility of constraints. The variety of domains modelled using con-

straints include domains that contain programming tasks, design tasks and

procedural tasks. All tutoring systems have been implemented as practice

environments, where students are presented with a problem to be solved.

The student is able request assistance from the system at any time during

the problem-solving process. Once a problem is complete, the system chooses

a problem that best suits the student’s competency level.

Constraint-based systems have also been developed to cater for students

of a variety of age groups. While the majority of the tutoring systems have

been developed for university-level students, there are also constraint-based

tutors for younger students. The punctuation tutor (CAPIT) [Mayo, Mitro-

23

vic & McKenzie 2000] was developed with the goal of improving the capitali-

sation and punctuation skills of 10-11 year old school children. LBITS [Martin

& Mitrovic 2002a] is another constraint-based ITS developed to teach basic

English language skills to elementary and secondary school students. It uses

a series of “puzzles” such as crosswords, synonyms, and plurals for pedagogy.

A suite of tutoring systems to cover introductory database concepts such

as database modelling, database normalisation and database querying have

been developed by Mitrovic and co-workers [Mitrovic, Mayo, Suraweera &

Martin 2001]. The database suite includes KERMIT [Suraweera & Mitrovic

2002] for learning database modelling concepts, ERM-Tutor [Milik, Marshall

& Mitrovic 2006] for practising the process of converting an ER model to a

relational schema, NORMIT [Mitrovic 2002] for practising database normal-

isation and SQL-Tutor [Mitrovic 1998b] for learning the SQL database query

language. An outline of each of these tutoring systems is presented next.

SQL-Tutor

SQL-Tutor [Mitrovic 2003a] is the inaugural constraint-based intelligent tu-

toring system, constructed as a practice environment for students learning

SQL, the database query language. Here the students are required to com-

pose an SQL statement that satisfies all the given requirements. It was devel-

oped with the goal of assisting university-level students practice composing

SQL queries at their own pace with the assistance of the system.

Problems in SQL-Tutor are presented in the form of a set of requirements

for which the student has to compose SQL queries. The answer must be

provided by populating the clauses of a ‘select’ statement and the student

may request feedback at any time by submitting the solution to the system.

Once the solution is submitted, the system evaluates it and provides feedback

regarding the state of the solution.

The interface of SQL-Tutor is shown in Figure 2.5. The centre of the inter-

face displays the structure of an SQL statement with six areas for composing

the six clauses of an SQL statement: select, from, where, group-by, order-by

and having. Students compose an answer by populating these fields. When

the student completes a solution or requires assistance from the system, they

24

can click on the “submit answer” button and the system will evaluate the

solution composed by the student and provide hints.

The system contains six levels of feedback messages ranging a from sim-

ple correct/incorrect message to more detailed hint messages to a complete

solution. The level of feedback is automatically increased by the system af-

ter each submission. The student also can request more assistance from the

system by directly selecting a specific level of feedback.

The system attempts to ease cognitive load on the student by providing

scaffolding. The bottom area of the interface outlines the schema of the

database the student is working on. This eliminates the need for students to

remember the details of the database tables and their attributes.

Figure 2.5: SQL-Tutor Interface (web version)

The knowledge base of SQL-Tutor contains 700 constraints, covering

both the syntax and the semantics of SQL. The constraints are problem-

independent; they only describe the principles of the domain, and do not

directly refer to any particular problem. They are also modular, and are not

25

dependant to each other.

Figure 2.6 illustrates three constraints from SQL-Tutor. Each constraint

consists of five components: a number as the identifier, hint message, rele-

vance condition, a satisfaction condition and the SQL clause in focus. The

first constraint (constraint 2) ensures that the the select clause is not empty.

Its relevance condition specifies that the constraint is always relevant and

the satisfaction condition checks that the select clause is not null. The last

component specifies that the constraint focuses on the select clause.

Constraint 38 is an example of a simple constraint that checks for the

semantic validity of a student’s solution. It verifies that, for a problem where

the select clause of its ideal solution is the symbol ‘*’, the student solution’s

select clause should also contain a ‘*’ or a list of all attributes found in tables

named in the from clause. By checking for either ‘*’ or list of attributes in

the student’s solution, the constraint is able to correctly identify equivalent

correct solutions by using only a single ideal solution.

The final example in Figure 2.6 (constraint 99), is a relatively complicated

constraint which ensures that the SQL keyword ‘IS’ is used according to the

correct syntax. In SQL, the keyword ‘IS’ can only be used in conjunction

with the ‘NULL’ predicate. The constraint is relevant for solutions which

contain a where clause that includes a ‘NULL’ predicate. The satisfaction

condition checks that the ‘IS’ predicate is followed by either a ‘NULL’ or a

‘NOT’.

KERMIT

KERMIT [Suraweera & Mitrovic 2002] is an intelligent tutoring system for

teaching database design using the Entity-Relationship (ER) data model [Chen

1976]. It consists of a problem-solving environment in which students com-

pose ER diagrams that satisfy the given set of requirements. The system

is designed to complement classroom teaching, given that the students are

familiar with the fundamentals of database theory. The system assists the

student by evaluating his/her database schema and providing feedback.

During the problem-solving stage, the student is given a textual descrip-

tion of the requirements of the database that should be modelled using KER-

26

(p 2

"The SELECT clause is a mandatory one.

Specify the attributes/expressions to retrieve

from the database."

t

(not (null (select-clause ss)))

"SELECT")

(p 38

"The SELECT clause should contain either a *, or the

names of all attributes of the tables appearing in

the FROM clause."

(equalp ’("*") (select-clause is))

(or (equalp ’("*") (select-clause ss))

(null (set-difference (all-att

(find-names is ’from-clause) ’())

(find-names ss ’select-clause)

:test ’equalp)))

"SELECT")

(p 99

"Check the search condition you have specified with

the IS NULL predicate. Make sure you use the right

attribute in it. The IS keyword must be preceded

by an attribute name and may only be followed by

NOT or NULL. Remember that IS cannot be used in

the place of the equality operator."

(and (not (null (where ss)))

(bind-all ?n (names (where ss)) bindings)

(match ’(?*d1 ?n "IS" ?*d2)

(where ss) bindings))

(and (attribute-in-from ss ?n)

(match ’(??p "NULL" ?*d3) ?d2 bindings)

(member ?p ’(nil "NOT") :test ’equalp))

"WHERE")

Figure 2.6: A Set of Sample Constraints from SQL-Tutor

27

MIT’s interface, as illustrated in the example given in Figure 2.7. The de-

scription of the scenario is available at the top section of the interface and

the ER modelling workspace is available below. During the problem-solving

process, the student composes an ER diagram that satisfies the requirements

using the ER modelling workspace. It provides a drawing tool like interface

for composing database models using the ER modelling constructs and a set

of connectors. In order to eliminate the need for natural language process-

ing, the student is forced to highlight a word or a phrase that describes each

construct in their diagram. This enables the system to reliably determine

the semantics of each construct.

Assistance from the tutoring system has to be requested by the student.

The student may either request the system to evaluate whether their solu-

tion is correct or ask for a hint to proceed further by pressing the ‘submit’

button. The system then evaluates the student’s submission and presents ap-

propriate feedback messages. Since the domain model contains constraints

for checking for both the completeness and the correctness of a solution, both

incomplete and complete solutions are evaluated using the same procedure.

The solutions that do not violate any constraints are identified as correct

and complete. On the other hand, solutions that violate constraints can be

incorrect, incomplete or both.

KERMIT displays hint messages from either the first violated constraint

or hints from all violated constraints depending on the level of feedback

requested by the student. It contains five levels of feedback with increasing

degree of detail. The initial feedback level simply indicates whether the

attempt is correct or not. The error flag level indicates the type of construct

(entity, relationship or attribute) that contains errors. The hint level provides

a single hint message from the first constraint that has been violated. The

level of feedback is automatically incremented with each submission up to

the hint level. Hints on all violated constraints can be viewed by selecting

the all hints feedback level. The student may also request the full solution

by selecting the complete solution feedback level.

The task of database design is an open ended process. Its outcome is

only defined in abstract terms and there is no procedure to be used to find

the outcome. A good solution in this domain is identified as an ER schema

28

Figure 2.7: Interface of the Web Version of KERMIT

that satisfies all the given requirements and integrity rules of the chosen

data model. In order to identify integrities, the student needs to use their

own world knowledge to make valid assumptions. There is no single right

solution to a particular problem, and often there are several good solutions

which satisfy the same requirements.

The constraint base of KERMIT consists of over 200 constraints that

ensure that the student’s solution is syntactically and semantically correct.

It consists of 69 syntax constraints, varying from simple constraints such

as “an entity name should be in upper case”, to more complex constraints

such as “the participation of a weak entity in the identifying relationship

should be total”. For example, constraint 25 (Figure 2.8) ensures that each

weak entity in an ER diagram participates in an identifying relationship. Its

relevance condition binds all the weak entities from the student’s diagram.

The satisfaction condition verifies that the weak entity is connected to an

identifying relationship. As each construct in KERMIT is identified by a

unique tag, it is used to ensure that a connector (attached a particular weak

entity) is also attached to an identifying relationship.

The constraint base contains 138 semantic constraints which compare

the student’s solution against the system’s ideal solution. Constraint 15,

outlined in Figure 2.8, is an example of a simple semantic constraint. It

29

ensures that the student’s solution contains all the regular entities that exist

in the system’s ideal solution. The relevance condition binds all the regular

entities from the ideal solution and the satisfaction condition checks whether

each of them have a corresponding regular entity in the student’s solution,

using their tags.

Constraint 64 is a relatively complicated semantic constraint that enables

KERMIT to identify multiple correct solutions even though it contains only

a single ideal solution. It models the fact that multi-valued composite at-

tributes can also be represented as weak entities. Constraint 64 allows the

student to model a multi-valued composite attribute found in the ideal solu-

tion as either an identical multi-valued composite attribute or a weak entity.

The relevance condition contains three tests. The first and second tests en-

sure that the constraint only binds entities of the ideal solution that contains

a corresponding entity in the student’s solution. The third test ensures that

the binding list only contains entities that contain a multi-valued composite

attribute. The satisfaction condition asserts that either the student’s solu-

tion should also contain a matching multi-valued composite attribute or that

it should contain a corresponding entity. The check for whether the corre-

sponding entity is weak is performed in another constraint. This enables the

system to provide more focused feedback.

The system was evaluated in an empirical evaluation conducted at the

University of Canterbury involving 62 volunteers from students of the intro-

ductory databases course. The study compared the learning gains achieved

with KERMIT (experimental group) against its cut-down version, which was

a tool for composing ER diagrams. The cut-down version did not present

any feedback to the student and only allowed students to view the complete

solution. The students interacted with the system during a two hour period.

The study showed that the group of students who used KERMIT scored

significantly higher in the post-test [Suraweera & Mitrovic 2002]. Conversely

there was no statical significance between the pre- and post-test perfor-

mances of the control group. Furthermore, the difference in pre-test scores

between the two groups were insignificant, confirming that both groups ini-

tially posessed similar levels of knowledge in ER modelling.

The students using KERMIT spent longer with the system. They also

30

(25

"Each weak entity type should participate in an

identifying relationship."

(match SS ENTITIES (?* "@" ?tag ?label1 "weak" ?*))

(and (match SS CONNECTIONS

(?* "@" ?part ?card ?r_tag ?tag ?*))

(match SS RELATIONSHIPS

(?* "@" ?r_tag ?label3 "ident" ?*)))

"weak entity types"

(?tag))

(15

"Make sure that you have all required entity types.

Some regular entity types are missing."

(match IS ENTITIES (?* "@" ?tag ?l1 "regular" ?*))

(match SS ENTITIES (?* "@" ?tag ?l2 "regular" ?*))

"entity types"

nil)

(64

"Check whether you have all the multivalued

composite attributes that belong to entities

as specified by the problem."

(and (match IS ENTITIES (?* "@" ?ent_tag ?*))

(match SS ENTITIES (?* "@" ?ent_tag ?*))

(match IS ATTRIBUTES (?* "@" ?att_tag

?label1 "multi" "composite" ?ent_tag ?*)))

(or-p (match SS ATTRIBUTES (?* "@" ?att_tag

?label2 "multi" "composite" ?ent_tag ?*))

(match SS ENTITIES (?* "@" ?att_tag ?*)))

"attributes"

(?ent_tag))

Figure 2.8: A Set of Sample Constraints from KERMIT

31

rated the usefulness of feedback at a significantly higher level than the control

group. Students using the complete system also indicated that they would

recommend the system to others. Analysis of student logs revealed that the

probability of violating a constraint decreased steadily, closely approximating

a power curve.

NORMIT

Mitrovic and co-workers developed NORMIT [Mitrovic 2002, Mitrovic 2005a]

for students to practice solving problems in the domain of database normali-

sation. Database normalisation is the process of refining relational database

schema in order to ensure that all tables are of high quality for the domain

of database normalisation [Elmasri & Navathe 2003]. The system was de-

veloped to complement classroom teaching where students would learn the

necessary conceptual knowledge from lectures and practice problems using

the tutoring system.

Database normalisation is a procedural task. Unlike SQL and ER-modelling,

problems in this domain have to be solved by following a strict sequence of

steps. The sequence of steps to be followed in NORMIT, outlined in Fig-

ure 2.9, is fixed by the interface. The student will only see the web page to

solve the current step. The student may submit the solution at any time for

the system to evaluate it and provide feedback.

1. Determine candidate keys

2. Determine the closure of a set of attributes and prime attributes

3. Simplify functional dependencies

4. Determine normal form

5. If necessary, decompose the table

Figure 2.9: Problem-solving Procedure Adopted by NORMIT

After the student submits a solution, the system evaluates it and pro-

32

vides feedback depending on the chosen level of feedback. The first level of

feedback only specifies whether or not the solution is correct and highlights

errors in red. A description of the error is provided for hint level feedback

as illustrated in Figure 2.10. In the instance depicted in Figure 2.10, the

student has specified an incorrect candidate key (A) and the system provides

a message that contains a general description of the error specifying what

general concept of the domain that has been violated. The erroneous part of

solution (the candidate key A) is also highlighted. The next level of feedback

provides the student with a more detailed message with a hint for how the

student could change their solution to satisfy the violated principle. The

student may also request the complete correct solution.

Figure 2.10: Interface of the Web Version of NORMIT

The domain model of NORMIT contains a total of 82 constraints that

check the syntax and semantics of the student’s attempt. NORMIT analyses

the semantics of a solution by comparing the student’s submission to the

ideal solution generated by NORMIT’s problem solver. As normalisation is

a procedural task, not all constraints are relevant for a given step. Each

constraint is relevant for only a single step. This is achieved in NORMIT

with a variable named current-task that records the process of the student.

All constraints use this variable to ensure that the constraint is only fired for

a particular step in the problem-solving process.

Constraint 8 shown in Figure 2.11 is an example of a simple syntax con-

straint that ensures that the student has at least made an attempt at iden-

33

(8

"You need to specify the candidate key(s) for

the given relation!"

(equalp (current-task sol) ’candkeys)

(not (null (candkeys sol)))

"CANDIDATE KEYS"

"A candidate key is an attribute or a set of

attributes such that all other attributes

depend on it."

nil)

(15

"Check the prime attributes!"

(and (equalp (current-task sol) ’prime)

(not (null (prime-att sol)))

(bind-all ?a (prime-att sol) bindings))

(member ?a (remove-duplicates

(flatten (candkeys sol)) :test ’equalp)

:test ’equalp)

"PRIME ATTRIBUTES"

"Some of the attributes you specified as prime

attributes do not appear in any candidate keys."

(?a "prime-att"))

(12

"You have not specified all the candidate keys

for the given relation!"

(and (equalp (current-task sol) ’candkeys)

(not (null (candkeys sol))))

(and (equalp (length (candkeys sol))

(length (candkeys IS)))

(null (list-set-difference (candkeys sol)

(candkeys IS))))

"CANDIDATE KEYS"

"Identify other candidate key(s) for this table."

nil)

Figure 2.11: A Set of Sample Constraints from NORMIT

34

tifying candidate keys during the appropriate step. The relevance condition

(third component of the constraint) checks whether the student is working

on the candidate key identification step (encoded as candkeys). The satisfac-

tion condition asserts that the candidate keys component (candkeys) of SS

(represented using the variable sol) should not be empty.

Each constraint in NORMIT contains two hint messages: a general hint

message (second component) and a more detailed hint message (sixth compo-

nent). The general message is presented to the student during the first time

the constraint is violated by the student’s solution. Subsequent violations of

the constraint prompt the system to present the detailed hint message.

Constraint 15, which ensures that all prime attributes appear in some

candidate key, is an example of a constraint that is only relevant during the

prime attribute identification step (prime). Its relevance condition checks

that the value of current-task is prime and the prime-att component of SS

is not empty. It also binds all the prime attributes specified by the student.

The satisfaction condition ensures that they are members of candidate keys.

Constraint 12 is an example of a semantic constraint in NORMIT. It

ensures that the student has specified all the candidate keys. The relevance

condition of the constraint checks whether the student is working on the task

of identifying candidate keys and whether the candidate keys component is

populated. The satisfaction condition compares the number of candidate

keys of the ideal solution to the number of candidate keys specified by the

student and makes sure that the elements in both lists are the same.

NORMIT was evaluated in an evaluation study conducted in 2004 in-

volving 29 volunteers who were enrolled in an introductory database course

at the University of Canterbury [Mitrovic 2005a]. The study evaluated a

basic version of NORMIT against a version that supports self explanation

(NORMIT-SE). NORMIT-SE requires an explanation from the student for

each action that is performed for the first time. Explanation is sought for

subsequent actions of the same type in situations where the action is incor-

rectly performed.

Students were free to use the system when ever they wanted and for as

long they wanted. NORMIT was used by 27 students and NORMIT-SE

was used by 22 students. The sizes of the groups were different since not all

35

students who volunteered to participate in the study had not used the system

for problem-solving. The pre-test and post-test scores were similar for both

groups, with no significant difference. However, analysing the constraint

learning curves, which shows the probability of violating a constraint for each

occasion it was relevant, revealed that students who who used NORMIT-SE

had learnt faster than the control group.

2.3.5 WETAS: An Authoring Shell

Web-Enabled Tutor Authoring System (WETAS) [Martin 2002, Martin &

Mitrovic 2002a] was developed as a tutoring engine that performs all common

functions of a tutoring system. It is implemented as a web server and sup-

ports students learning multiple subjects simultaneously. Students using the

system interact through a standard web browser such as Mozilla or Internet

Explorer. WETAS provides the implementation for all the generic functions

of constraint-based tutoring systems. In particular it provides generic im-

plementations for answer evaluation, student modelling, problem selection,

feedback selection and text-based interface.

Constraints that form the domain model for a tutoring system in WETAS

have to be composed using a pattern matching language specific to WETAS.

The language consists of three main functions: match, test and test symbol.

Constraints written using this language are interpreted by WETAS and used

for evaluating student’s solutions. Evaluation results are used to update the

student model.

Students’ knowledge and ability are modelled in WETAS in the form of

an overlay model. It contains counts of how many times each constraint

was relevant and violated. It also contains a trace of the behaviour of each

constraint since the initiation of the model, which can be used to determine

whether a constraint is learned or not.

The pedagogical module of WETAS selects a problem that best suits a

student’s current state and level of ability according to the structural and

conceptual difficulty of each candidate problem. The problem selection algo-

rithm calculates the difficulty each constraint adds to a problem and finds a

problem that matches the level of the student’s knowledge of each constraint

36

calculated from the student model.

Feedback is selected by the pedagogical module by analysing the list of

constraints violated by the student’s submission. The system automatically

increases the feedback level after each submission. The student is also given

the ability to directly choose the desired level of feedback. The student may

wish to view a single hint or a list of hints on all committed errors. In

the event of the student choosing to view a single hint message, the system

chooses the feedback of the first violated constraint. On the other hand,

feedback messages of all violated constraints are displayed when all errors is

chosen as the feedback level.

The interface module of WETAS automatically generates a text-based

interface for the student with a fixed layout. The generic interface consists

of four panels: problem statement, solution workspace, scaffolding and feed-

back. The problem panel presents the text of the problem. The solution

workspace accepts student input for composing a solution. General help

about the domain is provided in the scaffolding panel. Feedback messages to

the student are displayed in the feedback window. The interface of a tutor-

ing system running on WETAS can be made more sophisticated by replacing

the default text-based interface by a set of HTML pages or a Java applet.

WETAS also supports typical application based interfaces where the client

and the server communicate via RPC (Remote Procedure Call).

Building an ITS

A new tutoring system can be authored in WETAS by providing the neces-

sary data files. In particular, it requires two sets of domain-dependent data:

problem set and domain knowledge base. The problem set contains a list of

problems and their ideal solutions, and the domain knowledge base contains

domain constraints (both syntax and semantic) and any macros.

Problems are described by their problem statement. The solutions on

the other hand can be divided into components, where each component may

be a single textual element or a list of sub-components. For example, the

solutions in the SQL domain have six components: select, from, where, group

by, having and order by. A sample problem and solution from SQL-Tutor is

37

given in Figure 2.12.

(2

"Retrieve the birth date and address of the

employee whose name is John Smith."

;id answer

(("SELECT" "BDATE, ADDRESS")

("FROM" "EMPLOYEE")

("WHERE" "LNAME=’Smith’ AND FNAME=’John’")

("GROUP BY" "")

("HAVING" "")

("ORDER BY" "")))

Figure 2.12: A Sample Problem and Ideal Solution from SQL-Tutor

The knowledge base consists of syntax and semantic constraints and

macros for the domain. Constraints should account for all significant ped-

agogical states of the domain. Syntax constraints cover all the important

principles of composing any solution for the domain. On the other hand, se-

mantic constraints relate the student’s solution to the ideal solution in order

to verify that the requirements of the problem are satisfied. They must be

sufficiently flexible in order to permit correct solutions that differ from the

ideal solution.

Constraints are specified using a purely pattern-matching language devel-

oped for WETAS [Martin & Mitrovic 2002b]. Each pattern may be compared

against the ideal solution (using the MATCH function) or against a variable

(using TEST or TEST SYMBOL) whose value has already been determined.

Patterns which support wild cards and variables are combined with the use

of logical connectives (AND, OR, NOT).

Figure 2.13 gives examples of a syntax and a semantic constraint from

SQL-Tutor implemented in WETAS. Constraint 61 has a relevance condition

with a pattern that tests the HAVING component of the student’s solution

for the existence of the key word SELECT. Its satisfaction condition tests for

existence of a opening parenthesis before SELECT and a closing parenthesis.

38

The semantic constraint (constraint 55) contains a relatively complicated

relevance condition that ensures the student has valid table names used in

the FROM clause. The condition uses the ∧name macro, written specifically

for this domain, that checks whether a table name is valid. The satisfaction

condition tests whether the table names used by the student are used in

WHERE or FROM of the ideal solution.

; syntactic constraint from SQL-Tutor

(61

"A subquery in the HAVING clause must be enclosed

within brackets."

(match SS HAVING (?* "SELECT" ?*))

(match SS HAVING (?* "(" "SELECT" ?* ")" ?*))

"HAVING")

; semantic constraint from SQL-Tutor

(55

"You do not need all the tables you used in FROM."

(and (not-p (match SS WHERE (?* "SELECT" ?*)))

(or-p (match SS FROM (?* (^name ?t) ?* "ON" ?*))

(and

(not-p (match SS FROM (?* "ON" ?*)))

(match SS FROM (?* (^name ?t) ?*)))))

(or-p

(match IS WHERE (?* "FROM" ?* ?t ?*))

(match IS FROM (?* ?t ?*)))

"FROM")

Figure 2.13: Sample Constraints from SQL-Tutor Written in WETAS Lan-
guage

Example Tutoring Systems Developed in WETAS

WETAS has been used to implement intelligent tutors for a variety of do-

mains including SQL, English language skills, database modelling and object

oriented design. SQL-Tutor was reimplemented in WETAS in order to ex-

39

plore the capabilities of WETAS. The system for English language skills,

called LBITS [Martin & Mitrovic 2003], was a paper-based teaching aid that

was converted to a tutoring system. It teaches basic language skills with

the use of a collection of puzzles such as crosswords, synonyms etc. ER-

Tutor [Zakharov, Ohlsson & Mitrovic 2005], a database modelling tutor built

initially as a Windows application, was reimplemented as a web-based system

using WETAS. UML-Tutor [Baghaei & Mitrovic 2006b, Baghaei, Mitrovic &

Irwin 2006] was implemented using WETAS for teaching object oriented de-

sign using unified modelling language (UML). WETAS has also been used to

create an adaptive hypermedia system for paediatric radiology.

WETAS has been used as a teaching aid for a graduate course on In-

telligent Tutoring Systems at the University of Canterbury. Students use

the system as part of their course work for building a working prototype of

a tutoring system for an allocated domain. They are introduced to WE-

TAS during lectures and given a access to the domain dependent compo-

nents of LBITS. Although students are novices to the task of constructing

a tutoring system, the majority of students produce satisfactory tutoring

systems [Martin & Mitrovic 2003].

2.4 Summary

The chapter is an introduction to Intelligent Tutoring Systems focusing on

systems that support learning by problem-solving. It contained an outline of

the typical architecture of an ITS including the functionality of main com-

ponents. The chapter focused on two popular domain modelling techniques:

model tracing and constraint-based modelling. The two modelling techniques

were introduced, including their psychological theories. Descriptions of each

modelling technique was also accompanied by details of tutoring systems

developed using each method.

Building Intelligent Tutoring Systems require a lot of time and effort. The

chapter included details of WETAS, an authoring shell that reduces the work-

load required for producing constraint-based tutors. However, WETAS does

not provide any assistance for composing domain knowledge. The follow-

ing Chapter (Chapter 3) discusses authoring support for composing domain

40

knowledge and introduces a few currently available authoring systems.

41

Chapter III

Domain Knowledge Authoring Systems

Intelligent Tutoring Systems are computer-based instructional systems

that contain models which specify how and what to teach [Ohlsson 1987].

These models, consisting of instructional content and teaching strategies,

make inferences about a student’s mastery of topics in order to dynamically

adapt the content and style of instruction. The domain model that exists in

an ITS allows learning content to be dynamically generated while evaluating

attempts made by a student. As a consequence ITSs provide students with

realistic and meaningful environments where they can “learn by doing”.

The development of these domain models is a time- and labour-intensive

task, consuming a major portion of the development effort spent in building

an ITS system. Typically domain models consist of hundreds of elements

that collectively cover all pedagogically significant states. In the case of

model tracing, where knowledge elements are production rules, Anderson

and co-workers estimated that ten hours or more were required to produce

a single production rule [Anderson et al. 1996]. Mitrovic reported that she

required approximately an hour to produce a single constraint for building the

domain model for the constraint-based tutoring system, SQL-Tutor [Mitrovic

1998a]. A major factor that increases the time required for composing domain

models is the necessity of ensuring that a production rule or a constraint fires

appropriately. Furthermore, the task of debugging knowledge elements is also

hard.

Building a domain model requires multi-faceted expertise, such as knowl-

edge engineering, programming and the domain itself. Typically a domain

model is constructed collaboratively by a domain expert, a programmer and

a knowledge engineer. While the domain expert may outline the necessary

domain knowledge at a high level, the knowledge engineer would specify

42

the knowledge elements of the domain. The programmer would collaborate

closely with the knowledge engineer to program the knowledge elements to

build the domain model.

In order to overcome the bottleneck of building domain models, researchers

have been investigating ITS authoring tools ever since the inception of ITSs.

These domain-knowledge authoring systems reduce the time and effort re-

quired for building domain models by generating the domain model with the

assistance of a domain expert. As a consequence, the need for programming

and knowledge engineering expertise also diminishes as the domain expert

directly authors domain model content. These systems also have tools for val-

idating the generated domain model and ensuring that the complete domain

is covered, reducing the effort required for debugging the domain model.

The chapter commences with an introduction to research attempts at alle-

viating the knowledge acquisition bottleneck. The following section outlines

the state of the art in domain-knowledge authoring tools for ITS. While in-

troducing the systems and their capabilities, their strengths and weaknesses

are discussed. As composing an ontology of the domain is an integral part

of the typical domain authoring process, Section 3.2 introduces a selection

of popular tools for modelling domain ontologies. It includes descriptions of

a collection of both commercial and research tools, along with discussions of

their strengths and weaknesses.

3.1 Domain Knowledge Authoring Tools

Researchers have been looking for solutions for reducing the knowledge ac-

quisition bottleneck since the inception of Intelligent Tutoring Systems. Ex-

tensive research aiming to reduce the time and effort required for composing

domain models has resulted in domain-knowledge authoring systems. Au-

thoring systems ranging from basic systems with form-based interfaces that

ease the task of inputting the required components to more sophisticated

systems using machine learning techniques for acquiring the knowledge have

been developed.

Murray [1999, 2003] classified ITS authoring tools into two main groups:

pedagogy-oriented and performance-oriented (see Figure 3.1). Pedagogy-

43

oriented systems focus on sequencing and teaching relatively fixed content.

They include systems for sequencing and planning curriculum, authoring tu-

torial strategies, composing multiple knowledge types (e.g. facts, concepts

and procedures) and adaptive hypermedia. On the other hand, performance-

oriented systems focus on providing rich learning environments where stu-

dents can learn by solving problems and receiving dynamic feedback. Au-

thoring systems for domain expert systems, simulation-based learning and

some special purpose authoring systems focus on performance.

Pedagogy-oriented
(sequencing and teaching canned content)

• Curriculum sequence and planning
• Tutorial strategies
• Multiple knowledge types
• Intelligent / Adaptive hypermedia

Performance -oriented
(providing rich learning environments

that support learning by doing)

• Simulation-based learning
• Special purpose authoring systems
• Domain exert systems

ITS Authoring Systems

Figure 3.1: Classification of Authoring Systems

Domain expert systems are the most sophisticated type of tutoring sys-

tems. We are mainly interested in the performance-oriented authoring sys-

tems, in particular authoring systems for domain expert systems. Typically

students use these systems to solve problems and receive customised feedback

depending on their attempt. These systems have a deep model of expertise,

which enables the tutor to correct the student as well as provide assistance

on solving a problem. Authoring systems for these systems focus on gener-

ating rules that form the expert model or the domain model. They typically

use sophisticated machine learning techniques for acquiring rules of the do-

main with the assistance of a domain expert (e.g. Disciple [Tecuci 1998],

Demonstr8 [Blessing 1997]).

Authoring systems for simulated domains have been popular. These sys-

tems record the domain expert performing a task within the simulated do-

main and generalise the recorded procedure using machine learning algo-

44

rithms. The student experiments within the simulated domain in order to

discover ways of generalising the expert’s problem-solving path. The “what-

if” activities for the simulated environment are generated by these systems

automatically.

The following subsections describe a few significant authoring tools that

have been published in the literature. They contain details of two authoring

systems that focus on acquiring rules from simulated environments; KnoMic

and Dilligent. Details of Disciple, which is a learning agent shell for develop-

ing learning agents follows. The section also contains details of Demonstr8

and CTAT, two authoring systems developed for assisting the process of

building model-tracing tutors.

3.1.1 KnoMic

Knowledge Mimic (KnoMic) [van Lent & Laird 2001] is a learning-by-observation

system based in a framework for learning procedural knowledge by observing

an expert. In addition to demonstrating a task, the expert is also required

to annotate goal transitions. The system uses the observation traces to learn

production rules for the Soar architecture. Ultimately, the production rule

system can be used to replace the expert by automatically performing the

task interacting with the simulated environment.

The first step of the knowledge acquisition process results in the genera-

tion of a number of observation traces. They are generated by observing the

expert performing tasks within the simulation environment using an interface

that sits between them. The environment interface sends the expert’s com-

mands to the environment and returns the sensor information to the expert.

In order to generate a complete observation trace, the system also requires

the expert to annotate any changes in a goal as a result of it being achieved

or being abandoned. The system allows the expert to model a goal hierarchy

for tasks in the environment prior to demonstration in order to aid in speci-

fying goals. The observation trace generator uses the sensor inputs from the

environment, expert’s commands and the expert’s goal change annotations

to compose observation traces.

The next step, after observation traces are available, is to learn operator

45

conditions using a condition learning algorithm. The system, typically re-

quiring 4-8 observation traces, incrementally learns conditions for operators,

actions and goals. It uses a specific-to-general induction algorithm named

“Find-S” to learn the conditions. Each step in the observation trace that

contains an operator change annotation is used as a positive instance of that

operator’s pre-conditions and a positive instance of the previous operator’s

goal conditions. The algorithm treats the first positive instance as an initial,

most specific hypothesis and generalises it to cover the subsequent positive

instances. If generalising to cover a new instance results in an empty set of

pre-conditions (no pre conditions) a disjunctive second set of pre-conditions

is created. Each new instance is then applied to the set of conditions that

require the least generalisation to cover it. Once all the pre-conditions for

operators have been learnt, the goal conditions are learnt in a similar man-

ner. Finally, action conditions are learnt by treating each step in which the

expert performs an action as a positive instance.

The third step involves classifying each operator as homeostatic, one-

time or repeatable. Operators are classified by examining situations where an

operator is reselected as a result of its goal conditions changing from achieved

to unachieved. This classification determines whether each operator has a

constant feature that indicates whether the goal is achieved. If an operator’s

goal achievement feature is constant, the system can keep track whether the

particular goal has been achieved and that it should not be pursued again,

even if the goal conditions are no longer satisfied. On the other hand, in the

case of operators that do not have a constant achievement goal, their goal

features should be achieved and maintained.

The system was evaluated for its accuracy for learning to control a mili-

tary aircraft in the ModSAF battlefield simulator. The task involved taking

off, flying to a specific point and flying a patrol pattern. If an enemy plane

is detected and a set of criteria is satisfied, it should be intercepted and shot

down. The environment interface provides the user a with 54 sensor inputs,

23 task parameters and 22 output commands. The knowledge required for

the domain consists of 31 operators, including initialisation operators, take-

off operators and mission operators etc. As part of the evaluation, two tests

were conducted in the the air combat domain. The first involved using the

46

knowledge learnt by the system to perform the task in the simulated domain

and the second involved comparing the generated rules against a set of rules

composed by a human programmer. The two tests were used to classify each

rule in to three categories: fully correct, functionally correct or incorrect.

The rules that fall into the functionally correct category are rules that did

not cause any errors in the first test (performing the task) but do not match

the the hand-coded rules. These rules may cause errors in novel situations.

The system was evaluated in two experiments. The first experiment evalu-

ated the correctness of the knowledge generated from a set of error-free obser-

vation traces generated by observing a hand-coded expert system performing

tasks in the domain. The expert system, capable of generating traces with

precision timing, content and operator annotations provided KnoMic with

four traces. The different traces provided to the learning system included

differences in attributes, speeds etc due to different starting conditions and

non-deterministic environmental conditions. KnoMic learnt the 31 domain

operators from the observation traces producing a total of 140 productions.

From the total set of generated productions, 101 were fully functionally cor-

rect, 29 were functionally correct and 10 were incorrect.

The second experiment involved evaluating the correctness of knowledge

produced by a set of observation traces generated from observing a human

expert. The observation traces were limited only to initialisation, take-off and

racetrack parts of the task as the intercept portion of the task was difficult

to be completed consistently. The traces generated by the human expert

included more variability in task performance in comparison to the traces

generated from expert system. KnoMic generated a total of 45 productions

by analysing two observation traces. From the generated productions, 29

were correct, 13 were functionally correct and 3 were incorrect.

Although the published preliminary results look promising, the true effec-

tiveness of the system has to be studied further. In order to evaluate the true

potential of the system, it has to be evaluated in a variety of simulated do-

mains. However, evaluations published in [van Lent & Laird 2001] have been

conducted in the same domain. Furthermore, as the main aim of KnoMic is

to ease the process of generating knowledge by observing an expert of the

domain, the limited experiment conducted with the human expert does not

47

provide any insights into the general effectiveness of the system. From the

results, KnoMic seems to do well, with highly accurate observation traces.

However, good authoring systems should also be able to handle noisy traces

as well.

3.1.2 Diligent

Diligent [Angros, Johnson, Rickel & Scholer 2002] is an authoring system

that acquires the knowledge required for a pedagogical agent in an inter-

active simulation-based learning environment. It learns the required rules

for the agent by observing a domain expert demonstrating the skill to be

taught in the simulated environment. Once the skill has been demonstrated,

the system automatically experiments with the recorded traces in order to

understand the role of each step in the procedure. The expert can also di-

rectly modify the learnt procedures providing clarifications at the completion

of the experimentation stage. The authoring process also involves acquiring

the linguistic knowledge required to explain procedural tasks to students.

The demonstration phase is initiated by the domain expert, who issues

a command for Diligent to observe his/her actions. It records each step of

the task, noting the state of the environment before and after each action.

During the observation, each action results in an operator that models the

effects of the action. At the completion of the demonstration, the system

learns a sequence of steps in one possible ordering to perform the particular

task. Diligent hypothesises that the likely goals of the task are the final values

of the state variables that changed during the demonstration. The domain

expert has to review the points classified by Diligent as goals to remove the

points that are merely side effects of the task.

The system uses experimentation to generalise the pre-conditions of the

actions to achieve the task demonstrated by the expert. The experimentation

involves repeating the task for each step and omitting a step from the original

sequence during each repetition. The system uses a machine learning version

space algorithm named INBF to generalise the set of pre-conditions for each

effect of the operator. It maintains two sets of pre-conditions for each effect,

namely the most specific and the most generic. The most specific set is

48

initialised to match the state before the action during the demonstration and

the generic set is initialised to match any state. During the experimentation

process, the specific set is generalised and the generic set is specialised by

the learning algorithm to produce the most probable set.

After the experimentation stage, the agent uses the original demonstra-

tion, the end goals of the task and its refined operators to generate a repre-

sentation of the learned task. The agent uses this representation to identify

the causal links and ordering constraints of the task. The domain expert can

review the procedural rules learnt by the system by examining a graph of

the task model or by allowing the agent to demonstrate its acquired knowl-

edge by teaching it back to the domain expert. During the review process,

the expert can directly modify the task model by adding or removing steps,

ordering constraints etc.

Diligent learns the required linguistic knowledge to communicate with

the students from the text fragments specified by the domain expert for

tasks, steps and goals. The agent uses domain-independent text templates

to support natural language generation during tutoring.

The system was evaluated on a series of tasks for operating gas turbine

engines on board a simulated US naval ship. The study revealed that demon-

strating and later modifying the task model produced a significantly better

task model (with fewer errors) than directly manually specifying it. It also

revealed that Diligent’s demonstration, experimentation in conjunction with

direct specification produced a higher quality task model in comparison to

a task model produced by only demonstration and direct specification. This

suggests that demonstration and experimentation both played a role in im-

proving the quality of the task model. The results also showed that Diligent’s

assistance is most beneficial with complex procedures that have higher risk

for errors.

Although the evaluation has produced encouraging results, Diligent is

bound by its limitations. It is best suited for authoring procedural knowledge

where the focus is to achieve some desired effect in a virtual world and where

the consequences are readily observed. It is not effective in environments such

as in medicine, where the steps are determined by the patient’s condition

rather than the effects they have on the patient.

49

The nature of domain

3.1.3 Disciple

Disciple [Tecuci 1998, Tecuci, Wright, Lee, Boicu & Bowman 1998, Tecuci &

Keeling 1999] is a learning agent shell for developing intelligent educational

agents. A domain expert teaches the agent to perform domain-specific tasks

similar to an expert teaching an apprentice, by providing examples and expla-

nations. The expert is also required to supervise and correct the behaviour of

the agent. Disciple acquires knowledge using a collection of complementary

learning methods including inductive learning from examples, explanation-

based learning, learning by analogy and learning by experimentation. A

completed Disciple agent can be used to interact with students and guide

them while performing tasks of the domain.

Initially the Disciple shell has to be customised by building two domain-

specific interfaces and a problem solver for the domain. One domain-specific

interface provides the expert with a natural means of expressing their knowl-

edge, and the other is built to facilitate interaction between the agent and the

student. The extent and the nature of the problem solver depend on the type

and the purpose of the learning agent to be developed. The tasks of devel-

oping the interfaces and the problem solver requires expertise of a software

engineer and a knowledge engineer, where the developer has to collabora-

tively work with a domain expert. Once the customisation is complete, the

domain expert can interact with the agent to demonstrate how to perform

domain-specific tasks.

The customised Disciple agent acquires knowledge using a four stage

process;

1. Knowledge elicitation

2. Rule learning

3. Rule refinement

4. Exception handling

50

The goal of the initial knowledge elicitation phase is to construct an initial

knowledge base to be further extended and improved during the latter stages

of the knowledge acquisition process. The knowledge base consists of a se-

mantic network and a rule base. The semantic network outlines the concepts

and instances of the domain, described by their properties, including rela-

tionships between them. It can be either composed manually using Disciple’s

interface or imported from a repository, if available. The rule base, charac-

terised by tasks, operations and examples, is generally generated during the

following phases.

The expert can demonstrate how typical domain-specific problems are

solved during the rule learning phase when the semantic network is suffi-

ciently complete. A rule learning episode is initiated by the author providing

a correct example from the domain. The agent then attempts to explain

the reasoning behind why the example is correct using the semantic network

with the guidance from the domain expert. An explanation may contain

several paths in the semantic network between an object in the example and

another object. The agent then generalizes the example and the discovered

explanation paths and produces plausible version space (PVS) rules (with a

specific and a general condition) using analogical reasoning. The explanation

generated from the previous phase is set as the lower bound of the PVS rule

and a generalised version according to the semantic network is set as the

upper bound of the rule.

The goal of the rule refinement phase is to improve the PVS rules in the

knowledge base while extending and correcting the semantic network until

all instances of the rules in the semantic network are correct. A rule is

either generalised or specialised using a positive or negative example, either

generated by the the agent itself through active experimentation or provided

by the expert or obtained during problem-solving. A positive example results

in generalising the lower bound of the rule to cover the positive example. On

the other hand, if an explanation, according to the semantic network, can

be found to distinguish the negative example from a positive example, both

bounds of the rule are specialised. For instances where such an explanation

cannot be found, the lower bound of the rule is specialised so as not to cover

the example or it is added as a negative exception to the rule.

51

The final phase of handing exceptions aims to reduce the number of ex-

ceptions of a rule by either refining the semantic network or replacing it with

a set of rules with fewer exceptions. During this phase the agent hypothesises

additional knowledge and guides the expert to define the missing knowledge

in the semantic network. First, the agent focuses on a rule’s positive ex-

ceptions that do not have the required features of the rule’s conditions. It

attempts to cover them by the rule by engaging the expert in a dialogue to

extract any missing features. Next the agent attempts to resolve the negative

exceptions, that are not covered by the corresponding concepts in the rule’s

condition, by discovering new concepts with the assistance of the expert.

The Disciple agent has been applied to a number of domains including

history, statistical analysis, engineering design and military combat. The

history agent uses the rules of the knowledge base to generate new prob-

lems. Students interacting with the agent are presented with multiple-choice

questions and the agent evaluates their solutions and provides hints to guide

the students towards the correct solution. The statistics analysis agent was

also used to generate new problems. It assists students in performing rou-

tine tasks as they worked through their assignments. The engineering design

agent also learns to perform routine, labour-intensive tasks to assist designers.

The agent is capable of producing new designs using its reasoning capabilities

that can be later verified and corrected by the designer. Another agent was

trained to behave as a military commander in a virtual combat environment,

where it was trained to carry out defensive missions.

An evaluation study conducted to evaluate the effectiveness of the his-

tory agent has reported encouraging results [Tecuci & Keeling 1999, Tecuci,

Boicu, Marcu, Stanescu, Boicu & Comello 2002]. The rule base developed

by the agent was evaluated by experts who were involved in training the

agent, as well as independent domain experts. Both groups of experts rated

the accuracy of the questions generated by the agent as approximately 96%

correct. A class-room-based experiment revealed that most students rated

the questions as helpful and understandable. A group of teachers also rated

the agent as a helpful tool for learning history.

The task of customising the Disciple agent requires extensive program-

ming skills and considerable effort. The programmer and the domain expert

52

have to collaborate with each other in order to identify the requirements

and design an interface that is a natural problem-solving environment for

the domain. The task of building a problem solver for the domain also re-

quires extensive collaboration between the domain expert and a programmer.

Furthermore, building a problem solver in some domains may be extremely

hard, if not impossible. For example, for domains that are open-ended, such

as database modelling, a problem solver with the ability to identify a cor-

rect solution needs to be able to perform multiple complex tasks. It should

be able to process natural language as the problem is given in natural lan-

guage, to generate a database model that satisfies the given requirements

and identify semantically equivalent database models to ensure that equiv-

alent solutions are identified as correct. In the case of database modelling,

building a problem solver is probably impossible.

The semantic network, which is modelled during the knowledge elicita-

tion phase, contains information about concepts of the domain as well as

instances. The need to add all elements participating in an example solution

prior to demonstrating how it is solved adds a high degree of repetitiveness

to the knowledge authoring process. Furthermore, in some domains, the in-

stances may only be used in a single solution, which forces the expert to

add large numbers of instances to the semantic network. As the semantic

network is highly descriptive, showing all relationships between elements in

the network, it tends to be very complex even for small domains. Larger

domains would tend to have far more complex semantic networks, where lo-

cating nodes of the network becomes very difficult and domain experts may

even get disoriented.

Although Tecuci and co-workers haver reported encouraging results, there

has been no evaluation of the effort required to build an ITS using the Dis-

ciple method. In the event of not being able to find a semantic network

from a repository, manually building a semantic network from scratch is a

time-consuming process. Furthermore, demonstrating problem-solving steps,

providing explanations as well as refining the generated rules would also re-

quire a considerable amount of effort.

53

3.1.4 Demonstr8

Blessing [1997] developed Demonstr8, an authoring system that assists in the

development of model-tracing tutors, within the domain of arithmetic. The

system aims to reduce the time and outside knowledge required for build-

ing model-tracing tutors. It infers production rules using programming by

demonstration techniques, coupled with methods for abstracting the under-

lying productions. The author is required to model an interface and solve

problems using it to demonstrate the method of solving a problem.

The process of building a tutoring system using Demonstr8 is initiated

by creating a student interface using a drawing tool like interface. It consists

of a cell widget tool, which can be used to add place holders for numbers

and a line tool, which allows lines to be drawn on the interface. All cells

placed on the interface automatically become available as working memory

elements (WMEs).

After the interface has been composed, the higher-order WMEs, which

are collections of atomic WMEs that have a meaning, have to be identified.

They can be specified by simply highlighting them from the student interface

as a group and specifying that they are a WME. During this stage, classes for

WMEs also have to be defined. To assist in the process of defining classes,

the system automatically adds the cells within the WME that belongs to the

class as properties of the class. Higher-order WMEs can also be specified by

selecting the WMEs from the list of existing WMEs.

The system relies on knowledge functions for declarative knowledge not

depicted directly in the interface. These functions are implemented as a two-

dimensional table of values that contain the result for applying the function

to two inputs. The result of two inputs can be found by locating the cell

with the first input as the row and the second as the column. The system

contains built-in knowledge functions for standard arithmetic operators, but

can be extended by adding a new table of results.

After creating all the WMEs and adding any new knowledge functions,

the author has to demonstrate the domain problem-solving procedure. Ini-

tially the author provides an example problem for the domain and notifies

the system to record the problem-solving process by clicking a Record but-

54

ton. The author can either directly select the knowledge function used for a

problem-solving step, or let the system automatically choose the appropriate

function from the available list. The system selects a function by exhaus-

tively going through the list of available knowledge functions to locate the

one which produces the demonstrated result. In the event of discovering

multiple knowledge functions with the same outcome, the system gets the

author to select the correct one from the group of candidates.

The system generates a production rule and displays it to the user imme-

diately after each action performed by the author during the problem-solving

demonstration. The displayed production rule can be modified by the author

by selecting a more general of specific condition or action from the available

list. The author is also required to specify a goal and skill covered by the

generated production rule. The author also has to specify four help messages,

with increasing level of detail, specific to the generated rule.

The process of demonstrating an action and fine-tuning the generated

production rule is continued until the problem-solving task is complete. The

system contains an implicit ‘Done’ production which assumes that the prob-

lem is solved when a particular cell, pointed out by the author, is filled. The

system however, lacks a utility for specifying buggy rules, that are essential

in model tracing for identifying common misconceptions between students.

