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ABSTRACT 
Multidirectional motion occurs in total knee replacements (TKR), is a major factor in 

ultra high molecular weight polyethylene (UHMWPE) wear and is a requirement for 

wear tester and simulators. There are three ways the femoral component can move 

relative to the tibial component; sliding, rolling and gliding and these are defined by 

the slide to roll ratio. Previous wear tester research has investigated the effects of 

multidirectional motion and slide to roll ratio, individually but not combined. The 

project aim was to design a machine that combined multidirectional motion with 

variable slide to roll ratio. A three station wear testing machine was designed and 

built featuring flexion extension, variable anterior posterior translation, variable 

internal external rotation and a 2KN load per station.  The TKR was simplified to a 

cylinder on flat. Lubrication was 25% bovine serum and each station had its own 

recirculation system. 

 

A million cycle validation test was successfully carried out on non-irradiated 

UHMWPE samples using a slide to roll ratio of 1 : 0.5 and the mean wear rate was 

14.7mg/106 cycles. Polished areas and scratches from 3rd body abrasion were 

observed. Magnification revealed a fine ripple pattern with a 1-2�m periodicity. 

Ripples were randomly oriented, perpendicular to the primary direction of motion 

and a small number were running parallel to the primary direction of motion, 

indicative of rolling motion. The results from the validation study show that the knee 

joint wear tester is capable of producing wear rates and wear mechanisms similar to 

those observed in other wear testers and knee joint simulators and has met the aim of 

the project. 
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1 INTRODUCTION 

1.1  
Arthritis is a degenerative disease of the cartilage and articular structures in joints, 

causing pain, loss of mobility and function for millions of people world wide. There are 

two forms: the more common osteoarthritis or “old age wear and tear on the joints” and 

rheumatoid arthritis, which is an immune system disorder that destroys the joints. It can 

often be treated with analgesics, but more serious cases require replacement of the joint 

surfaces to restore mobility and give freedom from pain. The hip and knee are the joints 

most often replaced. 

 

The standard total knee replacement (TKR) consists of a very hard, polished cobalt 

chrome femoral component fitted over the distal (bottom) end of the femur articulating 

against an ultra high molecular weight polyethylene (UHMWPE) tibial component that 

resurfaces the proximal (top) end of the tibia. This material combination provides a low 

friction joint, low wear rates and generally excellent results for the short and medium 

term. Long term, the sub micron sized UHMWPE wear debris produces an 

inflammatory immune system response that can lead to resorption of the bone 

supporting the implant, leading to pain, loosening of the implant and the requirement 

for revision surgery to replace the TKR. 
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Numerous industry and academic groups are carrying out research into cobalt chrome 

on UHMWPE and other bearing combinations, to gain a better understanding of the 

wear properties and wear mechanisms that occur in vivo. Their objective is to increase 

the survival rates and to extend the functional lives of TKR, through a reduction in the 

number of inflammatory wear debris particles produced.  

 

This research was originally carried out using linear reciprocating test rigs with a 

polyethylene pin on a cobalt chrome disc. These simple rigs have since been shown to 

produce erroneous results as the motions experienced by TKR in vivo are 

multidirectional rather than linear and UHMWPE exhibits anisotropic properties under 

multidirectional motion. At the other end of the spectrum are full knee joint simulators, 

often costing over $US300,000, that test commercially available TKR and apply 

physiologically accurate loads and motions. Of intermediate complexity are knee joint 

wear testers that use a CoCr or stainless steel cylinder or sphere on a UHMWPE flat to 

represent the TKR and have a simplified motion profile. These devices are used for the 

preliminary investigations into new materials and for research into the wear 

mechanisms of TKR.  

 

As a TKR undergoes flexion during walking, the motion between the two components 

is initially rolling, but this changes to a sliding motion during greater flexion angles. 

Previous research on linear test rigs has shown the wear mechanisms for rolling differ 

from those of sliding. Other researchers have carried out experiments on 
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multidirectional knee joint wear testers, but have only investigated one slide to roll 

ratio.  

 

The aim of this project is to develop a low cost knee joint wear testing machine capable 

of filling this gap in the research, by combining a variable slide to roll ratio with 

multidirectional motion.  
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1.2 THESIS ORGANISATION 
 

Chapter two is a literature review covering the anatomy of the knee and the loads and 

motions of the joint, followed by a brief explanation of arthritis and current TKR. It 

then goes into more detail covering knee joint simulators and wear testers that have 

been used to develop theories on UHMWPE wear mechanisms, with a special emphasis 

on the importance of multi-directional motion and slide to roll ratio. Chapter three is 

the design specification, discussing the load, motions, contact conditions and other 

factors required to meet the project aim. Chapter four covers the design process of the 

knee joint wear tester, the rationale for the chosen solution and presents the final 

design. Chapter five is the validation of the machine, including the results from a one 

million cycles wear test. Conclusions and recommendations for future work are 

included in chapter six.  
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2 LITERATURE REVIEW 

2.1 THE KNEE JOINT 

2.1.1 STRUCTURE OF THE KNEE JOINT 

 

The knee is a complicated synovial hinge type joint between the femur and tibia with 

an intermediate articulation between the femur and the patella. The synovial joint is 

defined by a joint cavity, articular cartilage and an articular capsule consisting of a 

fibrous capsule lined with synovial membrane. Lubrication of the joint is provided by 

synovial fluid from the synovial membrane, giving nearly frictionless motion. 

 

The main surfaces of the joint, which are covered in articular cartilage, are the convex 

medial and lateral condyles of the femur, the medial and lateral condyles of the tibia, 

also known as the tibial plateau, and the posterior surface of the patella. The femoral 

condyles sit in the slightly concave tibial condyles while the patella sits in front of the 

femur, in the groove between the femoral condyles. Figure 2-1 shows the knee in 

flexion with the patella removed for clarity.  
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Figure 2-1 Right knee in flexion: anterior view [1] 

 

The tibial condyles are partially covered by the medial and lateral menisci, crescent 

shaped pieces of fibrocartilage. The menisci are firmly attached round the outside of 

the tibial plateau but are unattached nearer the center. These act as shock absorbers for 

the knee joint and fill in some of the gaps between the incongruent femoral and tibial 

condyles.  

 

The knee joint is mechanically rather weak due to the configuration of the articular 

surfaces, most of the stability being provided by muscles and ligaments running 
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between the femur and the tibia. The major ligaments of the knee are the two cruciates, 

the two collateral ligaments and the patella ligament, which is also known as the patella 

tendon.  The anterior and posterior cruciate ligaments (ACL and PCL) attach between 

the medial and lateral condyles and form a cross which controls the anterior-posterior 

displacement of the tibia relative to the femur. The fibular and tibial collateral 

ligaments are on the medial and lateral sides of the knee respectively. The patella 

ligament attaches the patella to the tibia and transmits the motion and forces from the 

quadriceps. The menisci of the knee and the cruciate ligaments are shown in Figure 2-2 

and Figure 2-3 is a cross section through the knee showing the general layout of the 

joint. 

 

 

Figure 2-2 Tibial plateau: superior view [1] 
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Figure 2-3 Parasagittal section of the knee [1] 

 

2.1.2 MOTION OF THE KNEE 

 

Every joint has 6 degrees of freedom, three translations and three rotations, although 

some of the degrees of freedom are larger and therefore more significant than others. 

The three rotations are flexion extension (FE), internal external tibial rotation (IE)  and 

abduction adduction and the three translations are anterior posterior (AP) displacement, 

medial lateral shift and compression distraction.  
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Figure 2-4 The six degrees of freedom of the knee [2] 

 

The primary motion of the knee is flexion and extension, with ligament tension causing 

the knee to lock at full extension and full flexion being constrained by the calf hitting 

the thigh, giving an approximate range of motion of 165 degrees. Internal/external 

rotation is the rotation of the tibia about the long (vertical) axis of the bone and internal 

rotation occurs when the foot is pointed inwards. Abduction of the tibia occurs when it 

rotates laterally about a horizontal anterior posterior axis, away from the median plane 

and adduction is the reverse when the tibia rotates medially. Anterior/posterior 

displacement is the forward and back translation of the tibia relative to the femur. Its 

motion is closely linked to the flexion angle, with posterior displacement occurring 

with increasing flexion angle. Medial lateral shift is another small motion of the knee 
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joint involving the medial or lateral displacement of the tibia relative to the femur. 

Compression/distraction is the proximal/distal (up and down) motion of the tibia 

relative to the femur. It is not often reported in the literature and is primarily included 

for completeness. 

 

There is still no consensus on what constitutes the normal kinematics of the knee, since 

all of the motions apart from flexion extension are small and difficult to measure. 

Neither is there full agreement on the method of defining the joint axes [2].  One 

widely reported aspect of motion is the “screw home” or screw axis mechanism of the 

knee, where internal/external rotation is coupled to flexion /extension [3]. As the knee 

is flexed the tibia rotates internally and extension produces external rotation. Wilson [4] 

has shown in a cadaver study that the passive knee joint has only one degree of 

freedom despite moving in six different axes and can be defined by the angle of 

flexion. The degree of internal/external rotation, abduction/adduction, anterior/posterior 

displacement, medial/lateral shift and compression/distraction are constrained along a 

unique path by the ACL, PCL, medial collateral ligament and the shape of the medial 

and lateral compartments.  

 

The problem with cadaver studies is that they only report the passive rather than the 

active motion of the knee, which is affected by muscle, ground reaction and inertial 

forces that are encountered during walking and other daily activities. Numerous 

investigators have carried out active knee joint motion studies, the majority involving 

either multiple video cameras recording the positions of skin makers [5] or 
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goniometers, devices attached above and below the joint with between one and six 

potentiometers connected to each other by rigid links. The six linkage goniometers are 

also known as instrumented spatial linkages (ISL). Both these methods suffer from two 

problems. The markers or goniometer are attached externally. Movement between the 

skin and bone causes positional uncertainty between the markers and the bony 

anatomical landmarks of the knee, resulting in errors these measurements.  For subjects 

running this error has been calculated as 21% for flexion extension, 63% for internal 

external rotation and 70% for adduction abduction [6].  

 

The author found two studies in the literature that have used markers attached to the 

femur and tibia to generate knee joint motion profiles without the skin movement 

errors. However one of them [7] used seated rather than walking subjects, the knee was 

therefore unloaded and results supported the existence of the “screw home” 

mechanism.  

 

The other article by Lafortune [8] is regarded as the definitive source on knee joint 

motion during walking, despite showing significant differences from the majority of 

other researchers. Intercortical tractions pins were inserted into five subjects who were 

captured on calibrated high speed cine cameras. It found 65 degrees of flexion during 

level walking and posterior displacement linked to flexion angle, in general agreement 

with the literature. The result for FE is shown in Figure 2-5, AP translation in Figure 

2-6 and IE rotation in Figure 2-7. The thin motion profile in each graph is the result 

from each individual subject and the bold line is the average.  



 

 

12

 

Figure 2-5 Flexion Extension [8] 

 

 

Figure 2-6 Anterior posterior translation [8] 
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Figure 2-7 Internal external rotation [8] 

 

 

The results for internal/external rotation did not show a fixed path for both flexion and 

extension and differed considerably from the widely reported screw mechanism. It is 

unlikely that there are major flaws in the work of either Lafortune or all the screw 

mechanism researchers; rather they were measuring different aspects of knee motion. 

Lafortune’s measurements were made during active walking whereas the majority of 

the other work was a static, passive or unloaded analysis using cadavers or stationary or 

non-walking subjects. When the graph of IE rotation Vs FE from Lafortune et al 

[8](Figure 2-8) is compared to Wilson et al [4] (Figure 2-9), the difference is clearly 

obvious.  
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Figure 2-8 IE rotation as defined by FE – Lafortune et al [8] 

 

Figure 2-9IE rotation as defined by FE – Wilson et al [4] 
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The dependence on the condition of the knee and conditions under which its motion is 

measured is further highlighted by an ISL study by Ishii [9] which found significant 

differences between the motions of patients with TKR when compared to healthy 

controls. The TKR group showed reduced flexion extension, internal external rotation 

and increased anterior posterior translation. The variability of TKR motion is further 

highlighted by a study using a force controlled knee joint simulator that simulated the 

soft tissue structures. Nine different TKR were tested, with the shape of the implant the 

only variable, and IE rotation was found to vary from 5º to 20º [10]. 

 

2.1.3 KNEE JOINT LOADS 

 

The knee is the most heavily loaded joint in the body, with peak reported loads of 7.1 

times body weight for level walking [11], which translates to 5KN for a 70Kg person. 

The largest force through the joint is due to muscle contractions and ligament tension, 

but the impact loading that occurs during heel strike or walking down stair also makes a 

significant contribution [12]. The two most commonly used load profiles for knee joint 

simulators are Paul [13] and Seireg & Arvikar [11], with maximum forces of 3.4 and 

7.1 times body weight respectively. These load profiles were calculated by analyzing 

the lower limbs through a series of quasi-static walking positions. Muscle, gravity, joint 

reaction and ligament forces were accounted for but inertial forces and impact loading 

were not. The large difference in the peak load between the two studies is attributed to 
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Seireg and Arvikar including antagonistic muscle activity (contraction of opposing 

muscles at the same time) and Paul omitting it. These load profiles are shown in Figure 

2-10 and Figure 2-11.  
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Figure 2-10 Knee joint loads during normal walking – Seireg & Arvikar [11] 
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Figure 2-11 Knee joint load during normal walking – Paul [13] 

 

2.1.4 ARTHRITIS OF THE KNEE 

 

Arthritis is one of the leading cause of disability in the United States  where there are 

approximately 70 Million sufferers of arthritis and other rheumatic conditions [14]. It is 

a degenerative disease of the cartilage and articular structures in joints, causing pain, 

stiffness and loss of mobility. Figure 2-12 is an X-ray with evidence of arthritis on the 

medial side of the knee, shown by the loss of joint space indicated by the black arrow. 