The production rule generation process is highly dependent on the WMEs

created by the author. In order for correct productions to be generated by the

system, the author should use the right representation for WMEs. Although

the methodology for selecting higher-order WMEs is relatively straight for-

ward, the task itself requires knowledge in cognitive science and model trac-

ing. It is unreasonable to assume typical educators such as teachers would

be knowledgeable in the model tracing approach. Furthermore, a consider-

able amount of practice is required in order to master the task of identifying

higher order WMEs.

Each production rule generated by the system by analysing an author’s

action is displayed to the author for fine-tuning. Understanding and being

able to identify deficiencies in a production rule also requires expertise in

model tracing. Furthermore, if the production rule requires subgoaling, it

also has to be directly specified by the author. Consequently, the system’s

55

target of paving the way for typical educators to build tutoring systems leaves

a lot to be desired.

Although the author argues that methodology used in Demonstr8 can be

adapted for other domains, the system described in [Blessing 1997] is limited

to arithmetic domains only. He also admits that creating a tutoring system

for geometry is difficult as the knowledge required to progress from one step

to the other is not directly observable from the interface. Furthermore, de-

veloping a tutoring system for a non-procedural, open-ended domain such as

database modelling would be extremely difficult, if not impossible.

3.1.5 CTAT

The Cognitive Tutor Authoring Tools (CTAT) [Koedinger et al. 2004, Jarvis

et al. 2004, CTAT 2005], developed at Carnegie Mellon University assist the

creation and delivery of ITSs based on model tracing. The main goal of these

tools is to reduce the amount of Artificial Intelligence (AI) programming ex-

pertise required. The system allows authors to create two types of tutors:

‘Cognitive tutors’ and ‘Pseudo tutors’. ‘Cognitive tutors’ contain a cognitive

model that simulates the student’s thinking to monitor and provide pedagog-

ical assistance while solving problems. In contrast, ‘Pseudo tutors’ mimic the

behaviour of a tutor without a cognitive model. Although ‘Pseudo tutors’

do not require AI programming, they are specific to the set of problems that

were modelled.

The process of authoring a Pseudo tutor using the CTAT tools involves

four steps. The authoring task is initiated by creating a graphical user inter-

face (GUI) to be used by the prospective students of the final tutoring system.

The second step requires the author to demonstrate alternative correct and

incorrect solutions for a problem. At the completion of demonstrating solu-

tions, the author is required to annotate solution steps with hint messages,

feedback messages and labels for associated skills. Finally the skill matrix

has to be inspected and revised.

CTAT contains a GUI builder tool that makes it possible to create in-

terfaces by directly manipulating interface widgets. Authors can simply add

interface widgets in a manner similar to using a drawing program with out the

56

need for any programming expertise. The GUI builder tool, implemented us-

ing Java NetBeans consists of a collection of widgets ranging from text boxes,

combo-boxes to more complex widgets such as “Chooser” and “Composer”.

The “Choose” widget allows students to enter hypotheses and “Composer”

widget allows students to compose sentences by combining phrases from a

series of menus.

After the completion of the interface, the author can use the behaviour

recorder to author problems and demonstrate their solutions using the in-

terface created during the interface building phase. Once the interface is

populated with the state of a new problem, the author issues a command to

the behaviour recorder to create a start state. As the author demonstrates

problem-solving procedures, the behaviour recorder produces a behaviour

graph that contains arrows, representing the actions performed by the au-

thor, and labels, representing the resultant states of the interface. In order

for the resulting tutoring system to be robust, the author needs to demon-

strate all possible correct solutions of a problem as well as typical incorrect

solutions.

After demonstrating solutions for a problem, the author has to annotate

the behaviour graph by adding hint messages to correct links and buggy

messages to incorrect links. The author can enter up to three messages,

with increasing amounts of detail, to be presented to the student when they

request for assistance. The author is also required to add knowledge labels

to links in the behaviour graph to represent the knowledge behind problem-

solving steps. Adding knowledge labels to a step allows the author to easily

copy hint messages from one problem to another. As the hint messages are

specific to the problem it belongs to, it needs to be modified to suit the new

problem.

The knowledge labels added during the third phase of building a ‘Pseudo

tutor’ is used for generating a skill matrix. The skill matrix outlines the

knowledge elements required to solve each problem supplied by the author.

The author can inspect the skill matrix and either modify previously added

problems or add new problems that cover the skills which are not covered

by the existing problems. The author can also reflect on the plausibility of

transfer predictions made by the skill matrix or even use a tutor to collect

57

performance data to test the predictions.

The time required for building instructional content for ‘Pseudo tutors’

using CTAT tools has been informally evaluated. The tools were evaluated

in four projects for the domains of mathematics, economics, law (LSAT)

and languages skills. The evaluations revealed that the ratio of design and

development times to instructional time is approximately 23:1 on average.

This ratio compares favourably to the corresponding estimate of 200:1 for

manually constructed fully functional cognitive tutors [Koedinger et al. 2004].

The effectiveness of the pseudo tutor was evaluated for LSAT involving 30

pre-law students. The experimental group of 15 students used the tutor for

a period of one hour, whereas the control group worked through a selection

of sample problems on paper. The control group were provided the correct

solutions after 40 minutes of solving problems. The results showed that

students using the tutor had performed significantly better in the post test.

Although, in theory, both pseudo tutors and cognitive tutors exhibit iden-

tical interaction with the student, pseudo tutors are extremely specific to

problems. While new problems to a full cognitive tutor can be added with

little effort, pseudo tutors require all possible problem-solving paths to be

demonstrated for each new problem. The task of demonstrating solution

paths becomes increasingly tedious as the number of similar problems in-

creases and the complexity of alternate paths increases.

Jarvis and co-workers have implemented an automatic rule authoring

system for CTAT tools [Jarvis et al. 2004], generating JESS (Java Expert

System Shell) rules. Their goal is to automatically generate the required

production rules, through programming by demonstration techniques, given

the background knowledge of the domain and examples of problem-solving

steps. The rule generation system attempts to generalise the set of behaviour

graphs generated during the process of building Pseudo tutor and produce a

Cognitive tutor. The correct steps demonstrated by the expert are used as

positive examples and incorrect steps are used as negative examples for the

machine learning system.

The rule generation process requires a domain expert to list the set of

skills required to solve a problem in the domain. Each skill describes one

of the actions that is required for solving a problem. After the skills are

58

outlined, the author has to select inputs and outputs for each application of

a skill from the demonstrated problem-solving paths by highlighting widgets

in the interface. The rule generation algorithm generates a rule for each

outlined skill. The right hand side and left hand side of the rule is generated

separately.

The right hand side of the rule is generated by searching through the

space of all possible combinations of available functions for the domain and

all possible permutations of variables. The search is repeated until a depth

limit is reached, calculated as a probability of occurrence based on a default

value, user preference and historical usage. The result is a rule with a number

of functions in a particular order with a set of variable bindings. This rule

is tested against all the positive and negative examples and if the rule does

not cover a positive example or incorrectly predicts a negative example, the

search is restarted by removing the last function from the rule.

The left hand side, which consists of a set of conditionals that must be

satisfied for the right side to execute, is generated by generalising a sample

behaviour graph. The process of generating the left-hand side only uses

positive examples and assumes that facts in WMEs are somehow connected

and that the connections do not form any loops. Each positive example is

represented as a tree with inputs as the root and outputs as leaves. The trees

of each positive example is merged into one general tree using wild cards to

represent a collection of WMEs.

The rule generation system was tested in the domains of multi-column

multiplication, fraction addition and tic-tac-toe. The rules for all three do-

mains were learnt in a reasonable amount of time. However, it was reported

that the rule generation algorithm generated over-generalised left-hand sides

for the domains of multiplication and tic-tac-toe. Moreover, the tic-tac-toe

domain required the creation of higher order WMEs to represent three con-

secutive cells.

In order to use the automatic rule generation system, the author has to

possess a thorough knowledge of model tracing. Listing the complete set

of skills required for the domain is a task that requires practice as well as

understanding that they have to be outlined in great detail. As the rule

generation engine is fully dependent upon the list of skills, an incomplete list

59

by the author would result in an incomplete set of generated rules. Further-

more, the specification of higher order WMEs is also an important task that

has a direct impact on the final set of generated rules. Typical educators

with no or little background knowledge of model tracing would find the task

complicated. The task of producing the required information in addition to

the behaviour graph would be tedious for the domain expert. It may be eas-

ier for the author to produce the required input during the problem-solving

demonstration phase itself.

3.2 Producing a Domain Ontology

Composing a domain ontology (semantic network, concept map) that ex-

plicitly outlines the domain’s concepts and structure is an essential task of

a typical domain authoring process. Authoring systems that provide assis-

tance in composing domain models for ITSs, require a model of the domain

in terms of its concepts to understand the boundaries of the domain. Typi-

cally authoring systems that produce a runnable model of domain expertise

use some form of a conceptual model of the domain as a starting point in the

knowledge acquisition process.

Model-tracing tutoring systems focus on operational knowledge, imple-

mented using production rules. The operational knowledge for these systems

can be represented in an abstract sense using graphs which outline all user

interactions and their resulting states. CTAT tools implemented to assist the

production of model tracing tutors use a graphical model called behavioural

graphs to outline the problem-solving process. Behavioural graphs allow the

problem-solving process to be outlined in fine detail displaying alternative

steps as well as incorrect steps.

In contrast, constraint-based tutoring systems focus on declarative knowl-

edge. In other words, the domain model of a constraint-based tutoring system

outlines the principles of the domain. In order for a computer-based author-

ing system to provide assistance in authoring the domain model, it needs

to understand the vocabulary of the domain. While a natural language de-

scription of the domain is almost impossible for computers to understand, an

ontology of the domain provides a machine interpretable definition of the do-

60

main. Such an explicit formal outline of the domain may also assist domain

authors during the process of manually authoring a domain model.

Gruber and Studer have described an ontology as an “explicit and for-

mal specification of a conceptualization” [Gruber 1993]. In other words,

it can be described as an exhaustive and rigorous conceptual schema of a

domain [Wikipedia 2005]. It outlines all the concepts of the domain and

relationships between them. The concepts within an ontology are described

by their attributes. The concepts typically form a hierarchy with super- and

sub-concepts.

There have been various, academic and commercial, tools developed for

composing conceptual models of a domain. They support a variety of ontol-

ogy languages such as RDF [RDF 2006], DAML [DAML 2006], OWL [OWL

2004] etc. The following sub sections outline three popular domain modelling

tools: Protégé, OilEd and CMapTools.

3.2.1 Protégé

Protégé [Knublauch 2003, Noy, Sintek, Decker, Crubézy, Fergerson & Musen

2001] is a successful open source knowledge modelling platform. It can be

used to build conceptual models and knowledge bases. Conceptual mod-

els can be composed using the Protégé’s form-based interface for modelling

concepts, their attributes and relationships between them. Instances can be

created to populate a knowledge base using interactive forms for entering

instance data generated by the system. Once the model is complete, it can

be queried using plug-ins provided by the system. The domain models can

also be loaded and saved in various formats, including XML, RDF, DAML

etc.

The interface of Protégé, as shown in Figure 3.2, has several tabs contain-

ing the interfaces for achieving specific tasks. The figure illustrates the left

most tab, which allows the creation of concepts (i.e. classes) along with their

attributes and relationships. The ‘Classes’ interface is divided into the ‘Class

browser’ and the ‘Class editor’. The ‘Class browser’ allows the creation of

new classes and arranging them in an inheritance hierarchy. The inheritance

hierarchy of classes is visually depicted as a tree. As Protégé supports multi-

61

Figure 3.2: Interface of Protégé 3.0

ple inheritance, classes with more than one super class are duplicated in the

inheritance tree. The details of the class selected from the ‘Class browser’

are shown in the ‘Class editor’. It allows specification of class details such as

attributes, relationships and any restrictions.

Protégé uses the term ‘slots’ for both attributes and relationships of a

class. A slot has a name and a type of values it may hold. The type of values a

slot may hold can be either a primitive type such as boolean, integer, float and

string or instances of another class. Protégé also offers a primitive type called

‘symbol’, which represents an enumeration of textual values. Relationships

between instances of classes are modelled using slots that hold instances of

another class.

Slots are implemented in Protégé as global objects. They do not need

to be attached to a class. They may even be attached to multiple classes.

Protégé contains a tab named ‘Slots’ for viewing all slots, independent of their

classes. Slots may also contain restrictions on the range of values they may

hold. One of the restrictions is the cardinality of the slot, which determines

the maximum and minimum number of values a slot may hold. Further

restrictions include maximum and minimum values, default values etc. The

system also provides Protégé Axiom Language (PAL) for specifying more

62

complex restrictions.

After modelling classes and slots, their instances can be created using

the automatically generated graphical forms. The interface of the generated

forms consist of text fields, radio buttons, check boxes, combo boxes, lists and

other widgets reflecting the structure of the underlying class. The automatic

layout generated by the system can also be modified using the ‘Form’ tab,

where form widgets can be moved by dragging them. Any change to the

underlying class prompts the system to regenerate the corresponding instance

entry form.

The system can be enhanced by plugging in additional modules. Protégé

supports three types of plug-ins: storage plug-ins, slot widgets and tabs.

Storage plug-ins enable saving and loading ontologies in different formats

such as XML, RDF, DAML, OWL etc. The slot widget plug-ins are graph-

ical components such as text fields and combo boxes for viewing and edit-

ing instances in the instance forms. The interface and the functionality of

Protégé can be enhanced by adding Tab plug-ins. Such plug-ins include tools

for visualisation (e.g. Jambalaya), intelligent reasoning (e.g. Jess) etc.

Protégé was designed for knowledge engineers to create an ontology of

a domain, add instances of concepts and reason about the domain. Conse-

quently, users of the tool must posses extensive knowledge engineering ex-

pertise in order to be able to produce ontologies. Novice users may find it

difficult to use features such as specifying axioms using the PAL language.

They may simply be overwhelmed by the tool, as a consequence of all the

extra functionality provided such as queries, intelligent reasoning using Jess

etc.

Although Protégé includes a tool for visualising the ontology, the graphi-

cal tool only allows editing existing classes. It does not let new classes to be

added [Storey, Musen, Silva, Best, Ernst & Noy 2001]. A modifiable graph-

ical view of the ontology may assist users in understanding the conceptual

domain. The ‘class’ interface of Protégé provides a basic hierarchical struc-

ture of the domain, however, some users, particularly novices, may prefer a

graphical view of the ontology, where concepts are arranged and grouped in

areas of the canvas for better understanding.

63

3.2.2 OilEd

Figure 3.3: Interface of OilEd

OilEd [Bechhofer, Horrocks, Goble & Stevens 2001a, Bechhofer, Hor-

rocks, Goble & Stevens 2001b] is an ontology editor for the semantic language

OIL, produced by the University of Manchester. The interface is similar to

Protégé, consisting of a set of tabs, with each tab offering a particular fea-

ture. It contains a reasoning engine which facilitates the development of

detailed and consistent ontologies. A completed ontology can be exported

into various forms such as RDFS, DAML+OIL and OWL.

The top most tab, named ‘Classes’, provides an interface for creating

classes and describing their details (Figure 3.3). A class is described by its

name and super or similar classes. A super or similar class can be specified

by selecting the desired class from the list of all the created classes. Unlike

Protégé, the class browser does not show the hierarchical class structure.

As all classes are shown in a linear list, the hierarchical structure can be

viewed by selecting the ‘view hierarchy’ feature. The interface also allows

64

the specification of restrictions on the class in terms of the types of values a

class’s property may hold.

Both attributes and relationships between classes are specified as proper-

ties using the ‘Properties’ tab, described by their names, domain and range.

By default, all new properties are created to hold instances of one or more

concepts. The type of the property has to be explicitly changed by right

clicking on the property and selecting ‘set datatype’ in order for it to hold a

primitive type value such as integer, real, boolean, string etc. The domain of

the property can be specified as a class, a restriction, a collection of instances

or an expression. Properties may also support an inheritance structure simi-

lar to concepts where each of them can be assigned ‘super properties’. How-

ever, OilEd does not contain a feature that allows the graphical hierarchical

structure of properties to be viewed.

Instances of concepts can be created using the ‘Individuals’ tab. In order

to create an instance, the class it belongs to should be specified. As properties

are not directly associated with a class, the list of properties of the instance

have to be selected. The properties of the instance have to be added from

the list of all available properties, created using the ‘Properties’ tab. After

adding a property, a pop-up window is displayed for entering its value. Each

time a new instance is created, all its properties and their values have to be

added.

The main drawback of OilEd is that both the ‘Classes’ tab and ‘Proper-

ties’ tab do not display the hierarchical structure of concepts and properties.

Although the hierarchy of concepts can be viewed, it would be more helpful

for the user if the hierarchical view is displayed instead of the flat list view

in the main interface. The tool has no facility to even view the hierarchical

structure of properties. Even though the hierarchical view for properties is

not as essential as the hierarchical view for concepts, it would be useful for

the user.

As properties are completely independent of concepts and because they

cannot be not associated with concepts, composing a comprehensive list of

properties becomes a hard task. The user has to manually go through each

individual concept and add their properties to a linear list. Furthermore,

as properties and their values have to be added each time an instance is

65

created, it is extremely likely for users to miss properties. The task of adding

properties each time an instance is created may also become very tedious.

3.2.3 SemanticWorks 2006

Figure 3.4a: Interface of SemanticWorks 2006

SemanticWorks 2006 is a commercial tool developed by Altova [Altova

XML, Data Management, UML, and Web Services Tools 2005] for composing

RDF and OWL ontologies. It is a tool for visually editing ontologies. Its main

interface is similar to both Protégé and OilEd with a set of tabs that contain

interfaces for adding classes, properties, instances etc. The tool possesses

the ability to perform syntax checks to ensure RDF schemas conform to the

RDF specification. It also contains editors capable of syntax highlighting for

manually editing the RDF and OWL source files.

The main interface of SemanticWorks, as shown in Figure 3.4a, consists of

tabs named, ‘Classes’, ‘Propertes’, ‘Instances’ and ‘allDifferent’ and ‘Ontolo-

gies’. The ‘Classes’ tab outlines the list of classes of an ontology in tabular

66

Figure 3.4b: Concept Visualisation of SemanticWorks 2006

form. A name space has to be declared prior to adding classes. A class which

is described by its name has the form of <name-space>:<class-name>. The

tabular interface only allows the creation of a class by specifying its name.

The class hierarchy has to be modelled by individually specifying the super

concepts of each defined class in the graphical view, shown in Figure 3.4b,

accessed by clicking the ‘detail view’ button on the row representing the

class. Within the graphical view, super classes relationship can be modelled

creating a ‘subClassOf’ link and selecting the appropriate super class from

the list of all available classes.

Both properties and relationships of concepts are modelled using the

‘Properties’ tab. Similar to the ‘Classes’ tab, properties are initially added

by simply specifying their name. Other details of the property such as its

domain and range have to be specified in the graphical view accessed via the

‘detail view’ button. The details of each property have to be set individually

by clicking on their respective ’detail view’ buttons. Within the graphical

view, a ‘domain’ link can be created to specify the classes that the property

belongs to. Similarly a ‘range’ link can be created to specify the type of val-

ues the property may hold. In the case of a property, which holds primitive

values, its type is specified. Relationships between two or more classes are

specified by selecting a class as the range. Properties added in the ‘Proper-

ties’ tab are reflected in the ‘Class’ tab, where both the tabular view and the

graphical view show all properties that belong to each class.

67

The task of composing instances can be performed using the ‘Instances’

tab. First, an empty instance has to be created in the tabular view by

specifying a name. Details of the instance such as its type and properties

have to specified in the graphical view. The type of the instance can be

specified by selecting a class from list of available classes. The properties

of the instance can be specified by creating a ‘Predicate’ link and selecting

the required properties from all available properties. The interface places no

restrictions on what properties can be added to an instance. Even properties

that do not belong to the class of the instance can be added. The value of a

property can be populated by either selecting another instance, in the case

of a relationship, or typing in a value, in the case of a primitive value. All

newly created instances that belong to each class are outlined in the ‘Class’

view under the respective class.

Although SemanticWorks claim to provide support for visual creation

of ontologies, the graphical view is limited to the scope of a single ontology

element (concept, property, instance). The user has to first create an ontology

element in the tabular view and switch to the graphical view in order to model

the details of the particular element. Although this focusses attention to

details of an individual element, users may loose sight of the big picture. As

the tool does not contain a feature for displaying the entire concept hierarchy,

the user’s cognitive load is increased.

The need to switch to the graphical view each time an ontology element is

created can get tedious. Furthermore, modelling the details of each element

in the graphical view is also tedious, as the creation of links is based on menu

driven system. At each step of the link creation process, the selection has to

be made by either right clicking or double clicking and selecting from a drop

down menu.

The task of creating instances can also get very tedious as each property

of an instance needs to be added manually even after selecting the type

of the instance. The need to explicitly add a value object after adding a

property to an instance further increases the burden. The need to manually

add properties to instances also increases the risk of users missing properties

of an instance. Furthermore, the need to explicitly add a value object also

encourages the creation of incomplete instances.

68

3.3 Summary

This chapter provided details of domain knowledge authoring tools developed

with the goal of alleviating the knowledge acquisition bottleneck. All the

discussed authoring systems focused on producing knowledge for procedural

tasks. Two of them, KnoMic and Diligent, were developed for acquiring

knowledge for simulated environments. Their applicability is restricted to

their respective environments. The other tools expect users to be adept in

knowledge engineering (model-tracing in particular), alienating the average

domain expert. Furthermore, the overall effort required to produce a domain

model using these tools still remains high.

Conceptualising the domain or producing an ontology is an integral part

of the process of authoring a domain model. This chapter included details of

a selection of popular, state-of-the-art tools for producing domain ontologies.

As these tools are designed for experts and as they contain a lot of features,

novices are likely to find them difficult to use. Furthermore, although some

tools make it possible to view a created ontology graphically, none of them

allow the composition of an ontology graphically.

In order to fill the void of an authoring system that can acquire knowledge

for non-procedural tasks, we designed and developed Constraint Acquisition

System (CAS). CAS is capable of generating a domain model for both pro-

cedural and non-procedural tasks with the assistance of the domain expert.

It was designed with the aim of overcoming the deficiencies of the currently

available authoring systems. As domain ontologies play a central role in the

authoring process of CAS, we also developed a restricted ontology workspace

that allows ontologies to be created graphically. A detailed description of

CAS is given in the following chapter (Chapter 4).

69

Chapter IV

A Constraint-based Domain Model Authoring System

Manually composing a constraint base for an intelligent tutoring system

is a labour-intensive process that requires extensive expertise in constraint-

based modelling and programming. Mitrovic [1998a] reported that she re-

quired approximately an hour to compose a constraint when SQL-Tutor was

developed. She also mentioned that she may have required less time as she

was the domain expert, knowledge engineer and the programmer. According

to the approximation of one hour per constraint, composing the constraint

base for SQL-Tutor, which contains over 700 constraints would take a period

of approximately three months.

We have developed Constraint Acquisition System (CAS), an authoring

system that generates the domain model required for constraint-based tu-

toring systems with the assistance of the domain expert. The goal of the

system is to significantly reduce the time and effort required for composing

constraint bases. It also fills in a research void by supporting knowledge

acquisition for both procedural and non-procedural tasks.

We envisage that CAS would enable domain experts with minimal ex-

pertise in constraint-based modelling to produce constraint bases. CAS was

designed to hide details of constraint implementation, such as the constraint

language and components of constraints. The user is only required to model

the domain in terms of an ontology and provide example problems and their

solutions. The system assists the users in the tasks by guiding them to pro-

vide the required information. CAS analyses the information provided to

generate constraints.

Although the system is designed to support users with minimal knowledge

engineering expertise, it also offers utilities for experts in CBM. The system

allows experts to directly modify constraints during the process of validating

70

the system-generated constraints. Users are also provided with editors for

directly adding new constraints to the domain model.

The remainder of the chapter is organised into seven sections. The follow-

ing section outlines the process proposed for authoring domain knowledge.

Section 4.2 includes a description of the architecture of CAS. Each phase

of the domain authoring process is detailed in the remaining sections. The

phase of modelling ontologies is detailed in section 4.3. Modelling a structure

for solutions is detailed in section 4.4. Section 4.5 describes the syntax con-

straint generation algorithm. Section 4.6 includes details of adding sample

problems and solutions. The algorithm for generating semantic constraints

is described in Section 4.7. The final section includes details on validating

the generated constraints.

4.1 Domain Authoring Process

Authoring knowledge using CAS is a semi-automated process with the assis-

tance of an expert of the particular domain. The domain expert is entrusted

to carry out a number of tasks, including modelling the domain as an on-

tology, providing problems and solutions for the domain and validating the

generated constraints. Once the ontology is complete, CAS is capable of au-

tomatically generating the syntax constraints. The semantic constraints are

generated by CAS by analysing the problems and solutions provided by the

author.

The process of generating a domain model for a constraint-based tutoring

system using CAS consists of six phases:

1. Modelling the domain as an ontology

2. Modelling the structure of solutions

3. Automatically generating syntax constraints

4. Providing sample problems and their solutions

5. Automatically generating semantic constraints

71

6. Validating the generated constraints

Initially the domain expert models the domain as an ontology (a speci-

fication of domain concepts) using CAS’s ontology workspace. During this

phase, the domain expert models concepts of the domain and specifies how

they are related to other concepts (e.g. sub-, super-class relationships, part-of

relationships etc). The task of modelling an ontology also includes specifying

details of properties that belong to a concept.

Solutions should be decomposed into meaningful components during the

second phase. This assists students using the final tutoring system by en-

abling them to focus only on a part of a solution while solving problems. Fur-

thermore, the feedback provided by the tutoring system can also be made

more specific by focusing on the component that contains errors. In the

case of procedural tasks, the system also needs to know how many steps are

involved in a problem-solving procedure and their details.

CAS analyses the modelled ontology for generating syntax constraints

during the third phase. As ontologies contain a lot of information about

the syntax of the domain, this phase involves translating the syntactical

information embedded in ontologies into constraints. The system searches

for particular features within the ontology and generates syntax constraints

that describe them. The problem-solving procedure for procedural tasks also

results in the generation of a set of syntax constraints that ensure the student

solves the problem by following the correct sequence of steps.

The domain expert is requested to provide sample problems and their

solutions, during phase four. In this phase, problems and solutions (based

on the structure modelled in step 2) are added using the problem/solution

interface. While providing solutions to a problem, the expert is encouraged

to provide a collection of solutions for each problem illustrating different

ways of solving the problem. We expect the domain expert to provide a set

of problems that are significantly diverse, covering all parts of the domain.

The system uses machine learning techniques to reason with the provided

problems and their solutions to generate semantic constraints. The constraint

generation algorithm generates semantic constraints by comparing and con-

trasting two solutions for the same problem. The generated constraints are

72

generalised or specialised during consequent analysis of other solutions.

The final step involves validating the constraints generated by the system.

This phase achieves both validation of the constraints and adding meaningful

feedback messages to constraints. The system presents a high-level descrip-

tion of each constraint to the domain expert, who can label the constraint as

either valid or invalid. The domain expert is expected to add a meaningful

feedback message to the constraint if it is correct. The invalid constraints

can be corrected by the author by directly modifying the constraints in ques-

tion. The author can also provide more example problems and solutions and

instruct the system to regenerate the whole constraint base.

4.2 Architecture

CAS is implemented according to the client-server architecture depicted in

Figure 4.1. The server is implemented in Allegro Common Lisp using the

AServe light weight web server. It is responsible for storing and retrieving all

components of the domain model such as the ontology, problems, solutions

and constraints. The client, implemented as a Java application, provides the

interfaces for the domain expert to compose the required domain-dependent

components. The Java application is also capable of generating syntax and

semantic constraints, enabling it to function as a stand alone application if a

connection to the server is not available. The client stores and retrieves the

domain model components from the server through HTTP requests.

The server is implemented as a simple web server that listens to HTTP

requests and returns the appropriate response. Users have to be authenti-

cated prior to being granted permission to access any data. Authenticated

users can request for the ontology that they modelled, any problems and

solutions that have been added and constraints (syntax and semantic) gener-

ated during a prior session. Authenticated users can also store domain model

components composed using the client.

The client, implemented in Java, consists of an interface, the author-

ing controller, constraint generators and a set of managers responsible for

persisting components of the domain model. The interface is a collection

of three components that are used during different stages of the authoring

73

Interface

Ontology
Workspace

Constraint
Interface

Authoring Controller

Ontology
Manager

Ontologies Problems/
Solutions

Problems/
Solutions Manager

Syntax
constraints

Constraints
Manager

Semantic
constraints

Constraint Generator

Syntax Semantic

Problem/ Solution
Editor

Server controller

Server connection
manager

Internet

Client

Server

Figure 4.1: Architecture of the Constraint Acquisition System

process. It consists of an ontology workspace, problem/solution interface and

a constraint interface. The ontology workspace is provided for modelling an

ontology of the domain. Problems and their solutions can be added using the

problem/solution interface. It assists the authors by providing a form with

input boxes based on the properties of the element’s type (i.e. the concept).

The constraint validation phase uses the constraint interface for validating

constraints and adding meaningful feedback messages.

The authoring controller is the driving engine of the system. It ensures

that the proper authoring process is followed by guiding the user to complete

74

the required tasks. It directs the user to the appropriate interface for the par-

ticular task. The authoring controller communicates with the corresponding

manager to retrieve the required domain model component from the server

and automatically loads it in the corresponding interface module.

CAS includes two constraint generators: syntax constraint generator and

semantic constraint generator. The syntax constraint generator is responsible

for generating syntax constraints by analysing the ontology. On the other

hand, the semantic constraint generator analyses the problems and their

solutions along with the ontology for generating semantic constraints. The

generated constraints are passed on to the constraint manager for persistence.

The system contains an ontology manager, problem/solution manager and

constraint manager for persisting components of domain models. The do-

main model components are stored in memory as Java objects and are later

converted by their respective managers to an XML representation for trans-

mission over the network. The XML representation of the domain model

is transferred to the server via the server connection manager, where it is

persisted in a data store. Retrieving data from the server also involves the

domain model managers where the XML representations received are used

to rebuild the object structure.

4.3 Modelling Domain’s Ontology

Domain ontologies play a central role in the knowledge acquisition process.

They are used in every phase of the domain knowledge acquisition process.

The structure of solutions (modelled during the second phase) is based on

the concepts of the ontology. During the third phase, the syntax constraints

are generated directly from the ontology. The fourth phase, which involves

providing problems and solutions, also depends on the ontology, as solutions

are composed by adding instances of ontological concepts. Finally, the last

phase where constraints are presented to the domain expert for validation

and populating feedback messages, also uses the ontology to categorise the

set of generated constraints into meaningful sets.

75

4.3.1 Domain Ontology

An ontology is an “explicit specification of a conceptualisation” [Gruber

1993]. In other words an ontology is a description of concepts of a domain.

It also contains information about properties that describe concepts and de-

scribes inter-relationships between concepts. Typically an ontology takes a

hierarchical structure with super- and sub-concepts.

An example ontology that models the domain of ER modelling is depicted

in Figure 4.2. It has Construct as the top level concept and the three main

types of constructs in ER modelling, Relationship1, Entity and Attribute as

its sub-concepts. Relationship is specialised into Regular and Identifying,

the two relationship types in ER modelling. Similarly Entity is specialised

into Regular and Weak, while Attribute is specialised to Simple and Compos-

ite. The sub-concepts of Simple attribute include Key, Partial key, Simple,

Derived and Multi-valued.

Figure 4.2: Ontology for Entity Relationship Modelling

Each concept is described by a set of properties, which is inherited by

its sub-concepts. In the example ER modelling ontology (Figure 4.2), the

Construct concept has a property named Tag, which holds a unique iden-

tifier for the construct and a Name property that holds the name of the

construct. As all other concepts in the ontology are sub-concepts of Con-

struct, the two properties, Tag and Name are inherited by all other concepts

1 The relationship construct in ER modelling is different from relationships between
concepts of an ontology

76

of the ontology. Concepts can also have their own properties in addition

to the inherited properties. For example, the Binary Identifying Relation-

ship concept requires properties for recording participation and cardinality of

the ‘owner’ and the ‘identified’ entity. Consequently, the Binary Identifying

Relationship concept was modelled to contain four properties: Identified par-

ticipation, Owner participation, Identified cardinality and Owner cardinality.

An ontology contains relationships between two or more concepts. Fig-

ure 4.2 shows all generalisation relationships (“is-a”). The generalisation

relationships are depicted using arrows, where each concept’s super-concept

is pointed using the arrowhead. Ontologies may also contain association re-

lationships (“has”) between concepts. An association relationship indicates

that the related concept makes a reference to the other. The ER ontology in

Figure 4.2, although not explicitly shown, contains a number of association

relationships. For example, it contains a relationship between Entity and

Attribute, denoting that Entities have Attributes.

4.3.2 Ontology Workspace

CAS contains an ontology workspace for composing domain ontologies. The

interface, as depicted in Figure 4.3, consists of two panels: top and bot-

tom. The top panel contains the ontology workspace, which allows users to

compose a graphical representation of the ontology. The ontology workspace

represents concepts using rectangles and generalisation relationship using ar-

rows. As it has no restrictions in placing concepts within the workspace, the

user can position concepts to resemble a hierarchical structure. The bot-

tom panel shows the properties and relationships of the currently selected

concept. It also allows users to add new properties and relationships.

Figure 4.3 shows the example ER modelling ontology developed using

the ontology workspace (discussed in Section 4.3.1). The Binary Identifying

Relationship concept is selected in the ontology workspace and its properties

are shown in the bottom panel. The top two properties, Tag and Name are

properties inherited from the Construct concept. The inherited properties are

distinguished by the “S” icon at the start of the row. The other four prop-

erties of Identified participation, Owner participation, Identified cardinality

77

and Owner cardinality are properties of the Binary Identifying Relationship

concept. Most of the shown properties are of type ‘String’, except Owner

participation and Owner cardinality, which are of type ‘Symbol’. The ‘Sym-

bol’ type specifies that the value of a property is one of the pre-defined set

of values. The set of values that a ‘Symbol’ type property may hold has to

be specified during the definition of the property. For example, the Iden-

tified cardinality property has only two choices: ‘1’ or ’n’. Properties can

also have default values. Both Identified cardinality property and Identified

participation property have default values of ‘1’ and ‘total’ respectively.

Figure 4.3: Interface of Ontology Workspace

The properties of a concept are added by using the property input in-

terface shown in Figure 4.4. A property is described by its name and the

type of values it may hold. Properties can be of type ‘String’, ‘Integer’,

‘Float’, ‘Symbol’ or ‘Boolean’. The interface allows the specification of a

default value for ‘String’ and ‘Boolean’ properties. It allows the specification

78

of a range of values, in terms of a minimum and maximum, for ‘Integer’ and

‘Float’ properties. When creating a property of type ‘Symbol’, its domain

has to be specified as a collection of distinct values. A ‘Symbol’ property can

can only hold one of the values specified in its domain.

Other restrictions on properties include specifying that the value of a

property is unique, optional or can contain multiple values. In situations

where properties can hold multiple values, the exact number of values that

it may hold can be specified using the ‘at least’ and ‘at most’ fields of the

property interface. The ‘at least’ field specified the minimum number of

values a property may hold and the ‘at most’ field specifies the maximum

number of values a property may hold.

Figure 4.4 depicts the identified-participation property of the Binary iden-

tifying relationship concept. The property is of type string and has a default

value of ‘total’. Furthermore as the ‘at least’ and ‘at most’ fields are both

set to ‘1’ the identified participation property can only hold one value.

Figure 4.4: Property Interface

Relationships between concepts are specified using the relationship com-

posing interface shown in Figure 4.5. Adding a relationship involves specify-

ing its name, selecting the concepts involved and specifying any restrictions

for elements participating in the relationship. All relationships are between

the concept selected in the graphical representation of the ontology and the

concept chosen from the relationship composing interface. A collection of

related concepts can be chosen from the interface by ticking the ‘Multiple’

option. This specifies the types of elements (in terms of concepts) that can

be involved in the relationship.

The interface can be used to specify the minimum and maximum number

79

of elements that are required to participate in the relationship. The ‘min’

and ‘max’ input boxes can be populated to specify the minimum and maxi-

mum cardinality of the relationship. The interface also allows the restriction

of elements participating in two relationships, such as whether an element

must participate in two relationships. This can be achieved by selecting a

previously defined relationship under the ‘Compared to other relationships’

selection box and selecting either ‘equal’, ‘mutually exclusive’ or ’subset’.

This is useful for denoting restrictions such as “an attribute can belong to

either an entity or a relationship, but not both”.

Figure 4.5: Relationship Interface

As ontologies play a central role in the knowledge acquisition process, it

is imperative that the relationships are correctly defined. In order to ensure

that the relationships are correct and are not too general, the system engages

the author in a dialogue by using a pop-up window. During this dialogue

the author is presented with specialisations of concepts involved in the rela-

tionship and is asked to label the specialisations that violate the principles

of the domain. As an example, consider the relationship between Identifying

Relationship and Attribute. As shown in Figure 4.6, the initial question asks

whether each specialisation of Attribute (Key, Partial key, Single-valued etc)

is allowed to participate in the Attributes relationship. As Key or Partial

key attributes cannot participate as attributes of any Identifying Relation-

ship according to the principles of ER modelling, the author would indicate

that the two specialisations are invalid. The ontology workspace uses the

outcome of this dialogue to automatically replace the original relationship

80

with a more specific one.

Figure 4.6: Relationship Validation Interface

Ultimately, Binary Identifying Relationship concept is involved in three

association relationships: Attributes, Owner and Identified entity. The At-

tributes relationship exists between Binary Identifying Relationship and three

types of attributes (Single-valued Simple, Derived and Multi-value) with no

restrictions on the cardinality. The Owner relationship with Regular Entity

has a minimum cardinality of 1. The Identified entity relationship, as shown

in Figure 4.5, between Binary Identifying Relationship and Weak Entity has

a minimum and maximum cardinality of 1.

The decision to design and implement an ontology editor specifically for

CAS was taken after evaluating a variety of commercial and research tools

developed for composing ontologies (see Section 3.2 for details). Although

the discussed tools were sophisticated and possessed the ability to represent

complicated syntactical domain restrictions in the form of axioms, this made

them less intuitive to use. They were designed for knowledge engineering

experts. Consequently, novices in knowledge engineering would struggle with

the steep learning curve.

One of the goals of this research is to enable domain experts with little

knowledge engineering background to produce tutoring systems for their do-

mains. In order to achieve this goal, the system should be easy and intuitive

to use. We decided that an ontology editor had to be built specifically for this

project to reduce the required training for users. The editor was designed to

compose ontologies in a manner analogous to using a drawing program.

81

The ease of use of the ontology editor was achieved by restricting its

expressive power. In comparison to Protégé [Protege 2006], where axioms

can be specified as logical expressions, the ontology editor of CAS only has a

set of syntactic restrictions that can be specified through the interface. We

believe the limited set of restrictions is sufficient for the purpose of generating

syntax constraints for most domains.

4.3.3 Internal Representation

The domain model is internally represented in memory as a set of objects,

using the class structure outlined in the UML diagram in Figure 4.7. The

domain model consists of three main components: ontology, problems and

constraints. Ontology is represented as a set of Concept objects, where each

Concept contains a list of PropertyType objects and a list of RelationshipType

objects. The RelationshipType objects keeps track of both super and sub-

concepts, as well as relationships between other concepts. The PropertyType

stores all information about a property.

The domain model contains a list of Problem objects and each problem

may contain several Solution objects. Each solution consists of a set of Com-

ponents, where each component relates to a specific ComponentType in the

solution structure. Components of a solution contain a set of elements, which

are instances of concepts, described by its Properties and Relationships.

CAS generates a set of semantic and syntax constraints by analysing

the ontology and the provided problems. The satisfaction and relevance

condition of Constraints for the domain are generated as a set of Tests that

are combined using conjunctions and disjunctions. A test may look for a

particular error in the student’s solution or compare a section of the student

solution against a section of the ideal solution.

The internal representation of the ontology is stored in the central server

as XML. All three components of the domain model (ontology, problems and

constraints) are converted from objects to their respective XML representa-

tions by their managers and transferred to the server via the server connection

manager. The server stores the received XML files in the appropriate location

under the particular domain. In order to retrieve domain model components,

82

-ID
-Statement
-Description

Problem
1*

1*

-ID
Solution

Component
-Name
ComponentType

* 1

-Name
Ontology

-Name
-ID
-isAbstract
-Description

Concept

-Name
-Min-cardinality
-Max-cardinality

RelationshipType
-Name
-Type
-Min
-Max

PropertyType

1
*

1
-belongs*

1

*

-ID
-Description

Constraint

-IS-pattern
-SS-pattern

Test

1

-Satisfaction

*

1

-Relevance

*

*

1

-Procedural
-Procedural-steps

DomainModel

1 *

1*
1
1 1 *

Element

-Value
PropertyRelationship

1

-participates

*

1

*

1
-has* 1*

1 11 1

1

-participates

*

Figure 4.7: UML Class Diagram of Internal Representation

the client initiates a request to the server, that returns the XML representa-

tion of the required domain model component. The manager responsible for

the particular domain component, uses the XML representation to re-build

the object structure in memory.

An extract of the XML representation of the ontology for ER modelling

(Figure 4.2) shown in Figure 4.8, illustrates that the ontology is represented

using XML tags defined specifically for this project. It uses concept, attribute

and relationship tags to record details of concepts, properties and relation-

ships respectively. Each concept is assigned an automatically generated tag

to uniquely identify it, which is used to specify the concepts involved in a

relationship.

The XML representation of an ontology also includes positional and di-

mensional details of each concept. This information is recorded for the pur-

pose of regenerating the same layout of concepts as produced by the author.

83

Although it is possible to use an algorithm to automatically layout the con-

cepts to form a hierarchical structure, we have not implemented this feature,

since ontology modelling was not the focus of this research. Furthermore, to

ensure that the author retrieves their exact ontology, it is essential to record

the geometrical details.

Although the ontology is stored using custom XML tags, it can be trans-

formed to a standard ontology representation form such as DAML [DAML

2006] via an XSLT transformation. CAS was developed to save ontologies

using its own XML representation as it directly reflected its internal repre-

sentation of ontologies. This sped up the progress of the research project,

avoiding the need for extensive research into ontology standards.

Figure 4.8: XML Representation of ER Modelling Ontology

The internal representations of problems and constraints are also con-

verted to XML to be transferred to the server. Both are represented in XML

using custom tags defined for this project. They use the unique identifiers

assigned to concepts of the ontology for referencing the ontology XML. For

example, the concept id is used to specify the concept that a constraint

belongs to.

84

4.4 Modelling the Structure of Solutions

The structure of a solution is the decomposition of the solution into mean-

ingful components. The objectives of decomposing a solution are two fold:

reducing the student’s cognitive load and providing more focused feedback.

Presenting the student with a goal structure with components that need to

be populated to compile a full solution reduces the cognitive load on the stu-

dent. On the other hand, having the solution decomposed into components

enable the tutoring system to analyse components of the solution indepen-

dently and provide feedback specific to the particular component. Although

this does not eliminate the need for analysing the solution as a whole, it

enables the system to provide feedback focussed at the component level.

The number of components of a solution varies from domain to domain

and depends on the form of the expected solution. For example, if the final

tutoring system is to present multiple choice questions with a single solution

to the student, the solution structure would only have a single component

that contains the student’s choice. On the other hand, a tutoring system

for the domain of algebraic equations that expects an algebraic equation as

the solution might consist of solutions with two components: left-hand-side

expression and right-hand-side expression.

As the ontology describes domain concepts, the types of elements that

can be held by each component can be specified in terms of concepts. Con-

sequently, the task of modelling the solution structure involves decomposing

a solution into components and identifying the type of elements (in terms of

concepts) that each component may hold. The solution structure composi-

tion interface, as shown in Figure 4.9, allows authors to model the solution

structure as a table. The figure shows that ER models consists of three

components: entities, relationships and attributes.

CAS was developed to be able to author domain knowledge for both

procedural as well as non-procedural tasks. Procedural tasks such as adding

two fractions, solving a mathematical equation require a strict procedure to

be followed to accomplish their goals. On the other hand, non-procedural

tasks such as designing a database, writing a computer program do not have

a rigid procedure that has to be followed to achieve their goals.

85

Figure 4.9: ER Modelling Solution Structure

Typically, procedural tasks have a well defined set of steps that need to

be completed in order to arrive at the solution. CAS requires details of the

problem-solving procedure for generating constraints for such domains. The

author is required to outline the complete list of problem-solving steps as

well as the solution components relevant for each step.

CAS’s interface initially prompts the user to specify the total number of

steps involved in solving a problem. Subsequently, the interface provides a

table for adding the name of each step and the corresponding component

of the solution that is affected as part of the step. For example, consider a

tutoring system that provides a practice environment for applying physics

equations, where students are given a textual description of a scenario and

they have to calculate a specific value. The procedure for producing the final

solution would involve:

1. Identifying the given variables and their values

2. Identifying the correct equation

3. Substituting the values of known variables in the equation

4. Solving the equation

The structure of the expected solution has to be modelled to reflect the the

steps involved. The solutions would also consist of four components: known

variables, chosen equation, equation with substituted values, final solution.

The complete structure of solutions for the domain is given in Table 4.1.

86

Component Concept
Known Variables Variable
Chosen equation Physics equation
Equation with substituted values Substituted equation
Final solution Numeric value

Table 4.1: Solution Structure for Applying Physics Equations

4.5 Syntax Constraints Generation

An ontology contains a lot of information about the syntax of the domain.

Composing a domain ontology is much easier and quicker than composing

syntax constraints that are responsible for ensuing that the student has used

the correct syntax. The goal of the syntax constraint generation algorithm is

to extract all useful syntactic information from the ontology and to translate

it into syntax constraints for the domain model.

Syntax constraints are generated by analysing relationships between con-

cepts and properties of concepts specified in the ontology. The algorithm

generates constraints based on restrictions specified for relationships and

properties [Suraweera, Mitrovic & Martin 2004b], which are applicable to

both procedural and non-procedural tasks. A set of extra constraints for

procedural tasks to ensure that the student adheres to the correct problem-

solving procedure is also generated as part of the syntax constraint generation

process.

The syntax constraint generation algorithm is outlined in Figure 4.10.

During step 1, this algorithm produces constraints by analysing relation-

ships between concepts. The minimum and maximum cardinalities specified

in relationships result in syntax constraints that ensure the correct num-

ber of elements participate in relationships within a student solution. The

ontology editor allows specifying a restriction on the elements participating

in a relationship by specifying that they should also participate in another

relationship. The syntax constraint generator also produces constraints to

ensure such restrictions are verified in student solutions.

The constraint generation algorithm makes use of a set of templates for

87

1. For each relationship between concepts

• Generate constraints that ensure the correct number of
elements participate in relationship (cardinality)

• If a restriction on elements participating in another rela-
tionship is specified, generate a constraint that ensures the
restriction is upheld

2. For each specialised relationship marked as invalid during in-
teractions with the relationship validation dialogue

• Generate a constraint that ensures elements in a solution
do not participate in the relationship

3. For each concept property

• If min and max are set, generate constraints that ensure
value of property is within the specified range

• If unique restriction is set, generate constraint that ensures
uniqueness

• Generate a constraint that ensures the type of value for
each property is correct (i.e. integer/float)

• Generate a constraint that ensures that a valid value is
chosen for a property of type symbol

• If property can hold multiple values, generate constraints
that ensure that correct number of values are supplied

4. If domain is procedural, for each problem solving step

• Generate a constraint to ensure that the correct solution
components are populated for the step

Figure 4.10: Syntax Constraint Generation Algorithm

generating syntax constraints. The current set of templates produce con-

straints in a high-level representation. The collection of templates used

for generating constraints by analysing relationships is given in Figure 4.11.

The syntax constraint generator produces constraints by replacing these tags

88

within the templates, such as <concept-name>.

As an example, consider the ‘Identified-entity’ relationship in Figure 4.5.

A constraint can be generated from this relationship, which says “each Binary

Identifying Relationship contained in the student solution must have one and

only one Weak Entity as its ‘Identified entity”’ (Figure 4.12). The relevance

condition focuses on instances of Binary Identifying Relationships in the

student’s solution and the satisfaction condition asserts that each one of

them has to have exactly one Weak Entity as its ‘identified-entity’.