The most common type is osteoarthritis (OA) that is sometimes referred to as “old age 

wear and tear on the joints” although it can affect people of all ages. Rheumatoid 
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arthritis (RA) is the second most common and is an immune system disorder that 

attacks the cartilage and other structures in the joints. There is a genetic propensity for 

OA to run in families, although previous injuries such as rupturing the ACL or tearing 

of the meniscus greatly increase the chance of developing the condition later in life. 

Since cartilage is largely avascular (without blood supply), the rate of regeneration or 

repair is negligible and the disease progresses, resulting in a gradual loss of cartilage 

and joint space. In the more severe stages of arthritis there is bone on bone contact, 

causing considerable pain and requiring replacement of the joint with a prosthesis. 

 

 

 

Figure 2-12 X-ray of arthritis in the medial compartment of the knee 
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2.2 TOTAL KNEE REPLACEMENT 

 

The first knee replacement, performed in 1952, was a custom hinge joint made of a 

dental acrylic polymer and stainless steel and was hinged about a nylon axle [15]. It 

survived for 1 year before the skin over the joint failed due to over stretching and the 

final result was an above the knee amputation. In the ensuing five decades there have 

been numerous improvements to TKR and this procedure now provides relief from pain 

and greatly improved mobility for approximately 130,000 patients every year in the 

United States [16]. In the short and medium term, TKR is a very successful procedure 

with 15 year survival rates as high as 98.9% [17], although not all implants are this 

successful. Beyond this the survival rate can drop significantly, as Ultra High 

Molecular Weight Polyethylene (UHMWPE) wear debris from the articulating surface 

provokes an inflammatory response that leads to osteolysis (bone loss) around the 

implant, followed by pain and loosening and failure of the implant. Despite the 

significant improvements in the understanding of UHMWPE and its processing and 

manufacturing, late aseptic loosening caused by wear debris induced osteolysis has 

now replaced fixation loosening as the main cause of failure of long term implants. [18] 
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2.2.1 CURRENT TKR 

 

Today’s TKR consists of a cobalt chrome (CoCr) femoral component, replacing the 

condyles of the distal end of the femur and a slightly concave or dished UHMWPE 

tibial component covering the tibial plateau. A photo of a TKR is shown in Figure 2-13 

and schematic of an implanted TKR is shown in Figure 2-14. CoCr is used because of 

its excellent biocompatibility, corrosion resistance and high hardness. UHMWPE, a 

linear homopolymer is used because of its good biocompatibility in the bulk form, low 

friction, low wear rate and good creep resistance. Tibial components often have a 

titanium base plate with an integral stem to improve the fixation. The components are 

attached by either bone cement or a press fit, with a roughened or porous surface to 

promote osteointegration (bone ingrowth) to enhance long term stability. In some cases 

where there are problems with the patello-femoral joint the surgeon will also resurface 

the underside of the patella with a UHMWPE component.  
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Figure 2-13 A total knee replacement. Femoral component (left) and tibial 

component (right) 
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Figure 2-14 Location of the TKR in a knee 

Improvements in component and surgical tooling design and better surgical techniques 

have resulted in improved primary fixation (component attachment to the bone directly 

after surgery), lower stresses in the UHMWPE tibial component, better component 

positioning and soft tissue (ligaments and tendons) balancing, resulting in better TKR 

survival rates and more natural joint kinematics for the patient. The advances in 

component sterilisation techniques and infection control during surgery have greatly 

reduced the early failure rate due to infections.  
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2.2.2 OSTEOLYSIS AND IMPLANT FAILURE 

 

The majority of research done on the role of UHMWPE wear, osteolysis and total joint 

replacement failure has been carried out on total hip replacements (THR), but most of it 

is transferable to TKR as they both use the same materials, a cobalt chrome convex 

surface articulating on a concave UHMWPE surface and similar methods of attachment 

to the bone.  

 

The mechanisms involved in late asceptic loosening caused by osteolysis are highly 

complex and not fully understood, but a simplified explanation follows. In its bulk 

form, UHMWPE is a bio-inert material, but when millions of small wear particles are 

released during articulation they provoke an immune system response whereby they are 

phagocytosed by macrophages. The macrophages then release pro-inflammatory 

cytokines (chemical messengers) and other mediators of inflammation that stimulate 

osteoclastic bone resorption, However the macrophages are unable to digest the 

polyethylene wear particles and this creates a state of continuous inflammation, leading 

to osteolysis and eventual loosening of the prosthesis. [19]. From TKR the UHMWPE 

wear debris ranges in size from sub micron to over one hundred microns [20], but 

particles in the 0.1-0.8um size range have been shown to provoke the strongest 

response and therefore have the greatest osteolytic potential [19]  [21]. 
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Bone loss is restricted to areas where the UHMWPE wear debris can migrate and cause 

the inflammatory response. Osteolysis is only a major concern if it is in the 

periprosthetic bone. Cases of revision surgery have shown the UHMWPE tibial tray 

having severe wear, chronic inflammatory response and resorption of surrounding 

bone, but the components were still firmly attached. Good bone ingrowth into the 

porous coating of the implant had effectively sealed the periprosthetic bone from wear 

debris and prevented osyeolysis there [20]. One of these retrieved implants is shown in 

Figure 2-15. 

 

 

Figure 2-15 Retrieved TKR components showing severe UHMWPE wear [20] 
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2.3 KNEE JOINT SIMULATOR, WEAR TESTERS    

AND    UHMWPE    WEAR  

2.3.1 INTRODUCTION 

 

This section of the literature review, covering the mechanisms of UHMWPE wear and 

the joint simulators and wear testers that were used to investigate these properties, 

forms a central part of the thesis.  It starts with the early research and the effects of 

surface finish and third body wear, followed by the discovery of the importance of 

accurately reproducing the joint kinematics by Bragdon et al and Wang et al. and the 

multidirectional motion induced anisotropy theory developed by Wang. Existing knee 

joint simulators are briefly covered and the need for low cost wear testers explained. 

This leads to the wear tester work done by Blunn et al, Cornwall et al, Saikko et al and 

McGoulin et al on the different kinematic conditions that occur in the TKR, namely 

sliding, rolling and gliding and the effect of varying the slide to roll ratio. A gap in the 

literature is identified and this leads to the motivation for this project. 
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2.3.2 EARLY UHMWPE WEAR RESEARCH 

 

Early classifications of UHMWPE wear were descriptive and did not give good insight 

into how the properties of the polymer related to the observed damage. The wear of 

UHMWPE was originally classified as abrasive, adhesive or fatigue. [22] Abrasive 

wear is the cutting of the polymer by roughness on the counter surface or third body 

debris. Adhesive wear occurs during boundary or mixed lubrication when asperity 

contact occurs and the interfacial strength between the metallic component and the 

polymer is greater than the bulk strength of the UHMWPE. Fatigue wear is caused by 

repeated cyclic loading creating and then propagating cracks in the polymer. It is found 

in retrieved implants as either surface micro-cracking or sub-surface delamination. The 

ball in socket configuration of the hip joint gives a much larger contact area and lower 

stress than the point or line contact in a knee joint. As a result, delamination fatigue 

wear is almost exclusively found in TKR and most commonly in designs with thin 

polyethylene tibial components and non-conforming geometry that create high sub-

surface stresses [18].  Later research has shown that in addition to high sub-surface 

stresses, sterilization by irradiation in air and then aging of the polyethylene is required 

to produce the sub-surface embrittlement that leads to delamination and fatigue wear. 

[23] 

 

For several decades in vitro research into THR and TKR materials was carried out 

using simple reciprocating wear test rigs. The use of distilled water for lubrication 
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caused a UHMWPE transfer layer to form on the metallic counter surface, a 

phenomenon not observed with retrieved implants. The results these linear wear testers 

produced showed little resemblance to clinical data in terms of wear rates, mechanisms 

or ranking of materials [18]. Another factor that can create errors in the wear rates is 

the hydroscopic nature of polyethylene. It absorbs water during testing and gains 

weight that offsets the mass loss due to wear. This can be corrected by soak controls, 

samples being subjected to the same fluids, temperatures and sometimes load as the test 

piece without the motion to create wear. However errors can still arise if the soak 

controls don’t have the same absorption rate as the test samples. This is particularly 

relevant if the wear rate is small, as some studies have reported negative wear rates. 

[23] 

 

 

2.3.3 THE IMPORTANCE OF MULTIDIRECTIONAL 

MOTION 

 

The major discovery of the importance of correctly reproducing the joint kinematics 

and multidirectional motion came when Bragdon & O’Connor [24] from Advanced 

Mechanical Testing Inc ran tests on a new hip simulator with physiological loading, 

±23 deg flexion extension and a mechanically linked ±10 deg internal external rotation 

and found no measurable wear after 7 million cycles and the UHMWPE surface was 
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lacking the polished appearance that is commonly found on explanted acetabular cups. 

Scanning electron microscope (SEM) and atomic force microscope (AFM) revealed a 

rippled surface perpendicular to the direction of motion. A 3D loci analysis of multiple 

points on the femoral head revealed that the simulator motion produced a series of 

linear paths, which was strikingly different to clinical data that produced quasi-

elliptical or roughly rectangular paths. Not only did each path cross itself at an acute 

angle, but adjacent points would cross the paths of multiple other adjacent points on the 

femoral head. The AMTI simulator was modified by decoupling the internal external 

rotation from the flexion extension and abduction adduction was added. The new 

simulator produced results that closely matched successful THR retrieved at autopsy: a 

wear rate of 24.8mg/106 cycles and a polished polyethylene surface, which on SEM 

investigation revealed fibrils oriented in multiple directions.  

 

Shortly after Bragdon and O’Connor’s discovery, Wang et al published a series of 

papers [18], [25], [26], [27] that provided a theoretical basis for the results observed by 

Bragdon & O’Connor, along with supporting experimental evidence. The molecular 

chain structure of the UHMWPE at the articulating surface of the implant is 

reorganized as a result of strain accumulation caused by surface traction. The linear 

polymer chains align in the direction of motion, resulting in an anisotropic structure. 

This microstructure has higher strength along the axis of motion but is considerably 

weaker off axis. The production of wear debris caused by on-axis motion requires the 

tensile rupture of strong polymer chains, but off-axis motion only needs to break the 

weaker bonds that bind one chain to another. A TJR experiences a continuously 
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variable tractive force, both in direction and magnitude. In this situation the polymer 

chains align to the direction of motion at maximum stress during the walking cycle, and 

at all other parts of the cycle the aligned chains are experiencing an off axis loading. 

Under these conditions the traction forces are at an angle to the chains for most of the 

cycle and this breaks the weaker bonds between the polymer chains, leading to the 

pulling out of the fibres (fibrils) and wear debris [18]. The polymer chain reorientation 

theory is backed by many experiments that have shown that the wear rates from linear 

wear testers are commonly two or three orders of magnitude lower than joint simulators 

and clinical results. [26], [24], [27] 

 

Gamma irradiation is commonly used to sterilize medical implants, which also causes 

cross linking of the linear polymer chains by creating covalent bonds between the 

chains. This restricts the chains’ movement and reorganization under tractive forces 

and also reduces some physical properties such as UTS and ductility. Under linear wear 

testing, UHMWPE that has been gamma irradiated shows a higher wear rate than non-

irradiated UHMWPE, as the lack of chain mobility means that they can’t align to the 

direction of motion and some of the polymer chains will experience an off axis loading 

and fibre pull out. However the results are reversed for multidirectional motion where 

irradiation induced cross linking has been shown in joint simulators and clinical 

studies, to significantly reduce UHMWPE wear. This is caused by the 3D network of 

chains created by irradiation being more resistant to inter-fibre splitting and fibre pull 

out from off axis loading.  
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Experimental results from Wang et al [18] on a hip simulator with multidirectional 

motion showed that the unirradiated UHMWPE cup had a wear rate three times greater 

than the irradiated one. This finding has been backed up by clinical findings, where 

lower wear rates have been reported in radiation sterilized components, compared to 

unirradiated ethylene oxide sterilized ones. A test on a knee simulator showed that the 

addition of IE rotation to change the motion from linear to multidirectional, increased 

the wear rate three times [18]. 

 

These previous studies show the importance of joint kinematics and multidirectional 

motion. Any study that does not consider these issues will produce results that are not 

relevant to clinical practice, giving incorrect wear rates and incorrect rankings of 

materials.  

 

 

2.3.4 CURRENT KNEE JOINT SIMULATORS 

 

Knee joint simulators are complex machines that reproduce the physiological loads and 

motions of the knee to evaluate the performance of TKR prior to the start of clinical 

trials and to investigate wear properties and patterns. Some have been developed by 

universities with large bio-tribology laboratories [28],[29],[30] but the majority are 

produced by commercial manufacturers such as AMTI, MTS and Instron Stanmore. 

The KS2-6-1000 by AMTI, shown in Figure 2-16 and costing $US350,000 is given as 
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an example, but the other commercial simulators have similar features. It is servo-

hydraulically controlled on four axes, with the other two having free movement. There 

is an option of having the medial lateral shift force controlled. Force measurements for 

each TKR are carried out using 6 axis strain gauges and each test station has its own 

fluid circulation and temperature control system. The maximum load and motions of 

the AMTI simulator are shown in Table 2-1. 