The results of the relationship validation dialogue that engages the user

after the creation of a relationship, also contributes towards the generation

of syntax constraints. The algorithm produces a constraint for each spe-

cialised relationship labelled as invalid by the author, during step 2. They

are generated using the template shown in Figure 4.13.

As an example, consider the scenario of adding a relationship called ‘has-

attribute’ between Regular Entity and Attribute in the ontology shown in

Figure 4.2. During the relationship validation dialogue, the domain expert

would realise and indicate that Regular Entities cannot contain Partial-key

Attributes. The syntax constraint generation process produces a constraint

which ensures that a regular entity can not contain any Partial-key Attributes

(Figure 4.14). Its relevance condition checks for the existence of a Regular

Entity in the entities component of the student solution, and its satisfaction

condition enforces that the Regular Entity should not contain any Partial-key

Attributes.

After generating constraints from relationships, the algorithm analyses

all the properties defined in the ontology for generating constraints (step

3). During this phase, the constraint generator creates a constraint for each

restriction on the domain and range of a property. Such restrictions include

the minimum and maximum values allowed, whether the property is multi-

valued or unique. The list of templates used for generating constraints from

property restrictions are given in Figure 4.15.

For example, the ‘Identified-participation’ property (shown in Figure 4.4)

of a Binary Identifying Relationship, is restricted to have only ‘total’ as its

value. This restriction on the property results in the constraint shown in

Figure 4.16.

89

• Max and min cardinalities are both equal
Relevance: SS <component-name> has a <concept-name> ele-
ment
Satisfaction: It has to have exactly <cardinality> element of
<related-concept(s)>

• Max and min cardinalities set, but unequal
Relevance: SS <component-name> has a <concept-name> ele-
ment
Satisfaction: It has to have at least <cardinality> element of
<related-concept(s)>

Relevance: SS <component-name> has a <concept-name> element
Satisfaction: It can not have more than <cardinality> element of
<related-concept(s)>

• Neither max or min cardinalities set
Relevance: SS <component-name> has a <concept-name> element
Satisfaction: It can only have <related-concept(s)> elements par-
ticipating in <relationship-name>

• Participants restricted against participating in another relationship
Relevance: <concept-name> element in SS <component-name>
participates in <relationship-name> relationship
Satisfaction: It has to also participate in <restricted-relationship-
name>

Relevance: <concept-name> element in SS <component-name>
participates in <relationship-name> relationship
Satisfaction: At least one such element has to participate in
<restricted-relationship-name>

Relevance: <concept-name> element in SS <component-name>
participates in <relationship-name> relationship
Satisfaction: It cannot participate in <restricted-relationship-
name>

Figure 4.11: Syntax Constraint Templates for Relationship Restrictions

90

Relevance: SS Relationships component has a Binary Identifying
Relationship element
Satisfaction: It has to have exactly one element of Weak Entity

Figure 4.12: Example Syntax Constraint from a Relationship Restriction

Relevance: SS <component-name> has a <concept-name> ele-
ment
Satisfaction: It can not contain a <related-concept> element that
participates in <relationship-name> relationship

Figure 4.13: Syntax Constraint Templates for Relationships Labelled as In-
valid

Relevance: Entities component of SS has a Regular Entity
Satisfaction: It can not contain a Partial-key Attribute element
that participates in ‘has-attributes’ relationship

Figure 4.14: Example Syntax Constraint from Relationship Validation Dia-
logue

The sample constraint verifies that the student has not violated the rule

in ER modelling which states that the participation of the identified entity

should be always ‘total’. Its relevance condition checks for the existence of

a Binary Identifying Relationship in the student solution, and satisfaction

condition ensures that for each such relationship, the value of the ‘Identified-

participation’ is ‘total’.

All constraints generated by analysing properties and relationships are

applicable to both procedural and non-procedural tasks. In procedural tasks,

the tutoring system needs to ensure that the student follows the correct

sequence of steps. In order to achieve this, the domain model should contain

a set of syntax constraints that verify that the student has at least made

an attempt at composing the part of the solution relevant to the current

step. The syntax constraint generator produces a constraint for each problem

91

• Min and max are set and are equal
Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> must be <min-value>

• Min and max are set and not equal
Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> must be greater than <min-
value>

Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> has to be less than <max-
value>

• Unique restriction is set
Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> must be unique

• Ensuring numbers are specified for properties of type integer/float
Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> must be a number

• Ensuring that value of symbol type property is valid
Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> must be <value1> OR value of
<property-name> must be <value2> ...

• Property can have multiple values
Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> must have at least <at-least-
count> values

Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> can not have more than <at-
most-count> values

Figure 4.15: Syntax Constraint Templates for Property Restrictions

92

Relevance: Relationships component of SS has a Binary Identifying
Relationship
Satisfaction: Its ‘Identified-participation’ property must be set to
‘total’

Figure 4.16: Example Syntax Constraint from Property Restriction

solving step using the template shown in Figure 4.17, during step 4.

Relevance: current-step is <step-identifier>
AND <solution-component-associated-with-step> component of IS
is not empty
Satisfaction: <solution-component-associated-with-step> compo-
nent of SS should not be empty

Figure 4.17: Syntax Constraint Template for Procedural Task

The constraint in Figure 4.18 is an example of a constraint for the pro-

cedural task of applying physics equations. The constraint becomes relevant

if the step that the student is working on is ‘identifying known variables’

(the current step variable keeps track of the progress made by the student

within the problem-solving procedure). The satisfaction condition verifies

that the student has made an attempt to populate the variables component

(i.e. variables component is not empty).

Relevance: current step is ‘identify-known-variables’
AND variables component of IS is not empty
Satisfaction: variables component of SS should not be empty

Figure 4.18: Example Constraint for Procedural Task

93

4.6 Adding Problems and Solutions

The author is required to provide sample problems along with sets of solutions

depicting alternative ways of solving them using the solution composition

interface. Problems are described by their problem statement, whereas the

solutions are specified as sets of elements that relate to each other. The

solution structure has to be modelled in phase 2 of the authoring process

prior to entering problems and solutions.

Figure 4.19: Solution Composing Interface

Solutions are composed by populating the components of the solution

structure using the interface illustrated in Figure 4.19. The interface was

designed to simplify the task of composing solutions by outlining the solution

structure to the user. Users can create and add elements of the concept

type or its sub-concepts specified for each component during the solution

modelling phase.

The solution composition interface is designed to compose solutions that

strictly adhere to the ontology. Elements can be created using a form-based

interface, as shown in Figure 4.20, generated to reflect the concept definition.

The forms contain input boxes for specifying values for concept’s properties

and drop-down-lists for selecting elements involved in relationships. Rela-

94

tionships between elements are specified by selecting the desired element

and adding it to the respective container. In order for a relationship to be

specified, the element has to have been created previously.

Figure 4.20 shows the interface for creating an instance of Regular Entity

concept. It contains two text boxes for populating the name and the tag

properties. It also contains three drop-down-lists for selecting elements that

participate in each relationship. Elements participating in a relationship have

to be selected from the drop-down-list and added to the container under it by

clicking the ‘+’ button. Elements in the container can be removed by select-

ing it and clicking the ‘-’ button. The Figure shows participating elements

after being added to containers. For example, the entity in Figure 4.20 has

three attribute elements participating in the attributes relationship: ‘Name’,

‘DOB’ and ‘Age’.

Figure 4.20: Element Creation Interface

The system expects a series of solutions depicting alternate ways of solv-

ing the same problem. The interface reduces the amount of effort required

for composing alternate solutions by allowing the author to transform a copy

of the first solution into the desired solution. The user can modify the previ-

95

ously specified solution by adding, modifying or dropping elements. As most

alternative solutions have a high degree of similarity, this feature significantly

reduces the workload of the author.

As the constraints are generated by analysing the similarities and differ-

ences between two solutions to the same problem, it is imperative for the

system to be able to accurately identify similar elements between two so-

lutions to a problem. The system achieves this by maintaining a map of

matching elements between the initial solution and alternative solutions. Al-

though forcing the author to compose alternate solutions by modifying the

initial solution simplifies the task of mapping matching elements between

the two different solutions, the map needs to be updated when new elements

are added. The system initially attempts to automatically find matches for

new elements and if a successful match is found, the author is consulted to

validate it. If the system fails to find a matching element, the author is

requested to select a matching element, if one exists.

4.7 Semantic Constraints Generation

Semantic constraints are generated by an algorithm that learns from exam-

ples [Suraweera, Mitrovic & Martin 2005] using the problems and solutions

provided by the author during phase four of the authoring process. The

domain expert is encouraged to provide a collection of solutions for each

problem to illustrate different ways of solving the same problem. The list

of solutions assists the algorithm to generate constraints that are capable of

correctly validating a student’s attempt by comparing it to a single correct

solution regardless of the methodology used by the student.

The algorithm generates semantic constraints by analysing pairs of so-

lutions and identifying similarities and differences between them. The con-

straints generated from a pair of solutions contribute towards either gener-

alising or specialising constraints in the main constraint base. The resulting

set of constraints is capable of identifying different correct solutions produced

using alternative problem-solving strategies, by comparing them to a single

ideal solution.

The semantic constraints generation algorithm, outlined in Figure 4.21,

96

generates new semantic constraints by analysing a pair of solutions. The

constraints are generated by identifying similarities and differences between

the solutions. Constraints generated from a single pair of solutions are gen-

eralised or specialised as other pairs of solutions are analysed.

1. For each problem Pi

2. For each pair of solutions Si & Sj

3. Generate a set of new constraints N

4. Evaluate each constraint Ni in set N against each previously
analysed solution,

• If Ni is violated, generalise or specialise Ni until it is sat-
isfied

5. Evaluate each constraint CBi in main constraint base, CB,
against solutions Si & Sj used for generating N ,

• If CBi is violated, generalise or specialise CBi to satisfy
Si & Sj

6. For each constraint Ni in set N

• If main constraint base has a constraint Ci that has the
same relevance condition but a different satisfaction con-
dition to Ni, add the satisfaction condition of Ni as a dis-
junctive test to the satisfaction condition of Ci

• else if Ni does not exist in main constraint base, add it to
main constraint base

7. Generate set of constraints that check for extra elements

Figure 4.21: Semantic Constraint Generation Algorithm

The constraint generation algorithm analyses all the problems and their

solutions provided by the domain expert focusing on a single problem at a

time. The algorithm generates a new set of constraints (represented as N in

97

the algorithm shown in Figure 4.21) for each pair of solutions for a problem.

It makes use of all possible permutations of solution pairs, including solutions

compared to themselves.

A new set of constraints from a pair of solutions is generated using the

algorithm outlined in Figure 4.22. It generates semantic constraints to com-

pare each element of the ideal solution against its matching element in the

student solution. It also generates constraints that ensure the relationships

between elements of the ideal solution also exists between the corresponding

elements of the student solution.

The set of constraints N , generated from a pair of solutions, is evaluated

against all solutions previously used for generating constraints. This step

(step 4) ensures that the newly generated set of constraints are consistent

with all solutions analysed so far. During the evaluations, if a constraint in

constraint set N is found to be violated by a solution, it is either generalised

or specialised according to the algorithm outlined in Figure 4.28 to satisfy

that solution.

The next step (step 5) ensures that constraints in the main constraint base

are consistent with the pair of solutions used to generate the new constraint

set N . Each constraint in the main constraint base is evaluated against the

solution pair, and the violated constraints are either specialised or generalised

using the same algorithm used for specialising or generalising new constraints

(Figure 4.28).

After constraints in both constraint set N and the main constraint base

are generalised, the main constraint base is updated with constraints in set

N . During this step, if the main constraint base contains a constraint Ci

that has the same relevance condition as a constraint Ni (from constraint set

N) with a different satisfaction condition, the satisfaction condition of Ni

is added to the satisfaction condition of Ci as a disjunctive test. The main

constraint base is expanded by adding the constraints in constraint set N

that do not exist in the main constraint base. This step ensures that the

constraint base grows with each iteration.

Finally, at the end of analysing all problems and their solutions, a con-

straint base containing sufficiently generalised constraints is produced. These

constraints are used for generating a set of constraints that check the student

98

solution for extra elements. This is achieved by reversing the constraints that

exist in the constraint base. For example, the constraint base for ER mod-

elling would contain a constraint which ensures that “the student solution

contains a matching regular entity for each regular entity in the ideal solu-

tion”. This constraint can be reversed as “the ideal solution should contain a

regular entity for each regular entity in the student solution”, which ensures

that the student solution does not contain any extra regular entities.

Generating Constraints from a Pair of Solutions

New semantic constraints are generated by analysing similarities and dif-

ferences between elements of two solutions, using the algorithm outlined in

Figure 4.22. The algorithm treats the first solutions as the ideal solution

and the other as the student solution. Consequently, the set of constraints

generated is dependent upon the order in which the two solutions are sup-

plied. The algorithm generates constraints for each element and relationship

occurrence in the ideal solution. These generated constraints are generalised

by introducing variables and wild cards.

1. Treat Si as the ideal solution (IS) and Sj as the student solution
(SS)

2. For each element A in the IS

a. Generate a constraint that asserts that if IS contains the
element A, SS should contain its matching element

b. For each relationship that element is involved with, gen-
erate constraints that ensures that the relationship holds
between the corresponding elements of the SS

3. Generalise the properties of similar constraints by introducing
variables and wild cards

Figure 4.22: Algorithm for Generating Constraints from a Pair of Solutions

A constraint is generated for each pair of matching elements in the ideal

solution and the student solution. In the case of non-procedural tasks, a con-

99

straint generated as the result of a pair of elements asserts that if the ideal

solution contains the particular element, the student solution should also

contain its matching element. As the system keeps a map of similar elements

during the phase of entering problems and solutions, determining matching

elements between the two solutions is straightforward. The matches auto-

matically determined by the system are also accurate as they are validated

by the author.

Figure 4.23 contains an example problem for the domain of ER modelling

and two alternative correct solutions. Both solutions are structurally equiv-

alent, and the only difference is with the names used for constructs. As the

tags (used to uniquely identify constructs) are consistent between the two

solutions, they can be used to identify matching elements between the two

ER diagrams.

STUDENT (E1) ENROLLED-IN (R1) COURSE (E2)N N

Student-Id (A1) Code (A2)

UNDERGRAD
(E1) ENROLLED (R1) COURSE (E2)N N

Id-Number (A1) CourseCode (A2)

Students are enrolled in courses.

a)

b)

Figure 4.23: A Sample ER Modelling Problem and Two Correct Solutions

The constraint generation algorithm (Figure 4.22) generates a constraint

for each pair of matching elements in step 2a. Considering that solution a in

Figure 4.23 was treated as the ideal solution and solution b was treated as the

student solution, the constraint generator produces two constraints from the

two Regular Entity elements, ‘STUDENT’ and ‘COURSE’ (see Figure 4.24).

The first of the two constraints ensures that the student solution contains a

100

‘STUDENT’ Regular Entity element for each equivalent element (‘UNDER-

GRAD’) found in the ideal solution. The second constraint ensures that the

student solution contains a ‘COURSE’ Regular Entity element for each equal

element found in the ideal solution.

(a)
Relevance: Entities component of IS has a (STUDENT, E1) Regu-
lar Entity
Satisfaction: Entities component of SS has a (UNDERGRAD, E1)
Regular Entity
(b)
Relevance: Entities component of IS has a (COURSE, E2) Regular
Entity
Satisfaction: Entities component of SS has a (COURSE, E2) Reg-
ular Entity

Figure 4.24: Semantic Constraints from Matching Pairs of Elements

The constraints generated from a matching pair of elements are extremely

specific. They are only applicable to the problem that was used to generate

them. Furthermore, the constraints can only validate the student solution

chosen to generate them. Constraint a in Figure 4.24 only checks for the

existence of a ‘UNDERGRAD’ entity element in the student solution and

Constraint b only checks for the existence of a ‘COURSE’ entity. During

step 3 of the constraint generation algorithm (Figure 4.22) the two constraints

are replaced by a more general constraint.

Step 3 of the constraint generation algorithm replaces similar constraints

with a single general constraint. It produces a general constraint from the

two constraints in Figure 4.24 by introducing variables and wild cards in

place of property values. A variable is introduced to a property if its value is

constant during every occasion it appears within the constraint and different

between constraints. In the case of the first constraint in Figure 4.24, the

second property (tag property) of regular entity elements always has a value

of ‘E1’, and its value in the second constraint is ‘E2’. Consequently, it can

be replaced by a variable, represented as ‘?var’. Although the value of the

first property is constant within the second constraint, it has two values

101

within the first constraint. So, the value of the property is generalised to

a wild card, represented as ‘?*’. This denotes that the property’s value of

the ideal solution element and the same property’s value of its corresponding

element in the student solution can be different. The generalised constraint

that replaces the two constraints in Figure 4.24 is shown in Figure 4.25. It

denotes that the student solution must contain a Regular Entity element for

each such element and that both their tags should be the same.

Relevance: Entities component of IS has a (?*, ?var1) Regular En-
tity
Satisfaction: Entities component of SS has a (?*, ?var1) Regular
Entity

Figure 4.25: Sample Generalised Semantic Constraint

Step 2 of the constraint generation algorithm also produces a set of con-

straints for each relationship that the focussed element is involved with. As

an example, consider the ‘STUDENT’ element in the first solution of Fig-

ure 4.23. It participates in two ontological relationships with ‘Student-id’

Key Attribute and ‘ENROLLED-IN’ Regular Relationship.

The constraints generated based on a relationship is only relevant for

problems where the particular ontological relationship exists in the ideal

solution. In order for a ontological relationship to exist, the solution must

also contain the two elements that participate in the relationship. As a

result, the constraint generation algorithm produces three constraints for

each occurrence of a relationship. Two of them ensure that the student

solution contains the two elements that are supposed to participate in the

relationship. The other ensures that the two elements in the student solution

actually participates in the relationship.

The constraints generated from the relationship between ‘STUDENT’

Regular Entity and ‘Student-Id’ Key Attribute in the first solution of Fig-

ure 4.23 are given in Figure 4.26. The relevance conditions of all three con-

straint contain three tests to ensure that the ideal solution contains the two

elements (‘STUDENT’ and ‘Student-Id’) and that they participate in the

relationship, named ‘has-key-attribute’. The first constraint is relevant when

102

1. Relevance: Entities component of IS has a (STUDENT, E1)
Regular Entity

AND Attributes component of IS has a (Student-Id, A1)
Key Attribute

AND IS (STUDENT, E1) Regular Entity participates in
‘has-key-attribute’ relationship with (Student-Id, A1) Key
Attribute

AND Entities component of SS has a (UNDERGRAD,
E1) Regular Entity
Satisfaction: Attributes component of SS has a (Id-Number,
A1) Key Attribute

2. Relevance: Entities component of IS has a (STUDENT, E1)
Regular Entity

AND Attributes component of IS has a (Student-Id, A1)
Key Attribute

AND IS (STUDENT, E1) Regular Entity participates in
‘has-key-attribute’ relationship with (Student-Id, A1) Key
Attribute

AND Attributes component of SS has a (Id-Number, A1)
Key Attribute
Satisfaction: Entities component of SS has a
(UNDERGRAD, E1) Regular Entity

3. Relevance: Entities component of IS has a (STUDENT, E1)
Regular Entity

AND Attributes component of IS has a (Student-Id, A1)
Key Attribute

AND IS (STUDENT, E1) Regular Entity participates in
‘has-key-attribute’ relationship with (Student-Id, A1) Key
Attribute

AND Entities component of SS has a (UNDERGRAD,
E1) Regular Entity

AND Attributes component of SS has a (Id-Number, A1)
Key Attribute
Satisfaction: SS (UNDERGRAD, E1) Regular Entity
participates in ‘has-key-attribute’ relationship with
(Id-Number, A1) Key Attribute

Figure 4.26: Example Semantic Constraints from a Relationship

103

the student solution contains a matching element for the first element (‘UN-

DERGRAD’). It has a satisfaction condition which ensures that the student

solution contains a matching element for the second element that participates

in the relationship. Similarly, the second constraint ensures that the student

solution contains the first element that participates in the relationship. The

third constraint is only relevant when both matching elements exist in the

student solution. It is satisfied when both the elements of the student so-

lution participates in the specific relationship. These constraints are also

generalised by introducing variables and wild cards in a manner similar to

generalising constraints that ensure matching elements between the ideal and

student solutions.

The constraints generated for procedural tasks include two extra relevance

tests, to ensure only the constraints that are applicable for a particular step

become relevant. The relevance condition of a procedural constraint test

whether the student is currently working on a particular step and that he/she

has at least made an attempt to solve the task involved for the step. Consider

a constraint for the task of solving physics equations, that ensures that the

student solution should contain a variable v for each variable v that appears

in the ideal solution (Figure 4.27). It contains two extra tests in the relevance

condition specific to procedural constraints: test for whether the current step

is of a particular value and a test to check that the solution component

relevant for the particular step is not empty.

Relevance: current step = ’identify-known-variables’
AND NOT variables component of SS component = nil
AND variables component of IS has a variable v

Satisfaction: variables component of SS has a variable v

Figure 4.27: Example Semantic Constraint for Procedural Task

Generalisation

Step 3 of the semantic constraint generation algorithm (Figure 4.21) produces

a set of constraints (denoted as constraint set N) from a pair of solutions.

104

These constraints are evaluated against the previously analysed solutions in

order to ensure that they are consistent with the solutions (step 4). Although

these solutions are correct, this process may result in violated constraints, as

a result of constraints being too specific or general. Such constraints have to

be either generalised or specialised in order to correctly validate all correct

solutions and identify errors in incorrect solutions.

1. If constraint set (C-set), which does not contain the violated
constraint V , has a similar but a more restrictive constraint C,

• replace V with C and exit.

2. Else if C-set has a constraint C that has the same relevance
condition but a different satisfaction condition to V ,

• add the satisfaction condition of C as a disjunctive test to
the satisfaction condition of V ,

• replace C with V and exit

3. Else attempt to restrict the relevance condition of constraint V
to be irrelevant for solution pair Si & Sj

• Find solution pair Sx & Sy that satisfies constraint V

• Look for extra constructs in Si not found in Sx

• Use extra construct to form a test that can be added to
relevance condition of V

• Add new test to relevance condition of V using a conjunc-
tion

4. If restriction failed, constraint must be incorrect, label it as
invalid and drop it

Figure 4.28: Constraint Generalisation/Specialisation Algorithm

The conflicting constraints in constraint set N are generalised or spe-

cialised using the algorithm outlined Figure 4.28. It is applied by the con-

straint generation process to remedy each violated constraint individually.

105

The violated constraint is generalised or specialised until it satisfies the vio-

lated pair of solutions. However, if the algorithm fails to sufficiently gener-

alise or specialise the violated constraint, it is labelled as invalid and removed

from the constraint set. The system keeps track of incorrect constraints to

ensure that similar newly generated constraints do not get added to the main

constraint base.

Initially, the algorithm attempts to restrict the violated constraint by

replacing it with a similar constraint that has already been restricted. It

searches the main constraint base (denoted as C-set) for a constraint that

is similar to but more restrictive than the violated constraint. Such a con-

straint would contain one or more extra relevance tests than the violated

constraint. It must also contain the same set of satisfaction tests, but it

may contain extra disjunctive tests. If such a constraint is found, the al-

gorithm simply uses it to replace the violated constraint and completes the

specialisation/generalisation process.

STUDENT (E1)

HAS (I1)

NEXT-OF-KIN (W1) Name (A1)

1

N

STUDENT (E1)

Name (A1)

Next-of-kin (W1)

Figure 4.29: Equivalent ER models: A Weak Entity Represented as a Com-
posite Multi-valued Attribute

Failure in attempting to find a similar constraint that has already been

specialised, the algorithm attempts to generalise the violated constraint. It

first searches for a constraint in the main constraint base (C-set) with the

same relevance as the violated constraint but a different satisfaction con-

dition. If the search is successful, both constraints are replaced by a new

constraint that has the same relevance and a disjunctively combined satis-

faction.

Consider the example given in Figure 4.30. The violated constraint V

106

ensures that the student solution contains a matching Weak Entity for each

such entity in the ideal solution. Since in ER modelling, Weak Entities can

also be represented as Composite Multi-valued Attributes (Figure 4.29) con-

straint V gets violated if a student has opted to use a Composite Multi-valued

Attribute instead of a Weak Entity. In the example, the main constraint-set

(C-set) contains a constraint that allows this equivalent situation. As both

constraints have the same relevance condition, they can be replaced by a sin-

gle constraint that has the same relevance condition and the two satisfaction

conditions joined using a disjunction (OR).

Violated constraint, V:

Relevance: Entities component of IS has a Weak Entity
Satisfaction: Entities component of SS has a Weak Entity

Constraint from C-set :

Relevance: Entities component of IS has a Weak Entity
Satisfaction: Attributes component of SS has a Composite Multi-
valued Attribute

Combined constraint:

Relevance: Entities component of IS has a Weak Entity
Satisfaction: Entities component of SS has a Weak Entity
OR Attributes component of SS has a Composite Multi-valued
Attribute

Figure 4.30: Generalising Violated Constraint by Adding a Disjunctive Sat-
isfaction Test

During step 3 of the algorithm in Figure 4.28, the relevance condition

of constraint V is restricted to make it irrelevant for the solution which

violated it. This is achieved by first searching for a pair of solutions that

satisfies the constraint. Although a constraint is violated by a new solution

pair, a previously analysed pair of solutions is guaranteed to satisfy the same

constraint. This is because the algorithm generates a constraint from a pair

107

of solutions and it satisfies the pair of solutions used to generate it. Any

significant differences between the satisfied solutions pair and the violated

solutions pair is used to restrict the relevance condition of V.

Consider the example of the violated constraint given in Figure 4.31. The

constraint ensures that the student solution contains a Partial-key Attribute

for each such attribute found in the ideal solution. However, this constraint

gets violated if a Weak Entity is represented as a Composite Multi-valued At-

tribute as shown in Figure 4.29. Even though a Weak Entity has a Partial-key

Attribute, A1, when it is represented as a Composite Multi-valued Attribute,

A1 is represented as a Single Attribute. The ER model (a) in Figure 4.29,

which satisfies the constraint contains a Weak Entity which is not found in

the ER model (b) in Figure 4.29. This difference is added as a new conjunc-

tive test to the relevance condition of the violated constraint as shown in

Figure 4.31.

Violated constraint, V:

Relevance: Attributes component of IS has a Partial-key
Attribute

Satisfaction: Attributes component of SS has a Partial-
key Attribute

Modified constraint, V:

Relevance: Attributes component of IS has a Partial-key
Attribute
AND Entities component of SS has a Weak entity

Satisfaction: Attributes component of SS has a Partial-
key Attribute

Figure 4.31: Violated Semantic Constraint Resolved with New Relevance
Test

The constraint specialisation/generalisation algorithm (Figure 4.28) is

also used to resolve conflicting constraints from the main constraint base

found during step 5 of the semantic constraint generation process (Fig-

ure 4.21). When the algorithm is applied for resolving constraints from the

108

main constraint base, the constraint set N is searched for similar constraints.

In other words, constraint set N is treated as the C-set in the constraint spe-

cialisation/generalisation algorithm.

4.8 Constraint Validation

The final phase of the constraint generation process involves validating the

constraints generated by the system with the assistance of the domain expert.

This phase ensures that the generated constraints are accurate and that the

resulting domain model can be used in a tutoring system. In addition to

validating the constraints, this phase also forces the domain expert to add

meaningful feedback messages to constraints.

During the constraint validation process, the author is presented with a

system-generated, high-level hint for each constraint (Figure 4.32). These

hints along with the constraints’ high-level relevance and satisfaction condi-

tions describe the meaning of each constraint. The hints are generated by

analysing each constraint and determining whether they check for missing or

extra elements/relationships. The hints are generated with the use of a set of

templates. For example, the hints for constraints that deal with missing ele-

ments are produced using the template of “Some required <concept-name>

elements are missing”. During hint generation, the <concept-name> tag is

replaced with the appropriate name(s) of the concept (See Figure 4.32).

Relevance: Entities component of IS has a ?var1 Regular Entity
Satisfaction: Entities component of SS has a ?var1 Regular Entity
Generated description: “Some required Regular Entity elements
are missing”

Figure 4.32: Example Description of Constraint

The author is required to go through each constraint’s description and

verify that they are valid. If the constraint is valid, the author has to provide

a meaningful hint message to be presented to the student as part of their

feedback. For example, the author may provide “Make sure you have created

109

all the required regular entities. Your solution is missing some entities” as a

hint for the constraint in Figure 4.32.

During the process of inspecting constraints, the author may come across

invalid constraints. These constraints can be labelled as invalid and would

be removed from the constraint base. The author can also revisit step four

of the authoring process and provide more example problems and solutions

demonstrating why the constraint is invalid. The constraint base can be

regenerated by executing the semantic constraint generator with the updated

problem set.

Regenerating the constraint base results in a new set of constraints. Con-

sequently, any modifications to feedback messages would also be lost. The

author is warned of these consequences prior to regeneration. The authors

are encouraged to only modify feedback messages of constraints after they

are satisfied that the constraint base accounts for all pedagogically significant

problem states.

Users with some expertise in composing constraints can directly mod-

ify the constraints using the set of editors provided by CAS. The constraints

would have to modified in the final low-level Lisp representation. CAS is cur-

rently not capable of translating the high-level constraints into the low-level

representation. However, both the constraint generators can be enhanced to

automatically produce constraints in the executable Lisp form (See Annex A

for a detailed outline of an example translation). In the case of the syntax

constraint generator the current set of templates have to be replaced with

templates that produce Lisp code. As the constraint generation algorithm

generalises and specialises constraints using the high-level representation, the

final high-level constraints have to be transformed into the Lisp code. This

can be achieved by identifying a mapping between the two representations

and producing a set of templates. As properties have been generalised by

introducing variables and wild cards, they can be used for pattern matching

within the student solution.

110

4.9 Summary

The chapter provided a detailed description of CAS, the authoring system

that was developed with the goal of reducing the time and effort required for

producing constraint bases for ITSs. It included details of CAS’s architecture

as well as the authoring process for composing a domain model. Each phase

of the authoring process was explained with examples from the domain of

ER modelling.

The true effectiveness of CAS can only be determined through evaluation.

We conducted a series of evaluation studies that evaluated the effectiveness

and the usefulness of CAS. The following chapter (Chapter 5) presents details

on the three evaluation studies conducted.

111

Chapter V

Evaluation

Evaluation is an integral part of research. We strongly believe that true

effectiveness of any research system can only be determined with empirical

evaluations. The usefulness and effectiveness of CAS was evaluated in a series

of studies that focussed on different aspects of the system.

Domain ontologies play a central role in CAS. We conducted an experi-

ment (study 1) to validate our hypothesis that domain ontologies are useful

even in the process of manually authoring a domain model. The experiment

was carried out with novice domain model authors with a tool designed to

encourage the use of ontologies. It revealed that domain ontologies do indeed

facilitate the creation of complete constraint bases.

Upon the completion of CAS, its effectiveness was evaluated (study 2)

by using it to produce constraint-bases for the three domains of ER mod-

elling, Fraction addition and Data normalisation. The constraint-bases were

developed by the same author to ensure consistency between the domains.

The analysis of the generated constraints revealed that CAS was extremely

effective in producing constraints for the evaluated domains.

Finally, a comprehensive evaluation (study 3) was carried out with a

group of novice domain model authors to evaluate the effectiveness of the

system as a whole. They were assigned the task of producing a complete

domain model runnable in WETAS for the domain of adding fractions using

CAS. The evaluation showed that CAS was capable of generating highly

accurate constraint bases even with the assistance of novices. It also showed

that CAS reduced the overall effort required to produce domain models.

The remainder of the chapter contains details of the three evaluation

studies carried out. Section 5.1 contains details of the experiment conducted

to evaluate the usefulness of domain ontologies. It includes details of the

112

process followed, the results observed and the conclusions of the study. The

following section describes the three domains that were used to evaluate the

effectiveness of CAS and the generated sets of constraints. It also includes

details of the analyses performed to evaluate the quality of the generated

constraint bases. Details of the evaluation of CAS’s effectiveness with novice

domain model authors is available in Section 5.3. It includes details of the

task allocated to domain authors, observed results and conclusions of the

evaluation. Finally, the last section presents a discussion of all the evaluation

studies.

5.1 Usefulness of Ontologies for Manually Composing Domain

Models (Study 1)

It is widely accepted that the quality of the knowledge base is one of the main

the determining factor for the quality of diagnosis and instruction in ITSs.

The knowledge base of a constraint-based tutor consists of a collection of

constraints which formalises the syntactic and semantic rules of the domain.

A knowledge base is incomplete if it is missing one or more constraints that

account for significant problem states. Incomplete knowledge bases result

in student solutions falsely diagnosed as correct. So careful engineering and

iterative testing has to be performed in order to avoid producing incomplete

constraint bases [Mitrovic et al. 2003].

We believe that it is highly beneficial for the author to develop a domain

ontology even when the constraint set is developed manually, because this

helps the author to reflect on the domain. Such an activity would enhance

the author’s understanding of the domain and therefore be a helpful tool

when identifying constraints. We also believe that categorising constraints

according to the ontology would assist the authoring process. As a conse-

quence, the author would only be required to focus on constraints related to

a single concept, reducing their working memory load. The use of ontologies

may encourage authors to produce more complete constraint bases.

We hypothesized that the task of composing an ontology and organising

the constraints according to its concepts would assist in manually composing

constraints; it would help the author to produce a more complete constraint

113

base, as the task of building an ontology requires the author to reflect on the

entire domain and explicitly outline its concepts.

To evaluate our hypothesis, we conducted an empirical study [Suraweera,

Mitrovic & Martin 2004a]. The study involved authors producing constraints

using a tool that supported organising constraints according to concepts of

an ontology (called the domain model composition tool).

5.1.1 Process

The evaluation involved 18 students enrolled in the 2003 graduate course

on Intelligent Tutoring Systems at the University of Canterbury. They were

assigned the task of building an Intelligent Tutor using WETAS for teaching

adjectives in the English language. They were asked to compose constraints

using the domain model composition tool, which supported modelling an

ontology and categorising constraints according to the concepts of the ontol-

ogy. The participants were allocated a total time period of three weeks to

complete the task.

The participants had attended 13 lectures on ITSs, including five on

CBM, prior to assigning the task. They also had a 50 minute presenta-

tion on WETAS, and were given a description of the task, instructions on

how to write constraints, and the section on adjectives from the Clutterbuck

English text book [Clutterbuck 1990] for vocabulary. They were free to ex-

plore LBITS [Martin & Mitrovic 2002a], a tutor developed in WETAS that

teaches simple vocabulary skills. The participants had access to the “last two

letters” puzzle of LBITS. The puzzle involved determining a set of words that

satisfied the given clues, with the first two letters of each word being the same

as the last two letters of the previous one. All domain specific components,

including its ontology, the constraints and problems, were available.

The participants were given a set of example problems that the adjectives

tutor was supposed to present to its students (referred to as ITS users in the

rest of the Section). The adjectives tutor should present sentences to be

completed by ITS users by providing the correct form of a given adjective.

“My sister is much than me (wise)” is an example problem.

The participants were required to produce all the domain-dependent com-

114

ponents required for the adjectives tutor. All domain-dependent components

required by WETAS, including syntax and semantic constraints, problems

and solutions, were to be composed using the domain model composition

tool. The participants were also required to compose an ontology of the

domain.

The domain model composition tool for WETAS was designed to encour-

age the use of a domain ontology as a means of visualising the domain and

organising the knowledge base. The tool supported modelling an ontology

graphically and composing constraints using a text editor that divides the

available text area according to concepts of the ontology. It contained two

constraint editors for syntax and semantic constraints. The editors also pro-

vided syntax highlighting facilities, by automatically colouring keywords in

a different colour, to assist in constraint composition. The users were able to

compose all the required domain model components using the authoring tool

and deploy the produced domain model on WETAS to instantiate a tutoring

system.

The domain model composition tool for WETAS was developed as a Java

applet. Participants were able to access the tool through their web browser,

to compose the domain model components. Completed domain models could

be deployed as a tutoring system on WETAS, by using the “reload domain”

feature. This results in starting an intelligent tutor instance on WETAS,

provided that the domain model components are syntactically valid. Once

deployed, the new ITS can be accessed by pointing a web browser to the

appropriate URL.

The interface (Figure 5.1a) consists of a workspace for developing a do-

main ontology (ontology view) and textual editors for composing syntax con-

straints, semantic constraints, macros and problems. Similar to the ontology

workspace of CAS (see Chapter 4), concepts are represented as rectangles,

and their generalisations are indicated by arrows. The details of each con-

cept, such as its attributes and relationships with other concepts, can be

specified in the bottom section of the ontology view.

Constraints can be composed using the “Constraints” tab of the ontol-

ogy view (Figure 5.1b) or using the syntax/semantic constraints text editors.

The “Constraints” tab of the ontology view outlines syntactic and semantic

115

Figure 5.1a: Interface of Domain Model Composition Tool

Figure 5.1b: Constraints List for Ending with ‘Y’ Concept

constraints related to the selected concept in the ontology. The constraints

editor, on the other hand, lists all syntactic or semantic constraints cate-

116

gorised according to the corresponding concepts. Constraints in constraint

editors are separated into groups by using comment lines as shown in Fig-

ure 5.2 (pre-pended by ‘;;’ symbols). The figure shows two semantic con-

straints (Constraint 7 and 8) that relate to the Ending with ‘Y’ concept.

Constraints composed using the constraints tab of the ontology view and the

constraints editors are automatically synchronised. Constraints developed

in the “Constraints” tab of the ontology view are added to the constraints

editors, and constraints composed using the constraint editors are added to

the “Constraints” tab of the appropriate concept.

Figure 5.2: Semantic Constraints Editor of Domain Model Composition Tool

5.1.2 Results and Analysis

Seventeen (out of eighteen) participants completed the task satisfactorily.

They produced working tutoring systems for the domain of adjectives. Al-

though the participants were allocated three weeks, the majority started

working on the domain model only after about a week into the study. Unfor-

tunately, one participant who started early, lost all his work during the early

stages of his project due to a glitch in the server. As he was significantly

disadvantaged, his results were not included in the analysis. The glitch did

not affect any others as it was rectified promptly, before affecting others.

117

Ontology view Total %
S1 4.57 38.16 12%
S2 7.01 51.55 14%
S3 1.20 10.22 12%
S4 2.54 45.25 6%
S5 4.91 48.96 10%
S6 4.66 44.89 10%
S7 2.87 18.97 15%
S8 4.99 22.94 22%
S9 4.30 34.29 13%
S10 7.23 33.90 21%
S11 3.28 55.76 6%
S12 2.84 30.46 9%
S13 3.47 60.94 6%
S14 1.96 32.42 6%
S15 4.04 33.35 12%
S16 6.24 29.60 21%
Mean 4.13 36.98 12%
S.D. 1.72 13.66 5%

Table 5.1: Interaction Times with WETAS Front End

The domain model composition tool recorded interaction details of each

participant in a log file. A summary of the total interaction times for the

sixteen participants that were analysed are given in Table 5.1. The partic-

ipants took 37 hours on average to complete the task, spending 4 hours in

the ontology view (12% of the total time). The time in the ontology view

varied widely, with a minimum of 1.2 and maximum of 7.2 hours. This can

be attributed to different styles of developing the ontology. Some students

may have initially developed the ontology on paper before using the system,

whereas others may have developed the whole ontology online. Furthermore,

some students also used the ontology view to add constraints. However, the

logs showed that this was not a popular option, as most students composed

constraints using the constraint editors. One factor that contributed to this

behaviour may be the restrictiveness of the constraint interface in the ontol-

ogy view, which only displays the details of a single constraint at a time.

The participants produced constraint bases that ranged from 13 con-

118

Syntax Semantic Total Syntax % Semantic %
S1 3 27 30 10% 90%
S2 10 3 13 77% 23%
S3 1 14 15 7% 93%
S4 4 30 34 12% 88%
S5 5 11 16 31% 69%
S6 1 24 25 4% 96%
S7 15 1 16 94% 6%
S8 18 3 21 86% 14%
S9 4 11 15 27% 73%
S10 14 0 14 100% 0%
S11 1 16 17 6% 94%
S12 16 0 16 100% 0%
S13 15 1 16 94% 6%
S14 17 1 18 94% 6%
S15 14 1 15 93% 7%
S16 30 0 30 100% 0%
Mean 10.50 8.94 19.44 54% 46%
S.D. 8.23 10.47 6.60

Table 5.2: Numbers of Constraints Composed by Students

straints to 34 constraints (summaries of each constraint base are listed in

Table 5.2). On average they produced 19.4 constraints, of which 10.5 were

syntax and 8.9 were semantic. The average proportions of syntax and se-

mantic constraints were similar (54% and 46% respectively). Both the num-

bers of syntax constraints and semantic constraints had very high variability,

with some participants opting to label the majority of constraints as syntax

and others vice versa. As WETAS treats the two types of constraints with

equal priority during the process of evaluating a student solution, assigning

a constraint to either group does not have any noticable consequences. Fur-

thermore, in the domain of adjectives, it is not clear as to which category the

constraints belong. For example, in order to determine whether a solution

is correct, it is necessary to check whether the correct rule has been applied

(semantics) and whether the resulting word is spelt correctly (syntax).

We evaluated the correctness and completeness of each domain model

component (ontology, syntax and semantic constraint sets) produced by the

119

Ontology % Constraints % Overall %
S1 5 100% 20 100% 25 100%
S2 4 80% 19 95% 23 92%
S3 4 80% 17 85% 21 84%
S4 5 100% 18 90% 23 92%
S5 4 80% 20 100% 24 96%
S6 5 100% 18 90% 23 92%
S7 4 80% 17 85% 21 84%
S8 3 60% 15 75% 18 72%
S9 5 100% 18 90% 23 92%
S10 3 60% 18 90% 21 84%
S11 5 100% 17 85% 22 88%
S12 3 60% 10 50% 13 52%
S13 3 60% 13 65% 16 64%
S14 3 60% 12 60% 15 60%
S15 3 60% 11 55% 14 56%
S16 5 100% 4 20% 9 36%
Mean 4.00 80% 15.44 77% 19.44 78%
S.D. 0.89 18% 4.37 22% 4.69 19%

Table 5.3: Accuracies of Constraints Produced by Students

participants by comparing them to an accurate and complete domain model

produced by an expert, with about three years of experience in composing

constraint bases. The ontologies produced by participants were compared

against the desirable ontology and given a mark out of 5. As the complete

constraint base consisted of 20 constraints, the constraint bases produced by

the participants were given a mark out of 20. Consequently, the maximum

total score for both the ontology and constraint base was 25.

The mark for ontology and constraints for each participant is given in

Table 5.3. All participants scored high for their ontology, with an average

score of 4.0. This was expected because the ontology was straightforward.

Almost every participant had specified a separate concept for each group

of adjectives according to the rules specified in [Clutterbuck 1990]. How-

ever, some students constructed a flat ontology, which contained only the six

groupings corresponding to the rules (see Figure 5.3a). Five students scored

full marks for the ontology by including the adjective degree concept (com-

120

parative or superlative) and concepts that dealt with syntax, such as spelling

(see Figure 5.3b).

Even though the participants were only given a brief introduction to on-

tologies and the example ontology of LBITS, they created ontologies of a

high standard. However, we cannot make any general assumptions on the

difficulty of constructing ontologies since the domain of adjectives is very

simple. Furthermore, the six rules for determining the comparative and su-

perlative degree of an adjective gave strong hints on what concepts should

be modelled.

Figure 5.3a: Flat Ontology Composed by Participant S10

Figure 5.3b: Complete Ontologies Composed by Participant S4

The ‘Constraints’ column of Table 5.3 denotes the number of constraints

accounted for, from the complete set of 20, by each participant. Note that the

mapping between the complete constraint base and those produced by the

participants is not necessarily 1:1, as a result of their differing granularity.

Some participants produced a collection of more specific constraints that

accounted for the same set of problem states as a single constraint produced

by the expert. By contast, others produced a single constraint that accounted

121

for multiple constraints produced by the expert. The constraints that are not

at the correct granularity level would produce either more specific feedback

and or more general feedback resulting in reduced learning gains. However,

even constraints that are not at the appropriate granularity level can identify

errors in student solutions appropriately. Therefore, we were only interested

in whether the participants had accounted for all the problem states identified

by the expert.

The constraint bases produced by the participants covered 15 (77%) of the

constraints found in the ideal constraint base, on average. Two participants

accounted for all 20 constraints. Almost all managed to account for at least 10

constraints. One participant struggled in composing constraints, managing

to account for only four constraints. In general, the quality of constraints

was high.

All but two participants (S13 and S16) categorised their constraints ac-

cording to the concepts of the ontology. For these participants, there was a

significant correlation between the ontology score and the constraints score

(0.679, p<0.01). However, there was no significant correlation between the

ontology score and the constraints score when all participants were consid-

ered. This strongly suggests that the participants who made use of the

ontology to categorise constraints while composing them, developed more

complete constraint bases.

An obvious reason for this finding may be that more able students pro-

duced better ontologies and also produced a complete set of constraints. To

test this hypothesis, we determined the correlation between the participant’s

final grade for the course (which included two other assignments and a final

examination) and the ontology/constraint scores. There was indeed a strong

correlation (0.840, p<0.01) between the grade and the constraint score. How-

ever, there was no significant correlation between the grade and the ontology

score. This lack of a correlation can be due to a number of factors. Since

the task of building ontologies was novel for the participants, they may have

found it interesting and performed well regardless of their ability. Another

factor is that the participants had more practise at writing constraints (in an-

other assignment for the same course) than on modelling ontologies. Finally,

the simplicity of the domain could also be a contributing factor.

122

The participants also felt that building an ontology assisted in the task

of identifying constraints. Their comments on the usefulness of ontologies

are listed in Figure 5.4. The comments suggested that the participants effec-

tively used concepts of the ontology to decompose the constraint base into

meaningful categories. Furthermore, the ontology has provided an initial

framework for composing constraints.

• “Ontology helped me organise my thinking” - S2

• “The ontology made me easily define the basic structure of this
tutor” - S10

• “The constraints were constructed based on the ontology de-
sign” - S13

• “Ontology was designed first so that it provides a guideline for
the tasks ahead” - S9

Figure 5.4: Comments by Participants on the Usefulness of Ontologies

The participants spent 2 hours per constraint (calculated as the total

interaction time/total number of constraints, SD=1 hour). This is twice the

time reported in [Mitrovic & Ohlsson 1999], but the participants are neither

knowledge engineers nor domain experts, so the difference is understandable.

The language used to compose constraints by Mitrovic is slightly different

from the language used by participants of the study, which may also be

a factor for the difference. It is interesting that this time of two hours is

still much shorter than 10 hours reportedly necessary for acquiring a single

production rule for model-tracing tutors [Anderson et al. 1996], even when

constraints are generated by non-experts.

5.2 Effectiveness of the Constraint Generation Algorithms (Study 2)

We evaluated the effectiveness of CAS’s constraint generation algorithms for

three vastly different domains: Database modelling, Data normalisation and

Fraction addition. The domains of Database modelling and Data normal-

123

isation were specifically chosen because we had previously developed two

successful constraint based tutors for the two domains; KERMIT [Suraweera

& Mitrovic 2004] and NORMIT [Mitrovic 2005a]. The constraint bases of

these tutors were used as benchmarks to evaluate the correctness and com-

pleteness of the constraint bases generated by CAS.

The choice of domains were also influenced by the desire to evaluate

CAS for procedural as well as non-procedural tasks. The domains of Data

normalisation and Fraction addition can be categorised as procedural, where

a strict set of steps have to be followed to arrive at the solution. On the

other hand, the task of modelling a database is not a well-formed process

and there is no strict procedure to be followed to produce an ER model.

CAS relies on the domain expert to provide a correct and complete on-

tology of the domain, problems and solutions. It requires a collection of

solutions for each problem outlining different ways of solving the same prob-

lem. In order to ensure that CAS is supplied with all the correct and complete

information, the domain-dependent information for all three domains were

supplied by the developer of CAS. Constraints for each domain were gener-

ated by following the six steps in the constraint generation process outlined

in Section 4.1.

5.2.1 Entity Relationship Modelling

Entity Relationship (ER) modelling is a popular database modelling tech-

nique, used frequently for the conceptual design of databases. ER modelling,

originally proposed by P. Chen [1976], views the world as consisting of enti-

ties and relationships between them. An entity is the basic item represented

in the ER model, which is an object in the real world that exists indepen-

dently. The properties of each entity that describe it are called attributes.