 

 

Figure 2-16 The AMTI KS2-6-1000 six station knee joint simulator 
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Table 2-1 Specifications of the AMTI knee joint simulator 

Load 4500 N 

FE Angle 134 deg 

AP Translation 50mm 

IE Rotation 40 deg  

ML Shift 7.5mm force controlled  

Abduction Adduction  3 deg free rotation 

 

Due to the high cost of the full knee joint simulators and the length of tests, commonly 

1-5 million cycles, it is often impractical or impossible to use them to investigate 

numerous new bearing material combinations, processing techniques or examine the 

effects of different kinematic conditions. This is where multi-axis knee joint wear 

testers have application, between the knee simulators and simple but inaccurate linear 

sliding test rigs. The knee joint wear testers have two or three of the following motions: 

FE, AP translation and IE rotation, being able to create motions more complex than 

simple sliding. The motions are usually driven by mechanical linkages, meaning they 

can only be a basic approximation of the motions experienced by in vivo TKR, but 

some have been shown to produce results comparable to joint simulators [31]. The 

components in the knee joint wear testers are also a simplification of TKR, aiming to 

recreate the line or point contact conditions that occur in the implant, without the 

significant cost of the components. The femoral component is substituted by a sphere 

or cylinder and the tibial component is replaced by a flat UHMWPE disk.  
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2.3.5 THE EFFECT OF CONTACT CONDITIONS AND 

KINEMATICS ON UHMWPE WEAR IN TKR 

 

The motions occurring in a TKR are complex. In addition to multidirectional motion, 

the kinematic conditions change during each step and can include sliding, rolling and 

gliding. These different conditions are shown in Figure 2-17. Sliding occurs when the 

surface of the femoral component rotates against a stationary point on the polymer. 

This is the only kind of motion in the hip joint and occurs in the knee, typically when it 

is flexed 20 degrees or more [32]. Rolling is when the contact point of the metallic and 

polymer components both move at the same surface speed, so there is no relative 

surface motion. It usually occurs in the first 20 degrees of flexion in the TKR. Gliding 

occurs when a fixed point on the metallic component moves over the polymer surface. 

It does not usually occur in modern TKR, but can take place in designs with 

insufficient conformity or patients with excessive ligament laxity. 
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Figure 2-17 Sliding, rolling and gliding from Cornwall et al [33] 

 

Blunn et al [34] proposed that one of the reasons for the greatly differing clinical wear 

rates that can occur with identical TKR is the variability in patient to patient kinematic 

conditions and other researchers have found different wear rates and patterns under 

different kinematic conditions [33], [23], [35], [32]. During linear wear testing using 

distilled water and a 10Hz cyclic load, Blunn et al [34] found that the gliding condition 

(this was reported as sliding, but the actual kinematics were identical to gliding) 

produced severe wear, sub-surface cracking and delamination whereas the damage 

from rolling was far less severe and did not include delamination or sub-surface 

cracking.  

 

Cornwall et al [33] investigated sliding, rolling and gliding on a linear reciprocating 

test rig with a constant load and bovine serum lubrication. Sliding was carried out using 

a polymer pin on a CoCr disk, rolling used a CoCr sphere on polymer disk and gliding 

a spherical ended CoCr pin on a polymer disk. Gliding and rolling produced similar 
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wear rates, two orders of magnitude higher than the sliding tests. Although the load was 

constant in this series of tests, the contact stresses varied considerably due to the 

different test components used. The reported stress for the two sliding tests were 3MPa 

(ASTM) and 32 MPa, 32MPa for gliding and 22-32MPa for rolling. 

 

Wang et al [31] developed a biaxial line contact wear machine to investigate bearing 

materials for TKR. It consisted of a CoCr disk with flexion extension that represented 

the femoral component and a flat tibial component of UHMWPE that had IE rotation. 

This configuration only produced the sliding condition and results from this study 

showed that as the angle of internal / external rotation increased, the effect of 

UHMWPE irradiation dose became more apparent. Under linear sliding conditions the 

irradiation dose, from 2.5 – 10Mrad had no effect on the wear rate. As internal / 

external rotation was added the wear rates increased across the board, but were far 

higher for samples with lower irradiation doses. These results were compared with 

those of a six station, 3 axis knee joint simulator investigating the effect of irradiation 

dose and were comparable. This showed that the use of simplified contact mechanics 

can still produce the same rankings of bearing materials, wear surface and particle 

morphology and similar wear rates to the considerably more complicated and expensive 

joint simulators. This bi-axial line contact wear tester is shown in Figure 2-18. 
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Figure 2-18 Close up of Wang et al’s 12 station knee joint wear tester [31] 

 

A five station, 3 axis, sphere on flat knee joint wear tester was used by Saikko et al 

[36], [37] to investigate the effect of gamma irradiation and aging on UHMWPE wear. 

This test rig had a static load of 2KN, 42.2 deg FE, 10mm AP translation and 10 deg IE 

rotation. The surface translation of the 54mm diameter CoCr ball was 20mm, giving a 

slide to roll ratio of 1 : 0.5. Results showed a 2.5-4 Mrad irradiation gave a 17% 

decrease in wear compared to non-irradiated polyethylene but simulated ageing and 

oxidation of irradiated samples produced wear rates up to approximately five times that 

of the non-irradiated or irradiated non-aged samples. Despite very high contact stresses 

and tests run for 5 million cycles, no delamination or fatigue wear was observed in any 

of the samples. A test sample machined from a tibial component that had been air 
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irradiated and shelf aged for 10 years, failed due to severe delamination after 500 

cycles. 

 

A three station, two axis knee joint wear tester with variable AP translation was 

developed by Mcgoulin et al [23] to investigate the effect of varying the slide to roll 

ratio. Wear rates increased as the motion changed from pure sliding, to a combination 

of sliding and rolling but then dropped as the slide to roll ratio approached 1 : 1. The 

lack of IE rotation and therefore no multidirectional motion gave unrealistically low 

wear rates and the finding of a negative wear rate indicated that there were problems 

with the soak controls. 

 

The experimental parameters and results of these four investigations into the kinematic 

condition, plus the experimental parameters of this study are summarized in Table 2-2. 