For example, a student entity may be described by his/her name, date of

birth, address etc. A relationship is an association between two or more

entities.

Typical problems in the domain of database modelling involve composing

an ER diagram that satisfies a given set of requirements. Problems available

in KERMIT also followed this pattern, where students are given the require-

124

ments in the form of a textual description. They are required to compose

an ER diagram (using the ER modelling workspace) that satisfies the given

requirements.

In order to compose an ER diagram, students must understand the data

model used, the basic building blocks available and the integrity constraints

specified on them. In real situations the description of the scenario is long

and often ambiguous and incomplete. To identify integrities, the student

must be able to reason about the requirements and use his/her own world

knowledge to make valid assumptions. ER modelling is not a well-defined

process, and the task is open-ended. There is no algorithm to use to derive

the ER schema for a given set of requirements. There is no single, best

solution for a problem, and often there are several correct solutions for the

same requirements.

Composing an Ontology of the Domain

The ontology composed for the domain of ER modelling, as shown in Fig-

ure 5.5, consists of Construct as the top level concept. The three types

of constructs in ER modelling, Relationship, Entity and Attribute are sub-

concepts of Construct. Relationship is specialised to Regular and Identifying

with each of them being specialised to the three types of relationships; Bi-

nary, N-ary and Recursive. The Entity concept is specialised to Regular and

Weak, which are the types of entities. Attributes can be either Simple or

Composite. Simple attributes are specialised further to according to their

types of Key, Partial-key, Single, Derived and Multi-valued.

Modelling the Structure of Solutions

The structure modelled for solutions for the domain of ER modelling is

outlined in Figure 5.6. It consists of “Entities”, “Relationships” and “At-

tributes” components, which are assigned to the concepts of Entity, Rela-

tionship and Attribute respectively. As solutions can only contain instances

of concrete (non-abstract) concepts, the “Entities” component can only hold

instances of Regular entity and Weak entity, which are the concrete sub-

concepts of Entity. Similarly, the “Relationships” list can contain instances

125

Figure 5.5: Ontology for Domain of ER Modelling

of the six concrete types of relationships such as Binary regular, N-ary regular

etc. Finally, the “Attributes” component contains instances of the concrete

types of Attribute concept.

The ER ontology defines a relationship between the Relationship concept

and the Entity concept. Creating an instance of a Relationship requires the

specification of the instances of Regular or Weak entities that participate in

that relationship. Similarly, when an instance of an Attribute is created, the

Entity or Relationship which it belongs to has to be selected.

The solution structure modelled for ER modelling is similar to KERMIT’s

internal solution structure. The ER workspace applet of KERMIT converts

the graphical representation of ER models into a textual format that consists

of four lists: Entities, Relationships, Attributes and Connectors. The Enti-

ties, Relationships and Attributes lists are similar to three components of the

ER solution structure modelled in CAS. Connectors are used in KERMIT to

keep track of entities that participate in relationships and attributes that be-

long to entities. However, as these associations are modelled in the ontology

as relationships, the connectors become redundant when adding solutions

in CAS. As discussed in Section 4.6, the solution composition interface of

CAS allows direct specification of elements that participate in association

relationships.

126

Solution component Concept
Entities Entity
Relationships Relationship
Attributes Attribute

Figure 5.6: Solution Structure for ER Diagrams

Adding Problems and their Solutions

The problem and solutions editor was used to add seven ER modelling prob-

lems and their solutions. They were chosen from problems found in KER-

MIT. Most problems in KERMIT require solutions that contain a lot of

repetition. The problems for which their solutions did not contain many

repetitive elements (less than two elements of the same type) were directly

copied from KERMIT. The complexity of other problems were reduced by

removing the repeating elements in order to reduce the author’s workload.

Each problem was accompanied by at least two alternative correct solu-

tions using the solutions composer. Although the solutions were chosen to

maximise the difference between them, solutions in ER modelling tend to

only have subtle differences. As the solution composer enabled the composi-

tion of secondary solutions by modifying the first solution, the task of adding

alternative solutions required very little effort.

Generating Syntax Constraints

The syntax constraints generator produced a total of 49 syntax constraints

from the ER modelling ontology shown in Figure 5.5 [Suraweera et al. 2005].

They varied from simple constraints such as ‘Entities should have a name’

to more complex constraints such as ‘Regular Entity must have at least one

Key Attribute’.

For example, consider the Binary Identifying Relationship concept. It is

described by three properties; ‘name’, ‘identified cardinality’ and ‘identified

participation’. It also participates in a relationship with Weak Entity named

‘identified entity’ and Regular Entity named ‘owner’. The restrictions of each

of the properties and relationships specified using the ontology workspace,

generated a total of six constraints, which are outlined in Figure 5.7.

127

• Relationship type must have exactly one name

• The name property of Relationship has to be unique

• The identified cardinality of Binary identifying relationship
must be “1”

• The identified participation of Binary identifying relationship
must be “total”

• Exactly one Weak entity must participate in each Binary iden-
tifying relationship as the identified entity

• At least one Regular entity must participate in each Binary
identifying relationship as owners

Figure 5.7: Syntax Constraints Produced from Properties and Relationships
of Binary Identifying Relationship Concept

Generating Semantic Constraints

CAS produced a total of 135 semantic constraints by analysing the seven

problems and their solutions provided during step four of the authoring

process [Suraweera et al. 2005]. These constraints were able to identify er-

rors in an ER model composed by a student by comparing it to the system’s

corresponding ideal solution. They ensure that the student’s ER diagram

consists of all the required constructs and that they correctly participate in

relationships.

A sample list of semantic constraints generated by CAS is given in Fig-

ure 5.8. Constraint 1 ensures the student’s solution contains a corresponding

regular entity for each one found in the ideal solution. Constraint 2 is an

example of a constraint that enables the tutoring system to identify solutions

equivalent to the system’s ideal solution. It allows for the alternative method

for modelling a weak entity. It verifies that the student solution contains ei-

ther a weak entity or a multi-valued attribute for each weak entity found in

the ideal solution.

Constraints 3, 4 and 5 ensure that the student has correctly connected the

128

1. Relevance: IS.Entities component has a Regular entity (?id,
?*)
Satisfaction: SS.Entities component has a Regular entity
(?id, ?*)

2. Relevance: IS.Entities component has a Weak entity (?id,
?*)
Satisfaction: SS.Entities component has a Weak entity (?id,
?*)

OR SS.Attributes component has a multi-valued attribute
(?id, ?*)

3. Relevance: IS.Entities has a Regular entity (?id1, ?*)
AND IS.Attributes has a Key (?id2, ?*)
AND SS.Entities has a Regular entity (?id1, ?*)
AND IS Regular entity (?id1, ?*) has Key (?id2, ?*) as

key-attribute
Satisfaction: SS.Attributes has a Key (?id2, ?*)

4. Relevance: IS.Entities has a Regular entity (?id1, ?*)
AND IS.Attributes has a Key (?id2, ?*)
AND SS.Attributes has a Key (?id2, ?*)
AND IS Regular entity (?id1, ?*) has Key (?id2, ?*) as

key-attribute
Satisfaction: SS.Entities has a Regular entity (?id1, ?*)

5. Relevance: IS.Entities has a Regular entity (?id1, ?*)
AND IS.Attributes has a Key (?id2, ?*)
AND SS.Entities has a Regular entity (?id1, ?*)
AND SS.Attributes has a Key (?id2, ?*)
AND IS Regular entity (?id1, ?*) has Key (?id2, ?*) as

key-attribute
Satisfaction: SS Regular entity (?id1, ?*) has Key (?id2, ?*)
as key-attribute

Figure 5.8: Sample Semantic Constraints Produced by CAS

all the key attributes with the respective regular entities. In order to achieve

this, constraints 3 and 4 check whether the student’s solution contains the

129

necessary constructs (the matching regular entity and key attribute). Con-

straint 5 ensures that the correct relationship (ie. key-attribute relationship)

holds between the two constructs.

Analysis and Discussion

The constraint base of KERMIT, which was developed entirely manually,

was used to evaluate the correctness and completeness of the generated set

of constraints. The effectiveness of KERMIT has been evaluated in a series

of empirical evaluations [Suraweera & Mitrovic 2004, Mitrovic, Suraweera,

Martin & Weerasinghe 2004, Weerasinghe & Mitrovic 2003]. All evaluations

revealed that its constraints were effective for learning ER modelling con-

cepts. The constraint base has also been enhanced over a period of four

years.

KERMIT contains 35 syntax and 138 semantic constraints. The graph-

ical representation of ER models composed by students is converted into a

textual representation to be evaluated by the constraints. The syntax con-

straints ensure the syntactic validity of an ER diagram by searching for par-

ticular patterns within the textual representation. The semantic constraints

on the other hand compare significant features of KERMIT’s ideal solution

against corresponding features of the solution composed by the student. The

semantic constraints of KERMIT included 13 constraints that are relevant

for enhanced ER modelling. As the ER modelling ontology developed in

CAS did not contain concepts related to enhanced ER modelling, only the

125 semantic constraints in KERMIT relevant to ER modelling were used for

comparison. All syntax constraints of KERMIT were used for comparison as

it did not contain any constraints specific to enhanced ER modelling.

The correctness and completeness of constraints generated by CAS were

evaluated manually comparing them against the constraints found in KER-

MIT. As the generated constraints and the constraints found in CAS were

composed in two different languages, manual comparison was essential. The

constraints in KERMIT are composed in the WETAS language using pat-

tern matching functions with conjunctions and disjunctions. The generated

constraints, on the other hand, were composed in a higher level language as

130

shown in Figure 5.7 and Figure 5.8.

The process of evaluating the generated constraints involved searching for

an equivalent constraint for each constraint found in KERMIT. The gener-

ated set of syntax constraints contained equivalent constraints for all syntax

constraints found in KERMIT. In other words, the generated syntax con-

straints were 100% complete compared to the constraints of KERMIT.

Further analysis of the generated syntax constraints revealed that some

generated constraints were more specific than the constraints found in KER-

MIT. In other words, the two sets were inconsistent with respect to the con-

straint granularity. In some cases, several constraints generated by CAS were

required to identify the set of problem states identified by a single constraint

in KERMIT. This accounted for the difference in the numbers of constraints

in the generated set (49) and KERMIT’s syntax constraints (35).

The generated semantic constraints managed to account for 90% of the

125 constraints found in KERMIT’s constraint-base. Simillar to syntax con-

straints, the counts in the two semantic constraint sets had disparities be-

cause the generated constraints were more specific. For example, KERMIT

contains a constraint that verfies that the student solution contains a match-

ing a key attribute attached to an entity. The domain model generated by

CAS contains two constraints to account for the same problem state. One

checks for the existence of the required key attribute and the other checks

whether the key attribute and the entity are connected.

The semantic constraints generator failed to produce 12 of the constraints

found in KERMIT’s constraint base. Some of these constraints ensured that

constructs were not misrepresented using different types of constructs. For

example, they ensured that entities in the ideal solution were not represented

as attributes or relationships in the student solution. This is a common mis-

conception among students. Currently, CAS is not capable of generating

such constraints. However, this problem state is covered by other constraints

that ensure that there can be no extra constructs of each type. These con-

straints would provide a more general feedback message that would treat the

misrepresented construct as an extra construct.

CAS also failed to generate the set of constraints that ensured that the

students can produce equivalent solutions according to the equivalence shown

131

in Figure 5.9. According to the equivalence, an attribute that belongs to a

binary relationship can be assigned to an entity that participates in the rela-

tionship, as long as it has a cardinality of 1. CAS is not be able to generate

these constraints as they deal with two equivalent relationship instances (on-

tological relationships). Currently, CAS is only able to identify equivalent

elements in two solutions.

STUDENT (E1)

HAS (I1)

NEXT-OF-KIN (W1) Name (A1)

1

N

STUDENT (E1)

Name (A1)

Next-of-kin (W1)

Figure 5.9: Equivalent ER Models: An Attribute Belonging to a Relationship
can also be Assigned to a Participating Regular Entity with Cardinality 1

CAS also produced some constraints that suggested modifications to ex-

isting constraints in KERMIT, improving KERMIT’s ability to handle alter-

native solutions. For example, although the constraints in KERMIT allowed

a weak entity to be modelled as a composite multi-valued attribute, the stu-

dent was required to have all the attributes of the weak entity with their

types identical to their corresponding attributes in the ideal solution. How-

ever CAS correctly identified that when a weak entity is represented as a

composite multi-valued attribute, the partial key of the weak entity has to

be modelled as a simple component of the composite attribute (illustrated in

Figure 4.29). Furthermore, the identifying relationship essential for the weak

entity becomes obsolete. These two examples illustrate how CAS improved

upon the original domain model of KERMIT.

5.2.2 Fraction Addition

Adding two fractions is an important part of the mathematics curriculum.

In order to calculate the sum of two fractions correctly, a series of steps have

132

to be followed sequentially. The process consists of four steps as outlined

in Figure 5.10. Initially, the lowest common denominator (LCD) of the two

fractions has to be found. Then the two fractions have to be converted to

have LCD as their denominator. The sum of the numerators of the converted

fractions become the numerator of the resulting fraction, with LCD as its

denominator. Finally, the resulting fraction has to be simplified, if possible,

to produce the final result.

1. Find the lowest common denominator (LCD)

2. Convert fractions to LCD as denominator

3. Add the resulting fractions

4. Simplify the final result

Figure 5.10: Problem Solving Procedure for Fraction Addition

Composing an Ontology of the Domain

The domain of fractions is simple. The ontology for the domain, as shown in

Figure 5.11, contains Number as the most generic concept and Whole number

and Fraction as its sub concepts. The Whole number concept is specialised

to LCD, whereas Fraction is specialised to Improper fraction and Reduced

fraction.

Figure 5.11: Ontology for the Domain of Adding Two Fractions

The Fraction concept participates in two relationships; ‘numerator’ with

133

Whole number and ‘denominator’ with LCD. The Reduced fraction concept

participates in an extra relationship with Whole number for the quotient.

Modelling the Structure of Solutions

Problems in the domain of adding fractions have to be solved in a series of

four steps. As each step has its own solution(s), their structure has to be

modelled seperately. The complete structure of solutions for adding fractions

is outlined in Figure 5.12. The solution for the first step of finding the LCD

requires an instance of a LCD concept. The solution for the second step, in

contrast, consists of two components with both requiring an instance of Im-

proper fraction. Steps three and four both consist of a single component each

and require instances of Improper fraction and Reduced fraction respectively.

Problem-solving step Solution component Concept
1. Find LCD LCD LCD
2. Convert fractions to LCD Fraction 1 Improper fraction

Fraction 2 Improper fraction
3. Sum of fractions Improper sum Improper fraction
4. Final reduced sum Final sum Reduced fraction

Figure 5.12: Solution Structure for Adding Two Fractions

Providing Problems and their Solutions

The problem and solution editor was used to add three problems and their

solutions. Problems were represented in the textual form of “1/2 + 3/4”.

Solutions were composed using the solution editor, creating instances of LCD,

Fraction and other concepts. As problems of adding two fractions have only

a single correct solution, no alternate solutions were provided.

The solution editor reduces the effort required to compose solutions by

reasoning about the ontology during the process of rendering an input form

for instantiating concepts. This was exemplified during the process of cre-

ating solutions for fraction addition problems. Let us consider the Improper

fraction concept. It does not contain any properties, but participates in two

relationships for numerator and denominator. Both Whole number and LCD

134

concepts, which are involved in these relationships possess a single property

each. As a consequence, the solution editor creates an interface with two

input boxes for the properties Whole number and LCD, as shown in Fig-

ure 5.13, easing the workload on the domain expert. If the solution editor

did not perform any reasoning, the domain expert would have to create three

instances; Whole number, LCD and Improper fraction.

Figure 5.13: Input Form for Creating an Instance of Fraction

Generating Syntax Constraints

CAS produced ten constraints for the domain of fraction addition from the

ontology in Figure 5.11 and the solution structure in Figure 5.12. The ma-

jority of constraints were generated to ensure that the student followed the

correct problem-solving procedure. For example, constraint 1, shown in Fig-

ure 5.14, verifies that the student has populated the LCD input box during

the first step of finding the LCD. Due to the simplistic nature of the domain,

there were very few other syntax constraints generated. Constraint 2 is an

example of a syntax constraint, which ensures the LCD is always a positive

number.

The constraint generator also produced constraints that were trivially

satisfied due to the restrictive nature of the interface shown in Figure 5.13.

For example, constraint 3 ensures that all instances of Improper fractions

participate with a single instance of LCD as its denominator. Although this

constraint is trivially satisfied as the interface does not allow specifying more

than a single value as a fraction’s denominator, the constraint is still valid.

We believe these constraints are necessary as the domain expert may design

a less restrictive interface. The constraint would be useful for an interface

135

that allows free form text.

1. Relevance: Current step = ‘Find LCD’
Satisfaction: SS ‘Lowest Common Denominator’ component
should not be empty

2. Relevance: SS ‘Lowest Common Denominator’ component is
not be empty
Satisfaction: SS ‘Lowest Common Denominator’ > 0

3. Relevance: SS has an Improper Fraction
Satisfaction: SS Improper Fraction has to participate with
exactly 1 LCD as its denominator

Figure 5.14: Example Syntax Constraints Generated for the Domain of
Adding Two Fractions

Generating Semantic Constraints

A total of ten semantic constraints were generated for fraction addition, from

only two example problems. Each problem in this domain has only a single

valid solution. The semantic constraints check that the different components

of the student’s solution match the ideal solution.

As the domain is procedural, constraints are only relevant for a par-

ticular set of problem-solving steps. For example constraint 1, outlined in

Figure 5.15, is only relevant if the student is attempting the first problem-

solving step (find LCD), the LCD component of their solution is not empty

(i.e., the student has specified the LCD) and the ideal solution contains an

LCD (i.e. it is necessary to find the LCD for the current problem). If the

constraint is relevant, then the student’s answer needs to be the same as the

one specified in the ideal solution. Constraint 2 is a similar constraint, which

ensures that the student has supplied the correct fraction as the solution

during the second step of converting fractions to LCD.

136

1. Relevance: Current step = ‘Find LCD’
AND SS ‘Lowest Common Denominator’ component is not

empty
AND IS.Lowest Common Denominator has a LCD(?var1)

Satisfaction: SS.Lowest Common Denominator has a
LCD(?var1)

2. Relevance: Current step = ‘Convert to LCD’
AND SS ‘Fraction 1 with LCD’ component is not empty
AND IS.Fraction 1 with LCD has a Improper

Fraction(?var1, ?var2)
Satisfaction: SS.Fraction 1 with LCD has a Improper
Fraction(?var1, ?var2)

Figure 5.15: Example Semantic Constraints Generated for the Domain of
Adding Two Fractions

Analysis and Discussion

Unlike for the domains of ER modelling and Normalisation, we did not have

a benchmark to evaluate the completeness of constraints generated for the

domain of adding fractions. However, we manually compiled a list of signif-

icant problem states for the task to evaluate the completeness of the gener-

ated constraint set. The list contained three syntactically significant problem

states that collectively ensured that the correct problem solving procedure

is followed. It also contained 13 semantically significant problem states that

ensured each significant component of the solution such as numerator and

denominator of each fraction is correct.

The three syntax constraints generated by CAS accounted for all the syn-

tactically significant problem states. The constraint generator also produced

a few extra constraints such as “a fraction should contain a numerator and

a denominator”, that were trivially satisfied due to the restrictive nature of

CAS’s form-based solution composition interface. The interface contained

two text boxes for each fraction ensuring that each fraction can only contain

two integers; numerator and denominator. The extra constraints, however,

are useful for a less restrictive interface.

137

The ten semantic constraints generated by CAS accounted for all but

one (92%) of the semantically significant problem states. CAS was not able

to generate a constraint that checked whether the student had entered a

higher common multiple instead of the least common multiple. This was

expected as CAS does not possess the ability to generate constraints that

require algebraic functionality.

CAS required only two problems and their ideal solutions for composing

sufficiently generalised semantic constraints for the domain of adding frac-

tions. This was due to the fact that problems in the domain model have

a single correct solution. Furthermore, unlike ER modelling, solutions for

problems required all of their components to be populated. Each input box

of the solution input form required an integer as input.

5.2.3 Normalisation

Database normalisation is the process of refining a relational database schema

in order to ensure that all tables are of high quality [Elmasri & Navathe 2003].

The process proceeds in a top-down fashion by evaluating each table against

a criteria for each normal form and decomposing tables as necessary. There

are four widely used normal forms: first normal form (1NF), second normal

form (2NF), third normal form (3NF) and Boyce-Codd normal form (BCNF).

Typical problems in the domain of data normalisation focus on finding

the normal form of a table given its functional dependencies. The table then

has to be decomposed to satisfy BCNF normal form (the highest level of

normalisation). A total of 11 steps, as outlined in Figure 5.16, have to be

followed sequentially in order to normalise a table into BCNF normal form.

The process of normalising a table is initiated by determining the candi-

date keys of the table. In order to verify that one or more attributes is the

candidate key of a table, their closure has to be determined. Once the candi-

date keys are found, the prime attributes of the table have to be pointed out.

Then the functional dependencies (FD) have to be replaced by an equiva-

lent set of FDs with simplified right-hand sides. In order to determine the

normal form of the table, any partial FDs and other FDs that violate third

normal form and BCNF have to be determined. Finally, the table has to be

138

1. Determine candidate keys of the table

2. Determine closure of an attribute set

3. Specify prime attributes

4. Simplify to include a single attribute on the right-hand sides of
functional dependencies

5. Specify normal form of the table

6. Identify partial functional dependencies

7. Specify FDs that violate third normal form (3NF)

8. Specify FDs that violate Boyce Codd normal form (BCNF)

9. Reduce left hand sides of F.D.s

10. Find minimal cover

11. Decompose table into BCNF normal form

Figure 5.16: Problem Solving Procedure for Normalising Database Tables

decomposed so as to satisfy BCNF after reducing the left hand sides of the

FDs, and finding the minimal cover.

Composing an Ontology of the Domain

The ontology for the domain of Normalisation (see Figure 5.17) contains four

top level concepts; Attribute type, Relation, Normal form, Functional depen-

dency. Attribute type is specialised to Attribute and Candidate key. Attribute

is further specialised as Prime attribute. The Functional dependency concept

is specialised according to the five types of functional dependencies; Partial

FD, 3NF-violate FD, BCNF-violate FD, Right reduced FD, Left reduced FD.

A functional dependency is a dependency between two sets of attributes.

Consequently, the Functional dependency concept participates in two rela-

139

Figure 5.17: Ontology for the Domain of Normalisation

tionships with Attribute. Each kind of functional dependencies has different

restrictions on the cardinality of the relationships. For example, a Right-

reduced FD can only have a single Attribute in its right-hand side.

Modelling the Structure of Solutions

Similar to the domain of adding fractions, the structure of solutions for each

step has to be modelled. Solutions for problems in Normalisation require a

collection of elements of a particular type for each step. The structure of

solutions, decomposed step-wise is given in Figure 5.18.

The student is required to provide a set of instances of attributes as the

solution for the first step of determining the closure. The following step

requires the student to outline candidate keys of the given table. Then in-

stances of Prime attributes have to specified. Steps four to seven require

instances of the different types of functional dependencies. Step eight re-

quires an instance of the Normal form concept. Steps nine and ten both

require instances of Left reduced FD as their solutions. Finally, an instance

of Relation concept is required for decomposing the table to BCNF.

Providing Problems and their Solutions

Three problems and their solutions were added using the problem editor of

CAS. They were chosen from NORMIT to ensure that CAS was exposed to at

least one example of concepts that are expected to be taught. The solutions

were also obtained by NORMIT, using the available problem solver. As

140

Problem-solving step Solution component Concept
1. Find candidate keys Candidate keys Candidate Key
2. Determine closure Attributes Attribute
3. Specify prime attributes Prime attributes Prime attribute
4. Simplify right hand of FDs Functional dependencies Right reduced FD
5. Specify Normal form of table Normal form Normal form
6. Outline partial FDs Partial FDs Partial FD
7. Specify FDs that violate 3NF NF Violated FDs 3NF-Violate FD
8. Specify FDs that violate BCNF BCNF violated FDs BCNF-Violate FD
9. Reduce left hand side of FDs Left reduced FDs Left reduced FD
10. Find minimal cover Min cover Left reduced FD
11. Decompose table to BCNF Decomposition Relation

Figure 5.18: Solution Structure for Normalising Database Tables

the chosen problems only had a single correct solution, each problem was

accompanied with its correct solution.

Although some problems may have more that one correct path for solving

a problem correctly, the problem solver of NORMIT would produce a single

correct solution relevant to the current step of the student. The solution

produced by the problem solver would depend on the problem solving path

taken by the student. As the solution to each step composed by a student

is always compared to a single correct solution, the constraints generated

by analysing a single solution would still be applicable for problems with

multiple solutions.

Generating Syntax Constraints

The syntax constraints generator produced a total of 26 constraints from the

data normalisation ontology. Similar to the the domain of adding fractions,

the constraint generator produced a set of syntax constraints to ensure that

the student followed the correct problem-solving path. Constraint 1 of Fig-

ure 5.19 is an example of a constraint that forces the student to be on the

correct problem-solving path.

The generated set also contained constraints that ensured the functional

dependencies produced by students adhered to the correct syntax. For ex-

ample, constraint 2 ensures that every right-reduced functional dependency

141

produced by students contains only a single attribute in its right-hand side.

1. Relevance: Current step = ‘candkeys’
Satisfaction: SS ‘Candidate key’ component should not be
empty

2. Relevance: SS has a Right reduced FD, FD1
Satisfaction: FD1 can only have one Attribute in its right
hand side

Figure 5.19: Example Syntax Constraints Generated for the Domain of Data
Normalisation

Generating Semantic Constraints

The semantic constraints generator produced a total of 45 constraints by

analysing three problems and their solutions chosen from NORMIT’s list of

problems. As the domain is procedural, the generated constraints were only

relevant for a particular set of steps. For example, Constraint 1 shown in

Figure 5.20 is only relevant when the student is working on the second step

of identifying candidate keys of the table. It ensures that each candidate

key specified by the student has a corresponding equal candidate key in the

ideal solution. Similarly, constraint 2 ensures that the normal form specified

by the student is equal to the normal form denoted in the system’s ideal

solution.

Analysis and Discussion

The completeness and correctness of constraints generated for the domain

of data normalisation was evaluated by manually comparing the generated

constraints against the constraints found in NORMIT. The constraint base

of NORMIT was developed manually by Antonija Mitrovic and has been

evaluated with students in a series of empirical evaluations [Mitrovic 2005a,

Mitrovic 2005b, Mitrovic 2003b].

The generated constraints covered all but two of the 21 syntax constraints

that existed in NORMIT. The generated constraints accounted for 90% of

142

1. Relevance: Current step = ‘candkeys’
AND SS ’Candidate key’ component is not empty
AND IS.Candidate keys has a Candidate Key (?var1)

Satisfaction: SS.Candidate key has a Candidate Key (?var1)

2. Relevance: Current step = ‘nf’
AND SS ’Normal form’ component is not empty
AND IS.Normal form has a Normal form(?var1, ?var2,

?var3, ?var4)
Satisfaction: SS.Normal form has a Normal form(?var1,
?var2, ?var3, ?var4)

Figure 5.20: Example Semantic Constraints Generated for the Domain of
Data Normalisation

the syntax constraints found in NORMIT. Similar to the experience with

the constraints generated for the domain of ER modelling, the constraints

generated for normalisation were more specific than the constraints that were

found in NORMIT.

Both constraints that were not generated by CAS contained tests on more

than one component of the solution. For example, the constraint that ensures

the correctness of the specified partial FDs contains a check to ensure that

the student has specified the table not to be in 2NF. It also contains a check

that verifies the specified partial FDs have a candidate key in their left-hand

and non-prime attributes in their right-hand. This constraint is a result of

combining problem solving knowledge within constraints. A problem solver

for normalisation, which is independent of constraints, would produce the

correct solution for each step based on the problem solving path taken by the

student. Consequently, this constraint can be replaced by a simple constraint

that compares each student specified partial FDs against the ideal solution’s

partial FDs.

The 47 generated semantic constraints accounted for all the 45 semantic

constraints found in NORMIT. The result of 100% accuracy was excellent

considering that only three sample problems and their solutions were pro-

vided.

143

Although CAS was provided with problems with single correct solutions,

the generated constraints are capable of identifying correct solutions arrived

at using alternative problem solving paths. This is made possible by NOR-

MIT’s problem solver, which produce a single correct solution to the student’s

current step based on the problem solving path taken. As the solution to

each step composed by a student is always compared to a single correct so-

lution, the generated constraints, with the solution generator, are capable of

identifying all available correct solutions to a problem.

5.2.4 Discussion

The author has to provide example problems and solutions according to the

solution structure. Therefore, the final structure of solutions would have to

be very accurate or the domain expert would struggle to add the complete

solution. As the solution structure portrays the most accurate structure

of the task, the syntax constraint generation algorithm generates constraints

only on the concepts that are relevant for the solution structure. This ensures

that the generated constraints are useful and are unlikely to be trivially

satisfied. However, the syntax constraints generation algorithm is limited by

its dependence on the domain ontology and the solution structure modelled

by the expert. It has no ability to handle incomplete ontologies or incomplete

solution structures.

The semantic constraints generator is also highly dependent on the do-

main ontology. It requires all relationships between instances to be explicitly

stated in the domain ontology. If a relationship is not modelled, then the

relevant constraints would not be generated.

The effort required to produce semantic constraints involves providing

the system with sample problems and their solutions. WETAS also requires

problems and their solutions to be supplied even if constraints are composed

manually. CAS can be enhanced to automatically translate the problems and

solutions added using the problem editor to the format required by WETAS.

The only extra effort required would be in composing alternative solutions.

However, as alternative solutions are composed by modifying a copy of the

primary solution, the extra effort is minimal.

144

Although CAS produced constraint sets that were over 90% complete,

it failed to produce a few constraints for ER modelling (semantic), fraction

addition (semantic) and data normalisation (syntax). In the case of ER mod-

elling, the constraint generator failed to produce constraints that dealt with

common misconceptions such as misrepresented constructs. It also failed

to generate constraints that are based on matching instances of ontological

relationships. For the domain of adding fractions, the semantic constraints

generator failed to produce a constraint, which required algebraic function-

ality. The syntax constraints generator failed to produce a few constraints

for normalisation that had problem-solving logic embedded in them. How-

ever, since constraints operate individually and do not depend on each other,

the generated constraints would be sufficient for the domain model of a beta

version of a tutoring system. Testing the tutoring system may reveal the

missing constraints.

Some constraints generated by CAS for the evaluated domains were too

specific. The correct granularity of constraints is required to provide helpful

feedback messages without enabling students to guess solutions. Constraints

that are too specific may encourage shallow learning whereas constraints

that are too general may frustrate the students, due to their vague feedback

messages. Since experts may also have misconceptions on the granularity of

significant problem states, the correct granularity can only be determined by

an empirical evaluation involving students [Martin & Mitrovic 2006, Martin

& Mitrovic 2005]. Once an appropriate level of granularity is determined,

the constraint algorithms have to be tweaked to produce constraints with the

desirable level of granularity.

The process of producing a domain model using CAS is outlined as con-

sisting of six distinct steps. However, the experience in producing domain

models for the evaluated domains confirmed that it is an iterative process,

where certain steps may have to be revisited to modify the previously com-

posed domain components. For example, the domain expert may identify

inadequacies in the domain ontology while modelling the solution structure

(step two) or composing solutions (step four). In such situations, the domain

ontology has to be modified by revisiting step one of the authoring process.

CAS has been implemented to accommodate such behaviour, providing the

145

author with freedom to modify previously composed domain model compo-

nents.

5.3 Effectiveness of CAS with Novice ITS Authors (Study 3)

During the second evaluation study the role of the domain expert was played

by the developer of CAS. As the developer of CAS has an in-depth knowledge

of the authoring system implementation including the constraint generation

algorithms, the results may have been biased. In real world scenarios, we

envisage domain experts to have little or no prior experience in producing

ITSs, let alone being knowledgeable of CAS’s implementation. To simulate

this scenario, we conducted an evaluation of CAS with novice ITS authors.

We envisaged that this kind of evaluation would provide insights as to how

potential users of the system would cope with it.

We carried out an evaluation study involving students enrolled in a gradu-

ate course of ITSs, where they were allocated the task of developing a domain

model for fraction addition using CAS. The goal of the evaluation study was

to validate four hypotheses;

1. CAS is effective even when the required domain-dependant components

are composed by a novice ITS author

CAS has been evaluated in a variety of domains, including database

modelling, data normalisation and fraction addition in study 2. The

results showed that CAS is effective in producing domain models for

the evaluated domains (see Section 5.2 for details). However, the role of

the domain author was played by the developer of CAS, who produced

all the required domain-dependant components including the ontol-

ogy, problems and solutions etc. Evaluation study 3 was conducted

to verify that CAS can be equally effective even when the domain-

dependant components required for the authoring process are composed

by a novice to the authoring system as well as a novice to composing

ITSs.

2. The constraint generation algorithm depends on the ontology and an

incomplete ontology would result in an incomplete constraint set

146

Modelling an ontology of a domain is a design task, which depends

on the creator’s perceptions of the domain. The ontologies developed

by two users, especially if the domain is complicated, are very likely

to be different. Similarly, ontologies developed using CAS’s ontology

workspace, by the participants of the study would also be unique to

each participant. The evaluation study would provide insights into the

dependence of CAS’s constraint generation algorithm on the ontologies

composed by typical CAS users.

The study would also enable the evaluation of the system’s ability to

handle incomplete and partially correct domain ontologies. All previ-

ous evaluations were conducted with correct and complete ontologies

produced by the developer of CAS. As participants are novices at mod-

elling domain ontologies, incomplete ontologies can be expected. The

experiment paves the way for observing the consequences of providing

an incomplete ontology during the authoring process.

3. The order of problems provided during the authoring process does not

matter for constraint generation

The algorithm learns constraints by analysing problems iteratively com-

paring one solution to another for the same problem. During the sec-

ond study where constraint generation algorithms were evaluated in a

number of domains, the author introduced simple problems first and

gradually introduced problems that dealt with more complicated con-

cepts. Although the constraint generation is unlikely to be affected by

the order of problems for most simple domains, it may be important in

more complicated domains. This experiment provides us with an op-

portunity to obtain experimental evidence to support our hypothesis.

4. The process of authoring constraints using CAS requires less effort than

composing constraints manually

At the completion of the experiment, the amount of time required for

composing constraints for each domain model produced by the partic-

ipants would be calculated by analysing their logs. This would give an

147

approximate indication of the time each participant spent interacting

with CAS. The average time spent on composing a constraint can be

compared to the average time per constraint (of 1.1 hours) reported by

Mitrovic [Mitrovic & Ohlsson 1999].

The average time required for composing a constraint can also be com-

pared to the average time taken to manually compose a constraint

during study 1. Although constraints were composed for a different

domain during that study, comparing the times would give a rough

approximation of the difference in effort.

5.3.1 Procedure

The evaluation was carried out with students enrolled for the 2006 graduate

course of Intelligent Tutoring Systems at the University of Canterbury. The

13 students enrolled for the course were assigned the task of building an

ITS for the domain of adding two fractions. They were asked to compose

the necessary domain model components to run a fractions addition tutor in

WETAS using the complete version of CAS.

The fraction tutors that were to be produced by the participants were

required to present problems where the sum of two fractions had to be cal-

culated. The students using the fraction tutor were supposed to calculate

the sum of the two fractions by initially calculating the lowest common de-

nominator (LCD) of the two fractions. The two given fractions have to be

converted to have LCD as their denominators (if needed). Then the sum of

the converted fractions have to be calculated and finally the sum is simplified

(if possible). The participants were given an outline (shown in Figure 5.21)

of the interface for their fraction-tutors.

The students were required to develop the domain models for their tutor-

ing systems using the full version of CAS. The full version of CAS facilitates

the six step authoring process described in Section 4.1. It contains tools

such as an ontology workspace and problem solution interface for composing

domain dependent components required by the constraint generators. It also

contains two textual editors for displaying and modifying constraints gener-

ated by CAS. The domain model can be tested by loading it in to WETAS,

148

Lowest Common Denominator
Fraction 1
Fraction 2
Sum of fractions
Reduced sum of fractions

Figure 5.21: Fraction Addition Tutor Interface

which instantiates a web-based ITS.

The constraint generation process has to be initiated by the user, which

results in the production of syntax and semantic constraints based on the

domain-dependant component produced by the user. The constraints are

added to the syntax and semantic text editors. However, as the constraints

generated by CAS are in a high-level language, they are not directly runnable

in WETAS. Participants of the study were required to produce a constraint

base runnable in WETAS for fraction addition. They were free to use the

generated constraints for guidance or assistance (i.e. to translate them into

the WETAS constraint language).

The participants had attended 13 lectures on ITSs, including five on con-

straint based modelling. They were briefly introduced to CAS and WE-

TAS. We provided them with a task description document that outlined the

process of authoring a domain model using CAS and described the WETAS

constraint language (See Appendix B for task description document). We

recommended that the participants follow a six-step authoring process:

1. Compose an ontology of the domain,

2. Model the problem solving procedure for the domain,

3. Model the structure of solutions for problems of the domain,

4. Add problems and their solutions,

5. Automatically generate syntax and semantic constraints,

149

6. Translate the automatically generated syntax and semantic constraints

to WETAS language or define new constraints.

In addition to the task description, participants were also given access to

all the domain model components of LBITS [Martin & Mitrovic 2002a], a

tutoring system for English language skills. The were also provided with an

ontology for database modelling (Figure 5.5), as an example.

The participants were allocated a period of six weeks to complete the

task. Although the students were allowed to work on the task for a total of

six weeks, most students only started working on it at the end of week 3.

5.3.2 Interaction Times

The CAS environment logged all the significant actions performed by the

participants during the process of composing domain models. The logs were

analysed to produce summaries of participant interactions with CAS. Al-

though all thirteen students in the course were novices in composing con-

straint bases, the task was satisfactorily completed by almost all the partici-

pants. One student failed to complete the final step of the authoring process

where the system-generated constraints have to be translated to the WETAS

language. His results are not included in the analysis.

All but one participant submitted their work before the dead-line. One

participant opted to submit their work a week after the dead-line, which

incurred a penalty of 15% from their final mark. As this study focuses on

the final domain model produced by the participants, even the participant

who completed the task late was included in the analysis without imposing

any penalties.

The interface of CAS consists of two main tabs: the “ontology view”

and the “domain model editor”. The “ontology view” contains the ontology

workspace and other tools necessary for composing the domain-dependant

components necessary for each step in the authoring process. It contains

a domain-structure composer for specifying domain characteristics, includ-

ing the problem solving procedure, and a solution-structure composer for

modelling the structure of solutions. It also contains a problem solution in-

terface for adding problems and their solutions that are used for constraint

150

Ontology Domain Solution Adding Total
workspace structure structure problems

S1 2.57 0.08 0.10 0.82 3.57
S2 1.22 0.10 0.12 0.32 1.75
S3 4.98 0.10 0.23 1.68 7.00
S4 3.50 0.17 0.72 1.30 5.68
S5 7.48 0.08 0.78 4.70 13.05
S6 6.34 1.29 1.15 1.02 9.80
S7 2.67 0.43 0.38 0.50 3.98
S8 3.35 0.33 0.17 0.32 4.17
S9 2.28 0.42 0.88 3.47 7.05
S10 2.33 0.27 0.27 1.23 4.10
S11 1.62 0.13 0.18 0.38 2.32
S12 10.80 0.28 1.50 3.20 15.78
Mean 4.10 0.31 0.54 1.58 6.52
S.D. 2.83 0.33 0.46 1.44 4.34

Table 5.4: Interaction Times (hours) with CAS’s Ontology View
s

generation.

A summary of the total amount of time spent interacting with each tool

within the “ontology view” of CAS is given in Table 5.4. The participants

spent the majority of the time interacting with ontology workspace. On av-

erage, they spent a total of 4.1 hours within the ontology workspace, ranging

from 1.22 hours to 10.80 hours. The participant who submitted late (S12),

accounted for the maximum interaction time. The large variation in the in-

teraction times can be attributed to the different design methodologies used

by each participant. Some may prefer to compose an ontology on paper and

produce the final version using the ontology workspace, while others may use

the ontology workspace to iteratively improve the quality of an ontology.

The participants spent 18 minutes (0.31 hours) on average interacting

with the domain-structure composer tool. One participant (S6) spent almost

four times the average time (1.29 hours). The time of 1.29 hours seem too

high for a task that requires identifying the problem solving steps for adding

two fractions. Further inspection of the logs revealed that the participant had

151

been idle for long periods after activating the domain structure composing

tool. The idle periods can be due to either the participant thinking about

their actions or working on something else. However, the logs do not reveal

the exact cause of the idle periods.

The average interaction time with the domain-structure composition tool,

disregarding S6’s extremely high interaction time of 1.29, is 13 minutes (0.22

hours). This time can also be considered too high, since the task only re-

quired making the decision of whether fraction addition problems needed to

be solved in a strict procedural manner and if so outlining the set of steps.

We believe that the interface may have confused the participants. It offers a

choice between “non-procedural” and “procedural”. The participants, who

were novice ITS authors, may not have been comfortable with the terminol-

ogy. A more intuitive question such as “When solving a problem, is there

a particular order that needs to be followed?” may be easier for novices to

comprehend.

The domain authors are expected to model the structure of solutions for

the domain’s problems during the second phase of the authoring process.

The participants spent approximately half an hour on average (0.54 hours)

composing the solution structure. The interaction times varied from a max-

imum of one and a half hours to six minutes (0.1 hours). The majority of

the participants (7 out of 12) found the task relatively straight-forward and

required under half an hour in total. As the solution structure depends on

the concepts of the ontology, participants who had incomplete ontologies may

have struggled with the task.

After completing the solution structure for the domain, problems and

their solutions can be added using CAS’s problem solution interface within

the “ontology view”. It contains a form-based interface, dependant on the

solution structure, for composing solutions. The added problems and solu-

tions are stored within CAS as objects. They are automatically converted

to the Lisp format required by WETAS and added to the problems editor.

The participants were also free to add problems and their solutions directly

through the problem editor.

Most participants added at least one problem through CAS’s “ontology

view”. Analysis of logs revealed that some chose to add all problems through

152

this interface, while others only added the initial problems using the interface

and later added problems directly in the Lisp format using the text editor.

This behaviour was reflected in the times spent on adding problems through

the “ontology view”. The interaction times varied from 19 minutes (0.32

hours) to over four and a half hours with a mean interaction time of one

and a half hours. We believe that the problem solution interface is useful for

novices at the start. As they gained experience with the Lisp representation,

they found the textual editor to be more efficient.

The participants spent a total of six an half hours on average interacting

with the ontology workspace and the suite of tools offered by CAS. The

majority of the time was spent on interacting with the ontology workspace.

There was a very high variance in the total interaction time, which can be

attributed to each individual’s ability and the high variance in interacting

with the ontology workspace.

The participants used the textual editors that were available under the

“domain model editor” tab to modify/add domain model components re-

quired for WETAS, including problems and their solutions, syntax and se-

mantic constraints and macros. The total times spent interacting with each

of the editors are given in Table 5.5. These total times are only an approxima-

tion of the time that the participants actually spent working on the domain

model, as the study was not completely controlled. Some participants had

left the system logged on, while they were away from their computer. While

analysing the logs, we came across a few instances where some had left the

system logged on during the course of a whole weekend. The times given in

Table 5.5 do not include inactive periods longer than an hour.

The participants used the problem editor for a total of approximately

three hours on average. The interaction times vary from half an hour to

over ten hours. Typically, participants who chose to add problems and their

solutions through the “ontology view”, spent less time with the problem

editor, while others spent more time with the editor. However, there was

no significant inverse correlation between the times spent adding problems

through the “ontology view” and times spent interacting with the problem

editor.

CAS generates syntax and semantic constraints in a high-level language

153

Problems Syntax Semantic Taxonomy Total
S1 0.57 2.80 8.10 0.33 11.80
S2 1.32 19.82 5.72 0.68 27.53
S3 1.07 8.82 14.33 3.78 28.00
S4 0.40 6.57 13.85 0.82 21.63
S5 2.47 24.13 6.35 2.03 34.98
S6 4.92 19.00 7.80 3.08 34.80
S7 4.13 1.77 7.03 1.60 14.53
S8 3.10 8.67 4.48 0.23 16.48
S9 1.08 12.08 9.07 0.05 22.28
S10 3.40 10.27 3.20 0.08 16.95
S11 4.15 14.32 5.03 0.28 23.78
S12 10.42 15.60 17.70 0.50 44.22
Mean 3.08 11.99 8.56 1.12 24.75
S.D. 2.77 6.87 4.46 1.24 9.63

Table 5.5: Interaction Times with CAS’s Text Editors

and adds these constraints to the respective constraint editors. Although

the automatically generated constraints were not in the correct format for

WETAS, their purpose was to assist the participants in composing a domain

model runnable in WETAS. The participants were free to use the generated

constraints or ignore them.

The participants spent a total of 12 hours on average composing syntax

constraints in the syntax editor. The times ranged from 1.77 hours to 24.13

hours. The participants spent less time (on average) composing constraints

within the semantic editor (eight and a half hours). The times ranged from

3.2 hours to a maximum of 17.7 hours. The variations can be attributed

to a variety of factors. One of the common factors is the students’ ability;

some are better and faster in programming constraints than others. In some

cases, the participants’ familiarity with Lisp would assist them in composing

constraints. Another factor could be the limitation of debugging facilities

available for WETAS. It provides very basic syntax checking and does not

contain a feature to investigate the variable bindings after the evaluation of

a constraint. So, participants who encountered bugs in their constraint bases

spent a considerable amount of time debugging the constraints.

154

The WETAS constraint language allows macros to be defined to perform

common functions. These macros can be defined in the taxonomy editor.

Macros are not essential for the domain of adding fractions due to its simple

nature. Only a few participants opted to use macros, and this is reflected in

the total interaction times. While the mean interaction time in the taxonomy

editor is just over one hour, half the participants spent less than half an hour

interacting with it.

The participants spent a total of 24.75 hours on average interacting with

the textual editors. The total interaction times varied from a minimum of

11.8 hours to 44.22 hours. The maximum interaction with the text editors

was reported by the participant who completed the task a week later than

others. Due to the lack of debugging facilities in WETAS, the interaction

times with the editors depend a lot on whether the constraints composed by

the participants contained bugs or not.

5.3.3 Analysis of Produced Constraint Sets

The constraint bases produced by participants were analysed and evaluated

for completeness. In order to evaluate the completeness of constraint bases,

we manually compiled a list of pedagogically significant problem states for

the domain of adding two fractions. The list contained eight syntactically

significant problem states for the domain. They ensure that each component

of a solution, such as the LCD and converted fractions are in the correct

format and the final sum is arrived at by following the correct problem solving

procedure. The list also contained thirteen semantically significant problem

states, to ensure that each significant component of a solution, such as a

numerator and denominator of each fraction is correct.

The number of problem states covered by each participant’s constraint

base was calculated through manual investigation and is given in Table 5.6. It

lists the total number of constraints (syntax and semantic) composed by the

participants under the “Constraints” column. The total number of problem

states that each constraint base covers is listed under the “Problem states”

column. The completeness of the constraint-base, calculated as the percent-

age of problem states accounted for by each constraint-base, is given under

155

the “Completeness” column.

Constraints Problem states Completeness
Syntax Semantic Syntax Semantic Syntax Semantic

(out of 8) (out of 13)
S1 5 12 5 7 63% 54%
S2 5 13 5 12 63% 92%
S3 4 12 4 12 50% 92%
S4 16 16 5 12 63% 92%
S5 14 18 8 13 100% 100%
S6 15 11 5 12 63% 92%
S7 2 5 3 3 38% 23%
S8 8 13 7 4 88% 31%
S9 5 8 4 4 50% 31%
S10 7 11 5 12 63% 92%
S11 4 18 5 12 63% 92%
S12 9 16 6 1 75% 8%
Mean 7.83 12.75 5.17 8.67 64.58% 66.67%
S.D. 4.73 3.89 1.34 4.50 16.71% 34.61%

Table 5.6: Total Numbers of Constraints Composed by Participants

The participants produced approximately eight syntax constraints and

thirteen semantic constraints on average. The total number of syntax con-

straints composed by students ranged from a minimum of two constraints to

a maximum of 16 constraints. In the case of semantic constraints, the range

of total constraints was between five and 18. The participants had accounted

for five out of the eight significant syntactic problem states on average, which

amounted for 64%. The participants also accounted for 66% of the significant

semantic problem states on average (8.6 out of 13). From the total group of

participants, only one participant (S5) had accounted for all the significant

problem states for the domain. The majority of the remaining participants

accounted for over half of the problem states. Almost every participant had

accounted for over 30% of the significant semantic problem states. However,

one participants (S12), had struggled with composing semantic constraints.