Cornwall tested sliding, rolling and gliding without IE rotation whereas Wang et al 

included IE rotation but omitted AP translation, only investigating the sliding 

condition. Saikko et al included AP translation as well as IE rotation, but only tested 

one slide to roll ratio and McGoulin investigated sliding, rolling and three intermediate 

slide to roll ratios, but did not include IE rotation. It can be seen that there are no 

studies that combine IE rotation with a range of slide to roll ratios and so producing a 

machine capable of filling this gap in the literature is the motivation for the project. 
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Table 2-2 Specifications of knee joint wear testers 

 Cornwall Wang Saikko McGoulin This Study 

Load KN 0.2 1.1 2 1 2 

AP 

Translation 

mm 

21 NA 10 Variable  

25 max 

Variable  

25 max 

FE Surface 

Translation 

mm 

21 38 20 25 25 

IE Rotation 

deg 

NA 15 10 NA 15 

Slide:Roll 

Ratio 

0 : 1 gliding 

1 : 1 rolling 

1: 0 sliding 

1 : 0 1 : 0.5 1 : 0 

1: 0.25 

1: 0.5 

1:0.75 

1 : 1 

1 : 0 

1: 0.25 

1: 0.5 

1 : 1 

Femoral 

Component 

Different 

shapes. See 

text above 

Cylinder 

71.9mm dia 

54mm dia 

sphere 

20 x 30mm 

radius 

elliptical  

50mm 

cylinder 
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3 DESIGN SPECIFICATION 

3.1 INTRODUCTION 

This chapter details the process and rationale used in the creation of a design 

specification. It shows how the initial concept of the wear tester, a device having a 

variable slide to roll ratio and multidirectional motion, was developed into a fully 

defined design specification. The most critical aspect of this is the contact conditions 

between the femoral and tibial components, which are determined by the load, the 

motion, and the size and shape of the test components. The contact stress experienced 

by the UHMWPE is determined by the applied load and the size and shape of the 

femoral component. Other important factors that were considered were the number of 

test stations, the choice of material, lubrication conditions and temperature and friction 

measurement.  

 

 

3.2 LOAD 

As discussed in section 2.1.3 the load fluctuates considerably during each walking 

cycle and this alternating stress has been shown to greatly increase wear [38]. However 

during AP translation, the point or line of contact moves, so the polyethylene would 
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experience a fluctuating compressive stress field. In cases where there is a slide to roll 

ratio of less than 1 : 1 an additional stress field perpendicular to the first stress field 

would be created in the UHMWPE by the frictional force from the femoral component. 

It was decided to use a constant load because it creates the required stress reversals in 

the polyethylene and eliminates the potential for loading or fatigue artifacts to affect the 

wear results, when the aim of the tests is to examine the effects of motion. Using a 

physiological loading would have greatly increased the cost and complexity of the 

machine. 

 

Higher loads can be used to create larger wear rates without increasing contact stress by 

increasing the area of the polyethylene under load, which is beneficial as it reduces the 

effect of errors associated with fluid absorption. Existing wear testers used loads 

between 200N and 2KN, as shown in Table 2-2. It was decided to use a load of 2KN 

per test station and to design the femoral components so that they would give the 

required contact stress. This load was expected to provide sufficient wear and is the 

minimum load specified in ASTM F1715-00. 
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3.3 TEST COMPONENTS 
 

Since the aim of the project was to develop a knee joint wear tester to investigate the 

wear rates and mechanisms of varying slide to roll ratio under multidirectional motion, 

it was decided to use a simplified geometry for the test components rather than actual 

implants. The reasons for this are twofold; simplified geometry would isolate the 

effects of the motion from the TKR design and the high cost of obtaining three 

commercially available TRK per test was prohibitive.  

 

Since the tibial components of TKR typically have a large radius, the most appropriate 

simplification of this shape would be a flat. The thickness of the polyethylene is 

another important consideration. Examination of revised implants, as well as finite 

element analysis (FEA) and theoretical contact mechanics studies have shown tibial 

components thinner than 6mm are at a greater risk of fatigue and delamination failure 

[39, 40]. It was decided to make the tibial component 10mm thick to avoid this 

potential problem and this is also a common dimension used in current TKR. 

 

 The two most promising shapes identified for the femoral component were a sphere 

and a cylinder; both of which have been previously used in other knee joint wear 

testers. Depending on the geometry of the particular TKR, the contact conditions are 

either a line or point contact [31]. Table 3-1 shows the femoral component radii for 9 

TKR in the sagittal and coronal planes. TKR with flat on flat or the same radius in the 
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coronal plane in both the femoral and tibial components have line contact, whereas the 

others have point contact.  

 

 

Table 3-1 Femoral Profile Measurements [10] 

Implant Type Sagittal Radius 

At 0º Flexion 

(mm) 

Sagittal Radius 

At 60º Flexion 

(mm) 

Coronal Radius 

At 0º Flexion 

(mm) 

Coronal Radius 

At 60º Flexion 

(mm) 

IB 46 20 14 14 

NGL 43 20 23 23 

MBK 25 25 25 25 

SML 40 40 Flat Flat 

HOWD 40 23 18 55/35 

NGCR 30 30 20 40 40 

SPROlat 30/50 20 30 30 

SPROmed 30/50 20 Flat Flat 

JJPFC 34 34 20 8/48 8/48 

 

The reported contact stresses in TKR range from 18 – 40 MPa, with the large variation 

attributed to different TKR designs, the applied load and angle of flexion as well as the 

method of calculation. FEA, contact area, pressure sensitive film, pressure transducers 

and theoretical contact mechanics have all been used [39-43]. The majority of papers 
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found in this area show the contact stresses exceeding the 21 MPa yield strength of 

UHMWPE [44], especially in low conformity designs and at high angles of flexion 

where the femoral component’s radius reduces to allow a more anatomical motion. 

 

Table 3-2 Loads, contact stresses and femoral components for existing knee wear 

tester 

 Cornwall Wang Saikko McGoulin This Study 

Load KN 0.2 1.1 2 1 2 

Max Contact 

Pressure 

MPa 

3-32 

Varied between tests 

19 57 48 25 

Femoral 

Component 

Sliding CoCr Flat 

Rolling 32mm Ø 

sphere 

Gliding – 25mm Ø 

sphere 

Cylinder 

71.9mm Ø 

x 25.4mm 

Sphere 

54mm Ø 

Elliptical 

20mm x 

30mm 

radii 

Cylinder 

50mm Ø x 

30mm 

 

 

As can be seen in Table 3-2 a wide range in contact stresses have been used in knee 

joint wear testers. The maximum contact stresses shown in the table were calculated 

using the Hertzian contact equations from the component sizes and shapes and the 

applied load. In some cases they differ considerably from the values reported in the 
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journal article. For example, Saikko et al [37] reported a maximum contact pressure 

(PO) of 18.7 MPa, based on a 14.3mm width of the wear tracks (a,b=7.15mm), a 2KN 

(P=2000N) load and an elliptical stress distribution, whereas the Hertzian contact 

equation gives a maximum contact pressure of 57MPa. It appears that Saikko et al used 

Equation (3.1) developed by Stewart et al [39], but neglected the assumption that the 

stresses within the polymer were within the elastic region. 