The participants were informed about the authoring process using CAS

via the task description document. It contained a description of the six step

156

process along with examples. At the end of the authoring process, CAS

generates both syntax and semantic constraints, that are available via the

respective constraint editors. However, the constraints generated by CAS are

not in the final Lisp-based form, and are not runnable. The task of composing

constraints in the final Lisp-based form was assigned to the participants.

They were free to use the generated constraints as suggestions or to ignore

them.

In order to evaluate the effectiveness of CAS and its sensitivity towards

the quality of the domain dependant components, we used the domain depen-

dant components composed by each participant to automatically generate a

set of constraints. A summary of the results are presented in Table 5.7. The

first two columns contains total numbers of syntax and semantic constraints

generated by CAS. The generator produced an average of nine syntax con-

straints and 15 semantic constraints. The constraint generator did not pro-

duce constraints due to a bug in the system for two participants: S6 (syntax

constraints) and S3 (semantic constraints). The semantic constraints gener-

ator relies on problems and their solutions added through CAS’s problem-

editor to produce constraints. As participant S8 had not added any solutions

using CAS’s problem solution interface, the semantic constraints generator

failed to generate any semantic constraints for the participant.

The syntactically significant problem states for the domain of adding two

fractions in WETAS includes five states for verifying the syntax of the in-

puts, such as whether the LCD is an integer and whether entered fractions

are syntactically valid. They need to be verified due to the generic nature of

the interface that can be produced in WETAS (see Figure 5.21). As students

are not restricted in what they can add in the input boxes, constraints are

needed to ensure that students have specified syntactically correct terms. For

example, constraints are required to verify that fractions are of the format

“numerator / denominator”. However, these constraints are redundant for

a more restrictive solution composition interface that would be produced by

CAS from a complete ontology (see Figure 5.22). It contains two text boxes

for inputting a fraction, ensuring that each fraction has the two required

components. Furthermore, as text boxes only accept the specified type (in-

tegers in this case), constraints such as the one to verify that the LCD is an

157

integer is also redundant.

Lowest Common Denominator
Fraction 1
Fraction 2
Sum of fractions
Reduced sum of fractions

Figure 5.22: Solution Addition Interface Generated by CAS from a Complete
Ontology

We calculated the total number of significant problem states covered by

the generated constraints (given in columns four and five of Table 5.7) to

evaluate the completeness of each generated constraint-set. Due to the sim-

ple nature of the domain, only three syntactical constraints are required to

verify that a student follows the correct problem solving path for the type

of problem solving interface shown in Figure 5.22. CAS generated all three

syntax constraints for all but one of the participants. As shown in the “Com-

pleteness” column (Table 5.7), the CAS-generated constraints were complete

in almost all cases. There was only one situation where only two of the

required set of constraints were generated (S12). This was a result of an

incorrectly specified solution structure.

The syntax constraints generator also produced extra constraints that are

trivially satisfied with a restricted interface as shown in Figure 5.22. They

verify that the inputs are of the correct syntax. For example, two constraints

were generated to ensure that each fraction composed in the student solution

contains a numerator and a denominator. Although these constraints are

trivially satisfied, these constraints are necessary for interfaces with more

freedom such as the interface depicted in Figure 5.21.

For the task of adding two fractions, we identified 13 semantically signif-

icant problem states. CAS only has the ability to generate constraints that

accounted for 12 out of the 13 problem states, as it is unable to generate

constraints that require algebraic functionality. Consequently, CAS cannot

generate a constraint that verifies that a student has entered a common mul-

tiple of the two denominators larger than the lowest common multiple. So

158

Numbers Problem states Completeness
Syntax Semantic Syntax Semantic Syntax Semantic

S1 7 15 3 12 100% 92%
S2 8 12 3 12 100% 92%
S3 18 0* 3 0 100%
S4 6 13 3 0 100% 0%
S5 9 8 3 12 100% 92%
S6 0* 23 0 1 8%
S7 13 26 3 1 100% 8%
S8 6 0* 3 0 100%
S9 11 23 3 1 100% 8%
S10 9 12 3 12 100% 92%
S11 7 12 3 12 100% 92%
S12 17 42 2 1 67% 8%
Mean 9.25 15.50 2.67 5.33 96.97% 49.00%
S.D. 4.97 11.70 0.89 5.90 10.05% 45.46%

(* - no constraints generated due to bugs in CAS)

Table 5.7: Number of Constraints Generated by CAS

the maximum degree of completeness that can be expected is 92%.

CAS generated semantic constraints that covered a maximum possible 12

problem states from domain-dependant components supplied by five partic-

ipants. The semantic constraints generated for the remaining participants

covered either one or no problem states. Further analysis revealed that there

were two main reasons for CAS not generating useful constraints. One of the

reasons was that two of the participants (S4 and S9) added empty duplicate

solutions for problems. Currently, the constraint generation algorithm does

not check for empty duplicate solutions. So it would assume that even an

empty solution can be accepted as a correct solution for the problem. The

generated constraints were incorrect as they allowed for empty solutions as

well. This situation can be avoided easily by restricting the solution interface

from saving empty solutions.

Another common mistake that the participant had made is modelling an

incomplete ontology. Four participants (S4, S6, S7 and S12) modelled the

“fraction” concept with only a single property of type String. Modelling the

159

fraction concept with a single property would result in a set of constraints

that compare each component of the student solution against the respective

ideal solution component as a whole. These constraints are not of the correct

level of granularity and can only perform basic checks to ensure that entered

solution components are correct or not. Consequently, the resulting feedback

is very limited in pedagogical significance. For example, the constraints

would have the ability to denote that the student has made an error in

converting the first fraction to LCD, however, they would not be able to

pinpoint whether the student had made a mistake in the numerator or the

denominator. We believe that the decision to model the fraction concept

with a single property may have been influenced by the student interface

and solution representation of WETAS. Since WETAS only allows a single

input for each solution component, the participants may have attempted to

produce an ontology and solution structure in CAS that mimics the student

interface of WETAS.

The constraint generator failed to produce any semantic constraints for

two participants, S3 and S8. It failed to generate constraints for S3 due to

a bug in the system. The other participant, S8, did not add any solutions

through CAS’s solution interface. The semantic constraint generator only

has access to problems and solutions added via the solution interface. As

problems and solutions are essential for semantic constraint generation, it

would fail to produce any constraints without sample problems and solutions.

We hoped that the participants would use the constraints generated by

CAS as a starting point and translate them into the WETAS language. How-

ever, as the generated constraints were appended to the free form constraint

editor, we could not obtain an accurate measure of whether the high-level

constraints were used to produce constraints runnable in WETAS. Assum-

ing all participants read and understood the constraints suggested by CAS,

the completeness of the manually composed constraint set can be compared

to the completeness of the generated constraint set. Four out of the five

participants, whose generated sets of constraints were 92% complete, also

had a manually composed constraint sets that were over 92% complete. The

fifth participant’s manually composed constraint set was only 53% complete.

This observation suggests that the participants were also able to produce a

160

highly accurate constraint set runnable in WETAS in situations where CAS

generated highly accurate constraint sets. However, the completeness of the

generated constraint set is not consistent with the completeness of the man-

ually generated constraint set. Although the generator did not produce any

constraints for participants S3 due to a bug, he managed to manually com-

pose a near complete constraint set. Furthermore, generated constraints were

too general for S4 and incorrect for S6, but they managed to produce near

complete constraint sets. Conversly, both the generated sets of constraints

and the manually composed sets of constraints were equally poor for partici-

pants S7, S8, S9 and S12. The observation is also confirmed by the fact that

there is no significant correlation between the accuracies of the generated set

and manually composed set.

There can be numerous reasons for the observation of no direct correlation

between the completeness of the generated set and the manually composed

set. One explanation is that the participants for whom very poor constraint

sets were generated had disregarded the generated constraint sets and com-

posed constraints manually using their individual abilities. One of the par-

ticipants encountered a bug and no constraints were generated. Other par-

ticipants may have had misconceptions about the authoring process and/or

misconceptions about using the tool. The flexibility of the tool allowed these

participants to manually add constraints that were not generated by the

system.

Although we assumed that the generated high-level constraints assisted

the participants, there was little evidence in their reports that supported this

assumption. Only one participant indicated that the generated constraints

assisted him. Since no explanation of the high-level constraint representation

was provided to the participants, they may have struggled to understand the

notation (see Figure 5.15 for examples) and find commonalities between the

two representations.

5.3.4 Discussion

The version of CAS that was provided to the participants of the experiment

only generated constraints in an English-like high-level language. However,

161

as there is a direct mapping between the high-level representation and the

Lisp representation it can be performed automatically (See Appendix A for a

detailed outline of an example translation). At the completion of generating

the syntax and semantic constraints, they can be translated directly into the

required format. This would save the effort required for manual translation

and provide ITS authors with the opportunity to concentrate on modifying

the generated constraints and composing any missing constraints.

Analysing the results from evaluation study 3 confirmed all our hypothe-

ses;

1. CAS is effective even when the required domain-dependant components

are composed by a novice ITS author

The results of the evaluation study showed that CAS was effective in

generating constraints for the task of adding fractions with the assis-

tance of a novice ITS author. It revealed that CAS was able to generate

all the required syntax constraints for the domain for all but one par-

ticipants. Furthermore, CAS generated over 90% of the semantic con-

straints for half of the participants. Considering that the participants

were given very little or no training in using the authoring system,

the results are very encouraging. Providing the users with more train-

ing and improving CAS to be fully integrated with a tutoring server

(similar to WETAS) would increase its effectiveness.

2. The constraint generation algorithm depends on the ontology and an

incomplete ontology would result in an incomplete constraint set

Ontologies created by different people are most likely to be different

as they are based on the creator’s perceptions. During this study, the

constraint learning algorithm generated constraints using ontologies de-

veloped by the 12 participants. Although the ontologies had differences,

the syntax constraint generation algorithm managed to produce fully

complete constraint sets for almost all participants. However, the se-

mantic constraint generation was more sensitive to the ontology. In

particular, it was reliant on defining the “fraction” concept correctly.

162

The semantic constraint generator managed to produce an almost com-

plete constraint set with the correct granularity for ontologies with a

correctly defined “fraction” concept. By contrast, the constraints gen-

erated for ontologies with a partially defined “fraction” concept were

too general. They compared each fraction composed by students as a

whole against its corresponding fraction in the ideal solution. These

constraints result in feedback with limited in pedagogical significance.

3. The order of problems provided during the authoring process does not

matter for constraint generation

The participants of this experiment composed problems and their so-

lutions by themselves and ordered them according to their preference.

As problems for adding fractions only have one correct solution, all

participants provided a single solution for each problem. The results

indicated that the order of the problems or solutions had no effect in

the process of generating constraints. The constraint generator pro-

duced 92% of the semantic constraints required for the domain for all

participants who had composed the ontology appropriately and provide

at least two problems and their solutions.

4. The process of authoring constraints using CAS requires less effort that

composing constraints manually

Currently, CAS is only capable of generating constraints in an English-

like high-level language. The generated constraints have to be trans-

lated manually to the correct Lisp-based form. In order to obtain a

measure for the effort required for producing constraints using CAS,

we calculated the average total time required for producing a single

constraint. Only the participants, whose domain model components

resulted in generating near complete constraint bases were used for

calculating the average effort, to ensure that incorrectly generated con-

straints were not accounted. The five participants (S1, S2, S5, S10,

S11), for whom almost complete constraint sets were generated, spent

a total of 24.8 hours interacting with the “ontology view” of CAS. They

163

spent a total of 115.04 hours interacting with the textual editors pro-

ducing a total of 107 constraints. Considering times spent interacting

with the “ontology view” and the textual editors, the participants spent

a total of 1.3 hours on average to produce one constraint.

The average time of 1.3 hours per constraint is very close to the 1.1

hours reportedly required by Mitrovic [Mitrovic & Ohlsson 1999] to

compose a single constraint while building SQL-Tutor. The time esti-

mated by Mitrovic can be considered as biased since she is an expert

in SQL and knowledge engineering in addition to being an expert in

composing constraints. Therefore, the achievement by novice ITS au-

thors producing constraints in a time similar to the time reported by

Mitrovic is significant. Furthermore, the time of 1.3 hours is a signif-

icant improvement from the two hours required by the participants of

study 1. The participants of study 1 and 3 are at comparable levels

and are both novices to composing constraints.

Although CAS currently generates constraints in a high-level language,

it can be improved to generate constraints directly in the language re-

quired for execution. Assuming the generated constraints were pro-

duced in the required runnable form, the total of 99 syntax and seman-

tic constraints were produced from 24.8 hours of interaction with the

“ontology view”. Consequently, the participants only required an av-

erage of 15 minutes (0.25 hours) on average to generate one constraint.

The average time of 15 minutes per constraint is a significant improve-

ment from 1.1 hours reported by Mitrovic [Mitrovic & Ohlsson 1999].

The time is more significant as the authoring process was driven by

novice ITS developers. The average time of 15 minutes per constraint

is an improvement of eight fold over the time required by ITS authors of

a similar level during study 1. However, this does not take into account

the effort required for validating the generated constraints. The effort

required for validating constraints can be minimised by using CAS’s

constraint validation tool, that enables a constraint-set to be evaluated

on a set of student and ideal solutions. It produces a report outlining

the constraints that were violated and satisfied. As the constraint gen-

164

eration algorithm may not produce all the required constraints, the do-

main author may also be required to modify the generated constraints

or add new constraints manually.

The evaluation study conducted with novice ITS authors produced very

encouraging results. The syntax constraint generator was extremely effec-

tive, producing complete constraint sets for almost every participant. The

semantic constraints generator produced constraint sets that were over 90%

accurate for half of the participants. Although the generator produced overly

general semantic constraints for the remaining participants, ITS authors can

modify them with little effort to produce constraints of correct granularity.

We believe that this would contribute towards the reduction of the author’s

total workload.

Currently constraints produced by CAS are not runnable. However, it can

be enhanced to directly produce constraints that are runnable. This would

dramatically reduce the effort required for composing constraints. The evalu-

ation revealed that the total workload required to produce a single constraint

reduces by almost eight fold, if CAS produced constraints in the desired rep-

resentation.

5.4 Summary

We conducted three evaluation studies to evaluate the effectiveness of CAS.

The initial evaluation study was conducted to verify our hypothesis that

composing a domain ontology assisting the process of manually composing

constraints. The study involved novice ITS authors manually producing

constraint bases using a tool that encouraged the use of ontologies. The

results of the study confirmed our hypothesis; the process of composing a

domain ontology indeed facilitates the creation of complete constraint bases.

The second evaluation study was conducted to evaluate the effectiveness

of CAS in generating constraint bases for different domains. We used CAS

to generate constraints for the three significantly different domains of ER

modelling, fraction addition and data normalisation. CAS was provided with

complete domain ontologies and collections of problems and their solutions

composed by a domain modelling expert. This study demonstrated that

165

CAS was extremely effective in producing constraint bases for the evaluated

domains, resulting in constraint bases that were over 90% complete.

The final study evaluated the effectiveness of CAS in producing domain

models with the assistance of novice domain authors. A group of fourth

year computer science students who had no prior experience in composing

constraint bases produced constraint bases using CAS for the domain of

adding two fractions. CAS was able to produce the complete set of essential

syntax constraints for all but one of the participants. Furthermore, CAS

was capable of generating over 90% of the required semantic constraints for

half the participants. The experiment also demonstrated that CAS has the

potential to dramatically reduce the overall effort required to produce domain

models, if the constraints are produced in the desired Lisp representation.

166

Chapter VI

Conclusions

Producing a domain model that enables the adaptiveness of ITSs is a

complicated process. It requires much time and effort. For example, Mitro-

vic [Mitrovic & Ohlsson 1999] reported that she spent over an hour on av-

erage to produce a single constraint for SQL-Tutor, consisting of over 700

constraints. In addition to requiring extensive effort to complete the task, it

requires multiple facets of expertise. Typically, this is a collaborative effort

between a knowledge engineer, AI programmer and a domain expert.

This research explored ways of providing support for domain experts to

produce domain models with little training. In doing so, we have made sev-

eral contributions to the field of ITS. The main contribution of this research

is an authoring system for producing domain models for CBM tutors, named

CAS. A summary of the main contribution is given in Section 6.1. This sec-

tion also includes a summary of the series of evaluations that produced very

promising results. An account of the other significant contributions are out-

lined in Section 6.2. Future research directions that build on the outcomes

of this research are described in Section 6.3 and some closing remarks are

given in Section 6.4.

6.1 Main Contribution

WETAS [Martin 2002, Martin & Mitrovic 2002a], an authoring shell for

constraint-based modelling, has reduced the amount of work required to pro-

duce constraint-based tutors. It provides general implementations of all the

functions essential for a constraint-based ITS, such as evaluating answers,

modelling students, selecting problems, selecting feedback. In order to start

a tutor in WETAS, the author needs to provide a model of the domain, which

167

includes syntax and semantic constraints, problems and solutions. The main

limitation of WETAS is its lack of support for composing the required domain

model. In order to fill this gap this research developed CAS, an authoring

system for Constraint-based modelling.

CAS was designed with the goal of opening the door for domain experts

with little or no programming knowledge to produce a domain model required

for a constraint-based ITS. Domain authors using CAS are required follow

a six step process to develop domain models. Firstly, they are required to

model an ontology of the domain using the ontology workspace provided

by the system. Secondly, the composition of solutions to problems of the

domain need to be outlined. During the third step, CAS uses the ontology

and the solution structure to generate syntax constraints for the domain.

The author provides sample problems and their solutions during step four.

In order for CAS to be able to generate semantic constraints that identify

correct solutions arrived at using different methodologies, the author needs

to provide multiple solutions to a problem, outlining different methods of

solving it. The system then (in step five) generates semantic constraints by

analysing the provided problems and their solutions. Finally in step six, the

domain expert validates the system-generated constraints by perusing the

high-level descriptions of each constraint.

The syntax constraints are generated by translating the syntactical in-

formation embedded in the ontology into constraints. The syntax constraint

generator identifies the concepts relevant to solutions by going through the

solution structure and searching for restrictions specified in those concepts.

The identified restrictions are used to generate syntax constraints. It also

generates extra constraints to ensure that students follow the appropriate

problem solving path by analysing the solution structure for procedural tasks.

Semantic constraints are generated by CAS using a machine learning algo-

rithm that analyses the problems and their solutions provided by the domain

expert. The algorithm generates constraints by comparing and contrasting

two solutions to the same problem. Constraints are generated iteratively,

and they are generalised or specialised during subsequent analysis of others

pairs of solutions.

Unlike previous authoring systems that focused only on procedural tasks,

168

CAS is capable of acquiring domain knowledge for both procedural and non-

procedural tasks. The process of authoring a domain model for both types of

tasks are similar with the exception of having to outline the problem solving

steps for procedural tasks. The constraints produced for procedural tasks are

relevant for only a single problem-solving step, whereas constraints generated

for non-procedural tasks are always relevant.

A series of evaluation studies were conducted to assess the effectiveness

of CAS. The first study was conducted to verify whether the creation of an

ontology and organising constraints according to its concepts would assist in

the process of manually composing constraints. The results revealed that the

task of composing ontologies had indeed assisted in the process of composing

constraint bases.

The effectiveness of CAS’s constraint generation was evaluated in a study

that generated domain models for three vastly different domains. The se-

lected domains included a non-procedural tasks (Database modelling) and

two procedural tasks (Data normalisation and Fraction addition). The do-

main models of KERMIT (a database modelling constraint-based tutor)

and NORMIT (a data normalisation constraint-based tutor) were compared

against the domain models generated by CAS. Analysis of the constraints

revealed that the generated constraints accounted for over 90% of the con-

straints in the domain model of the respective constraint-based tutors.

CAS was used to generate constraint-bases for the domains of Database

modelling, Data normalisation and Fraction addition. The domains of Data-

base modelling and Data normalisation were specifically chosen as we had

already developed ITSs for the domains. Their domain models were used as

bench marks to gauge the completeness of the constraint bases generated by

CAS. The domain of Fraction addition was chosen as it is a simple domain,

which almost every one is comfortable with. The constraint base required to

model all significant problem states of the domain is also small. Moreover,

the domain is of the sufficient complexity to be set as a task for novices to

produce a constraint base.

The final evaluation study conducted to evaluate CAS’s effectiveness in

generating constraints with the assistance of novice ITS authors, produced

promising results. The study included twelve fourth year computer science

169

students (with no prior experiencing in composing constraints), who were

assigned the task of producing a domain model for adding two fractions us-

ing CAS. The syntax constraints generator of CAS was able to produce all

the required constraints for all but one of the participants. CAS also gener-

ated over 90% of the required semantic constraints for half the participants,

who had modelled complete ontologies. Incomplete ontologies resulted in an

overly general set of semantic constraints, that would produce less significant

pedagogical feedback.

Furthermore, CAS failed to produce constraints containing domain de-

pendant functions. Domain dependant functions encapsulate declarative

knowledge specific to the domain. For example, the domain of Fraction addi-

tion requires a domain function capable of identifying higher order common

multiples of two denominators. Currently, CAS is not capable of allowing

the author to provide the required domain dependant functions.

6.2 Other Significant Contributions

In addition to the Constraint Authoring System (CAS), this research makes

several original contributions to the field of ITS research.

6.2.1 Ontology Workspace

Domain ontologies play a central role in the knowledge authoring process of

CAS. Syntax constraints are generated by directly translating the restrictions

specified in the ontology. The semantic constraints generator uses example

solutions provided by the domain expert added via the problem/solution

interface. As both syntax and semantic constraint generation algorithms

depend heavily on the domain ontology, it is imperative that the domain

expert develops a comprehensive ontology for the domain.

One of the goals of CAS was to enable domain experts with little or no

programming and knowledge engineering experience to produce a domain

model required for an ITS. In order to achieve this goal, CAS should contain

a tool that enables users to quickly and easily model a domain ontology. The

tool should be intuitive to use, minimising the need for training. It should

also encourage the users to compose complete and accurate ontologies. In

170

order to achieve these requirements, an ontology workspace that supports

the composition of ontologies graphically was created.

The ontology workspace of CAS, described in Section 4.3.2, was designed

to be similar to a drawing tool. Users can compose ontologies by “drawing”

concepts as rectangles on the canvas and “draw” specialisations using arrows.

The workspace allows users to compose ontologies with little training, and

also organise concepts to resemble a hierarchical structure. The tool also

contains input forms for specifying restrictions on properties and relation-

ships. After a relationship is composed, the ontology workspace engages the

user in a dialogue to ensure that the relationship is between the correct sets

of concepts.

The ontology workspace is capable of converting the graphical model

of the ontology to an XML representation and vice versa. Although the

ontology workspace uses a proprietary XML format, it can be converted to

a standard representation such as DAML or OIL by performing an XSLT

transformation. This can also be employed to load existing ontologies from

ontology repositories.

The decision to implement a customised ontology workspace for CAS was

taken after evaluating a set of state-of-the-art ontology composition tools.

All the tools evaluated were designed for experts with features needed for

knowledge engineers. The ontology workspace of CAS was designed to have

a restrictive interface that was sufficient for extracting only the essential

information about domain concepts from a domain expert.

The ability of domain experts with little or no programming and knowl-

edge engineering experience to develop domain ontologies using CAS’s ontol-

ogy workspace is yet to be evaluated. Although the fourth year Computer

Science students who participated in the evaluations have little or no knowl-

edge engineering experience, they possess other skills that assist in the task of

composing an ontology. It is unreasonable to assume typical domain experts

would perform in a similar manner in composing ontologies. Further evalua-

tions are needed to gauge whether domain experts are capable of composing

complete domain ontologies expected by CAS.

171

6.2.2 Problem/Solution Interface

The semantic constraints generator produces constraints by analysing exam-

ple problems and their solutions. It requires solutions for a problem to be

composed as a set of instantiations of concepts in the ontology. This enables

the solution to be decomposed into meaningful elements to be compared with

another solution. In order to minimise the effort required for composing a

solution, we developed a solution composition interface that was dependant

on the ontology and the solution structure.

The solutions composition interface (see Section 4.6 for details) was de-

signed to ensure that users composed solutions that strictly adhered to the

ontology and the solution structure. It reduced the effort in composing in-

stances of concepts by providing form-based input screens that enforced pop-

ulating each property of the concept. Choosing elements that participate in

a relationship was made easy by providing drop-down-lists for selecting ele-

ments involved.

CAS’s solution editor also allows the user to modify a copy of the primary

solution. This feature dramatically reduces the effort required to construct

alternate solutions, since alternative solutions in most domains have many

similarities. The solution editor also ensured that the semantic constraint

generation algorithm has an accurate map of matching elements between

solutions by verifying each new match with the user.

6.2.3 Domain Model Authoring Tool for WETAS

WETAS is an authoring shell for constraint-based Intelligent Tutoring Sys-

tems. It provides all the domain independent components of a web-based

ITS including the user interface, pedagogical module and student modeler.

In order to start a tutoring system in WETAS, it should be provided with a

domain model. However, WETAS does not provide any support for compos-

ing a domain model. It expects the components of the domain model (syntax

constraints, semantic constraints, problems and solutions) as a collection of

files in the appropriate directory.

Typically constraints are composed using a text editor to modify the text

file containing either syntax or semantic constraints. Composing constraints

172

is not a well-defined procedure. The author is responsible for composing con-

straints that cover all the significant problem states of the domain. As con-

straints are modular in nature, authors are very likely to miss constraints, re-

sulting in incomplete constraint bases. We believe that it is highly beneficial

for the author to develop a domain ontology even when the constraint sets is

developed manually, because building an ontology helps the author to reflect

on the domain. Such an activity would enhance the authors understanding

of the domain and therefore be a helpful when identifying constraints. Fur-

thermore, we also believe that categorising constraints according to concepts

of the ontology would assist in producing complete constraint bases.

In order to assist authors in manually composing constraints, this research

developed a tool that supported modelling an ontology and encouraged the

grouping of constraints according to concepts of the ontology (discussed in

detailed in Section 5.1.1). It was integrated with WETAS to function as a

front end for domain authors. Its effectiveness was evaluated with a group

of novices in authoring ITS domain models. Analysis of results strongly sug-

gested that the participants used the ontology’s concepts to group constraints

developed more complete constraint bases. Their subjective comments also

confirmed this observation.

6.3 Future Directions

A number of research avenues are opened as a result of this research. Firstly,

the authoring system developed in this research can be enhanced by provid-

ing more support for domain ontologies. A major limitation of the current

version of CAS is its inability to import ontologies composed in standard

ontology languages such as DAML and OWL. As a consequence, CAS is un-

able to make use of ontologies available in ontology repositories that store

ontologies in standard representations. The domain author’s workload can

be significantly reduced by enhancing CAS to be able to import ontologies

from other repositories. Even though these ontologies may not be complete,

the domain author can improve them after importing.

Secondly, the constraint generation can be improved to generate con-

straints directly in the runnable Lisp form. Currently, as the constraints are

173

generated in a high-level language, they have to be manually translated to

the Lisp form. This requires much effort and is a task that requires pro-

gramming expertise. The third evaluation study (see Section 5.3 for details)

showed that enhancing the constraint generators to produce constraints in

the final form would dramatically reduce the time and effort required for com-

posing constraint bases. The syntax constraints can be produced directly in

the Lisp form by replacing the set of templates that are used to generate

them. The semantic constraints on the other hand have to be converted to

the Lisp form by introducing a new set of templates that map the high-level

constraints to the desired Lisp form.

Thirdly, CAS can be improved by providing guidance for domain authors

to assist them in following the authoring process. This would minimise the

load on novices to the authoring system being overwhelmed by having to

follow a six step authoring process. The guidance can be in the form of an

interactive tutorial or even an animated agent that guides the domain author

in the authoring process.

Fourthly, CAS’s semantic constraint generation algorithm can be im-

proved to generate constraints that contain domain dependant functions.

This would enhance the effectiveness and robustness of the constraint gen-

eration algorithm. It can be achieved by requesting the domain expert to

specify the domain functions prior to generating constraints. The provided

domain functions can be used by CAS’s semantic constraint generation algo-

rithm while determining matches between elements of two correct solutions

to a problem.

The effectiveness of the constraint generation algorithms can also be en-

hanced by improving the ontology representation in order to model declar-

ative knowledge specific to domains. The ontology workspace can be en-

hanced to model such domain semantics graphically or to allow authors to

directly specify domain dependant functions. For example, consider the task

of adding two fractions. The ontology representation can be enhanced to

represent the semantics of common multiples of two denominators. Using

such a representation, a ‘Common multiple’ concept that represents the se-

mantic relationship between two denominators can be added to the ontology.

The ‘LCD’ concept can be a sub concept of ‘Common multiple’ with an the

174

added condition of being the minimum ‘Common multiple’.

Another area of future research is to assess CAS’s effectiveness in various

domains to further determine its strengths and weaknesses. These evalua-

tions can be used to identify the characteristics of domains for which CAS

can be used to successfully generate constraints. This would also identify

the type of domains for which CAS would be unsuccessful at generating con-

straints. Evaluation studies can also be used to examine whether teachers

with no prior experiences in producing ITSs, in particular school teachers or

university lecturers, would be able to produce an ITS for their students.

Currently, CAS only uses correct solutions (to problems of the domain)

provided by the domain expert for generating constraints. As domain experts

have knowledge of students’ common misconceptions, they would be able to

provide incorrect solutions highlighting these misconceptions. The constraint

generation algorithm can be made more robust by enhancing it to make use

of both correct and incorrect solutions.

The main focus of CAS was producing constraint bases with the assistance

of domain experts. CAS can be enhanced by tightly integrating it with

WETAS to provide customisations to tutors running in WETAS based on

classrooms. These customisations, such as the problem selection strategy,

the look and feel of the interface, the greeting message etc. should be easily

modified by classroom teachers.

6.4 Concluding Remarks

Intelligent Tutoring Systems are being increasingly used in real classroom

settings producing significant learning gains. Ideally, the teachers of the

classroom should be able to produce ITSs according to their needs. However,

building an ITS requires extensive effort and multi-faceted expertise. In

particular, the domain model, which is a formal representation of the domain,

requires months of work that can only be carried out by experts in knowledge

engineering and AI programming. The contribution of this research enables

domain models to be generated automatically with the assistance of an expert

of the domain, such a teacher or a lecturer. With ITSs being able to be

produced by domain experts, they are poised to have a much significant and

175

wider role in on education in the near future.

176

Appendix A

Translating Pseudo-code Constraints into Lisp-code: an

Example

The constraint generators of CAS produces constraints in a high-level

pseudo-code representation. This pseudo-code representation can be trans-

formed automatically to a runnable Lisp-code representation by enhancing

the constraint generators. The following sections outline a methodology in

which the pseudo-code representation can be mapped to the Lisp-code rep-

resentation found in SQL-Tutor [Mitrovic 2003a]. The representation of so-

lutions expected by the Lisp-code constraints is described in section A.1.

Section two outlines the conversion of syntax constraints into the Lisp form

and section three outlines a methodology for converting semantic constraints

into the Lisp form.

A.1 Solution Representation

Solutions in CAS are represented as objects in memory. They consist of a

collection of components and each component contains a list of elements. The

constraint language used in SQL-Tutor expects solutions to be represented

in a textual format as lists. As a result, the object representation of solutions

has to be converted to the expected list format.

An element of a solution can be represented by a list of property values.

The name of the concept should also be included in the list of values as it

identifies the type of the element. For example a ‘Student’ entity with a tag

of ‘E1’ (see Figure 4.23) can be represented as ‘(‘Regular entity’ E1 Student)’.

Figure A.1 contains a general template for representing solutions in the

list format. It contains a list for each solution component. These lists contain

list representations of elements delimited by the ‘@’ symbol.

177

• <component-name1> - (@ <concept-name> <property1-value>
<property2-value> ... @ <concept-name> <property1-value>
<property2-value> ...)

• <component-name2> - (@ <concept-name> <property1-value>
<property2-value> ... @ <concept-name> <property1-value>
<property2-value> ...)

• <component-name3> - (@ <concept-name> <property1-value>
<property2-value> ... @ <concept-name> <property1-value>
<property2-value> ...)

Figure A.1: Solution Representation

A.2 Syntax Constraints

The syntax constraint generator can be enhanced to produce constraints

in the executable Lisp form by replacing the current set of templates with

templates that produce Lisp code. An example template for a syntax con-

straint that ensures the value of a particular property is always greater than

a specified minimum value is given in Figure A.2. Its relevance condition

would have to perform a pattern match to identify an element of the correct

type within the student solution. The regular expression of ‘(?* @<concept-

name> ?var1 ?var2 ... ?*)’ can be used to match against all elements of the

particular <concept-name> type. The satisfaction condition simple verifies

the syntactical condition on the property.

A.3 Semantic Constraints

The semantic constraint generation algorithm generalises and specialises con-

straints using the high-level representation. At the conclusion of constraint

generation, the high-level constraints in the main constraint base can be

transformed into the Lisp code representation by identifying mappings be-

tween the two representations. For example, consider the high-level con-

straint that ensures the student solution contains all the required Regular

Entity elements (See Figure A.3). It can be transformed to the Lisp form

178

• High-level representation
Relevance: SS has a <concept-name> element
Satisfaction: Its <property-name> must be greater than <min-
value>

• Lisp code representation
Relevance: (match ’(?* @ <concept-name> <property1>
<property2> ... ?*) (<component-name> SS) bindings)
Satisfaction: (>= <property1> <min-value>)

Figure A.2: Example Lisp-code Template for a Syntax Constraint

shown in the figure. It uses the properties generalised by introducing vari-

ables and wild cards during the constraint generation process to identify

matching elements between the ideal solution and the student solution.

• High-level representation
Relevance: Entities component of IS has a (?*, ?var2) Regular En-
tity
Satisfaction: Entities component of SS has a (?*, ?var2) Regular
Entity

• Lisp code representation
Relevance: (match ’(?* @ ‘Regular Entity’ ?IS var1 ?var2 ?*)
(Entities IS) bindings)
Satisfaction: (match ’(?* @ ‘Regular Entity’ ?SS var1 ?var2 ?*)
(Entities SS) bindings)

Figure A.3: Semantic Constraint that Ensures the Student Solution Contains
all the Required Regular Entity Elements

The constraint language used in SQL-Tutor uses ‘?*’ to represent wild

cards that can be matched against zero or more values. Consequently, the

wild cards produced by the high-level representation (which match against

only a single value) have to replaced by two (or more) distinct variables

stating that their values do not have to be equal (See Lisp code constraint

179

in Figure A.3). The ‘?*’ symbols are required within the pattern to match

against all elements in the solution.

The translation from the high-level representation to the Lisp-level rep-

resentation can be automated by producing a set of general templates that

outline the mappings between the two representations. Figure A.4 contains

an example of a template that can be used to transform a high-level semantic

constraint that ensures the existence of the required elements in the student

solution (e.g. constraint in Figure A.3). As properties have been gener-

alised by introducing variables and wild cards, they can be used for pattern

matching within the student solution.

Semantic constraint for ensuring the existence of a matching element in the
student solution

• High-level representation
Relevance: <component-name> component of IS has a
(<pattern>) <concept-name>
Satisfaction: <component-name> component of SS has a
(<pattern>) <concept-name>

• Lisp code representation
Relevance: (match ’(?* @ <concept-name> <pattern> ?*)
(<component-name> IS) bindings)
Satisfaction: (match ’(?* @ <concept-name> <pattern> ?*)
(<component-name> SS) bindings)

Figure A.4: Example Semantic Constraint Template for Lisp-code Mapping

180

Appendix B

Study 3 Task Outline

181

COSC420 Intelligent Tutoring Systems

Homework 3: Implementing a Constraint-based Tutor

Due date: 11 May 2005, 5pm Weight: 25% of the final

1. The task

In this assignment you will use WETAS to implement a simple constraint-based ITS. Important features
of WETAS have been discussed in lectures and are also described in this handout. WETAS (Web-
Enabled Tutor Authoring System) is an ITS authoring shell that allows the rapid development of new
constraint-based tutoring systems. Four systems have been implemented using WETAS: SQL-Tutor,
Language Builder ITS (LBITS), EER-Tutor and COLLECT-UML. LBITS teaches school children
about English grammar and vocabulary, by presenting them with word puzzles that they have to solve.
You will have full access to one activity, called “Last two letters”. LBITS is available at
http://ictg.cosc.canterbury.ac.nz:8004/wetas/. To try LBITS, follow the link for Language Builder, use
any name to log on, and leave the password blank.

For this assignment you will build a new tutor, which teaches fraction addition. You will develop the
ontology, the constraint set (including any macros) and the problem set.

2. The instructional domain

Your tutor should support children learning how to add fractions, with an interface similar to Figure 1.
You should define at least 10 problems for students to solve.

Figure 1: Fraction Addition Tutor Interface

3. Building your tutor

To implement a tutor in WETAS, you need to provide only domain specific information, such as the
problems and the knowledge base. WETAS automates all tutoring functions. The process of developing
a new tutor consists of the following phases:

1. Develop the ontology

2. Define the features of the domain

Lowest Common Denominator

Fraction 1

Fraction 2

Sum of fractions

Reduced sum of fractions

3. Define the solution structure

4. Add problems and solutions

5. Develop constraints

You need to download the front-end of the authoring tool and follow the instruction given at
http://ictg.cosc.canterbury.ac.nz:8080/. The domain model components of LBITS are also linked on the
same page. An example ontology can be viewed by logging into the front WETAS front-end using “er”
as the as the user name, and no password.

To develop your own tutor, use your COSC username to log on, and the password that you will receive
in an email. You are not permitted to look at each others’ domain models, or to run each other’s tutors.

4. Developing the ontology

1. An ontology describes the structure of the domain by showing the basic domain concepts, their
properties and the relationships between concepts. A widely accepted definition is that an
ontology is a specification of a formalisation (Gruber, 1993); in other words, it is an explicit,
formal specification of the domain vocabulary which presents a common understanding of
topics that can be communicated between users and applications. An ontology thus enables all
the people involved to speak the same language, supporting knowledge sharing by applications
and reuse. An ontology makes domain assumptions explicit, so that it is easier to change the
domain description, as well as to understand and update existing data. An important feature of
ontologies is that they separate domain knowledge from operational knowledge, in the same
way in which a database schema is separated from the actual data stored in a database.

2. There is no silver bullet when it comes to ontology development; similar to other design tasks,
ontology development is under-specified and ambiguous. Therefore, there is neither one correct
approach to ontology development, nor a single best ontology for a particular domain (Noy and
McGuinness, 2001). In order to specify a domain ontology, the author needs to specify domain
concepts, their properties (attributes) and relationships between concepts. Each ontology will
reflect the author’s subjective view of the domain, and of the importance of domain concepts.
The process is always iterative. Initially, it is necessary to decide on the scope of the ontology -
how much of the domain will it cover?

3. When developing an ontology, it is necessary to identify the important concepts. Roughly
speaking, these concepts will include all types of entities appearing in the domain that students
need to know about. Once concepts are known, they need to be arranged into a taxonomy, using
the specialisation/generalisation relationship. This relationship is also commonly referred to as
the 'is-a' relationship, or the 'a-kind-of' relationship. Taxonomy can be specified using a top-
down or a bottom-up approach, or a combination of the two, which is probably most common.
When using the top-down approach, the ontology is developed starting from the most general
concepts, which are then refined into subclasses. The bottom-up approach, on the other hand,
starts from specific concepts which are generalised into superclasses. Every concept in the
ontology is important because of its properties and/or relationships to other concepts; therefore,
properties and relationships need to be defined. The properties of a concept will be inherited by
all of its subconcepts.

The WETAS front-end, as shown in Figure 2, consists of two main tabs. The “ontology view” provides
a workspace for composing ontologies, and the “domain model” tab contains a set of text editors for
defining domain components such as constraints, problems etc. The application automatically saves the

all domain model components every 10 minutes. The last time the domain model was saved is
displayed in title bar of the application.

The ontology displayed in Figure 2 represents the concepts of ER modelling, which describes data as
entities, attributes and relationships. The ontology contains Construct as the most general concept.
Relationship, Entity, Attribute are sub-concepts of Construct. Relationship is specialised into Regular
and Identifying, which are the two types of relationships and Entity is specialised, according to its types,
as Regular and Weak. Subclasses of Attribute are Simple or Composite attributes and Simple attributes
are further specialised into five categories: Key, Partial key, Single, Derived and Multi-valued.

When you select a concept from the ontology, you will be able to see all the attributes and relationships
for that concept at the bottom of the page. To define an attribute, use the “Add” button. You will get a
pop-up window, asking for the name and the type of attribute. If you specify a numerical type, you can
also add the minimal and/or maximal value for the attribute. Closing the application using the close
window button also saves and logs you out.

Figure 2: Ontology Editor Interface

5. Defining the characteristics of the domain

The front-end of WETAS characterises domains as declarative by default. For procedural
domains, the set of problem solving steps that have to be followed needs to be enumerated.

For example, consider a tutoring system that provides a practice environment for applying physics
equations where students are given a textual description to calculate a specific value. The procedure for
producing the final solution (as shown in Figure 3) involves four steps; identifying the given variables
and their values, identifying the correct equation, substituting the values of known variables in equation
and finally solving equation.

Figure 3: Domain Characteristics Interface

6. Defining the solution structure

Problems in WETAS are represented as textual statements. Solutions on the other hand can
consist of a number of components representing meaningful components. You will need to
decide upon how the composition of a solution. For example, the structure of a solutions for

problems in ER modelling (see Figure 4) would consist of three components; Entities, Relationships
and Attributes.

Figure 4: Solution Structure Interface

7. Adding problems and solutions

The front end for WETAS provides input forms for adding problems and their solutions. The
input form for composing a solution depends on the solution structure described in step 6
(Figure 5). The input forms are automatically generated to create instances of concepts

modelled in the ontology. Each property of the instance would result in an input box where as each
relationships would result in a drop down list for selecting an already created instance.

Figure 5: Problem Editor Interface

In order to generate constraints the system requires multiple correct solutions for each problem

outlining different ways of solving the same problem. Once all problems and their solutions
are added, they can be converted to the lisp representation, stored internally within WETAS by

clicking on the “write problems” button.

WETAS will store the problems and solutions internally in the following format:

(<problem-num>
 <problem text>
 <difficulty> - not used, specify NIL

((<clause name1>
(<subclause-name1-1> <answer1-1> <clue1-1> <def-inp ut1-1>)

(<subclause-name1-2> <answer1-2> <clue1-2> <def-inp ut1-2>)
…
(<subclause-name1- m> <answer1- m> <clue1-n> <def-input1- m>))

 …
 (<clause name n>

(<subclause-name n-1> <answern-1> <cluen-1> <def-inputn-1>)
(<subclause-name n-2> <answern-2> <cluen-2> <def-inputn-2>)
…
(<subclause-name n-m> <answer n-m> <cluen- m> <def-input n-m>))))

Note that LBITS uses this structure, but has only one clause ("CLUES"). Note also that the number of
subclauses does not need to be consistent between problems, e.g. one problem may have four words to
solve, and another may have six.

The problem statement is used to paint the screen (with the clause name, subclause names, and clues),
and as the ideal solution for evaluating the student's answer. For the latter, only the clause/subclause
names and the answers are used. For example:

(1
 NIL
 NIL
; IS - (# answer clue default-input)
 (("CLUES"
 ("1" "road" "long street" "ro")
 ("2" "adventure" "exciting journey" "")
 ("3" "rest" "stop for a while" "re")
 ("4" "stone" "small rock" "")
 ("5" "nest" "home for a bird" ""))))

is presented to the constraint evaluator as:

("CLUES" ("1" "road") ("2" "adventure") ("3" "rest") ("4" "stone") ("5" "nest"))

Hence, (MATCH IS CLUES (?n ?word)) will match to each of the subclauses in turn. It is not
possible for the constraints to access the question parts of the problem statement.

8. Develop constraints

The WETAS front-end generates both syntax and semantic constraints by analysing the
ontology of the domain and the supplied problems and solutions. Once the ontology is
complete, the syntax constraints can be generated by clicking on the green “constraint
generation” button. Semantic constraints can be generated by clicking on the blue “constraint

generation” button after problems and their solutions have been added. The constraint generator only
generates a high-level description of the constraint. You are supposed to convert the high-level
description to the WETAS constraint language.

9. Constraint Language

Both the constraints and the problem definitions are written in special representation languages, that are
based on the LISP programing language. The general form of a function call in LISP is:

(<function> <param1> <param2>…)

See the files in LBITS for examples. Constraints all have the following format:

(<constraint identifier>
 <feedback message>
 <relevance condition>
 <satisfaction condition>
 <clause name>)

The constraint identifier need not be numeric, but it must be unique within your domain. The relevance
and satisfaction conditions consist of calls to the functions MATCH (to pick words out of a string),
TEST (to test the value of a variable), and TEST_SYMBOL (to test for letters in a word). These may be
joined together using AND, OR-P and NOT-P. The latter are functionally identical to OR and NOT, but
must be used in their place, or strange behaviour may result.

In WETAS, constraints are encoded purely as pattern matches. Each pattern may be compared either
against the ideal or student solutions (via a MATCH function) or against a variable (via the TEST and
TEST_SYMBOL functions) whose value has been determined in a prior match. An example of a
constraint in SQL-Tutor using this representation is:

(34
"If there is an ANY or ALL predicate in the WHERE c lause, then the
attribute in question must be of the same type as t he only expression of
the SELECT clause of the subquery."
; relevance condition
(match SS WHERE '(?* ?a1 ("<" ">" "=" "!=" "<>" "<= " ">=")
 ("ANY" "ALL") "(" "SELECT" ?a2 "FROM" ?* ")" ?*))

; satisfaction condition
(and (test SS (^type (?a1 ?type))
 (test SS (^type (?a2 ?type))))
"WHERE")

This constraint tests that if an attribute is compared to the result of a nested SELECT, the attribute
being compared and that which the SELECT returns have the same type. ^type is a macro, and is
explained later in this document. The constraint representation consists of logical connectives (and, or-
p and not-p) and three functions: match, test, and test_symbol. These are now described.

MATCH

This function is used to match an arbitrary number of terms to a clause in the student or ideal solutions.
The syntax is:

(MATCH <solution name> <clause name> (pattern list))

where <solution name> is either SS (student solution) or IS (ideal solution) and <clause name> is the
name of the problem/solution clause to which the pattern applies. However, the notion of clauses is not
domain-dependent; it simply allows the solution to be broken into subsets of the whole solution. The
<pattern list> is a set of terms, which match to individual elements in the solution being tested. The
following constructs are supported:

?* wildcard: matches zero or more terms that we are not interested in. For example,

(MATCH SS WHERE (?* ?a ?*)
matches to any term in the WHERE clause of the student solution, because the two wildcards
can map to any number of terms before and after ?a, so all possible bindings of this match
gives ?a bound to each of the terms in the input.

?*var named wildcard: a wildcard that appears more than once, hence is assigned a variable name
to ensure consistency. For example:

(AND (MATCH SS SELECT (?*w1 "AS" ?*w2) (1)
 (MATCH IS SELECT (?*w1 ?N ?*)) (2)

First, (1) tests that the SELECT clause in the student solution contains the term “AS”. Then,
?*w1 in (2) tests that the ideal solution also contains all the terms that preceded the “AS”,
and then maps the variable ?N to whatever comes next. The unnamed wildcard at the end of
(2) discards whatever comes after ?N.

?var variable: matches a single term. For example, (MATCH IS SELECT (?what))
matches ?what to one and only one item in the SELECT clause of the ideal solution;

"str" literal string: matches a single term to a literal value. For example, in
(MATCH SS WHERE (?* ">=" ?*))
“>=” must appear in the WHERE clause of the student solution.

(lit1,
lit2,
...)

literal list: a list of possible allowed values for a single term. For example:

(MATCH SS WHERE (?* ?n1 (">=" "<=") ?n2 ?*))

assigns the variable ?n1 to any term preceding either a “>=” or a “<=”, and ?n2 to the term
following it. Note that because ?n1 and ?n2 are not wildcards, they must map to a single term
each, hence if the “>=” or “<=” is either at the start or the end of the clause this match will
fail, because one (or both) of ?n1 and ?n2 will fail to match.

Variables and literals (or lists of literals) may be combined to give a variable whose allowed value is
restricted. For example:

(MATCH IS ORDER_BY (?* (("ANY" "ALL") ?what) ?*))

means that the term that the variable ?what matches to must have a value of “ANY” or “ALL”. There is
no limit to the number of terms that may appear in a literal list, or in a MATCH in general.

TEST

Having performed a MATCH to determine the existence of some sequence of terms, we often wish to
further test the value of one or more variables that were bound. This is carried out using the TEST
function, which is a special form of MATCH that accepts a single pattern term and one or more
variables. For example (the following constraint is simplified):

(2726
"Check you have used the correct logical connective in WHERE to represent a
range of numbers."
(and
 (match SS WHERE (?* ?n1 ?op1 ?what1 (("and" "or") ?lc) ?n1 ?op2 ?what2) ?*)
 (match IS WHERE (?* ?n1 "between" ?*)))
(test SS ("and" ?lc))
"WHERE")

This constraint first tests for an attribute (?n1) in the WHERE condition of the student solution that is
being compared to two different values (?what1 and ?what2). Then, the second match looks for the
same attribute being used in a BETWEEN construct in the ideal solution. If this is the case, the two
tests in the student solution must be ANDed together. The TEST function call in the satisfaction
condition does this. The syntax of the TEST function is:

(TEST <SOLUTION NAME> <TEST-TERM>)

where SOLUTION NAME is again IS or SS, and <TEST-TERM> is a single value test, such as a test
against a literal or list of literals. In the previous example, a single value test is made for the value
“and”. In effect, TEST performs a specified pattern match, where the pattern contains just a single
match term, on a list that contains just the value of the variable in question. Examples:
 � (<value> <var>) (“and” ?word1) � (<values> <var>) ((“and” “or”) ?v1) � (<var1> <var2>) (?t1 ?t2) � (<macro>) (^valid-table ?t)

TEST may also used for variable assignment, as follows:

(TEST SS (?word1 ?word2))

This statement tests that the value of ?word2 is equal to the value of ?word1. If ?word2 is
currently not bound, it will be set to the value of ?word1. Note that it only works this way
round: ?word1 will never be modified by this statement.

TEST_SYMBOL

Often, we also need to be able to test characters within the value of a term. For example, a valid SQL
string is defined as a single quote, followed by any characters, and closed with another single quote. To
test this, we add the function TEST_SYMBOL, which acts exactly like the MATCH function, except it
accepts a variable name instead of a clause name, and further parses the value of the variable binding
into individual characters, before applying the match pattern. For example, to test for a valid SQL string
in the variable ?str:

(TEST_SYMBOL SS ?str ("’" ?* "’"))

This test would succeed for values of ?str such as "’Kubrick’" for example, but fail for
"’Smith" because of the missing closing quote. The general syntax is:

(TEST_SYMBOL <SOLUTION> <VAR> <PATTERN>)

Note that in both TEST and TEST_SYMBOL, the solution name is passed as a parameter, even though
it doesn’t appear to be necessary since these tests are on already bound variables, not an input string.
However, this is required because the test may be a macro, which may perform further pattern matches
on the input, so it needs to know which solution to match. Macros are now described.

Macros

The original version of SQL-Tutor uses domain-specific functions to extract features of the solutions
and to make special comparisons between them. In the new representation, this is forbidden, because it
hides the logic of the test. In SQL-Tutor, almost all domain-specific functions test for a valid value, or
pair of values. For example, in:

(valid-table (find-schema (current-database *studen t*)) '?t1)

“Valid-table” tests that ?t1 is a valid table name in the student’s current database. Similarly:

(attribute-of (find-table ?t1 (current-database *st udent*)) '?a1))

tests that ?a1 is a valid attribute in the table ?t1. Routines such as “find-table” and “current-database”
are simply data accessors. In both “valid-table” and “attribute-of”, the function might alternatively be
represented as a membership test on an enumerated list: for “valid-table”, the list will contain the set of
table names for a given database, while for “attribute-of”, each member of the list will be a tuple of type
(<attribute> <table>). Since our language already supports testing against lists of literals, these can be
encoded using the pattern matching language, i.e.

(TEST SS (("MOVIE" "DIRECTOR"...) ?t1))

which tests that ?t1 is a valid table, and

(TEST SS (("TITLE" "MOVIE") ("YEAR" "MOVIE") ("LNAM E"
"DIRECTOR")...) (?a1 ?t1))

which tests that ?a1 and ?t1 form a valid attribute/table combination, i.e. that ?a1 is an attribute of table
?t1.

We have now replaced function calls with pattern matching, however it would be cumbersome to have
to enumerate all attributes of all tables every time we wish to perform such a test. To overcome this, we
use macros to represent partial pattern matches that are used often. For example, the macro for
^attribute-of used previously is:

(^attribute-of (??a ??t)
 (TEST SS ((("TITLE" "MOVIE") ("LNAME" "DIRECTOR ")...)
 (??a ??t))))

The syntax of a macro definition is:

(<MACRO NAME> (<PARAMETERS>) <BODY>)

The name must always begin with a “^” so that macros can be easily identified by the constraint
compiler. Similarly, the parameter names are preceded by “??” so that they can be distinguished from
local variables in the macro body. In MATCH and TEST statements, the solution name should always
be “??” (this gets substituted for the caller’s solution name at compile time). Local variables must begin
with “?_”, e.g. ?_word1 . The body may be any valid condition, including logical connectives,
MATCH functions, and other macro calls. Consider the following example from SQL:

(^attribute-alias (??name ??attr ??table)
 (and (test ?? (^name ??name))

 (or-p (test ?? (^attr-name (??name ??attr ??ta ble))) (1)
 (match ?? SELECT (?* (^attr-name (?_a1 ? ?attr
 ??table)) "AS" ??n ame))))) (2)

This macro accepts an attribute name as input, and returns the physical attribute and table names. In
SQL, attributes can be aliassed, i.e. they can be assigned another name. For example:

SELECT movie.number AS num
FROM movie
ORDER-BY num

In this example, num is defined as an alias for movie.number in the SELECT clause, and is used again
in ORDER-BY. To test that num in ORDER-BY is a valid attribute, we need to know what it maps to,

which is achieved by the ^attribute-alias macro: If ??name fails the test in (1), i.e. it is not a valid
attribute name, (2) tries to match it to an alias definition in the SELECT clause. Hence, the macro needs
to know which solution it is testing. The constraint that tests for a valid attribute in ORDER-BY is:

(149
"You have used some names in the ORDER BY clause th at are not from
this database."
(match SS ORDER_BY (?* (^name ?n) ?*))
(test SS (^attribute-alias (?n ?a ?t)))
"ORDER BY")

When the constraint set is loaded, the macro names are expanded into their corresponding pattern
matches. The parameter names in the macro definition are substituted for those passed in, and the “??”
solution name placeholders are replaced with the solution name from the caller. Hence, all routines that
can call a macro (i.e., MATCH, TEST and TEST_SYMBOL) must specify a solution name. Note that
macros may also be embedded in pattern matches, and that the macro being called may have more than
one parameter. For example:

(match SS SELECT (?* (^attr-name (?n ?a ?t)) ?*))

In this case, the first parameter (?n) is matched to a term in the input string, with ?a and ?t being either
tested or instantiated by the macro, depending on whether or not they are already bound.

10. Running your tutor

Once the necessary domain model components have been completed (syntax constraints, semantic
constraints, problems and solutions and macros), you need to load your files using:

http://ictg.cosc.canterbury.ac.nz:8004/wetas/reload?name=NAME,

where NAME is your COSC username (in uppercase). Be patient, this may take some time, depending
on the size of your constraint and problem files. If there are mistakes in your files, you will receive an
error message. Your tutor will be available at:

http://ictg.cosc.canterbury.ac.nz/wetas/NAME

To log in, you may enter any username. However, you must use the password you were provided with,
otherwise WETAS will not let you use the system (note that LBITS does not require a password). You
can now try out your system. Note that if there are errors in your code (e.g. in the constraints), the
system will present you with an error message in the “feedback” window at the bottom of the screen.

11. What to hand in

In you report, please include a page or less describing what you did, and also a page or less describing
any problems you found, or any suggestions you might have about improving WETAS. Please describe
your experiences with using the ontologies, using the problem editor, using WETAS and the constraints
generated by the system.

References

1. Gruber, T.R. (1993) A Translation Approach to Portable Ontology Specification. Knowledge
Acquisition, 5, 199-200.

2. Noy, N., McGuinness, D. (2001) Ontology Development 101: a Guide to Creating your First
Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford
Medical Informatics Technical Report SMI-2001-0880.

Appendix C

ITS 2004 papers

193

The role of domain ontology in knowledge acquisition for
ITSs

Pramuditha Suraweera, Antonija Mitrovic and Brent Martin

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
{psu16, tanja, brent}@cosc.canterbury.ac.nz

Abstract. There have been several attempts to automate knowledge acquisition
for ITSs that teach procedural tasks. The goal of our project is to automate the
acquisition of domain models for constraint-based tutors for both procedural
and non-procedural tasks. We propose a three-phase approach: building a do-
main ontology, acquiring syntactic constraints directly from the ontology, and
engaging the author in a dialog, in order to induce semantic constraints using
machine learning techniques. An ontology is arguably easier to create than the
domain model. Our hypothesis is that the domain ontology is also useful for re-
flecting on the domain, so would be of great importance for building constraints
manually. This paper reports on an experiment performed in order to test this
hypothesis. The results show that constraints sets built using a domain ontology
are superior, and the authors who developed the ontology before constraints ac-
knowledge the usefulness of an ontology in the knowledge acquisition process.

1 Introduction

Intelligent Tutoring Systems (ITS) are educational programs that assist students in
their learning by adaptively providing pedagogical support. Although highly regarded
in the research community as effective teaching tools, developing an ITS is a labour
intensive and time consuming process. The main cause behind the extreme time and
effort requirements is the knowledge acquisition bottleneck [9].

Constraint based modelling (CBM) [10] is a student modelling approach that
somewhat eases the knowledge acquisition bottleneck by using a more abstract repre-
sentation of the domain compared to other common approaches [7]. However, build-
ing constraint sets still remains a major challenge. In this paper, we propose an ap-
proach to automatic acquisition of domain models for constraint-based tutors. We
believe that the domain ontology can be used as a starting point for automatic acquisi-
tion of constraints. Furthermore, building an ontology is a reflective task that focuses
the author on the important concepts of the domain. Therefore, our hypothesis is that
ontologies are also important for developing constraints manually.

To test this hypothesis we conducted an experiment with graduate students en-
rolled in an ITS course. They were given the task of composing the knowledge base

for an ITS for adjectives in the English language. We present an overview of our
goals and the results of our evaluation in this paper.

The remainder of the paper is arranged into five sections. The next section pre-
sents related work on automatic knowledge acquisition for ITSs, while Section 3
gives an overview of the proposed project. Details of enhancing the authoring shell
WETAS are given in Section 4. Section 5 presents the experiment and its results.
Conclusions and future work are presented in the final section.

2 Related Work

Research attempts at automatically acquiring knowledge for ITSs have met with lim-
ited success. Several authoring systems have been developed so far, such as KnoMic
(Knowledge Mimic)[15], Disciple [13, 14] and Demonstr8 [1]. These have focussed
on acquiring procedural knowledge only.

KnoMic is a learning-by-observation system for acquiring procedural knowledge
in a simulated environment. The system represents domain knowledge as a generic
hierarchy, which can be formatted into a number of specific representations, includ-
ing production rules and decision trees. KnoMic observes the domain expert carrying
out tasks within the simulated environment, resulting in a set of observation traces.
The expert annotates the points where he/she changed a goal because it was either
achieved or abandoned. The system then uses a generalization algorithm to learn the
conditions of actions, goals and operators. An evaluation conducted to test the accu-
racy of the procedural knowledge learnt by KnoMic in an air combat simulator re-
vealed that out of the 140 productions that were created, 101 were fully correct and
29 of the remainder were functionally correct [15]. Although the results are encourag-
ing, KnoMic’s applicability is restricted to simulated environments.

Disciple is a shell for developing personal agents. It relies on a semantic network
that describes the domain, which can be created by the author or imported from a
repository. Initially the shell has to be customised by building a domain-specific in-
terface, which gives the domain expert a natural way of solving problems. Disciple
also requires a problem solver to be developed. The knowledge elicitation process is
initiated by a proble-solving example provided by the expert. The agent generalises
the given example with the assistance of the expert and refines it by learning from
experimentation and examples. The learned rules are added to the knowledge base.

Disciple falls short of providing the ability for teachers to build ITSs. The cus-
tomisation of Disciple requires multiple facets of expertise including knowledge
engineering and programming that cannot be expected from a typical domain expert.
Furthermore, as Disciple depends on the problem solving instances provided by the
domain expert, they should be selected carefully to reflect significant problem states.

Demonstr8 is an authoring tool for building model-tracing tutors for arithmetic. It
uses programming by demonstration to reduce the authoring effort. The system pro-
vides a drawing tool like interface for building the student interface of the ITS. The
system automatically defines each GUI element as a working memory element
(WME), while WMEs involving more than a single GUI element must be defined
manually. The system generates production rules by observing problems being solved

by an expert. Demonstr8 performs an exhaustive search in order to determine the
problem-solving procedure used to obtain the solution. If more than one such proce-
dure exists, then the user would have to select the correct one. Domain experts must
have significant knowledge of cognitive science and production systems in order to
be able to specify higher order WMEs and validate production rules.

3 Automatic constraint acquisition

Existing approaches to knowledge acquisition for ITSs acquire procedural knowledge
by recording the expert’s actions and generalising recorded traces using machine
learning algorithms. Even though these systems are well suited to simulated environ-
ments where goals are achieved by performing a set of steps in a specific order, they
fail to acquire knowledge for non-procedural domains. Our goal is to develop an
authoring system that can acquire procedural as well as declarative knowledge.

The authoring system will be an extension of WETAS [4], a web-based tutoring
shell. WETAS provides all the domain-independent components for a text-based ITS,
including the user interface, pedagogical module and student modeller. The peda-
gogical module makes decisions based on the student model regarding prob-
lem/feedback generation, whereas the student modeller evaluates student solutions by
comparing them to the domain model and updates the student model. The main
limitation of WETAS is its lack of support for authoring the domain model.

WETAS is based on Constraint based modelling (CBM), proposed by Ohlsson
[10] which is a student modelling approach based on his theory of learning from
performance errors [11]. CBM uses constraints to represent the knowledge of the
tutoring system [6, 12], which are used to identify errors in the student solution. CBM
focuses on correct knowledge rather than describing the student’s problem solving
procedure as in model tracing [7]. As the space of false knowledge is much grater
than correct knowledge, in CBM knowledge is modelled by a set of constraints that
identify the set of correct solutions from the set of all possible student inputs. CBM
represents knowledge as a set of ordered pairs of relevance and satisfaction condi-
tions. The relevance condition identifies the states in which the constraint is relevant,
while the satisfaction condition identifies the subset of the relevant states in which the
constraint is satisfied.

Manually composing a constraint set is a labour intensive and time-consuming
task. For example, SQL-Tutor contains over 600 constraints, each taking over an hour
to produce [5]. Therefore, the task of composing the knowledge base of SQL-Tutor
would have taken over 4 months to complete. Since WETAS does not provide any
assistance for developing the knowledge base, typically a knowledge base is com-
posed using a text editor. Although the flexibility of a text editor may be powerful for
knowledge engineers, novices tend to be overwhelmed by the task.

Our goal is to significantly reduce the time and effort required to generate a set of
constraints. We see the process of authoring a knowledge base as consisting of three
phases. In the first phase, the author composes the domain ontology. This is an inter-
active process where the system evaluates certain aspects of the ontology. The expert
may choose to update the ontology according to the feedback given by the system.

Once the ontology is complete, the system extracts certain constraints directly from it,
such as cardinality restrictions for relationships or domains for attributes. The second
stage involves learning from examples. The system learns constraints by generalising
the examples provided by the domain expert. If the system finds an anomaly between
the ontology and the examples, it alerts the user, who corrects the problem. The final
stage involves validating the generated constraints. The system generates examples to
be labelled as correct or incorrect by the domain expert. It may also present the con-
straints in a human readable form, for the domain expert to validate.

4 Enhancing WETAS: Knowledge Base Generation via Ontologies

We propose that the initial authoring step be the development of a domain ontology,
which will later be used to generate constraints automatically. An ontology describes
the domain, by identifying all domain concepts and relationships between them. We
believe that it is highly beneficial for the author to develop a domain ontology even
when the constraint sets is developed manually, because this helps the author to re-
flect on the domain. Such an activity would enhance the author’s understanding of the
domain and therefore be a helpful tool when identifying constraints. We also believe
that categorising constraints according to the ontology would assist the authoring
process.

To test our hypothesis, we built a tool as a front-end for WETAS. Its main pur-
pose is to encourage the use of domain ontology as a means of visualising the domain
and organising the knowledge base. The tool supports drawing the ontology, and
composing constraints and problems. The ontology front end for WETAS was devel-
oped as a Java applet. The interface (Fig. 1a) consists of a workspace for developing
a domain ontology (ontology view) and editors for syntax constraints, semantic con-
straints, macros and problems. As shown in Fig. 1a, concepts are represented as rec-
tangles, and sub-concepts are related to concepts by arrows. The concept details such
as attributes and relationships can be specified in the bottom section of the ontology
view. The interface also allows the user to view the constraints related to a concept.

The ontology shown in Fig. 1a conceptualises the Entity Relationship (ER) data
model. Construct is the most general concept, which includes Relationship, Entity,
Attribute and Connector as sub-concepts. Relationship is specialized into Regular and
Identifying ones. Entity is also specialized, according to its types, into Regular and
Weak entities. Attribute is divided in to two sub-concepts of Simple and Composite
attributes. The details of the Binary Identifying relationship concept are depicted in
Fig. 1. It has several attributes (such as Name and Identified-participation), and three
relationships (Fig. 1b): Attributes (which is inherited from Relationship), Owner, and
Identified-entity. The interface allows the specification of restrictions of these rela-
tionships in the form of cardinalities. The relationship between Identifying relation-
ship and Regular entity named Owner has a minimum cardinality of 1. The interface
also allows the author to display the constraints for each concept (Fig. 1c). The con-
straints can be either directly entered in the ontology view interface or in the syn-
tax/semantic constraints editor.

Fig. 1. Ontology for ER data model

a

b

c

The constraint editors allow authors to view and edit the entire list of constraints
and problems. As shown in Fig. 2, the constraints are categorised according to the
concepts that they are related to by the use of comments. The Ontology view extracts
constraints from the constraint editors and displays them under the categorised con-
cept. Fig. 2 shows two constraints (Constraint 22 and 23) that belong to Identifying
relationship concept.

Fig. 2. Syntax constraints editor

All domain related information is saved on the server as required by WETAS. The
applet monitors all significant events in the ontology view and logs them with their
time stamps. The logged events include log in/out, adding/deleting concepts etc.

5 Experiment

We hypothesized that composing the ontology and organising the constraints accord-
ing to its concepts would assist in the task of building a constraint set manually. To
evaluate our hypothesis, we set 18 students enrolled in the 2003 graduate course on
Intelligent Tutoring Systems at the University of Canterbury the task of building a
tutor using WETAS for adjectives in the English language.

The students had attended 13 lectures on ITS, including five on CBM, before the
experiment. They also had a 50 minute presentation on WETAS, and were given a
description of the task, instructions on how to write constraints, and the section on
adjectives from a text book for English vocabulary [2]. The students had three weeks
to implement the tutor. A typical problem is to complete a sentence by providing the

correct form of a given adjective. An example sentence the students were given was:
“My sister is much ________ than me (wise).”

The students were also free to explore LBITS [3], a tutor developed in WETAS
that teaches simple vocabulary skills. The students were allowed to access the “last
two letters” puzzles, where the task involved determining a set of words that satisfied
the clues, with the first two letters of each word being the same as the last two letters
of the previous one. All domain specific components, including its ontology, the
constraints and problems, were available.

Seventeen students completed the task satisfactorily. One student lost his entire
work due to a system bug, and this student’s data was not included in the analysis.
The same bug did not affect other students, since it was eliminated before others
experienced it. Table 1 gives some statistics about the remaining students, including
their interaction times, numbers of constraints and the marks for constraints and on-
tology.

The participants took 37 hours to complete the task, spending 12% of the time in
the ontology view. The time in the ontology view varied widely, with a minimum of
1.2 and maximum of 7.2 hours. This can be attributed to different styles of develop-
ing the ontology. Some students may have developed the ontology on paper before
using the system, whereas others developed the whole ontology online. Furthermore,
some students also used the ontology view to add constraints. However, the logs
showed that this was not a popular option, as most students composed constraints in
the constraint editors. One factor that contributed to this behaviour may be the restric-
tiveness of the constraint interface, which displays only a single constraint at a time.

WETAS distinguishes between semantic and syntactic constraints. In the domain
of adjectives, it is not clear as to which category the constraints belong. For example,
in order to determine whether a solution is correct, it is necessary to check whether
the correct rule has been applied (semantics) and whether the resulting word is spelt
correctly (syntax). This is evident in the results for the total number of constraints for
each category. The averages of both categories are similar (9 semantic constraints and
11 syntax constraints). Some participants have included most of their constraints as
semantic and others vice versa. Students on average composed 20 constraints in total.

We compared the participants’ solution to the “ideal” solution. The marks for
these two aspects are given under Coverage (the last two columns in Table 1). The
ideal knowledge base consists of 20 constraints. The Constraints column gives the
number of the ideal constraints that are accounted for in the participants’ constraint
sets. Note that the mapping between the ideal and participants’ constraints is not
necessarily 1:1. Two participants accounted for all 20 constraints. On average, the
participants covered 15 constraints. The quality of constraints was high generally.

The ontologies produced by the participants were given a mark out of five (the
Ontology column in Table 1). All students scored high, as expected because the on-
tology was straightforward. Almost every participant specified a separate concept for
each group of adjectives according to the given rules [2]. However, some students
constructed a flat ontology, which contained only the six groupings corresponding to
the rules (see Fig. 3a). Five students scored full marks for the ontology by including
the degree (comparative or superlative) and syntax such as spelling (see Fig. 3b).

Even though the participants were only given a brief description of ontologies and
the example ontology of LBITS, they created ontologies of a reasonable standard.
However, we cannot make any general assumptions on the difficulty of constructing
ontologies since the domain of adjectives is very simple. Furthermore, the six rules
for determining the comparative and superlative degree of an adjective gave strong
hints on what concepts should be modelled.

Time (hours) Number of constraints Coverage

 Total

Ontology
view

Se-
mantic Syntax Total

Con-
straints Ontology

S1 38.16 4.57 27 3 30 20 5
S2 51.55 7.01 3 10 13 19 4
S3 10.22 1.20 14 1 15 17 4
S4 45.25 2.54 30 4 34 18 5
S5 48.96 4.91 11 5 16 20 4
S6 44.89 4.66 24 1 25 18 5
S7 18.97 2.87 1 15 16 17 4
S8 22.94 4.99 3 18 21 15 3
S9 34.29 4.30 11 4 15 18 5

S10 33.90 7.23 0 14 14 18 3
S11 55.76 3.28 16 1 17 17 5
S12 30.46 2.84 0 16 16 10 3
S13 60.94 3.47 1 15 16 13 3
S14 32.42 1.96 1 17 18 12 3
S15 33.35 4.04 1 14 15 11 3
S16 29.60 6.24 0 30 30 4 5

Mean 36.98 4.13 8.94 10.50 19.44 15.44 4.00
S.D. 13.66 1.72 10.47 8.23 6.60 4.37 0.89

Table 1. Results

Fourteen participants categorised their constraints according to the concepts of the
ontology as shown in Fig. 2. For these participants, there was a significant correlation
between the ontology score and the constraints score (0.679, p<0.01). However, there
was no significant correlation between the ontology score and the constraints score
when all participants were considered. This strongly suggests that the participants
used the ontology to write constraints developed better constraints.

An obvious reason for this finding may be that more able students produced better
ontologies and also produced a complete set of constraints. To test this hypothesis, we
determined the correlation between the participant’s final grade for the course (which
included other assignments) and the ontology/constraint scores. There was indeed a
strong correlation (0.840, p<0.01) between the grade and the constraint score. How-
ever, there was no significant correlation between the grade and the ontology score.
This lack of a relationship can be due to a number of factors. Since the task of build-

ing ontologies was novel for the participants, they may have found it interesting and
performed well regardless of their ability. Another factor is that the participants had
more practise at writing constraints (in other assignments for the same course) than
on ontologies. Finally, the simplicity of the domain could also be a contributing fac-
tor.

Fig. 3. Ontologies constructed by students

The participants spent 2 hours per constraint (sd=1 hour). This is twice the time
reported in [8], but the participants are neither knowledge engineers nor domain ex-
perts, so the difference is understandable. The participants felt that building an ontol-
ogy made constraint identification easier. The following comments were extracted
from their reports: “Ontology helped me organise my thinking;” “The ontology made
me easily define the basic structure of this tutor;” “The constraints were constructed
based on the ontology design;” “Ontology was designed first so that it provides a
guideline for the tasks ahead.”

The results indicate that ontologies do assist constraint acquisition: there is a
strong correlation between the ontology score and the constraints score for the par-
ticipants who organised the constraints according to the ontology. Subjective reports
confirmed that the ontology was used as a starting point when writing constraints. As
expected, more able students produced better constraints. In contrast, most partici-
pants composed good ontologies, regardless of their ability.

6 Conclusions

We performed an experiment to determine whether the use of domain ontologies
would assist manual composition of constraints for constraint-based ITSs. The

b.

a.

WETAS authoring shell was enhanced with a tool that allowed users to define a do-
main ontology and use it as the basis for organizing constraints. We showed that
constructing a domain ontology indeed assisted the creation of constraints. Ontologies
enable authors to visualise the constraint set and to reflect on the domain, assisting
them to create more complete constraint bases.

We intend to enhance WETAS further by automating constraint acquisition. Pre-
liminary results show that many constraints can be induced directly from the domain
ontology. We will also be exploring ways of using machine learning algorithms to
automate constraint acquisition from dialogs with domain experts.
Acknowledgements The work reported here has been supported by the University of Canter-
bury Grant U6532.

References
1. Blessing, S.B.: A Programming by Demonstration Authoring Tool for Model-Tracing

Tutors. Artificial Intelligence in Education, 8 (1997) 233-261
2. Clutterbuck, P.M.: The art of teaching spelling: a ready reference and classroom active

resource for Australian primary schools. Longman Australia Pty Ltd, Melbourne, 1990.
3. Martin, B., Mitrovic, A.: Authoring Web-Based Tutoring Systems with WETAS. In: Kin-

shuk, Lewis, R., Akahori, K., Kemp, R., Okamoto, T., Henderson, L. and Lee, C.-H. (eds.)
Proc. ICCE 2002 (2002) 183-187

4. Martin, B., Mitrovic, A.: WETAS: a Web-Based Authoring System for Constraint-Based
ITS. Proc. 2nd Int. Conf on Adaptive Hypermedia and Adaptive Web-based Systems AH
2002, Springer-Verlag, Berlin Heidelberg New York, pp. 543-546, 2002.

5. Mitrovic, A.: Experiences in Implementing Constraint-Based Modelling in SQL-Tutor. In:
Goettl, B.P., Halff, H.M., Redfield, C.L. and Shute, V.J. (eds.) Proc. 4th Int. Conf. on Intel-
ligent Tutoring Systems, San Antonio, (1998) 414-423

6. Mitrovic, A.: An intelligent SQL tutor on the Web. Artificial Intelligence in Education, 13,
(2003) 171-195

7. Mitrovic, A., Koedinger, K. Martin, B.: A comparative analysis of cognitive tutoring and
constraint-based modeling. In: Brusilovsky, P., Corbett, A. and Rosis, F.d. (eds.) Proc.
UM2003, Pittsburgh, USA, Springer-Verlag, Berlin Heidelberg New York (2003) 313-322

8. Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-based Tutor for a Database Language.
Artificial Intelligence in Education , 10(3-4) (1999) 238-256

9. Murray, T.: Expanding the Knowledge Acquisition Bottleneck for Intelligent Tutoring
Systems. Artificial Intelligence in Education, 8 (1997) 222-232

10. Ohlsson, S.: Constraint-based Student Modelling. Proc. Student Modelling: the Key to
Individualized Knowledge-based Instruction, Springer-Verlag (1994) 167-189

11. Ohlsson, S.: Learning from Performance Errors. Psychological Review, 103 (1996) 241-
262

12. Suraweera, P., Mitrovic, A.: KERMIT: a Constraint-based Tutor for Database Modeling.
In: Cerri, S., Gouarderes, G. and Paraguacu, F. (eds.) Proc. 6th Int. Conf on Intelligent Tu-
toring Systems ITS 2002, Biarritz, France, LCNS 2363 (2002) 377-387

13. Tecuci, G.: Building Intelligent Agents: An Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. Academic press, 1998.

14. Tecuci, G., Keeling, H.: Developing an Intelligent Educational Agent with Disciple. Artifi-
cial Intelligence in Education, 10 (1999) 221-237

15. van Lent, M., Laird, J.E.: Learning Procedural Knowledge through Observation. Proc. Int.
Conf. on Knowledge Capture, (2001) 179-186

The use of ontologies in ITS domain knowledge authoring

Pramuditha Suraweera, Antonija Mitrovic and Brent Martin

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
{psu16,tanja,brent}@cosc.canterbury.ac.nz

Abstract. Acquiring the domain knowledge is a task that requires a major portion of the
time and effort when building an ITS. Researchers have been exploring ways of
automating the knowledge acquisition process since the inception of ITSs with limited
success. All past research attempts have focussed on acquiring knowledge for procedural
domains. Our goal is to develop an authoring system that acquires knowledge for
procedural as well as nonprocedural domains. We propose a four phase approach:
composing an ontology of the domain, extracting syntax constraint from it, learning
semantic constraints from the examples provided by the domain expert and finally
verifying the generated constraints. This paper presents an overview of the knowledge
acquisition system for acquiring knowledge for constraint-based tutors. It mainly focuses
on composing the ontology and acquiring syntax constraints from it. Further work on this
project will focus on learning from examples and validating the generated constraints.

Keywords: intelligent tutoring systems, authoring systems, constraint-based modelling,
domain model authoring

1 Introduction

Acquiring domain knowledge is a major hurdle in building Intelligent Tutoring Systems (ITS) [1].
Although there have been several attempts to ease the burden on ITS developers by automating the
process, they have met with limited success. All previous attempts have focussed on acquiring
knowledge required for teaching procedural tasks. Our goal is to drastically reduce the time and effort
required for acquiring domain knowledge by automating knowledge acquisition for intelligent tutors
for both procedural and nonprocedural domains.

Constraint based modelling (CBM) [2] is a student modelling approach that somewhat eases the
knowledge acquisition bottleneck by using a more abstract representation of the domain compared to
other commonly used approaches [3]. CBM is based on Ohlsson’s theory of learning from performance
errors [4]. It focuses on correct knowledge rather than describing the student exactly as with model
tracing. However, building a complete constraint base still remains a major challenge. Mitrovic
reported that she took just over an hour to produce a constraint for SQL-Tutor [5, 13], which currently
contains more than 650 constraints. Therefore, the task of composing the knowledge base of SQL-
Tutor would have taken over 4 months to complete. Our goal is to dramatically reduce the time and
effort required for composing the knowledge base required for constraint-based tutors by automating
the knowledge acquisition process.

We envisage ontologies to play a central role in the whole knowledge acquisition process. A
preliminary study conducted to evaluate the role of ontologies in manually composing a constraint base
showed that constructing a domain ontology indeed assisted the composition of constraints [6]. The
study showed that ontologies can be used to organise the constraint base into meaningful categories.
This enabled the author to visualise the constraint set and to reflect on the domain assisting them to
create more complete constraint bases.

The remainder of the paper is organised into five sections. The next section presents a brief description
of automatic knowledge acquisition systems. Section 3 gives an overview of our project. Details on
developing the ontology are given in Section 4. Section 5 discusses the process of acquiring syntax
constraints from the ontology. Conclusions and future work are presented in the final section.

2 Related Work

Past research on acquiring knowledge for ITSs have solely focused on acquiring knowledge for
teaching procedural tasks such as tasks in simulated environments and solving mathematical algebraic
problems. The knowledge acquisition systems that acquire domain knowledge as a runnable model for
evaluating student solutions include KnoMic [7], Disciple [8, 9] and Demonstr8 [10]. All these systems
acquire knowledge by observing the domain expert performing a task and generalising it to be
applicable for other problems.

KnoMic is a learning-by-observation system for acquiring procedural knowledge in a simulated
environment. The system observes and records the procedure taken by the domain expert in performing
a task within the simulated environment. While performing the task the expert has to annotate the
points where he/she had changed goals because it was either achieved or abandoned. The resulting set
of observation traces are generalised by the system to learn the conditions of actions, goals and
operators. During an evaluation to test the accuracy of the procedural knowledge learnt in an air
combat simulator, KnoMic acquired 140 productions. Out of the total 140 created, 101 were fully
correct and 29 of the remainder were functionally correct [7]. Although the results are encouraging
KnoMic’s applicability is limited to only simulated environments.

Disciple is a shell for developing personal agents. It relies on a semantic network of the domain that
describes the domain, which can be either composed by the author or imported from a repository.
Initially the shell has to be customised to the domain by building a domain-specific interface, which
gives a natural way of solving problems for the domain expert. Disciple also requires a problem solver
for the domain. The domain expert has to initiate the knowledge elicitation process by providing
problem-solving examples. The agent generalises the provided example using a generalisation
algorithm with the assistance of the domain expert. The generalised example is refined by requesting
the expert to validate the examples generated by the system. As Disciple depends on problem solving
instances provided by the domain expert, they should be carefully selected to reflect significant
problem states. The task of selecting significant problem states requires expertise in knowledge
engineering which is scarce. Furthermore, building a problem solver for some domains is extremely
difficult, if not impossible.

Demonstr8 is an authoring tool for building model-tracing tutors for arithmetic. It relies on the domain
expert to specify all the algebraic functions that can be used and their outcomes in the form of a table.
It uses programming by demonstration to reduce the authoring effort. The system provides a drawing
tool like interface for building the student interface of the ITS. The system automatically defines each
GUI element as a working memory element (WME), while WMEs involving more than a single GUI
element must be defined manually. The system generates production rules by observing problems being
solved by an expert. Demonstr8 performs an exhaustive search in order to determine the problem-
solving procedure used to obtain the solution. If more than one such procedure exists, then the user
would have to select the correct one.

3 Automatic Constraint Acquisition

Existing approaches to knowledge acquisition for ITSs acquire procedural knowledge by recording the
domain expert’s actions and generalising recorded traces using machine learning algorithms. Even
though these systems are well suited to simulated environments where goals are achieved by
performing a set of steps in a specific order, they fail to acquire knowledge for non-procedural
domains. Our goal is to develop an authoring system that can acquire procedural as well as declarative
knowledge.

The authoring system will be an extension of WETAS [11], a web-based tutoring shell that facilitates
building constraint-based tutors. WETAS provides all the domain-independent components for a text-
based ITS, including the user interface, pedagogical module and student modeller. The pedagogical
module makes decisions based on the student model regarding problem/feedback generation and the
student modeller evaluates student solutions by comparing them to the domain model and updates the
student model. The main limitation of WETAS is its lack of support for authoring the domain model.

The domain model for CBM tutors [14, 15] consists of a set of constraints, which are used to identify
errors in student solutions. As the space of false knowledge is much grater than correct knowledge, in
CBM knowledge is modelled by a set of constraints that identify the set of correct solutions from the
set of all possible student inputs. CBM represents knowledge as a set of ordered pairs of relevance and

satisfaction conditions. The relevance condition identifies the states in which the constraint is relevant,
while the satisfaction condition identifies the subset of the relevant states in which the constraint is
satisfied.

As WETAS does not provide any assistance for developing the knowledge base, typically a knowledge
base is composed using a text editor. Although the flexibility of a text editor may be adequate for
knowledge engineers, novices tend to be overwhelmed by the task. Our goal is to reduce the time and
effort required for building a constraint base by adding support for automatic constraint acquisition to
WETAS. We propose a four-stage process initiated by modelling the domain as an ontology. The
ontology would be composed by a domain expert using the ontology modelling tool. Once the ontology
is completed, the system would analyse the ontology and extract syntax constraints directly from the
completed ontology. During the third phase, the system would acquire constraints by analysing sample
solutions provided by the expert. Finally the constraint set is validated with the assistance of the
domain expert, where the expert would label the system generated examples as correct or incorrect.

Figure 1 Architecture of the constraint-acquisition system

The architecture of the constraint acquisition system consists of an ontology workspace, ontology
checker, problem/solution manager and syntax and semantic constraint generators, as depicted in
Figure 1. During the initial phase, the domain expert models an ontology of the domain in the ontology
workspace. The ontology checker validates the ontology during the ontology composition state. The
completed ontology is stored in the ontology repository. The syntax constraints generator analyses the
completed ontology and generates syntax constraints from it. The generated syntax constraints are
stored in the syntax constraints repository. The generation of constraints from a domain ontology is
discussed further in Section 5.

The domain expert has to specify the representation for solutions prior to entering problems and sample
solutions. The solution representation is a decomposition of the solution into components consisting of
a list of instances of concepts. For example, a sentence in English consists of a list of words and a list
of punctuation marks.

The domain expert has to enter sample problems and their solutions during the third phase of
knowledge acquisition. The problems/solution interface assists the user by providing a dynamic form
that consists of input boxes for populating each property of the concept instance. The expert is
requested to provide different solutions that depict different ways of solving the same problem. While
the expert enters in an alternative correct solution, the system attempts to match each component of the
solution to components of the initial solution. These matches are later used to compose a set of
semantic constraints that compare the student’s solution against the system’s ideal solution. The expert

Ontology
workspace

Ontology
checker

Syntax
constrains
generator

Syntax
constraints

Ontologies

Semantic
constrains
generator

Semantic
constraints

Problem/solution
interface

Problem/solution
manager

Constraints validation
component

Problems and
solutions

is also encouraged to supply solutions containing typical errors made by students. The system would
use these erroneous solutions to provide more detailed assistance. The system also verifies the solutions
provided by the expert using the generated syntax constraints. If a discrepancy is identified, the user is
alerted and the solution may be modified to comply with the ontology or vice versa.

The final phase involves ensuring the validity of constraints. During this phase the system would
generate examples for the domain to be validated by the author. In situations where the author’s
validation conflicts with the system’s evaluation according to the domain model, the system would
request the author to provide further examples to illustrate the rationale behind the conflict. The system
would use the new examples to resolve the conflicts and may also generate new constraints. The author
may also wish to examine the English description of the generated constraints and dispute them by
providing counter examples.

We started developing the constraint acquisition system in 2003. The ontology workspace, ontology
checker, problem/solution interface and the syntax constraint generator are completed. We are currently
working on the semantic constraints generator.

Figure 2 Ontology workspace interface

4 Developing the ontology

As discussed earlier, the first phase in authoring a constraint base is developing the domain ontology.
The ontology will be later used to generate constraints automatically. An ontology describes the
domain, by identifying all the important domain concepts and various relationships between them. The
ontology workspace provides an environment for composing the domain ontology in terms of concepts
and their sub concepts as shown in Figure 2. All concepts are represented using rectangles and they are
related to their sub concepts using arrows. The interface has no restrictions in placing concepts within
the workspace. The user can position the concepts to display a hierarchical structure. The completed
ontology is saved on a central server in the XML format.

The ontology displayed in Figure 2 represents the concepts of ER modelling, a popular database
modelling technique. The ER model describes data as entities, attributes and relationships. An entity is
the basic object represented in the ER model, which is a ‘thing’ in the real world with an independent
existence. Each entity has particular properties, called attributes, that describe it. A relationship is an
association between two or more entities.

The ER ontology depicted in Figure 2 contains Construct as the most general concept. Relationship,
Entity, Attribute are sub-concepts of Construct. Relationship is specialised into Regular and
Identifying, which are the two types of relationships and Entity is specialised, according to its types, as
Regular and Weak. Subclasses of Attribute are Simple or Composite attributes and Simple attributes are
further specialised into five categories: Key, Partial key, Single, Derived and Multi-valued.

Figure 3 Details of identified-participation property

Each concept has a set of properties that describes it. To define properties for a concept, the author uses
the property addition interface shown in Figure 3. The range of values that the property may hold can
be specified in terms of minimum and maximum values or as a set of distinct values. Other restrictions
include specifying that the value of a property is unique, optional or can contain multiple values. Figure
3 depicts the identified participation property of the Binary identifying relationship concept. The
property has a default value of ‘total’. Furthermore as the ‘at least’ and ‘at most’ fields are both set to 1
the identified participation property has to have a single value.

The remainder of the properties of Binary identifying relationship concept, as shown in Figure 2,
include name, owner participation and identified cardinality. Most properties are of type ‘string’
except owner participation and owner cardinality are of type ‘symbol’. Both identified cardinality
property and identified participation property have default values: 1 and ‘total’ respectively.

The relationships that are involved with Binary identifying relationship concept are detailed in Figure
2. They include attributes, owner and identified entity. The attributes relationship is a relationship
between Binary identifying relationship and Attribute with no restrictions on the cardinality. The owner
relationship with Regular entity has a minimum cardinality of 1. The identified entity relationship, as
detailed in Figure 4, between Binary identifying relationship and Weak entity has a minimum and
maximum cardinality of 1.

Figure 4 Details of identified-entity relationship

During the task of composing an ontology, the domain expert may add relationships that are too
general. Since constraints are composed directly from the relationships found in the ontology, it is
imperative that the relationships are valid. In order to ensure that all added relationships are completely
accurate, the system engages the author in a dialog. During this dialog the author is presented with lists
of specialisations of concepts involved in the relationship and is asked to label the specialisations that
violate the principles of the domain. As an example, consider the relationship between Binary
identifying relationship and Attribute. As shown in Figure 5, the initial question posed asks whether
each of the specialisations of attribute (key, partial key, single-valued etc) are applicable to the
attributes relationship. The user would indicate that key or partial key attributes cannot be used in the
attributes relationship. The system replaces the original relationship with a more specific one at the
completion of the dialog.

Figure 5 Relationship validate dialog for ‘Entity has attribute’ relationship

The ontology is represented in memory as a list of objects that keeps track of all the details about the
concepts. The concept’s properties and relationships are contained as lists within each concept object.
The concept object keeps a record of its super concepts and sub concepts. The generated constraints
that belong to each concept are also stored in a list with the concept object.

The internal representation of the ontology gets converted to XML for storing in the central server. The
XML representation uses a set of XML tags defined specifically for this project. Details of each
concept along with a unique id that identifies the concept are enlisted using the appropriate XML tags.
The concept ids are used to specify the relationships between concepts. The position and sizes of the
graphical representations for the concepts are also recorded in XML in order to recreate an identical
ontology in the ontology workspace. During the restoration of the ontology new objects for
representing concepts are created with the relevant information extracted from the XML representation.

Although the ontology is stored using proprietary XML tags, it can be easily be transformed to a
standard ontology representation form such as DAML [16]. The system was developed to save
ontologies using its own XML representation in order to speed up the progress of the research project,
avoiding the need for extensive research into DAML implementation.

5 Acquiring Syntax Constraints from the Domain Ontology

An ontology contains a lot of information about the domain and is much easier to create than the final
domain model. Our goal is to extract the useful syntactic information from an ontology to generate
syntax constraints for the domain model. This process involves analysing the relationships between
concepts and the properties of concepts that exist in the ontology.

Initially the constraint generator extracts all the relationships between concepts. Each relationship with
restrictions on the cardinality such as a minimum or maximum yields a syntax constraint that restricts
the instances participating in the particular relationship. As an example, consider the identified-entity
relationship found in Figure 4. It generates a constraint which says Binary identifying relationship must
have exactly 1 Weak entity as the identified entity. The relevance condition of the constraint focuses on
identifying instances of Binary identifying relationships, whereas the satisfaction condition specifies
that each of them has to have exactly one weak entity as the identified-entity.

The domain and range of each concept’s properties are also analysed for generating constraints. The
constraint generator creates a constraint for each restriction on the domain and range of a property.
Such restrictions involve minimum and maximum values allowed, whether the property is required,
multivalued or unique. The generated constraints are similar to the constraints generated from
relationships, having a check for identifying each property as a relevance condition and a satisfaction
condition that ensures that the specified condition is met.

For example, when the processing of the Binary identifying relationship concept illustrated in Figure 2,
4 the system generates six constraints:

• Binary identifying relationship must have at least 1 Regular entity as the owner

• Binary identifying relationship must have exactly 1 Weak entity as the identified entity

• The identified participation property of Binary identifying relationship must be total

• The identified cardinality property of Binary identifying relationship must be 1

• The name property of Relationship type has to be unique

• Relationship type must have exactly 1 name

The dialog sessions for validating relationships during the ontology composing phase also contribute
towards generating syntax constraints. The specialisations of concepts involved in the relationship that
violate the principles of the domain are used to generate constraints. They ensure that elements of a
solution does not participate in such relationships that violate the domain principles. The specialisations
marked as violations by the author in Figure 5 would be used to generate two constraints: Binary
identifying relationship cannot have a key attribute and Binary identifying relationship cannot have a
partial key attribute.

The syntax constraints generator produced a total of 48 syntax constraints from the ER ontology
depicted in Figure 2. The generated set of constraints covered all syntax constraints that existed in
KERMIT [12], a constraint-based tutor for ER modelling. Although the initial results are derived from
only a single domain, we believe that the system would be able to successfully handle most non-
procedural domains. The ontology workspace would be enhanced to handle procedural domains by
adding further constructs.

6 Conclusions and Future Work

We provided a brief overview of our main research objective: automatically acquire domain knowledge
required for constraint-based tutors. We propose a four phase process, initiated by modelling a domain
ontology. The system then analyses the completed ontology and extracts syntax constraints from it.
During the third phase, the author provides example problems and their solutions and the system
generates semantic constraints by analysing the solutions. Finally, the induced constraint set is
validated with the assistance of the author.

The paper included a detailed description of the first two phases: modelling the ontology and extracting
constraints from it. The initial tests conducted on acquiring constraints from an ontology composed for
ER modelling produced encouraging results. The system generated the complete set of syntax
constraints found in KERMIT, a constraint based tutor developed for the same domain.

Currently we are working on acquiring semantic constraints from examples provided by the domain
expert. We will be exploring machine learning algorithms such as learning from examples and learning
from analogy for automatically acquiring semantic constraints. The ontology workspace will also be
enhanced to handle procedural domains.

Finally the system will be thoroughly evaluated to test its effectiveness. Most importantly, the quality
and the correctness of the knowledge base generated by the system have to be evaluated. Since this
research aims to produce a system that is capable of acquiring knowledge for a vast range of tasks, it
will be tested in different domains. The usability of the system will also be tested.

Acknowledgements
The work reported here has been supported by the University of Canterbury Grant U6532.