 

ab
P

PO π2
3=   (3.1) 

 

The Hertzian contact stress for a sphere pressed into a flat is given in Equation (3.2) 

The variables and the values used are given in Table 3-3 

 

Table 3-3 Variables and values for calculating Hertzian contact stress for a sphere 

on flat 

Item Symbol Value 

Load P 2KN 

Radius of sphere R 27mm 

Poisson’s ratio CoCr v1 0.3 

Poisson’s ratio UHMWPE v2 0.4 [39] 

Young's modulus CoCr E1 200GPa 

Young's modulus UHMWPE E2 500MPa [45] 
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While a contact stress of 18.7 MPa may be correct at the end of the wear test, at the 

start the yield strength of the polyethylene would have been grossly exceeded and 

plastic flow and wear occurred to increase the contact area to the reported value, with 

the concomitant reduction in contact stress to a value the polyethylene can withstand. 

While it is acknowledged that using the Hertzian contact equation where the yield of 

the polyethylene is exceeded will result in the calculated contact stress values being 

higher than they really are, they still provide a useful comparison and they avoid the 

need to perform non-linear elastic-plastic analysis. The true contact stress in this 

example would lie somewhere between the two calculated values of 18.7MPa and 

57MPa. 

  

It was decided to use a 25 MPa contact stress as this is slightly greater that the yield of 

the polyethylene and would be representative of a conforming design under normal, 

rather than extreme usage conditions. It was also identified that there was the potential 

for further research into the effect of contact stress on knee joint wear and the creation 
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of femoral components that would generate stresses around 40 MPa, as calculated by 

Hertzian contact theory. 

 

The radius of the femoral component is another important factor in the wear of 

UHMWPE, with the large variation shown in Table 3-1. Taking the mean of these 

values, the radius in the sagittal plane was 38mm at 0 deg flexion and 23mm at 60 deg 

flexion. It was desired to have a femoral component radius of 30mm, halfway between 

these two values, but at the time of design the largest bar of medical grade CoCr 

available was 2 inches diameter, limiting the radius of the component to 25mm. While 

this is slightly less than ideal, it is still within the range of clinically used TKR. 

 

With the radius limited to 25mm and a 2KN load it was calculated that a spherical 

femoral component would produce contact stresses of 60MPa and so it was decided to 

use a cylindrical component. The contact stress with a cylindrical femoral component is 

determined by its length (L). Sharp edges of a cylinder would cut and scratch the 

UHMWPE, so rounding them would be needed to avoid this. Using the equation for 

line contact (3.3), it was found that a 30mm long cylinder with an 8mm radius on each 

corner produced line contact length of 24.5mm and a Hertzian contact stress of 

24.8MPa.  It is shown in Figure 3-1. 
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Figure 3-1 The femoral component 
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3.4 MOTION 
 

As discussed in section 2.1.2, the motion of the knee joint is highly complex and 

dependent on the individual and the shape and condition of their knee. The motion 

profile published by Lafortune is commonly used by other researchers in TKR 

simulators, despite other research showing differences between healthy knees and 

TKR. The different designs of TKR have a range of motion profiles and varying slide 

to roll ratios. To minimize the design complexity and thus construction, it was decided 

to use a simple motion profile rather than a physiological profile. To be able to produce 

a range of slide to roll ratios and incorporate multi-directional motion, the machine 

would need to include flexion / extension, anterior / posterior translation and internal / 

external rotation.  

 

The magnitude of the AP translation was based on the work of McGoughlin [23] and 

the clinical retrievals by Blunn et al [46] where the wear tracks varied in length 

between 15 and 35mm, with an average of 24mm. This was very close to the 25mm 

radius of the femoral component and so the maximum AP translation was set at 25mm, 

with intermediate translations of 12.5, 6.25 and 0mm to create slide to roll ratios of 1:1, 

1:0.5, 1:0.25 and 1:0 respectively. 

 

Unlike the femoral component of a TKR with a changing radius in the sagittal plane, 

using a single radius femoral component means that the actual flexion / extension angle 
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is largely unimportant and the surface sliding distance is the important parameter. It 

was decided to define the FE angle such that the surface translation of the femoral 

component equals the AP translation at a slide to roll ratio of 1:1. A surface translation 

of 25mm on a 50mm diameter cylinder requires a rotation of 1 radian or 57º. 

 

The angle of IE rotation was specified at 15º as this was very close to the 14.2º found 

by Lafortune et al [8], the same as used by Wang et al [18] and falls within the range 

found by DesJardins [10]. The requirement for IE rotation has been discussed earlier, 

but the phase relationship between the IE rotation and AP translation is also important 

to create the required multidirectional motion. If the IE rotation is in phase, the 

resulting motion on the UHMWPE will be curve-linear, the femoral component’s 

movement relative to the tibial component will be in an arc, but any given point on the 

polyethylene will only experience a linear reciprocating motion. Putting the IE rotation 

90º out of phase moves the tibial component in a narrow figure-eight motion generating 

the required multidirectional motion that creates strain induced anisotropy. This is the 

same motion used by Saikko et al [36] to create multidirectional motion. The phase 

requirement is also backed up the different results from two TKR simulator studies. 

Wang et al [18] found adding physiological IE rotation caused a three-fold increase in 

wear, whereas Ash et al [30] found that adding IE rotation mechanically linked to AP 

translation caused no change in wear rate. Shown in Figure 3-2 is the required motion 

of the 3 axes of the knee joint wear tester at a 1 : 1 slide to roll ratio. When the FE 

angle is converted to a distance on the circumference on the femoral component it is the 

same as the AP translation. 
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Required Motion for 1 : 1 Slide to Roll Ratio
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Figure 3-2 Required motion profile for 1 : 1 slide to roll ratio 
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3.5 TEST CHAMBER CONDITIONS 
 

3.5.1 TEMPERATURE 

 

There are two opposing factors to consider in selecting the temperature at which to run 

the experiments. The human body’s normal temperature is 37ºC and it is reported that 

there is a significant decrease in the Young’s modulus of polyethylene from body 

temperature to room temperature (24ºC) [33]. The other factor is that higher 

temperatures such as body temperature, greatly accelerate the degradation of the bovine 

serum lubricant, with the precipitation of proteins forming a protective layer on the 

bearing surfaces, adversely affecting the results. It was decided to run the test at 25ºC 

as there is a large body of evidence, including a multi-laboratory trial [47], that 

supported the idea of serum degradation causing artifacts in the results. While it was 

previously common to heat the bovine serum to body temperature, some laboratories 

now run cooling equipment or fluid circulation systems to counter the effects of friction 

induced heating [47], [31]. 
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3.5.2 LUBRICATION 

 

It is now well established that water and saline solution do not recreate the in vivo wear 

mechanisms and to date, diluted bovine serum is the medium that most accurately 

reproduces clinical wear. While there is some debate about the optimum concentration 

of proteins and the ratio between albumin and globulin in the lubricating fluid, the 

majority of researchers use the ASMT standard F1715, which recommends the use of 

filtered sterilized bovine serum, diluted with up to 75% deionized water. It was decided 

to also follow the standard and many other researchers and use filtered sterilized bovine 

serum diluted with 75% deionized water [47], [18]. 