References

1. Murray, T.: Expanding the knowledge acquisition bottleneck for intelligent tutoring systems. Int. J.
Artificial Intelligence in Education 8 (1997) 222–232

2. Ohlsson, S.: Constraint-based student modelling. In: Student Modelling: the Key to Individualized
Knowledge-based Instruction, Berlin, Springer-Verlag (1994) 167– 189

3. Mitrovic, A., Koedinger, K., Martin, B.: A comparative analysis of cognitive tutoring and
constraint-based modelling. In Brusilovsky, P., Corbett, A., Rosis, F.d., eds.: UM2003, Pittsburgh,
USA, Springer-Verlag (2003) 313–322

4. Ohlsson, S.: Learning from performance errors. Psychological Review 103 (1996) 241–262
5. Mitrovic, A.: Experiences in implementing constraint-based modelling in SQL-tutor. In Goettl,

B.P., Halff, H.M., Redfield, C.L., Shute, V.J., eds.: 4th International Conference on Intelligent
Tutoring Systems, ITS 98, San Antonio (1998) 414–423

6. Suraweera, P., Mitrovic, A., Martin, B.: The role of domain ontology in knowledge acquisition for
ITSs. In: 7th International Conference on Intelligent Tutoring Systems, ITS 2004. (2004) to appear

7. van Lent, M., Laird, J.E.: Learning procedural knowledge through observation. In: International
conference on Knowledge capture, Victoria, British Columbia, Canada, ACM Press (2001) 179–
186

8. Tecuci, G.: Building Intelligent Agents: An Apprenticeship Multi-strategy Learning Theory,
Methodology, Tool and Case Studies. Academic press (1998) 9. Tecuci, G., Keeling, H.:
Developing an intelligent educational agent with disciple. International Journal of Artificial
Intelligence in Education 10 (1999) 221–237

10. Blessing, S.B.: A programming by demonstration authoring tool for model-tracing tutors. Int. J.
Artificial Intelligence in Education 8 (1997) 233–261

11. Martin, B., Mitrovic, A.: Domain modelling: Art or science? In U. Hoppe, F.V..J.K., ed.: Artificial
Intelligence in Education, AIED 2003, IOS Press (2003) 183–190

12. Suraweera, P., Mitrovic, A.: Kermit: a constraint-based tutor for database modelling. In Cerri, S.,
Gouarderes, G., Paraguacu, F., eds.: 6th International Conference on Intelligent Tutoring Systems,
ITS 2002, Biarritz, France (2002) 377–387

13. Mitrovic, A. An Intelligent SQL Tutor on the Web. Int. J. Artificial Intelligence in Education,
v13no2-4, 2003: 173-197.

14. Mitrovic, A., Mayo, M., Suraweera, P and Martin, B. Constraint-based tutors: a success story.
Proc. 14th Int. Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems IEA/AIE-2001, Budapest, June 2001, L. Monostori, J. Vancza and M. Ali
(eds), Springer-Verlag Berlin Heidelberg LNAI 2070, 2001: 931-940.

15. Mitrovic, A. Supporting Self-Explanation in a Data Normalization Tutor. In: V. Aleven, U. Hoppe,
J. Kay, R. Mizoguchi, H. Pain, F. Verdejo, K. Yacef (eds) Supplementary proceedings, Artificial
Intelligence in Education, AIED 2003, pp. 565-577, 2003

16. DARPA Agent Markup Language, http://www.daml.org/

Automatic Acquisition of Knowledge for
Constraint-based Tutors

Pramuditha Suraweera

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
psu16@cosc.canterbury.ac.nz

Intelligent Tutoring Systems (ITS) assist students in learning by adaptively
providing pedagogical assistance. Numerous empirical studies have shown that
students learn more effectively by interacting with ITSs in comparison to tra-
ditional classroom based teaching [1, 2]. Although ITSs are highly regarded as
effective tools for education, developing an ITS is a time and labour intensive
task requiring programming skill as well as knowledge engineering skills. A ma-
jor proportion of the time and effort for building an ITS is spent on acquiring
the domain knowledge required for providing adaptive assistance. Anderson and
co-workers estimated that ten hours or more were required to produce a single
production rule [3]. Our main goal is to automate the knowledge acquisition
process to drastically reduce the time and effort require for building an ITS.

Researchers have been exploring ways of conquering the knowledge acqui-
sition bottleneck ever since the inception of ITSs. Previous research including
KnoMic (Knowledge Mimic) [4], Disciple [5] and Demonstr8 [6] have focussed
on acquiring procedural knowledge by recording the actions of a domain ex-
pert and generalising the recorded trace using machine learning algorithms.
Although these systems are well suited for inherently procedural domains like
simulated environments, they fail to acquire declarative knowledge required for
non-procedural domains. Our goal is to develop an authoring system that is ca-
pable of acquiring knowledge for procedural as well as non-procedural domains.

Constraint based modelling (CBM) [7] is a student modelling technique that
somewhat eases the knowledge acquisition bottleneck by using a more abstract
representation of the domain compared to other popular domain modelling tech-
niques [8]. However, building a constraint base still remains a major challenge.
Mitrovic reported that, she took just over an hour to produce a constraint for
SQL-Tutor, which currently contains more than 650 constraints [9]. Our research
is focussed on automating the process of acquiring knowledge for constraint-
based tutors.

The authoring system will be an extension to the web-based tutoring shell,
named WETAS [10], that facilitates building constraint-based tutors. WETAS
provides all the domain-independent components for a text-based ITS, including
the user interface, pedagogical module and student modeller. The main limita-
tion of WETAS is its lack of support for authoring the domain model.

We propose a four-stage process to infer constraints automatically. During
the first phase the domain expert composes an ontology of the instructional

2

domain. At the completion of the ontology, the system analyses the ontology and
extracts syntax constraints directly from it. The third phase involves learning
from examples. During this phase the system generates constraints by identifying
commonalities between solutions provided by the domain expert. Finally the
constraint set is validated with the assistance of the domain expert. The system
would generate examples to be labelled as correct or incorrect by the expert.

An ontology contains a lot of information about the domain and it is much
easier to create than the final domain model. Ontology defines the concepts of the
domain and the relationships between them. Each concept has a set of attributes
that describes itself. The range of the attributes specified in terms of minimum
and maximum values or a set of distinct values can be directly translated to
constraints. Furthermore, the minimum and maximum number of instances that
can participate in a relationship (cardinality) can also be translated directly to
constraints.

The authoring system analyses the ontology composed by the domain expert
and generates constraints during the second phase. Since all the restrictions
specified in the ontology deal with the syntax of the domain, the generated
constraints are also syntactic in nature. As an example consider an ontology
for the domain of punctuation in the English language. The ontology would
contain a ‘sentence’ concept and a ‘period’ concept. The ‘sentence’ concept would
be involved in a relationship with the ‘period’ concept with a minimum and
maximum cardinality of 1. This translates directly to a constraint that specifies
that a ‘sentence’ must have exactly one ‘period’.

The domain expert has to specify the representation for solutions prior to
entering problems and sample solutions. The solution representation is a de-
composition of the solution into components consisting of a list of instances of
concepts. For example, a sentence in English consists of a list of words and a list
of punctuation marks.

The domain expert enters problems and solutions in the next phase which
uses learning from examples techniques to induce semantic constraints. After a
solution is specified by the author, the system evaluates it against its collection
of automatically generated syntax constraints. When a discrepancy is identified
the expert is alerted and they may chose to alter the solution or alter the ontol-
ogy. The expert is encouraged to enumerate all correct solutions to demonstrate
different ways of solving a problem. While the expert enters in alternative cor-
rect solution, the system attempts to match each component of the solution to
components of the initial solution. These matches are later used to compose a
set of semantic constraints that compare the student’s solution against the sys-
tem’s ideal solution. The expert is also called upon to provide typical erroneous
solutions for the system to generate semantic constraints that identify typical
student errors.

The validation phase involves ensuring the correctness of the generated con-
straints. The expert can go through the generated constraint set and ensure
that it does not contain an redundant or erroneous ones. The expert may either
directly modify erroneous constraints or provide new examples to illustrate the

3

reasoning for disputing the constraint. The expert may also opt to validate the
constraints by labelling system generated examples as correct or incorrect.

A brief description on a system for acquiring the domain knowledge required
for constraint-based tutors was provided. The envisaged interactions with the
domain expert were outlined.

Currently, the implementation of the ontology composer and the syntax con-
straints generator are complete. The functionality of the two modules were tested
by modelling an ontology for ER modelling, a popular database modelling tech-
nique. The syntax constraints generated by the system covered all the syntax
constraints found in KERMIT [11], a CBM tutor for the same domain. Future
work involves completing the learning from examples module and constraint val-
idation module. We indent to conduct a comprehensive evaluation study at the
completion of the authoring system.

References

1. Koedinger, K.R., Anderson, J., Hadley, W., Mark, M.A.: Intelligent tutoring goes
to school in the big city. International Journal of Artificial Intelligence in Education
8 (1997) 30–43

2. Mitrovic, A., Ohlsson, S.: Evaluation of a constraint-based tutor for a database
language. International Journal on AIED 10 (1999) 238–256

3. Anderson, J.R., Corbett, A., Koedinger, K., Pelletier, R.: Cognitive tutors: Lessons
learned. Journal of the Learning Sciences 4 (1996) 167–207

4. Lent, M.v., Laird, J.E.: Learning procedural knowledge through observation. In: In-
ternational conference on Knowledge capture, Victoria, British Columbia, Canada,
ACM Press (2001) 179–186

5. Tecuci, G., Keeling, H.: Developing an intelligent educational agent with disciple.
International Journal of Artificial Intelligence in Education 10 (1999) 221–237

6. Blessing, S.B.: A programming by demonstration authoring tool for model-tracing
tutors. International Journal of Artificial Intelligence in Education 8 (1997) 233–
261

7. Ohlsson, S.: Constraint-based student modelling. In: Student Modelling: the Key to
Individualized Knowledge-based Instruction, Berlin, Springer-Verlag (1994) 167–
189

8. Mitrovic, A., Koedinger, K., Martin, B.: A comparative analysis of cognitive tu-
toring and constraint-based modeling. In Brusilovsky, P., Corbett, A., Rosis, F.d.,
eds.: 9th International conference on User Modelling UM2003. Volume LNAI 2702.,
Pittsburgh, USA, Springer-Verlag (2003) 313–322

9. Mitrovic, A.: Experiences in implementing constraint-based modelling in sql-tutor.
In Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J., eds.: 4th International
Conference on Intelligent Tutoring Systems, San Antonio (1998) 414–423

10. Martin, B., Mitrovic, A.: Domain modeling: Art or science? In U. Hoppe, F.V..J.K.,
ed.: 11th Int. Conference on Artificial Intelligence in Education AIED 2003, IOS
Press (2003) 183–190

11. Suraweera, P., Mitrovic, A.: Kermit: a constraint-based tutor for database model-
ing. In Cerri, S., Gouarderes, G., Paraguacu, F., eds.: 6th Int. Conf on Intelligent
Tutoring Systems ITS 2002, Biarritz, France, LCNS 2363 (2002) 377–387

Appendix D

AIED 2005 paper

215

A Knowledge Acquisition System for Constraint-based
Intelligent Tutoring Systems

Pramuditha Suraweera, Antonija Mitrovic and Brent Martin

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
{psu16, tanja, brent}@cosc.canterbury.ac.nz

Abstract. Building a domain model consumes a major portion of the time and effort
required for building an Intelligent Tutoring System. Past attempts at reducing the
knowledge acquisition bottleneck by automating the knowledge acquisition process
have focused on procedural tasks. We present CAS (Constraint Acquisition Sys-
tem), an authoring system for automatically acquiring the domain model for non-
procedural as well as procedural constraint-based tutoring systems. CAS follows a
four-phase approach: building a domain ontology, acquiring syntax constraint di-
rectly from it, generating semantic constraints by learning from examples and vali-
dating the generated constraints. This paper describes the knowledge acquisition
process and reports on results of a preliminary evaluation. The results have been en-
couraging and further evaluations are planned.

1 Introduction

Numerous empirical studies have shown that Intelligent Tutoring Systems (ITS) are effec-
tive tools for education. However, developing an ITS is a labour intensive and time con-
suming process. A major portion of the development effort is spent on acquiring the do-
main knowledge that accounts for the intelligence of the system. Our goal is to significantly
reduce the time and effort required for building a knowledge base by automating the proc-
ess.

This paper details the Constraint Acquisition System (CAS), which automatically ac-
quires the required knowledge for ITSs by learning from examples. The knowledge acquisi-
tion process consists of four phases, initiated by an expert of the domain describing the
domain in terms of an ontology. Secondly, syntax constraints are automatically generated
by analysing the ontology. Semantic constraints are generated in the third phase from prob-
lems and solutions provided by the author. Finally, the generated constraints are validated
with the assistance of the author.

The remainder of the paper is initiated by a brief introduction to Constraint-based mod-
elling, the student modelling technique focused in this research, and a brief overview of
related research. We then present a detailed description of CAS, including its architecture
and a description of the knowledge acquisition process. Finally, conclusions and future
work is outlined.

2 Related work

Constraint based modelling (CBM) [6] is a student modelling approach that somewhat
eases the knowledge acquisition bottleneck by using a more abstract representation of the
domain compared to other commonly used approaches [5]. However, building constraint
sets still remains a major challenge. Our goal is to significantly reduce the time and effort
required for acquiring the domain knowledge for CBM tutors by automating the knowledge
acquisition process. Unlike other automated knowledge acquisition systems, we aim to pro-
duce a system that has the ability to acquire knowledge for non-procedural, as well as pro-
cedural, domains.

Existing systems for automated knowledge acquisition have focused on acquiring pro-
cedural knowledge in simulated environments or highly restrictive environments. KnoMic
 [10] is a learning-by-observation system for acquiring procedural knowledge in a simu-
lated environment. It generates the domain model by generalising recorded domain experts’
traces. Koedinger et al have constructed a set of authoring tools that enable non AI experts
to develop cognitive tutors. They allow domain experts to create “Pseudo tutors” which
contain a hard coded domain model specific to the problems demonstrated by the expert
[3]. Research has also been conducted to generalise the domain model of “Pseudo tutors”
by using machine learning techniques [2].

Most existing systems focus on acquiring procedural knowledge by recording the do-
main expert’s actions and generalising recorded traces using machine learning algorithms.
Although these systems appear well suited to tasks where goals are achieved by performing
a set of steps in a specific order, they fail to acquire knowledge for non-procedural do-
mains, i.e. where problem-solving requires complex, non-deterministic actions in no par-
ticular order. Our goal is to develop an authoring system that can acquire procedural as well
as declarative knowledge.

The domain model for CBM tutors [7] consists of a set of constraints, which are used to
identify errors in student solutions. In CBM knowledge is modelled by a set of constraints
that identify the set of correct solutions from the set of all possible student inputs. CBM
represents knowledge as a set of ordered pairs of relevance and satisfaction conditions. The
relevance condition identifies the states in which the represented concept is relevant, while
the satisfaction condition identifies the subset of the relevant states in which the concept
has been successfully applied.

3 Constraint Authoring System

The proposed system is an extension of WETAS [4], a web-based tutoring shell that facili-
tates building constraint-based tutors. WETAS provides all the domain-independent com-
ponents for a text-based ITS, including the user interface, pedagogical module and student
modeller. The pedagogical module makes decisions based on the student model regarding
problem/feedback generation, and the student modeller evaluates student solutions by com-
paring them to the domain model and updates the student model. The main limitation of
WETAS is its lack of support for authoring the domain model.

As WETAS does not provide any assistance for developing the knowledge base, typi-
cally a knowledge base is composed using a text editor. Although the flexibility of a text
editor may be adequate for knowledge engineers, novices tend to be overwhelmed by the
task. The goal of CAS (Constraint Authoring System) is to reduce the complexity of the
task by automating the constraint acquisition process. As a consequence the time and effort
required for building constraint bases should reduce dramatically.

CAS consists of an ontology workspace, ontology checker, problem/solution manager,
syntax and semantic constraint generators, and constraint validation as depicted in Figure 1.
During the initial phase, the domain expert develops an ontology of the domain in the on-
tology workspace. This is then evaluated by the ontology checker, and the result is stored in
the ontology repository.

The syntax constraints generator analyses the completed ontology and generates syntax
constraints directly from it. These constraints are generated from the restrictions on attrib-
utes and relationships specified in the ontology. The resulting constraints are stored in the
syntax constraints repository.

CAS induces semantic constraints during the third phase by learning from sample prob-
lems and their solutions. Prior to entering problems and sample solutions, the domain ex-
pert specifies the representation for solutions. This is a decomposition of the solution into

components consisting of a list of instances of concepts. For example, an algebraic equation
consists of a list of terms in the left hand and a list of terms in the right hand side.

Figure 1: Architecture of the constraint-acquisition system

The final phase involves ensuring the validity of the generated constraints. During this
phase the system generates examples to be validated by the author. In situations where the
author’s validation conflicts with the system’s evaluation according to the domain model,
the author is requested to provide further examples to illustrate the rationale behind the
conflict. The new examples are then used to resolve the conflicts, and may also lead to the
generation of new constraints.

3.1 Modelling the domain’s ontology

Domain ontologies play a central role in the knowledge acquisition process of the con-
straint authoring system [9]. A preliminary study conducted to evaluate the role of ontolo-
gies in manually composing a constraint base showed that constructing a domain ontology
assisted the composition of the constraints [8]. The study showed that ontologies help or-
ganise constraints into meaningful categories. This enables the author to visualise the con-
straint set and to reflect on the domain, assisting them to create more complete constraint
bases.

Figure 2: Ontology for ER modelling domain

An ontology describes the domain by identifying important concepts and relationships
between them. It outlines the hierarchical structure of the domain in terms of sub- and su-
per-concepts. CAS contains an ontology workspace for modelling an ontology of the do-
main. An example ontology for Entity Relationship Modelling is depicted in Figure 2. The
root node, Construct, is the most general concept, of which Relationship, Entity and Attrib-
ute are sub-concepts. Relationship is further specialised into Regular and Identifying, which
are the two possible types of relationships, and so on.

As syntax constraints are generated directly from the ontology, it is imperative that all
relationships are correct. The ontology checker verifies that the relationships between con-

Ontology
workspace

Ontology
checker

Syntax
constrains
generator

Syntax
constraints

Ontologies

Semantic
constrains
generator

Semantic
constraints

Problem/
solution
interface

Problem/
solution
manager

Constraints
validation

component

Problems and
solutions

Construct

Relationship Entity Attribute

Regular Relationship Identifying Relationship

Recursive Regular

Binary Regular
N-ary Regular

Recursive Identifying

Binary Identifying
N-ary Identifying

Regular Weak Simple Composite

Key Partial key Single Derived Multi-valued

cepts are correct by engaging the user in a dialog. The author is presented with lists of spe-
cialisations of concepts involved in a relationship and is asked to label the specialisations
that are incorrect. For example, consider a relationship between Binary identifying relation-
ship and Attribute. CAS asks whether all of the specialisations of attribute (key, partial key,
single-valued etc) can participate in this relationship. The user indicates that key and partial
key attributes cannot be used in this relationship. CAS therefore replaces the original rela-
tionship with specialised relationships between Binary identifying relationship and the
nodes single-valued, multi-valued and derived.

Ontologies are internally represented in XML. We have defined set of XML tags spe-
cifically for this project, which can be easily be transformed to a standard ontology repre-
sentation form such as DAML [1]. The XML representation also includes positional and
dimensional details of each concept for regenerating the layout of concepts in the ontology.

3.2 Syntax Constraint Generation

An ontology contains much of information about the syntax of the domain: information
about domain concepts; the domains (i.e. possible values) of their properties; restrictions on
how concepts participate in relationships. Restrictions on a property can be specified in
terms of whether its value has to be unique or whether it has to contain a certain value.
Similarly, restrictions on the participation in relationships can also be specified in terms of
minimum and maximum cardinality.

The syntax constraints generator analyses the ontology and generates constraints from
all the restrictions specified on properties and relationships. For example, consider the
owner relationship between Binary identifying relationship and Regular entity from the
ontology in Figure 2, which has a minimum cardinality of 1. This restriction specifies that
each Binary identifying relationship has to have at least one Regular entity participating as
the owner, and can be translated to a constraint that asserts that each Identifying relation-
ship found in a solution has to have at least one Regular entity as its owner.

To evaluate the syntax constraints generator, we ran it over the ER ontology in Figure 2.
It produced a total of 49 syntax constraints, covering all the syntax constraints that were
manually developed for KERMIT [7], an existing constraint-based tutor for ER modelling.
The generated constraint set was more specific than the constraints found in KERMIT, i.e.
in some cases several constraints generated by CAS would be required to identify the prob-
lem states identified by a single constraint in KERMIT. This may mean that the set of gen-
erated constraints would be more effective for an ITS, since they would provide feedback
that is more specific to a single problem state. However, it is also possible that they would
be overly specific.

We also experimented with basic algebraic equations, a domain significantly different
to ER modelling. The ontology for algebraic equations included only four basic operations:
addition, subtraction, multiplication and division. The syntax constraints generator pro-
duced three constraints from an ontology composed for this domain, including constraints
that ensure whenever an opening parenthesis is used there should be a corresponding clos-
ing parenthesis, a constant should contain a plus or minus symbol as its sign, and a con-
stant’s value should be greater than or equal to 0. Because basic algebraic expressions have
very little syntax restrictions, three constraints are sufficient to impose the basic syntax
rules.

3.3 Semantic Constraint Generation

Semantic constraints are generated by a machine learning algorithm that learns from exam-
ples. The author is required to provide several problems, with a set of correct solutions for

each depicting different ways of solving it. A solution is composed by populating each of
its components by adding instances of concepts, which ensures that a solution strictly ad-
heres to the domain ontology. Alternate solutions, which depict alternate ways of solving
the problem, are composed by modifying the first solution. The author can transform the
first solution into the desired alternative by adding, editing or dropping elements. This re-
duces the amount of effort required for composing alternate solutions, as most alternatives
are similar. It also enables the system to correctly identify matching elements in two alter-
nate solutions.

The algorithm generates semantic constraints by analysing pairs of solutions to identify
similarities and differences between them. The constraints generated from a pair of solu-
tions contribute towards either generalising or specialising constraints in the main con-
straint base. The detailed algorithm is given in Figure 3.

Figure 3: Semantic constraint generation algorithm

The constraint learning algorithm focuses on a single problem at a time. Constraints are
generated by comparing one solution to another of the same problem, where all permuta-
tions of solution pairs, including solutions compared to themselves, are analysed. Each so-
lution pair is evaluated against all constraints in the main constraint base. Any that are vio-
lated are either specialised to be irrelevant for the particular pair of solutions, or generalised
to satisfy that pair of solutions. Once no constraint in the main constraint base is violated
by the solution pair, the newly generated set of constraints is evaluated against all previ-
ously analysed pairs of solutions. The violated constraints from this new set are also either
specialised or generalised in order to be satisfied. Finally, constraints in the new set that are
not found in the main constraint base are added to the constraint base.

Figure 4: Algorithm for generating constraints from a pair of solutions

New constraints are generated from a pair of solutions following the algorithm outlined
in Figure 4. It treats one solution as the ideal solution and the other as the student solution.
A constraint is generated for each element in the ideal solution, asserting that if the ideal
solution contains the particular element, the student solution should also contain the match-
ing element.

E.g. Relevance: IS.Entities has a Regular entity
Satisfaction: SS.Entities has a Regular entity

In addition, three constraints are generated for each relationship that an element partici-
pates with. Two constraints ensure that a matching element exists in SS for each of the two

a. For each problem Pi
b. For each pair of solutions Si & Sj

a. Generate a set of new constraints N
b. Evaluate each constraint CBi in main constraint base, CB, against Si & Sj,
 If CBi is violated, generalise or specialise CBi to satisfy Si & Sj
c. Evaluate each constraint Ni in set N against each previously analysed pair of solu-

tions Sx & Sy for each previously analysed problem Pz,
 If Ni is violated, generalise or specialise CBi to satisfy Sx & Sy
d. Add constraints in N that were not involved in generalisation or specialisation to CB

1. Treat Si as the ideal solution (IS) and Sj as the student solution (SS)
2. For each element A in the IS

a. Generate a constraint that asserts that if IS contains the element A, SS should con-
tain a matching element

b. For each relationship that element is involved with,
Generate constraints that ensures that the relationship holds between the corre-
sponding elements of the SS

3. Generalise the properties of similar constraints by introducing variables or wild cards

elements of IS participating in the relationship. The third constraint ensures that the rela-
tionship holds between the two corresponding elements of SS.

E.g. 1. Relevance: IS.Entities has a Regular entity
 AND IS.Attributes has a Key
 AND SS.Entities has a Regular entity
 AND IS Regular entity is in key-attribute with Key
 AND IS Key is in belong to with Regular entity
Satisfaction: SS.Attributes has a Key

2. Relevance: IS.Entities has a Regular entity
 AND IS.Attributes has a Key
 AND SS.Attributes has a Key
 AND IS Regular entity is in key-attribute with Key
 AND IS Key is in belong to with Regular entity
Satisfaction: SS.Entities has a Regular entity

3. Relevance: IS.Entities has a Regular entity
 AND IS.Attributes has a Key
 AND SS.Entities has a Regular entity
 AND SS.Attributes has a Key
 AND IS Regular entity is in key-attribute with Key
 AND IS Key is in belong to with Regular entity
Satisfaction: SS Regular entity is in key-attribute with Key
 AND SS Key is in belong to with Regular entity

Figure 5: Algorithm for generalising or specialising violated constraints

The constraints that get violated during the evaluation stage are either specialised or
generalised according to the algorithm outlined in Figure 5. It deals with two sets of con-
straints (C-set): the new set of constraints generated by a pair of solutions and the main
constraint base. The algorithm remedies each violated constraint individually by either spe-
cialising it or generalising it. If the constraint cannot be resolved, it is labelled as an incor-
rect constraint and the system ensures that it does not get generated in the future.

The semantic constraints generator of CAS produced a total of 135 constraints for the
domain of ER modelling using the ontology in Figure 2 and six problems. The problems
supplied to the system were simple and similar to the basic problems offered by KERMIT.
Each problem focused on a set of ER modelling constructs and contained at least two solu-
tions that exemplified alternate ways of solving the problem. The solutions were selected
that maximised the differences between them. The differences between most solutions were
small because ER modelling is a domain that does not have vastly different solutions. How-
ever, problems that can be solved in different ways consisted of significantly different solu-
tions.

a. If constraint set, C-set that does not contain violated constraint V, has a similar but a more
restrictive constraint C then replace V with C and exit.

b. If C-set has a constraint C that has the same relevance condition but different satisfaction
condition to V,

Add the satisfaction condition of C as a disjunctive test to the satisfaction of V, remove C
from C-set and exit

c. Find a solution Sk that satisfies constraint V
d. If a matching element can be found in Sj for each element in Sk that appears in the satisfac-

tion condition,
Generalise satisfaction of V to include the matching elements as a new test with a dis-
junction and exit

e. Restrict the relevance condition of V to be irrelevant for solution pair Si & Sj, by adding a
new test to the relevance signifying the difference and exit

f. Drop constraint

The generated constraints covered 85% of the 125 constraints found in KERMIT’s con-
straint-base, which was built entirely manually and has proven to be effective. After further
analysing the generated constraints, it was evident that the reason for not generating most
of the missing constraints was due to a lack of examples. 85% coverage is very encourag-
ing, considering the small set of sample problems and solutions. It is likely that providing
further sample problems and solutions to CAS would increase the completeness of the gen-
erated domain model. Although the problems and solutions were specifically chosen to
improve the system’s effectiveness in producing semantic constraints, we assume that a
domain expert would also have the ability to select good problems and provide solutions
that show different ways of solving a problem. Moreover, the validation phase, which is yet
to be completed, would also produce constraints with the assistance of the domain expert.

CAS also produced some modifications to existing constraints found in KERMIT,
which improved the system’s ability to handle alternate solutions. For example, although
the constraints in KERMIT allowed weak entities to be modelled as composite multivalued
attributes, in KERMIT the attributes of weak entities were required to be of the same type
as the ideal solutions. However CAS correctly identified that when a weak entity is repre-
sented as a composite multivalued attribute, the partial key of the weak entity has to be
modelled as simple attributes of the composite attribute. Furthermore, the identifying rela-
tionship essential for the weak entity becomes obsolete. These two examples illustrate how
CAS improved upon the original domain model of KERMIT.

We also evaluated the algorithm in the domain of algebraic equations. The task in-
volved specifying an equation for the given textual description. As an example, consider
the problem “Tom went to the shop to buy two loafs of bread, he gave the shopkeeper a $5
note and was given $1 as change. Write an expression to find the price of a loaf of bread
using x to represent the price”. It can be represented as 2x + 1 = 5 or 2x = 5 – 1. In order to
avoid the need for a problem solver, the answers were restricted to not include any simpli-
fied equations. For example the solution “x = 2” would not be accepted because it is simpli-
fied.

Figure 6: Sample constraints generated for Algebra

The system was given five problems and their solutions involving addition, subtraction,
division and multiplication for learning semantic constraints. Each problem contained three
or four alternate solutions. CAS produced a total of 80 constraints. Although the complete-
ness of the generated constraints is yet to be formally evaluated, a preliminary assessment
revealed that the generated constraints are able to identify correct solutions and point out
many errors. Some generated constraints are shown in Figure 6. An algebraic equation con-
sists of two parts: a left hand side (LHS) and a right hand side (RHS). Constraint a in
Figure 6 specifies that for each constant found in the LHS of the Ideal solution (IS), there
has to be an equal constant in either the LHS or the student solution (SS) or the RHS. Simi-

a) Relevance: IS LHS has a Constant (?Var1)
Satisfaction: SS LHS has a Constant (?Var1)

or SS RHS has a Constant (?Var1)

b) Relevance: IS RHS has a +
Satisfaction: SS LHS has a –

or SS RHS has a +

c) Relevance: IS RHS has a Constant(?Var1)
and IS RHS has a –
and SS LHS has a Constant(?Var1)
and SS LHS has a +
and IS Constant (?Var1) is in Associated-operator with –

Satisfaction: SS Constant (?Var1) is in Associated-operator with +

larly, constraint b specifies that an addition symbol found in the RHS of the IS should exist
in the SS as either an addition symbol in the same side or a subtraction in the opposite side.
Constraint c ensures the existence of the relationship between the operators and the con-
stants. Thus, a constant in the RHS of the IS with a subtraction attached to it, can appear as
a constant with addition attached to it in the LHS of the SS.

4 Conclusions and Future work

We provided an overview of CAS, an authoring system that automatically acquires the con-
straints required for building constraint-based Intelligent Tutoring Systems. It follows a
four-stage process: modelling a domain ontology, extracting syntax constraints from the
ontology, generating semantic constraints and finally validating the generated constraints.

We undertook a preliminary evaluation in two domains: ER modelling and algebra
word problems. The domain model generated by CAS for ER modelling covered all syntax
constraints and 85% of the semantic constraints found in KERMIT [7] and unearthed some
discrepancies in KERMIT’s constraint base. The results are encouraging, since the con-
straints were produced by analysing only 6 problems. CAS was also used to produce con-
straints for the domain of algebraic word problems. Although the generated constraints
have not been formally analysed for their completeness, it is encouraging that CAS is able
to handle two vastly different domains.

Currently the first three phases of the constraints acquisition process have been com-
pleted. We are currently developing the constraint validation component, which would also
contribute towards increasing the quality of the generated constraint base. We also will be
enhancing the ontology workspace of CAS to handle procedural domains. Finally, the ef-
fectiveness of CAS and its ability to scale to domains with large constraint bases has to be
empirically evaluated in a wide range of domains.

References

[1] DAML. DARPA Agent Markup Language, http://www.daml.org.
[2] Jarvis, M., Nuzzo-Jones, G. and Heffernan, N., Applying Machine Learning Techniques to Rule Gen-

eration in Intelligent Tutoring Systems. In: Lester, J., et al. (eds.) Proc. ITS 2004, Maceio, Brazil,
Springer, pp. 541-553, 2004.

[3] Koedinger, K., et al., Openning the Door to Non-programmers: Authoring Intelligent Tutor Behavior
by Demonstration. In: Lester, J., et al. (eds.) Proc. ITS 2004, Maceio, Brazil, Springer, pp. 162-174,
2004.

[4] Martin, B. and Mitrovic, A., WETAS: a Web-Based Authoring System for Constraint-Based ITS. Proc.
2nd Int. Conf on Adaptive Hypermedia and Adaptive Web-based Systems AH 2002, Malaga, Spain,
LCNS, pp. 543-546, 2002.

[5] Mitrovic, A., Koedinger, K. and Martin, B., A comparative analysis of cognitive tutoring and con-
straint-based modeling. In: Brusilovsky, P., et al. (eds.) Proc. 9th International conference on User
Modelling UM2003, Pittsburgh, USA, Springer-Verlag, pp. 313-322, 2003.

[6] Ohlsson, S., Constraint-based Student Modelling. Proc. Student Modelling: the Key to Individualized
Knowledge-based Instruction, Berlin, Springer-Verlag, pp. 167-189, 1994.

[7] Suraweera, P. and Mitrovic, A. An Intelligent Tutoring System for Entity Relationship Modelling. Int.
J. Artificial Intelligence in Education, vol 14 (3,4), 2004, pp. 375-417.

[8] Suraweera, P., Mitrovic, A. and Martin, B., The role of domain ontology in knowledge acquisition for
ITSs. In: Lester, J., et al. (eds.) Proc. Intelligent Tutoring Systems 2004, Maceio, Brazil, Springer, pp.
207-216, 2004.

[9] Suraweera, P., Mitrovic, A. and Martin, B., The use of ontologies in ITS domain knowledge authoring.
In: Mostow, J. and Tedesco, P. (eds.) Proc. 2nd Int. 2nd International Workshop on Applications of
Semantic Web for E-learning SWEL'04, ITS2004, Maceio, Brazil, pp. 41-49, 2004.

[10] van Lent, M. and Laird, J.E., Learning Procedural Knowledge through Observation. Proc. Interna-
tional conference on Knowledge capture, pp. 179-186, 2001.

Appendix E

ITS 2006 paper

224

 1

Authoring Constraint-based Tutors in ASPIRE

Antonija Mitrovic, Pramuditha Suraweera, Brent Martin,

Konstantin Zakharov, Nancy Milik and Jay Holland

Intelligent Computer Tutoring Group
University of Canterbury, Christchurch, New Zealand

{tanja, psu16, brent, kza10, nmi14, jah130}@cosc.canterbury.ac.nz

Abstract: This paper presents a project the goal of which is to develop
ASPIRE, a complete authoring and deployment environment for constraint-
based intelligent tutoring systems (ITSs). ASPIRE is based on our previous
work on constraint-based tutors and WETAS, the tutoring shell. ASPIRE
consists of the authoring server (ASPIRE-Author), which enables domain
experts to easily develop new constraint-base tutors, and a tutoring server
(ASPIRE-Tutor), which deploys the developed systems. Preliminary evaluation
shows that ASPIRE is successful in producing domain models, but more
thorough evaluation is planned.

1 Introduction
Building a constraint-based tutor, like any other ITS, is a labour-intensive process that
requires expertise in constraint-based modelling (CBM) and programming. While
ITSs contain a few modules that are domain-independent, their domain model, which
consumes the majority of the development effort, is unique. Our goal is to reduce the
time and effort required for producing ITSs by building an authoring system that can
generate the domain model with the assistance of a domain expert and produce a fully
functional system. We also envisage that the authoring system would enable teachers,
with little or no expertise in CBM, to build their own ITSs.

This paper presents ASPIRE, an authoring system that assists in the process of
composing domain models for constraint-based tutors and automatically serves
tutoring systems on the web. The proposed system is an enhancement of WETAS [4,
5], a web-based tutoring shell that facilitates building constraint-based tutors.
WETAS is a prototype system that provides all the domain-independent components
for text-based ITSs. The main limitation of WETAS is its lack of support for
authoring domain models. ASPIRE guides the author through a semi-automated
process for building the domain model and seamlessly deploys the resulting domain
model to produce a fully functional web-based tutoring system.

The paper commences with a brief introduction to related authoring systems for
building ITSs. Section 3 details the ASPIRE authoring system, including an outline of
the domain authoring process and the architecture of the system. We also include an

 2

overview the constraint generation algorithms, the central component of the authoring
process. Finally, Section 4 presents conclusions and the directions of future work.

2 Related Work

Murray [10] classified ITS authoring tools into two main groups: pedagogy-oriented
and performance-oriented. Pedagogy-oriented systems focus on instructional
sequencing and teach relatively fixed content. On the other hand, performance-
oriented systems focus on providing rich learning environments, where students learn
by solving problems while receiving dynamic feedback on their progress. These
systems have a deep model of expertise, which enables the tutor to correct the student
as well as provide assistance on problem solving. Authoring systems thus need to
support the acquisition of domain models. Typically, sophisticated machine learning
techniques are used for acquiring domain rules with the assistance of a domain expert.

Only a few authoring systems are capable of generating domain models. Disciple,
developed by Tecuci and co-workers [15, 16], is an example of a learning agent shell
for developing intelligent educational agents. A domain expert teaches the agent to
perform domain-specific tasks, similar to a manner of an expert teaching an
apprentice, by providing examples and explanations. The expert is also required to
supervise and correct the behaviour of the agent. Disciple acquires knowledge using a
collection of complementary learning methods including inductive learning from
examples, explanation-based learning, learning by analogy and learning by
experimentation. A completed Disciple agent can be used to interact and guide
students in performing tasks of the domain.

The Cognitive Tutor Authoring Tools (CTAT) [1, 2] assist in the creation and
delivery of ITSs based on model tracing. The main goal of these tools is to reduce the
amount of artificial intelligence (AI) programming expertise required. The system
allows authors to create two types of tutors: ‘Cognitive tutors’ and ‘Pseudo tutors’.
‘Cognitive tutors’ contain a cognitive model that simulates the student's thinking to
monitor and provide pedagogical assistance during problem solving. In contrast,
‘Pseudo tutors’ do not contain a cognitive model: to develop a tutor of this kind, the
author needs to specify a recording of possible student actions and corresponding
feedback messages. Although ‘Pseudo tutors’ do not require AI programming, they
are specific to the demonstrated set of problems, and cannot deal with student actions’
which are not pre-specified by the author.

3 ASPIRE

ASPIRE assists with the creation and delivery of constraint-based tutoring systems. It
generates constraints that make up the domain model with the assistance of the
domain expert, minimising the programming expertise required for developing a new
constraint-based tutor. The system also provides all the domain-independent
functionality of constraint-based ITSs.

 3

3.1 Authoring Process

Authoring a constraint-based tutor in ASPIRE is a semi-automated process, carried
out with the assistance of the domain expert. The authoring process, summarised in
Figure 1, consists of nine distinct phases. Initially, the author specifies general
features of the chosen instructional domain, such as whether the domain consists of a
sub-domains focusing on specific areas, and whether the domain is procedural or not.
In the case of procedural domains, the author is required to enumerate the problem-
solving steps. As an example, let us consider the procedural domain of adding
fractions. The problem-solving procedure can be broken down into four steps, as
outlined in Figure 2. Initially, it is necessary to check whether the two fractions have
the same denominator; if that is not the case, the lowest common denominator must
be found. Step two involves modifying the two fractions to have the lowest common
denominator (when needed). After that, the two fractions are added, which may result
in an improper fraction. Finally, the result is to be simplified, if appropriate.

Figure 1. The phases of the authoring process

In the second phase, the author develops an ontology of the chosen instructional
domain, which plays a central role in the authoring process. ASPIRE-Author provides
an ontology workspace for visually modelling ontologies (Figure 3). A domain
ontology describes the domain by identifying important concepts and relationships
between them. The ontology outlines the hierarchical structure of the domain in terms
of sub- and super-concepts. Each concept might have a number of properties, and may
be related to many other domain concepts. A preliminary study conducted to evaluate
the role of ontologies in manually composing a constraint base showed that
constructing a domain ontology assisted the composition of constraints [13]. The
study showed that ontologies support authors to reflect on the domain, organise
constraints into meaningful categories and produce more complete constraint bases.

Figure 2. Problem-solving procedure for fraction addition

An ontology for the domain of adding fractions is illustrated in Figure 3. It
contains Number as the most generic concept, which has two specialisations, Whole-

1. Find the lowest common denominator (LCD)
2. Convert fractions to LCD as denominator
3. Add the resulting fractions
4. Simplify the final result

1. Specifying the domain characteristics
2. Composing the domain ontology
3. Modelling the problem and solution structures
4. Designing the student interface
5. Adding problems and solutions
6. Generating syntax constraints
7. Generating semantic constraints
8. Validating the generated constraints
9. Deploying the tutoring system

 4

number and Fraction. Whole-number is further specialised into lowest common
denominator (LCD), while Fraction is specialised into Improper and Reduced. The
specialization/generalization relationships between domain concepts are visually
represented as arrows between concepts. Figure 3 shows three additional relationships
defined for the Reduced Fraction concept: whole number, numerator and
denominator. While numerator and denominator and mandatory relationships, whole
number may only occur if the resulting fraction needs to be simplified.

Figure 3. Ontology for adding fractions

In the third phase, the author specifies the problem/solution structures. Problems
can consist of components (textual or graphical) and a problem statement. In our
example domain, problems contain a common statement (“Add these two fractions”),
and the problem to be solved (e.g. “1/3 + 1/5”). Student solutions may also consist of
several components. The overall structure of solutions depends on whether the
domain is procedural or declarative. A declarative task requires a single solution that
may consist of a number of components, whereas a procedural task requires a solution
for each step of the procedure. As the result, the structure of solutions for each step
has to be modelled. The solution structure for fraction addition is outlined in Figure 4,
showing also the corresponding domain concepts.

The student interface needs to be designed next. The final outcome of this phase
is a form-based interface that can be used by students to compose their solutions. The
system initially generates a default interface, placing an input area for each
component defined in the solution structure [9]. The domain expert can rearrange the
interface components in order to provide a more intuitive interface for students. An
example of an interface for adding fractions is shown in Figure 5.

After designing the student interface, the author enters example problems and
their solutions. For each problem, the author enters a problem statement, and one or

 5

more correct solutions. In order for the authoring system to learn about different ways
of solving a problem, the expert is required to provide multiple solutions to a problem
depicting different ways of solving it. These solutions are used by the authoring
system for generating semantic constraints.

Problem solving step Solution component Concept

1. Find LCD LCD LCD
2. Convert fractions to LCD Fraction 1 numerator

Fraction 1 denominator
Fraction 2 numerator
Fraction 2 denominator

Improper fraction

3. Sum of improper fractions Improper sum numerator
Improper sum denominator

Improper fraction

4. Final reduced sum Final sum whole number
Final sum numerator
Final sum denominator

Reduced fraction

Figure 4. Solution structure for adding two fractions

Once example problems and their solutions are available, ASPIRE-Author
generates the domain model. The syntax constraint generator analyses the domain
ontology and generates syntax constraints directly from it. These constraints are
generated by translating the restrictions on the properties and relationships of
concepts specified in the ontology, as detailed in Section 3.3. The constraint generator
produces an extra set of syntax constraints for procedural domains that ensure that the
student progresses correctly in the problem solving process.

Figure 5. Student interface for adding two fractions

Semantic constraints are generated using a machine learning algorithm that learns
from the solutions provided for each problem. It analysing pairs of solutions to
identify similarities and differences between them. Section 3.4 provides more details
on the semantic constraint generation algorithm.

The generated domain model is validated during the penultimate phase of
authoring the domain model. The author requests the system to identify errors in an

Lowest common denominator

Fractions with LCD as denominator

Sum of fractions

Reduced sum

 6

incorrect solution. If errors are identified incorrectly, further example problems and
solutions have to be provided by the domain expert. The author may also examine a
high-level description of each generated constraint and dispute them by providing
counter examples.

Finally, the domain model is deployed as a tutoring system during the final phase
of the authoring process. A new instance of a tutoring system is started in ASPIRE-
Tutor, which can be tested by the domain expert and made available to students. The
domain expert can evaluate the effectiveness of the domain model by analysing the
learning curves for constraints produced by ASPIRE-Tutor.

3.2 Architecture

ASPIRE consists of an authoring server (ASPIRE-Author) for assisting with the
development of new systems, and a tutoring server (ASPIRE-Tutor) for delivering
tutors. Both servers are implemented in Allegro Common Lisp [3] as web servers for
users to interact through a standard web browser. All required domain-dependent
information, such as the domain model and other configuration details produced by
ASPIRE-Author, are transferred to ASPIRE-Tutor as an XML database.

3.2.1 Authoring Server

The authoring server consists of a set of modules, where each module is assigned a
specific set of responsibilities in generating constraint-based tutors. The basic
architecture of the ASPIRE-Author, as depicted in Figure 6, consists of a web
interface, authoring controller, constraint generator, constraint validator and the
domain model manager [8]. The domain expert interacts with each component of the
web interface to generate the domain model.

Figure 6. The architecture of ASPIRE-Author

 7

The Authoring Controller manages the process and guides the author. This
module receives all requests from the interface layer, initiates processes within other
modules and returns the results to the relevant interface component.

The Syntax Constraint Generator is responsible for generating syntax constraints
by analysing the domain ontology. Semantic constraints are generated by the
Semantic Constraint Generator using a machine learning algorithm that learns from
problems and their solutions. The Constraint Validator is responsible for carrying out
all the necessary operations required for validating the constraints generated by the
constraint generators.

The Domain Model Manager contains the necessary classes for storing the
components of domain models. It is responsible for creating and updating domain
model components such as ontology, problem solution structure, problems, solutions
etc. The Domain Model Manager is also capable of producing XML representations
of all domain model components for data transfer.

3.2.2 Tutoring Server

ASPIRE-Tutor (Figure 7) is also designed as a collection of modules, based on the
typical ITS architecture. ASPIRE-Tutor is capable of serving a collection of tutoring
systems in parallel. Each tutoring system served by ASPIRE-Tutor would have its
own unique URL. Students can access the tutoring system relevant to them by
pointing their browser to the appropriate URL.

Figure 7. The architecture of ASPIRE-Tutor

The interface module is responsible for producing an interface for each tutoring
system deployed on the server. The interface provides features such as login/logout,
select/change problem, submit solution for evaluation etc.

The session manager is responsible for maintaining the state of each student
during their interaction. The current state of a student is described by information
such as the selected domain, sub-domain and problem number. The session manager
also acts as the main entry point to the system, invoking the relevant modules to carry
out necessary tasks. For example, when a student submits a solution to be validated,

 8

the session manager passes on all information to the pedagogical module, which
returns the feedback to be presented to the student.

The Pedagogical Module (PM) decides how to respond to each student request. It
is responsible for handing all pedagogy-related requests including selecting a new
problem, evaluating a student’s submission and viewing the student model. In the
event of evaluating a student’s submission and providing feedback, the PM delegates
the task of evaluating the solution to the diagnostic module and decides on the
appropriate feedback by consulting the student model. The student modeler maintains
a long term model of the student’s knowledge.

3.3 Syntax Constraints Generation

An ontology contains a lot of information about the syntax of the domain. Composing
a domain ontology is a much easier task for the author than composing constraints
that check whether the student has used correct syntax. The goal of syntax constraint
generator is to extract all useful syntactic information from the ontology and translate
them into syntax constraints for the domain model.

Syntax constraints are generated by analysing relationships between concepts and
properties of concepts specified in the ontology. The algorithm extracts the
restrictions specified for relationships and properties and generates syntax constraints
by translating them into constraints. These constraints are applicable to both
procedural and non-procedural domains. An extra set of constraints are generated for
procedural domains to ensure that the student adheres to the correct problem-solving
procedure. These constraints are generated by analysing the solution structure
modelled during stage three of the authoring process. The syntax constraints
generation algorithm is detailed in further in [12, 14].

ASPIRE-Author produced 11 constraints for fraction addition from the ontology
in Figure 3 and the solution structure in Figure 4. For example, constraint 7 is relevant
while the student is carrying out the first problem solving step (‘Find LCD’) and its
satisfaction condition ensures that the student has entered the answer. As the domain
does not contain any complicated syntax restrictions, and inputs are restricted by the
student interface, the generated constraints are sufficient to ensure that students use
the correct syntax and the correct problem-solving procedure.

The syntax constraint generation algorithm has been evaluated in a number of
domains. The evaluations carried out for the domains of ER modelling and database
normalisation produced promising results. All syntax constraints that were hand-
crafted in KERMIT [7, 11], a successful constraint-based tutor for ER modelling were
generated by ASPIRE. Furthermore, the algorithm produced all but two syntax
constraints that existed in NORMIT [6, 7], an effective tutoring system for database
normalisation.

3.4 Semantic Constraints Generation

Semantic constraints ensure that a student’s solution satisfies all semantic
requirements of a problem, by comparing the student’s and ideal solution. They are
generated by a machine learning algorithm. Problems and solutions provided by the
author are used as examples for semantic constraint generation. Multiple solutions for

 9

a problem depict different ways of solving it, and enable the algorithm to generate
constraints that can identify all correct solutions, regardless of the student’s approach.

The algorithm generates new semantic constraints by analysing a pair of correct
solutions for the same problem. Constraints are generated by identifying similarities
and differences between two solutions. The process of generating constraints is
iterated until all pairs of solutions are analysed. Each new pair of solutions can lead to
either generalising or specialising previously generated constraints. If a newly
analysed pair of solutions violate a previously generated constraint, its satisfaction
condition is generalised in order to satisfy the solutions, or the constraint’s relevance
condition is specialised for the constraint to be irrelevant for the solutions. This
algorithm is discussed in [12]. Evaluations performed show that the semantic
constraints generator produced 85% of the semantic constraints found in KERMIT.
Moreover, the generated constraints for the domain of database normalisation covered
all the semantic constraints that exist in NORMIT.

39 semantic constraints were generated for fraction addition, from only two
example problems. As each problem in this domain has only a single valid solution,
semantic constraints check that the student’s solution matches the ideal solution. For
example, constraint 1 ensures that if the student is currently doing the first problem
solving step (‘Find LCD’), the LCD component of their solution is not empty (i.e., the
student has specified the LCD) and the ideal solution contains an LCD (i.e. it is
necessary to find the LCD for the current problem), then the student’s answer needs to
be equal to the one specified in the ideal solution.

The majority of generated semantic constraints ensure that relationships, such as
fractions having a numerator and a denominator, exist in student solutions. As the
interface implicitly forces these relationships, some semantic constraints are trivially
satisfied. However, we believe that it is still necessary for the domain model to
contain such constraints, because the author may design a less restrictive interface.
Only two example problems were needed to generate semantic constraints for fraction
addition, as the domain is very simple.

4 Conclusions
We provided an overview of ASPIRE, an authoring system that assists domain
experts in building constraint-based ITSs and serves the developed tutoring systems
over the web. ASPIRE follows a semi-automated process for generating domain
models, and produces a fully functional web-based ITS, which can be used by
students. We also outlined the constraint generation algorithms, which produced
promising results during preliminary evaluations. ASPIRE-Author produced a
satisfactory domain model for fraction addition, consisting of 11 syntax and 39
semantic constraints. The generated domain model can be used to power a tutoring
system for students with minor modifications.

ASPIRE will be completed in July 2006, and then we will conduct a thorough
evaluation of the system’s effectiveness. We also intend to develop a tutorial outlining
the authoring process to assist novices in building constraint-based tutoring systems
using ASPIRE, especially modelling domain ontologies.

Acknowledgements: The ASPIRE project is supported by the eCDF grant from the Tertiary
Education Commission of New Zealand. We thank all members of ICTG for their support.

 10

References

1. Jarvis, M., Nuzzo-Jones, G., Heffernan, N., Applying Machine Learning
Techniques to Rule Generation in Intelligent Tutoring Systems. In ITS 2004,
(Maceio, Brazil, 2004), Springer, 541-553.

2. Koedinger, K., Aleven, V., Heffernan, N., McLaren, B. and Hockenberry, M.,
Openning the Door to Non-programmers: Authoring Intelligent Tutor Behavior
by Demonstration. In ITS 2004, (Maceio, Brazil, 2004), Springer, 162-174.

3. Allegro Common Lisp (www.franz.com)
4. Martin, B., Mitrovic, A. Authoring Web-Based Tutoring Systems with WETAS.

Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee
(eds) Proc. ICCE 2002 (Auckland, 2002), 183-187.

5. Martin, B., Mitrovic, A. Domain Modelling: Art or Science? In: U. Hoppe, F.
Verdejo & J. Kay (ed) Artificial Intelligence in Education 2003, 183-190.

6. Mitrovic, A. The Effect of Explaining on Learning: a Case Study with a Data
Normalization Tutor. In: C-K Looi, G. McCalla, B. Bredeweg, J. Breuker (eds)
Proc. Artificial Intelligence in Education, 2005, IOS Press, 499-506.

7. Mitrovic, A., Suraweera, P., Martin, B., Weerasinghe, A. DB-suite: Experiences
with Three Intelligent, Web-based Database Tutors. Journal of Interactive
Learning Research, 15, 2004, 409-432.

8. Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J.
ASPIRE: Functional Specification and Architectural Design. Tech. Report TR-
COSC 05/05, University of Canterbury, 2005.

9. Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J.
ASPIRE: Student Modelling and Domain Specification. Tech. Report TR-COSC
08/05, University of Canterbury, 2005.

10. Murray, T. An Overview of Intelligent Tutoring System Authoring Tools:
Updated analysis of the state of the art. Authoring tools for advanced technology
learning environments. 2003, 491-545.

11. Suraweera, P., Mitrovic, A., An Intelligent Tutoring System for Entity
Relationship Modelling. Artificial Intelligence in Education, 14, (2004), 375-417.

12. Suraweera, P., Mitrovic, A., Martin, B., A Knowledge Acquisition System for
Constraint-based Intelligent Tutoring Systems. In: C-K Looi, G. McCalla, B.
Bredeweg, J. Breuker (eds) Artificial Intelligence in Education, 2005, IOS Press,
638-645.

13. Suraweera, P., Mitrovic, A., Martin, B., The role of domain ontology in
knowledge acquisition for ITSs. In Intelligent Tutoring Systems 2004, (Maceio,
Brazil, 2004), Springer, 207-216.

14. Suraweera, P., Mitrovic, A., Martin, B., The use of ontologies in ITS domain
knowledge authoring. in 2nd Int. Workshop on Applications of Semantic Web for
E-learning SWEL'04, ITS2004, (Maceio, Brazil, 2004), 41-49.

15. Tecuci, G. Building Intelligent Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies. Academic press, 1998.

16. Tecuci, G., Keeling, H. Developing an Intelligent Educational Agent with
Disciple. Artificial Intelligence in Education, 10, 1999, 221-237.

Appendix F

AIED 2007 paper

235

Constraint Authoring System: An Empirical
Evaluation

Pramuditha SURAWEERA, Antonija MITROVIC and Brent MARTIN

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
{pramudi, tanja, brent}@cosc.canterbury.ac.nz

Abstract. Evaluation is an integral part of research that provides a true measure of
effectiveness. This paper presents a study conducted to evaluate the effectiveness
of CAS, a knowledge acquisition authoring system developed for generating the
domain knowledge required for constraint-based tutoring systems with the
assistance of a domain expert. The study involved a group of novice ITS authors
composing domain models for adding two fractions. The results of the study
showed that CAS was capable of generating highly accurate knowledge bases with
considerably less effort than the effort required in manual composition.

Introduction

Composing the domain knowledge required for Intelligent Tutoring Systems (ITS)
consumes the majority of the total development time [6]. The task requires a multi-
faceted set of expertise, including knowledge engineering, AI programming and the
domain itself. Our goal is to widen the knowledge acquisition bottleneck by
empowering domain experts with little or no programming and knowledge engineering
expertise to produce domain models necessary for ITSs.

Researchers have been exploring ways of automating the knowledge acquisition
process since the inception of ITSs. Disciple, developed by Tecuci and co-workers[10],
is an example of a learning agent shell for developing intelligent educational agents. A
domain expert teaches the agent to perform domain-specific tasks by providing
examples and explanations (similar to an expert teaching an apprentice), and Disciple
uses machine learning techniques to infer the necessary domain knowledge. The
Cognitive Tutor Authoring Tools (CTAT) [1] assist in the creation and delivery of
model-tracing ITSs. The main goal of these tools is to reduce the amount of artificial
intelligence (AI) programming expertise required. CTAT allows authors to create two
types of tutors: ‘Cognitive tutors’ and ‘Pseudo tutors’. ‘Cognitive tutors’ contain a
cognitive model that simulates the student's thinking to monitor and provide
pedagogical assistance during problem solving. In contrast, ‘Pseudo tutors’ do not
contain a cognitive model: to develop a tutor of this kind, the author needs to record
possible student actions and provide corresponding feedback messages.

We have developed an authoring system, named Constraint Authoring System
(CAS) that generates a domain model with the assistance of a domain expert. The
author is required to describe a domain in terms of an ontology and provide problems

and their solutions. CAS analyses the provided information using machine learning
techniques to generate a domain model.

This paper outlines a study conducted with a group of novice authors to evaluate
the effectiveness of CAS. They were given the task of composing a domain model for a
fractions addition ITS using CAS. The results showed that CAS was capable of
generating highly accurate constraint bases even with the assistance of novices. It also
showed that CAS reduced the overall effort required to produce domain models.

The remainder of the paper is organised into three sections. The next section gives
a brief introduction to CAS. The results and analysis of the experiment are given in
section three. The final section presents conclusions and future work.

1. Constraint Authoring System

Constraint Acquisition System is an authoring system that generates the domain model
required for constraint-based tutoring systems [5] with the assistance of a domain
expert/ teacher. The goal of the system is to significantly reduce the time and effort
required for composing constraint bases. We envisage that CAS would enable domain
experts with minimal expertise in constraint-based modelling to produce new tutoring
systems. The user is only required to model the domain in terms of an ontology and
provide example problems and their solutions. Once the required domain-dependant
information is provided, CAS generates constraints by analysing the provided
information. Although the system is designed to support authors with minimal
knowledge engineering expertise, it also offers utilities for experts in composing
constraint bases. The system allows experts to modify constraints during the stage of
validating the system-generated constraints. Users are also provided with editors for
directly adding new constraints to the domain model.

A detailed discussion of CAS is beyond the scope of this paper and has been
presented in [7]. Here we only give a short overview of its features. CAS is developed
as an extension of WETAS [3], a web-based tutoring shell that facilitates building
constraint-based tutors. WETAS provides all the domain-independent components for a
text based ITS, including the user interface, pedagogical module and student modeller.
It does not provide support for authoring domain models; however, authoring tools may
be added to WETAS to provide this need. CAS was used in this manner.

Authoring knowledge using CAS is a semi-automated process with the assistance
of a domain expert. The author carries out a number of tasks, including modelling the
domain as an ontology, specifying the general structure of solutions and providing
example problems and solutions. The constraint generators of CAS use this information
to generate both syntax and semantic constraints. The syntax constraints are generated
by analysing the ontology and translating each specified restriction into a constraint [9].
The semantic constraints generator uses machine learning techniques to generate
constraints by analysing the problems and solutions provided by the domain expert [7].
It generates constraints by comparing and contrasting two alternative solutions to the
same problem. Constraints are generated iteratively, and they are generalised or
specialised during subsequent analysis of other solutions.

The interface of CAS consists of two main tabs: the “ontology view” and the
“domain model editor”. The “ontology view” contains the ontology workspace and
other tools necessary for composing the domain-dependant components necessary for
each step of the authoring process. Figure 1 illustrates the ontology for the fraction

addition domain, and the relationships defined for the Improper Fraction concept. The
“ontology view” also contains an interface for adding problems and their solutions that
are used for constraint generation. The “domain model editor” tab consists of a set of
textual editors for viewing and modifying constraints generated by CAS. Constraints in
these editors can be directly loaded into WETAS for testing in an ITS environment.
The “domain model editor” tab also contains an editor for modifying and composing
problems and solutions in the Lisp representation expected by WETAS.

Figure 1: CAS Interface, illustrating the ontology workspace

2. Evaluation Study

In previous work we evaluated CAS by comparing its generated domain models to the
domain models developed manually [7, 9]. The domain models were generated with
the assistance of expert authors. However, the goal of CAS is to support novice authors
to develop ITSs. For that reason, we performed a study with a group of 13 novice
authors to evaluate the effectiveness of the system as a whole. The participants were
students enrolled in a 2006 graduate course about ITSs at the University of Canterbury.
They were assigned the task of producing a complete ITS in WETAS for the domain of
adding fractions, using CAS to author the domain model. The goal of the evaluation
study was to validate three hypotheses: CAS makes it possible for novices to produce
complete constraint bases; the process of authoring constraints using CAS requires less
effort than composing constraints manually; the constraint generation algorithm
depends on the ontology (i.e. an incomplete ontology will result in an incomplete
constraint set).

The participants were required to compose all the domain-dependant components
necessary for CAS to generate constraints, including a domain ontology, problems and
solutions. After composing the required components, CAS can be used to generate
syntax and semantic constraints in a high-level language (pseudo-code). At the time of
the study, CAS was not able to convert these into the WETAS constraint language, so
the participants were also required to perform this step manually. They were also free
to modify/delete constraints.

The participants had attended 13 lectures on ITSs, including five on constraint-
based modelling before the study. They were introduced to CAS and WETAS, and
were given a task description document that outlined the process of authoring a domain
model using CAS and described the WETAS constraint language. The participants
were encouraged to follow the suggested authoring process. In addition to the task
description, participants were also given access to all the domain model components of
LBITS [2], a tutoring system for English language skills. They were also provided with
an ontology for database modelling as an example. Finally, the students were instructed
to use a particular interface style (one free-form text box per fraction) when building
their tutor. The participants were allocated a period of six weeks to complete the task,
however, most students only started working on it at the end of week 3.

Twelve out of the 13 participants completed the task satisfactorily, i.e. produced
working tutoring systems. One participant failed to complete the final step of
converting the pseudo-code constraints to the target constraint language. We only
present results of the twelve participants in the rest of the paper.

Analysis of CAS’s logs revealed that the participants spent a total of 31.3 (13.4)
hours on average interacting with the system. Six and a half hours (4.34) of that was
spent interacting with the “ontology view”. The majority of the time in the “ontology
view” was spent developing ontologies. There was a very high variance in the total
interaction time, which can be attributed to each individual's ability.

The participants used the textual editors that were available under the “domain
model editor” tab to modify/add domain model components required for WETAS,
including problems and their solutions, syntax and semantic constraints and macros.
The participants spent a mean total of 24.7 (9.6) hours interacting with the textual
editors.

 Constraints Coverage Completeness
 Syntax Semantic Syntax (8) Semantic (13) Syntax Semantic

S1 5 12 5 7 63% 54%
S2 5 13 5 12 63% 92%
S3 4 12 4 12 50% 92%
S4 16 16 5 12 63% 92%
S5 14 18 8 13 100% 100%
S6 15 11 5 12 63% 92%
S7 2 5 3 3 38% 23%
S8 8 13 7 4 88% 31%
S9 5 8 4 4 50% 31%
S10 7 11 5 12 63% 92%
S11 4 18 5 12 63% 92%
S12 9 16 6 1 75% 8%
Mean 7.83 12.75 5.17 8.67 64.58% 66.67%
S.D. 4.73 3.89 1.34 4.5 16.71% 34.61%

Table 1: Total Numbers of Constraints Composed by Participants

In order to evaluate the completeness of participants’ constraint bases, we
manually compiled an “ideal” set of constraints for the domain, containing eight syntax
constraints and 13 semantic constraints. The syntax constraints ensure that each
component of a solution (such as the LCD and converted fractions) is in the correct
format, and the correct problem-solving procedure is followed. The semantic
constraints ensure that each component of a solution is correctly defined.

Table 1 lists the total numbers of constraints (syntax and semantic) composed by
the participants under the “Constraints” column. The total numbers of “ideal”

constraints covered by each constraint base are listed under the “Coverage” column.
The completeness of each constraint base, calculated as the percentage of constraints
accounted for by each constraint base, is given under the “Completeness” column. The
participants accounted for five syntax constraints in the “ideal” set (65%) and nine
semantic constraints (66%). Only one participant (S5) produced all the necessary
constraints. The majority of the others had accounted for over half of the desired
constraints. One participant (S12) struggled with composing semantic constraints and
only managed to account for one desired constraint.

The “ideal” set of constraints contains five syntax constraints for verifying the
syntactic validity of inputs, such as whether the LCD is an integer and whether the
entered fractions are syntactically valid. They need to be verified due to the generic
nature of the interface the students were told to use, which consisted of a single input
box to input a fraction. For example, constraints are required to verify that fractions are
of the ``numerator / denominator'' form. However, these constraints are redundant for
the solution-composition interface produced by CAS from a complete ontology. It
contains two text boxes for inputting a fraction (one for its numerator and the other for
its denominator), ensuring that a fraction is of the correct format. Furthermore, these
input boxes only accept values of the type specified for the relevant property in the
ontology (numerator and denominator would both be defined as integer in this case).
As a consequence, constraints such as the ones to verify whether the specified
numerator is an integer are also redundant.

 Constraints Coverage Completeness
 Syntax Semantic Syntax (3) Semantic (13) Syntax Semantic
S1 7 15 3 12 100% 92%
S2 8 12 3 12 100% 92%
S3 18 0 3 0 100%
S4 6 23 3 1 100% 8%
S5 9 8 3 12 100% 92%
S6 0 23 0 1 8%
S7 13 26 3 1 100% 8%
S8 6 0 3 0 100%
S9 11 23 3 1 100% 8%
S10 9 12 3 12 100% 92%
S11 7 12 3 12 100% 92%
S12 17 42 2 1 67% 8%
Mean 9.25 16.33 2.67 5.42 97.00% 49.97%
S.D. 4.97 11.86 0.89 5.82 9.95% 44.30%

Table 2: Total Numbers of Constraints Generated by CAS

The participants were free to make any modifications to the initial set of
constraints produced by CAS, including deleting all of them and composing a new set
manually. For that reason, we also analysed the constraints produced by CAS
automatically, from the domain information supplied by the author. The generated
constraint sets were analysed to calculate their completeness (Table 2). CAS generated
the three syntax constraints necessary for CAS’s solution interface for 10 participants.
There was one situation where just two required constraints were generated (S12), as
the result of an incorrectly specified solution structure. The syntax constraints
generator failed produce any constraints for participant S6 due to a bug.

CAS only has the ability to generate 12 out of the 13 required semantic constraints,
as it is unable to generate constraints that require algebraic functionality. CAS cannot
generate a constraint that accounts for common multiples of the two denominators

larger than the lowest common multiple. So the maximum degree of completeness that
can be expected is 92%.

CAS generated the maximum possible 12 semantic constraints from domain-
dependant components supplied by five participants. However, it was not successful in
generating constraints for the remaining participants. Further analysis revealed that
there were two main reasons. One of the reasons was that two of the participants (S4
and S9) had unknowingly added empty duplicate solutions for problems, which
resulted in constraints that allowed empty solutions. This situation can be avoided
easily by restricting the solution interface not to save empty solutions.

Another common cause for not generating useful semantic constraints was an
incomplete ontology. Four participants (S4, S6, S7 and S12) modelled the Fraction
concept with only a single property of type String. This results in a set of constraints
that compare each component of the student solution against the respective ideal
solution component as a whole. These constraints are not of the correct level of
granularity. Consequently, the resulting feedback is limited in pedagogical significance.
For example, the constraints would have the ability to denote that the student has made
an error in the sum, but not able to pinpoint whether the mistake is in the numerator or
the denominator. We believe that the decision to model the Fraction concept with a
single property may have been influenced by the student interface that we required
them to use. The participants may have attempted to produce an ontology and solution
structure that is consistent with this particular student interface.

The constraint generator failed to produce any semantic constraints for two
participants, S3 and S8. It failed to generate constraints for S3 due to a bug in the
system. The other participant (S8) did not add any solutions, and therefore semantic
constraints could not be generated.

a. Relevance: Fraction-1 component of IS has a (?var1, ?*) ‘Improper fraction’
 Satisfaction: Fraction-2 component of SS has a (?var1, ?*) ‘Improper fraction’
b. Relevance: (match IS Fraction-1 ("2." ?var1 ?IS-var2 ?*))
 Satisfaction: (match SS Fraction-1 ("2." ?var1 ?SS-var2 ?*))

Figure 2: An example of translating a pseudo-code constraint into WETAS language

Although we assumed that the generated high-level constraints assisted the
participants, there was little evidence in their reports that supported this assumption.
Only one participant indicated that the generated constraints assisted him. Since no
explanation on the high-level constraint representation was provided to the participants,
they may have struggled to understand the notation and to find commonalities between
the two representations. For example, Figure 2a shows the pseudo-code representation
of a constraint that ensures that the numerator of first fraction specified by the student
(SS) is the same as the corresponding value in the ideal solution (IS). The equivalent
constraint in the WETAS language is given in Figure 2b.

3. Discussion

Analysing the results from the evaluation study confirmed all our hypotheses. Our first
hypothesis about CAS being effective has been confirmed in previous work [7, 9]. The
2006 study revealed that CAS was able to generate all the required syntax constraints
for 10 of the 12 participants. Furthermore, CAS generated over 90% of the semantic
constraints for half of the participants. Considering that the participants were given

very little training in using the authoring system, the results are very encouraging.
Providing the users with more training and improving CAS to be fully integrated with a
tutoring server (similar to WETAS) would further increase its effectiveness.

The second hypothesis claims that CAS requires less effort than composing
constraints manually. In order to obtain a measure for the effort required for producing
constraints using CAS, we calculated the average time required for producing a single
constraint. Only the participants whose domain model components resulted in
generating near complete constraint bases were used for calculating the average effort,
to ensure that incorrectly generated constraints were not accounted. Five participants
(S1, S2, S5, S10, S11) spent a total of 24.8 hours composing the required domain-
dependant information. They also spent a total of 115.04 hours interacting with the
textual editors to produce a total of 107 constraints. Consequently, the participants
spent a total of 1.3 hours on average to produce one constraint.

The average time of 1.3 hours per constraint is very close to the 1.1 hours per
constraint reported by Mitrovic [4] for composing constraints for SQL-Tutor. The time
estimated by Mitrovic can be considered as biased since she is an expert of SQL and
knowledge engineering, in addition to being an expert in composing constraints.
Therefore, the achievement by novice ITS authors producing constraints in a time
similar to the time reported by Mitrovic is significant. Furthermore, the time of 1.3
hours is a significant improvement from the two hours required by a similar study
reported in [8]. Although that study involved composing constraints for the domain of
adjectives in the English language, the overall complexities of the tasks are similar.
Further, after the experiment was completed, it was discovered that the setup of
WETAS was not optimal, which led the participants to perform additional effort when
writing the final constraints. The figure of 1.3 hours per constraint is therefore probably
pessimistic.

Although CAS currently generates constraints in a high-level language, it can be
extended to generate constraints directly in the language required for execution.
Assuming the generated constraints were produced in the required runnable form, the
total of 99 syntax and semantic constraints were produced from 24.8 hours spent on
composing the required domain information. Consequently, the participants would only
require an average of 15 minutes (0.25 hours) to generate one constraint.

An average of 15 minutes to produce a constraint is a significant improvement
from 1.1 hours reported by Mitrovic [4]. The time is more significant as the authoring
process was driven by novice ITS authors. However, this does not take into account
validating the generated constraints. As the constraint generation algorithm may not
produce all the required constraints, the domain author may also be required to modify
the generated constraints or add new constraints manually.

Finally, the third hypothesis concentrates on the sensitivity of the constraint
generation on the quality of the ontology. Developing a domain ontology is a design
task, which depends on the creator's perceptions of the domain. The ontologies
developed by two users, especially if the domain is complicated, are very likely to be
different. The constraint learning algorithm generated constraints using ontologies
developed by the 12 participants. Although the ontologies were different, the syntax
constraint generation algorithm managed to produce full constraint sets for almost all
participants. However, the semantic constraint generation was more sensitive to the
ontology. In particular, it was reliant on defining the Fraction concept with enough
details. The semantic constraint generator managed to produce 92% complete
constraint sets of the correct granularity for ontologies with a correctly defined

Fraction concept. On the contrary, the constraints generated for ontologies with a
partially defined Fraction concept were too general. They compared each fraction
composed by students as a whole against its corresponding fraction in the ideal
solution. These constraints result in feedback limited in pedagogical significance.

4. Conclusions

This paper reports on an evaluation study of CAS, an authoring system for constraint-
based tutors. The evaluation study conducted with novice authors produced very
encouraging results. The syntax constraint generator was extremely effective,
producing complete constraint sets for almost every participant. The semantic
constraints generator produced constraint sets that were over 90% accurate for half of
the participants. Although the constraints produced by the generator for the remaining
participants were too general, ITS authors can modify them with little effort to produce
constraints of correct granularity. We believe that this would contribute towards the
reduction of the author's total workload.

At the time of the evaluation, constraints produced by CAS were not runnable, but
the system can be easily extended to produce constraints in the target language. This
would dramatically reduce the effort required for composing constraints. The
evaluation revealed that the total workload required by a novice to generate a single
constraint using CAS would be even less than the time required by experts to write
them by hand.

We intend to enhance CAS further to generate constraints directly in the runnable
form. CAS should also be fully integrated with WETAS and made consistent with its
internal representation. We also plan to conduct further evaluations on the effectiveness
of CAS’s constraint generation.

References

1. Aleven, V., McLaren, B., Sewall, J. and Koedinger, K., The Cognitive Tutor Authoring Tools (CTAT):
Preliminary Evaluation of Efficiency Gains. in ITS 2006, (Taiwan, 2006), Springer-Verlag, 61-70.

2. Martin, B. and Mitrovic, A., Domain Modeling: Art or Science? in AIED 2003, (Sydney, Australia,
2003), IOS Press, 183-190.

3. Martin, B. and Mitrovic, A., WETAS: a Web-Based Authoring System for Constraint-Based ITS. in
AH 2002, (Malaga, Spain, 2002), LCNS, 543-546.

4. Mitrovic, A., Koedinger, K. and Martin, B., A comparative analysis of cognitive tutoring and
constraint-based modeling. in UM 2003, (Pittsburgh, USA, 2003), Springer-Verlag, 313-322.

5. Mitrovic, A., Mayo, M., Suraweera, P. and Martin, B., Constraint-based Tutors: a Success Story. in
14th Int. Conf on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
(Budapest, 2001), Springer-Verlag, 931-940.

6. Murray, T. Expanding the Knowledge Acquisition Bottleneck for Intelligent Tutoring Systems.
International Journal of Artificial Intelligence in Education, 8. 222-232.

7. Suraweera, P., Mitrovic, A. and Martin, B., A Knowledge Acquisition System for Constraint-based
Intelligent Tutoring Systems. in AIED 2005, (Amsterdam, Netherlands, 2005), IOS Press, 638-645.

8. Suraweera, P., Mitrovic, A. and Martin, B., The role of domain ontology in knowledge acquisition for
ITSs. in ITS 2004, (Maceio, Brazil, 2004), Springer, 207-216.

9. Suraweera, P., Mitrovic, A. and Martin, B., The use of ontologies in ITS domain knowledge authoring.
in SWEL '04, ITS 2004, (Maceio, Brazil, 2004), 41-49.

10. Tecuci, G. Building Intelligent Agents: An Apprenticeship Multistrategy Learning Theory, Methodology,
Tool and Case Studies. Academic press, 1998.

Appendix G

Relative Contributions to Published Papers

Regulation 8(c) of the Degree of Doctor of Philosophy section in the 2000

University Calender states that “where the published work has more than one

author it shall be accompanied by a statement signed by the candidate iden-

tifying the candidates own contribution.” The contributions are as follows.

1. The use of ontologies in ITS domain knowledge authoring [Suraweera

et al. 2004b]

This was my own research. The authoring tool that supports ontologies

was designed and implemented by myself. I carried out the evaluation

and analysed the results. Dr. Mitrovic provided advice. The paper

was reviewed by Dr. Mitrovic and Dr. Martin.

2. The role of domain ontology in knowledge acquisition for ITSs [Suraweera

et al. 2004a]

This was my own research. The algorithm for generating constraints

from the information available in an ontology was designed and im-

plemented by myself with advice from Dr. Mitrovic. The paper was

reviewed by Dr. Mitrovic and Dr. Martin.

3. Automatic Acquisition of Knowledge for Constraint-based Tutors [Suraweera

2004]

This was my own research. Dr. Mitrovic reviewed the paper.

4. A Knowledge Acquisition System for Constraint-based Intelligent Tu-

toring Systems [Suraweera et al. 2005]

244

This was my own research. The algorithms for generating syntax and

semantic constraints were designed and implemented by myself with the

advice from Dr. Mitrovic. The paper was reviewed by Dr. Mitrovic

and Dr. Martin.

5. Authoring constraint-based tutors in ASPIRE [Mitrovic, Suraweera,

Martin, Zakharov, Milik & Holland 2006]

The constraint generation algorithms of ASPIRE was based on my

doctoral research. I was a major co-author of this paper.

6. Constraint Authoring System: An Empirical Evaluation [Suraweera,

Mitrovic & Martin 2007]

This was my own research. The Constraint Authoring System was

designed and implemented by myself. The reported evaluation study

was also conducted by myself under the guidance of Dr. Mitrovic. The

paper was reviewed by Dr. Mitrovic and Dr. Martin.

Signed Date

245

References

Aleven, V. & Koedinger, K. [2000], Limitations of student control: Do stu-

dents know when they need help, in G. Gauthier, C. Frasson & K. Van-

Lehn, eds, ‘5th International Conference on Intelligent Tutoring Sys-

tems’, Springer, Montreal, pp. 292–303.

Alexe, C. & Gescei, J. [1996], A learning environment for the surgical in-

tensive care unit, in C. Frasson, G. Gauthier & A. Lesgold, eds, ‘Third

International Conference on Intelligent Tutoring Systems’, Montreal,

pp. 439–447.

Altova XML, Data Management, UML, and Web Services Tools [2005],

http://www.altova.com.

Anderson, J. [1993], Rules of the Mind, Erlbaum, Hillsdale, NJ.

Anderson, J. R., Corbett, A., Koedinger, K. & Pelletier, R. [1996], ‘Cognitive

tutors: Lessons learned’, Journal of the Learning Sciences 4(2), 167–207.

Angros, R., Johnson, W. L., Rickel, J. & Scholer, A. [2002], Learning domain

knowledge for teaching procedural skills, in ‘First international joint

conference on Autonomous agents and multiagent systems’, ACM Press,

Bologna, Italy, pp. 1372–1378.

Ayscough, P. B. [1977], ‘CALCHEMistry’, British Journal of Education

Technology 8(3), 201–213.

Baghaei, N. & Mitrovic, A. [2006a], A constraint-based collaborative en-

vironment for learning uml class diagrams, in M. Ikeda, K. Ashley &

T.-W. Chan, eds, ‘Intelligent Tutoring Systems 2006’, Springer, Jhongli,

Taiwan, pp. 176–186.

246

Baghaei, N. & Mitrovic, A. [2006b], A constraint-based collaborative envi-

ronment for learning UML class diagrams, in M. Ikeda, K. Ashley &

T.-W. Chan, eds, ‘Intelligent Tutoring Systems 2006’, Jhongli, Taiwan,

pp. 176–186.

Baghaei, N., Mitrovic, A. & Irwin, W. [2006], ‘Problem-solving support in

a constraint-based intelligent system for unified modelling language’,

Technology, Instruction, Cognition and Learning Journal 4(1-2), To ap-

pear.

Bechhofer, S., Horrocks, I., Goble, C. & Stevens, R. [2001a], OilEd: a reason-

able ontology editor for the semantic web, in ‘14th International Work-

shop on Description Logics, DL2001’, Stanford, USA, p. 396408.

Bechhofer, S., Horrocks, I., Goble, C. & Stevens, R. [2001b], OilEd: a

reason-able ontology editor for the semantic web, in ‘KI2001, Joint Ger-

man/Austrian conference on Artificial Intelligence’, Springer-Verlag, Vi-

enna, pp. 396–408.

Blessing, S. B. [1997], ‘A programming by demonstration authoring tool for

model-tracing tutors’, International Journal of Artificial Intelligence in

Education 8, 233–261.

Bloom, B. S. [1984], ‘The 2-sigma problem: The search for methods of group

instruction as effective as one-to-one tutoring’, Educational Researcher

13, 4–16.

Brown, J. S., Burton, R. R. & Bell, A. G. [1975], ‘SOPHIE: A step toward

creating a reactive learning environment’, International Journal of Man-

Machine Studies 7(5), 675–696.

Chen, P. [1976], ‘The entity relationship model - toward a unified view of

data’, ACM Transactions Database Systems 1(1), 9–36.

Clancey, W. [1982], Tutoring Rules for Guiding a Case Method Dialogue,

Academic Press, Cambridge, Mass.

247

Clutterbuck, P. [1990], The art of teaching spelling: a ready reference and

classroom active resource for Australian primary schools, Longman Aus-

tralia Pty Ltd, Melbourne.

Corbett, A. & Anderson, J. [1995], ‘Model tracing: Modeling the acquisition

of procedural knowledge’, User Modeling and User-Adapted Interaction

4, 253–278.

Corbett, A. T., Trask, H. J., Scarpinatto, K. C. & Hadley, W. S. [1998], A

formative evaluation of the PACT Algebra II tutor: Support for simple

hierarchical reasoning, in B. P. Goettl, H. M. Halff, C. L. Redfield &

V. J. Shute, eds, ‘4th International Conference on Intelligent Tutoring

Systems’, San Antonio, Texas, pp. 374–383.

CTAT [2005], ‘Cognitive tutor authoring tools’,

http://ctat.pact.cs.cmu.edu/tiki-index.php.

DAML [2006], ‘DARPA agent markup language’, http://www.daml.org.

Dillenbourg, P. & Self, J. A. [1992], People power: a human-computer col-

laborative learning system, in C. Frasson, G. Gauthier & G. McCalla,

eds, ‘Second International Conference on Intelligent Tutoring Systems’,

Springer-Verlag, Montreal, pp. 651–660.

Elmasri, R. & Navathe, S. B. [2003], Fundamentals of Database Systems,

Fourth Edition, Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA.

Gruber, T. R. [1993], ‘A translation approach to portable ontologies’, Knowl-

edge Acquisition 5(2), 199–220.

Holt, P., Dubs, S., Jones, M. & Greer, J. [1994], ‘The state of student mod-

elling’, pp. 3–35.

Jarvis, M. P., Nuzzo-Jones, G. & Heffernan, N. T. [2004], Applying machine

learning techniques to rule generation in intelligent tutoring systems.,

in ‘Intelligent Tutoring Systems 2004’, pp. 541–553.

248

Knublauch, H. [2003], ‘An AI tool for the real world: Knowledge

modeling with Protégé’, http://www.javaworld.com/javaworld/jw-06-

2003/jw-0620-protege.html.

Koedinger, K., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry,

M. [2004], Openning the door to non-programmers: Authoring in-

telligent tutor behavior by demonstration, in J. Lester, R. Vicari &

F. Paraguacu, eds, ‘Intelligent Tutoring Systems 2004’, Springer, Ma-

ceio, Brazil, pp. 162–174.

Koedinger, K. R., Anderson, J., Hadley, W. & Mark, M. A. [1997], ‘Intelligent

tutoring goes to school in the big city’, International Journal of Artificial

Intelligence in Education 8(1), 30–43.

Kulik, J. A., Kulik, C.-L. C. & Cohen, P. A. [1980], ‘Effectiveness of

computer-based college teaching: a meta-analysis of findings’, Rev.

Educ. Research 50, 524–44.

Last, R. W. [1979], ‘The role of computer-assisted learning in modern lan-

guage teaching’, Assoc. for Literary and Linguistic Computing 7, 165–

171.

Lesgold, A. [1987], Toward a theory of curriculum for use in designing intel-

ligent instructional systems, in H. Mandl & A. M. Lesgold, eds, ‘Learn-

ing Issues for Intelligent Tutoring Systems’, Springer-Verlag, New York,

pp. 114–137.

Martin, B. [2002], Intelligent Tutoring Systems: The Practical Implementa-

tion of Constraint-based Modelling, Phd thesis, University of Canter-

bury.

Martin, B. & Mitrovic, A. [2002a], Authoring web-based tutoring systems

with WETAS, in Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto,

L. Henderson & C.-H. Lee, eds, ‘International Conference on Computers

in Education 2002’, Auckland, NZ, pp. 183–187.

249

Martin, B. & Mitrovic, A. [2002b], WETAS: a web-based authoring system

for constraint-based ITS, in ‘2nd Int. Conf on Adaptive Hypermedia

and Adaptive Web-based Systems AH 2002’, Vol. 2347, LCNS, Malaga,

Spain, pp. 543–546.

Martin, B. & Mitrovic, A. [2003], Domain modeling: Art or science?, in

U. Hoppe, F. Verdejo & J. Kay, eds, ‘11th Int. Conference on Artificial

Intelligence in Education AIED 2003’, IOS Press, Sydney, Australia,

pp. 183–190.

Martin, B. & Mitrovic, A. [2005], Using learning curves to mine student

models, in ‘10th international conference on User Modelling, UM05’,

Edinburgh, pp. 79–88.

Martin, B. & Mitrovic, A. [2006], The effect of adapting feedback granularity

in ITS, in V. Wade, H. Ashman & B. Smyth, eds, ‘4th International

Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,

AH2006’, Springer, Dublin Ireland, pp. 192–202.

Mayo, M., Mitrovic, A. & McKenzie, J. [2000], CAPIT: An intelligent tutor-

ing system for capitalisation and punctuation, in Kinshuk, C. Jesshope

& T. Okamoto, eds, ‘Advanced Learning Technology: Design and De-

velopment Issues’, IEEE Computer Society, Los Alamitos, CA, pp. 151–

154.

Milik, N., Marshall, M. & Mitrovic, A. [2006], Teaching logical database de-

sign in ERM-Tutor, in M. Ikeda, K. Ashley & T.-W. Chan, eds, ‘Intel-

ligent Tutoring Systems 2006’, Springer, Jhongli, Taiwan, pp. 707–709.

Mitrovic, A. [1998a], Experiences in implementing constraint-based mod-

elling in SQL-Tutor, in B. P. Goettl, H. M. Halff, C. L. Redfield &

V. J. Shute, eds, ‘4th International Conference on Intelligent Tutoring

Systems’, San Antonio, pp. 414–423.

Mitrovic, A. [1998b], Learning SQL with a computerised tutor, in ‘29th ACM

SIGCSE Technical Symposium’, Atlanta, pp. 307–311.

250

Mitrovic, A. [2002], NORMIT, a web-enabled tutor for database normaliza-

tion, in Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Hen-

derson & C. H. Lee, eds, ‘International Conference on Computers in

Education 2002’, Auckland, New Zealand, pp. 1276–1280.

Mitrovic, A. [2003a], ‘An intelligent SQL tutor on the web’, International

Journal of Artificial Intelligence in Education 13, 171–195.

Mitrovic, A. [2003b], Supporting self-explanation in a data normalization tu-

tor, in V. Aleven, U. Hopppe, J. Kay, R. Mizoguchi, H. Pain, F. Verdejo

& K. Yacef, eds, ‘Supplementary proceedings, AIED 2003’, pp. 565–577.

Mitrovic, A. [2005a], The effect of explaining on learning: a case study with

a data normalization tutor, in C.-K. Looi, G. McCalla, B. Bredeweg &

J. Breuker, eds, ‘Artificial Intelligence in Education AIED 2005’, IOS

Press, pp. 499–506.

Mitrovic, A. [2005b], ‘Scaffolding answer explanation in a data normalization

tutor’, Facta Universitatis, Series Elec. Energ. 18(2), 151–163.

Mitrovic, A., Koedinger, K. & Martin, B. [2003], A comparative analysis

of cognitive tutoring and constraint-based modeling, in P. Brusilovsky,

A. Corbett & F. d. Rosis, eds, ‘9th International conference on User

Modelling UM2003’, Springer-Verlag, Pittsburgh, USA, pp. 313–322.

Mitrovic, A., Mayo, M., Suraweera, P. & Martin, B. [2001], Constraint-based

tutors: a success story, in L. Monostori, J. Vancza & M. Ali, eds, ‘14th

International Conference on Industrial and Engineering Applications of

Artificial Intelligence and Expert Systems (IEA/AIE-2001)’, Springer-

Verlag, Budapest, pp. 931–940.

Mitrovic, A. & Ohlsson, S. [1999], ‘Evaluation of a constraint-based tutor for

a database language’, International Journal of Artificial Intelligence in

Education 10(3-4), 238–256.

251

Mitrovic, A., Suraweera, P., Martin, B. & Weerasinghe, A. [2004], ‘DB-suite:

Experiences with three intelligent, web-based database tutors’, Journal

of Interactive Learning Research (JILR) 15(4), 409–432.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N. & Holland, J.

[2006], Authoring constraint-based tutors in aspire, in M. Ikeda, K. Ash-

ley & T.-W. Chan, eds, ‘Intelligent Tutoring Systems 2006’, Springer,

Jhongli, Taiwan, pp. 41–50.

Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., Towne, D. M. &

Wogulis, J. L. [1997], Authoring simulation-centred tutors with RIDES,

in ‘International Journal of Artificial Intelligence in Education’, Vol. 8,

pp. 284–316.

Murray, T. [1997], ‘Expanding the knowledge acquisition bottleneck for intel-

ligent tutoring systems’, International Journal of Artificial Intelligence

in Education 8, 222–232.

Murray, T. [1999], ‘Authoring intelligent tutoring systems: an analysis of the

state of the art’, International Journal of Artificial Intelligence in Edu-

cation, Part II of the Special Issue on Authoring Systems for Intelligent

Tutoring Systems 10, 98–129.

Murray, T. [2003], ‘An overview of intelligent tutoring system authoring tools:

Updated analysis of the state of the art’, Authoring tools for advanced

technology learning environments pp. 491–545.

Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W. & Musen,

M. A. [2001], ‘Creating semantic web contents with Protégé-2000’, IEEE

Intelligent Systems 16(2), 60–71.

Ohlsson, S. [1987], ‘Some principles of intelligent tutoring’, Artificial intelli-

gence and education; vol. 1: learning environments and tutoring systems

pp. 203–237.

252

Ohlsson, S. [1994], Constraint-based student modelling, in ‘Student Mod-

elling: the Key to Individualized Knowledge-based Instruction’,

Springer-Verlag, Berlin, pp. 167–189.

Ohlsson, S. [1996], ‘Learning from performance errors’, Psychological Review

103(2), 241–262.

O’Shea, T. & Self, J. A. [1983], Learning and Teaching with Computers,

Brighton, Harvester Press.

OWL [2004], ‘OWL web ontology language’, http://www.w3.org/TR/owl-

features.

Protege [2006], ‘The Protégé ontology editor and knowledge acquisition sys-

tem, http://protege.stanford.edu/’.

RDF [2006], ‘Resource description framework (RDF)’,

http://www.w3.org/RDF.

Rich, E. [1989], ‘Stereotypes and User models’, User Models in Dialog Sys-

tems pp. 35–51.

Shute, V. J., Glaser, R. & Raghavan, K. [1989], ‘Inference and discovery in an

exploratory laboratory’, Learning and individual differences: Advances

in theory and research pp. 279–326.

Soloway, E., Guzdial, M. & Hay, K. [1994], ‘Learner-centered design: the

challenge for HCI in the 21st century’, interactions 1(2), 36–48.

Storey, M., Musen, M., Silva, J., Best, C., Ernst, N. & Noy, R. F. N. [2001],

‘Jambalaya: Interactive visualization to enhance ontology authoring and

knowledge acquisition in Protégé’.

Suraweera, P. [2004], Automatic acquisition of knowledge for constraint-

based tutors, in ‘Student Track, Intelligent Tutoring Systems 2004’,

Maceio, Brazil.

253

Suraweera, P. & Mitrovic, A. [2002], KERMIT: a constraint-based tutor for

database modeling, in S. Cerri, G. Gouarderes & F. Paraguacu, eds,

‘Intelligent Tutoring Systems 2002’, Biarritz, France, pp. 377–387.

Suraweera, P. & Mitrovic, A. [2004], ‘An intelligent tutoring system for entity

relationship modelling’, International Journal of Artificial Intelligence

in Education 14(3,4), 375–417.

Suraweera, P., Mitrovic, A. & Martin, B. [2004a], The role of domain on-

tology in knowledge acquisition for ITSs, in J. Lester, R. Vicari &

F. Paraguaçu, eds, ‘Intelligent Tutoring Systems 2004’, Springer, Ma-

ceio, Brazil, pp. 207–216.

Suraweera, P., Mitrovic, A. & Martin, B. [2004b], The use of ontologies in ITS

domain knowledge authoring, in J. Mostow & P. Tedesco, eds, ‘2nd Int.

Workshop on Applications of Semantic Web for E-learning SWEL’04,

Intelligent Tutoring Systems 2004’, Maceio, Brazil, pp. 41–49.

Suraweera, P., Mitrovic, A. & Martin, B. [2005], A knowledge acquisition

system for constraint-based intelligent tutoring systems, in C.-K. Looi,

G. McCalla, B. Bredeweg & J. Breuker, eds, ‘Artificial Intelligence in

Education 2005’, IOS Press, Amsterdam, Netherlands, pp. 638–645.

Suraweera, P., Mitrovic, A. & Martin, B. [2007], Constraint authoring sys-

tem: An empirical evaluation, in ‘Artificial Intelligence in Education

2007’, IOS Press, California, USA, p. to appear.

Tecuci, G. [1998], Building Intelligent Agents: An Apprenticeship Multistrat-

egy Learning Theory, Methodology, Tool and Case Studies, Academic

press.

Tecuci, G., Boicu, M., Marcu, D., Stanescu, B., Boicu, C. & Comello, J.

[2002], ‘Training and using Disciple agents: A case study in the military

center of gravity analysis domain’, AI Magazine 23(4), 51–68.

254

Tecuci, G. & Keeling, H. [1999], ‘Developing an intelligent educational agent

with Disciple’, International Journal of Artificial Intelligence in Educa-

tion 10, 221–237.

Tecuci, G., Wright, K., Lee, S., Boicu, M. & Bowman, M. [1998], A learn-

ing agent shell and methodology for developing intelligent agents, in

‘AAAI-98 Workshop: Software Tools for Developing Agents’, Madison,

Wisconsin.

van Lent, M. & Laird, J. E. [2001], Learning procedural knowledge through

observation, in ‘International conference on Knowledge capture’, ACM

Press, pp. 179–186.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J., Shelby, R., L., T., Treacy,

D., Weinstein, A. & Wintersgill, M. [2005], ‘The Andes physics tutoring

system: Lessons learned’, International Journal of Artificial Intelligence

and Education 15(3), 147–204.

Weerasinghe, A. & Mitrovic, A. [2003], Effects of self-explanation in an open-

ended domain, in U. Hoppe, F. Verdejo & J. Kay, eds, ‘11th Int. Con-

ference on Artificial Intelligence in Education AIED 2003’, IOS Press,

pp. 512–514.

Wikipedia [2005], ‘Ontology (computer science)’,

http://en.wikipedia.org/wiki/Ontology (computer science).

Zakharov, K., Ohlsson, S. & Mitrovic, A. [2005], Feedback micro-engineering

in EER-Tutor, in C.-K. Looi, G. McCalla, B. Bredeweg & J. Breuker,

eds, ‘Artificial Intelligence in Education AIED 2005’, IOS Press, Ams-

terdam, Netherlands, pp. 718–725.

255

	List of Tables
	List of Figures
	Introduction
	Intelligent Tutoring Systems
	Domain Knowledge
	The Problem: Authoring Domain Knowledge
	A Solution: An Authoring System that Generates Constraint Bases with the Assistance of a Domain Expert
	Guide to the Thesis

	Intelligent Tutoring Systems
	ITS Architecture
	Domain Module
	Student Modeller
	Pedagogical Module
	Interface

	Model Tracing
	ACT-R Theory
	Production Rules
	Model Tracing Tutors

	Constraint-based Modelling
	Learning from Performance Errors
	CBM in ITS
	Constraint-based Modelling and Model Tracing: A Comparison
	Constraint-based Tutors
	WETAS: An Authoring Shell

	Summary

	Domain Knowledge Authoring Systems
	Domain Knowledge Authoring Tools
	KnoMic
	Diligent
	Disciple
	Demonstr8
	CTAT

	Producing a Domain Ontology
	Prot"7013eg"7013e
	OilEd
	SemanticWorks 2006

	Summary

	A Constraint-based Domain Model Authoring System
	Domain Authoring Process
	Architecture
	Modelling Domain's Ontology
	Domain Ontology
	Ontology Workspace
	Internal Representation

	Modelling the Structure of Solutions
	Syntax Constraints Generation
	Adding Problems and Solutions
	Semantic Constraints Generation
	Constraint Validation
	Summary

	Evaluation
	Usefulness of Ontologies for Manually Composing Domain Models (Study 1)
	Process
	Results and Analysis

	Effectiveness of the Constraint Generation Algorithms (Study 2)
	Entity Relationship Modelling
	Fraction Addition
	Normalisation
	Discussion

	Effectiveness of CAS with Novice ITS Authors (Study 3)
	Procedure
	Interaction Times
	Analysis of Produced Constraint Sets
	Discussion

	Summary

	Conclusions
	Main Contribution
	Other Significant Contributions
	Ontology Workspace
	Problem/Solution Interface
	Domain Model Authoring Tool for WETAS

	Future Directions
	Concluding Remarks

	Appendices
	Translating Pseudo-code Constraints into Lisp-code: an Example
	Solution Representation
	Syntax Constraints
	Semantic Constraints

	Study 3 Task Outline
	ITS 2004 papers
	AIED 2005 paper
	ITS 2006 paper
	AIED 2007 paper
	Relative Contributions to Published Papers
	References