 

An initial test run of 82,000 cycles revealed that the volume of the test chamber was too 

small and total evaporation of the bovine serum invalidated the test. As a result an 

additional design specification was added; a fluid recirculation system capable of 

pumping 100ml per minute and holding a minimum of 200ml of bovine serum. To 

minimize the risk of cross contamination of wear debris between samples, each test 

chamber would require its own system including pump. 
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3.5.3 NUMBER OF TEST STATIONS 

 

To differentiate between two different experimental parameters to a level that reaches 

statistical significance requires the experiment to be repeated. Wear tests for TKR and 

their materials are usually run for 1-5 million cycles, taking between two weeks and 

two months for each test, making repeating the experiment a very time consuming and 

tedious process. To get around this problem, it is common to have multiple test stations, 

all applying identical loading and motion to a number of samples. The AMTI knee 

simulator has 6 stations and a hip simulator manufactured by the same company has 12 

stations. While having a greater number of test stations would produce better results, 

they also cost more to manufacture. It was decided to incorporate three test stations into 

the knee joint wear tester, since cost was a significant factor in this project and it was 

thought that three stations was the minimum number that could produce valid results. 

 

3.5.4 FINAL DESIGN SPECIFICATIONS 

Load: 2000N 

Tibial Component: 10mm thick UHMWPE  

Femoral Component: 50mmØ cylinder, 30mm long with 8mm radius 

Contact Stress: 25MPa as calculated by Hertzian contact equations  

AP Translation: 0-25mm 

FE: 57º 
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IE Rotation: 15º. 90º out of phase from AP translation 

Temperature: 25 deg C 

Lubrication: Sterile filtered bovine serum 25% : distilled water 75% 

Lubrication System: 3 x 200ml capacity  

Fluid Pumps: 100ml per minute  

Number of test stations: 3 
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4 THE DESIGN 

4.1 INTRODUCTION 

 

This chapter starts with the conceptual design of methods to create the required motions 

and load and then gives a description of the knee joint wear tester, its major sub-

assemblies and a more detailed description of how the motions are created. It is 

followed by the detail design of the FE shaft. It was decided to present this as an 

example of the detail design process. Detail design of the knee joint wear tester formed 

the major aspect of the project, but the reader gains very little from the rationale and 

calculations behind the sizing, selection and dimensions of every bearing, bolt and 

manufactured component. What is of more interest is how the machine performs. 
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4.2 CONCEPTUAL DESIGN 
 

4.2.1 MOTION 

 

The first task in the design process was selecting the method of driving the specified 

motions. Servo hydraulics are commonly used in knee joint simulators for their high 

forces and accurate control, but the cost was prohibitive. While stepper or DC servo 

motors, associated power electronics and gearboxes are cheaper than servo hydraulics, 

they were still outside the project’s budget. The remaining option would be to use 

mechanical linkages to create the required motions. This certainly would reduce the 

cost of externally purchased components, a major driving factor in the design, but it 

would also add considerable complexity to the design task and to the number and 

complexity of components the workshop staff had to build. Generating each motion 

with a different motor would have simplified the design of the linkages, but would have 

required electronic synchronisation of the motors, which is only one step away from 

servo motors. For this reason it was decided to drive the three motions from a single 

motor.   

 

The easiest way to convert rotary motion to reciprocating motion was a slider crank 

mechanism and so this was chosen as the means of generating the AP translation. It 

was decided to have a variable crank radius to give a variable AP translation distance 
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and therefore provide a variable slide to roll ratio. In machine design, the four bar 

linkage is one of the most common mechanisms and this was chosen to convert rotary 

motion to the FE oscillating angular motion as shown in Figure 4-1 

 

 

Figure 4-1 The FE drive mechanism 

The next decision was to select the component, femoral or tibial, to which the AP 

translation would be applied. As the femoral component already had the FE motion, 

adding AP translation to the femoral component would require a more complex drive 

mechanism for FE, as the center distances between the driving shaft and the femoral 

component shaft would be moving back and forward. For this reason the AP translation 

was put on the tibial component. 
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A similar decision followed for the IE rotation. Due to the nature of FE drive 

mechanism, it was deemed near impossible to accommodate IE rotation on the femoral 

component so this was placed on the tibial component, with the IE rotation to be 

superimposed on top of the AP translation. The motions and load of the femoral and 

tibial components are shown in Figure 4-2.  

 

 

Figure 4-2 Schematic of the simplified TKR components and their motions and 

loading 
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Like FE, IE rotation is an oscillating angular rotation and so the mechanism chosen was 

similar; a short radius driving crankshaft, a conrod and a longer radius crank on the IE 

rotation shaft. As the driving crankshaft and the IE rotation shaft were perpendicular it 

was necessary to use spherical joints to allow the motion in two different planes. 

Computer simulations were used to work out the settings for the IE rotation drive 

mechanism, as it proved to be slightly more difficult than the previous two motions, 

due to the 90º phase shift required and the axis of IE rotation moving as a result of AP 

translation. Solidworks, a 3D computer aided design software package was used to 

quickly model the conceptual designs and COSMOS Motion, a kinematics package was 

used to simulate the motion created by the different linkages. Simulation was required 

at this early stage of the development to ensure that the proposed mechanism was 

actually capable of creating the desired motion. An early simulation model is shown in 

Figure 4-3 
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Figure 4-3 Early SolidWorks model for simulating the motion of the knee joint 

wear tester 

 

4.2.2 LOADING 

 

The load could be applied to either the femoral or tibial component, but adding another 

motion to the FE shaft to allow the loading, in this case a vertical translation, would 

stop the FE drive mechanism working correctly and so the load would be applied 

through the tibial component. To avoid the same problem occurring with the tibial 

components’ drive mechanisms, it was decided to place the loading mechanism after 
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AP translation and IE rotation drive systems. Pneumatics were quickly identified as a 

cheap and compact method of providing the required 2KN force and air bellows were 

chosen over pneumatic cylinders as they were half the price and more compact, despite 

one minor disadvantage. Under constant air pressure, the force from the bellows 

decreases as they extend. From the manufacturer’s data sheet it was calculated that the 

expected load variation would be less than 1% and ASTM F1715-00, the standard for 

testing TKR allows 3%.  One of the air bellows is shown in Figure 4-4. The metal 

thread is used for location as well as the connection for the air supply. 

 

 

Figure 4-4 The air bellows used to provide the load 
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4.3 THE KNEE JOINT WEAR TESTER 

 

Compared to many linear wear testing devices, the three axis wear tester developed for 

this project is relatively large and complex, being approximately 950mm long, 700mm 

wide and 600mm high and weighing 250kg. It is constructed from just over 1000 

separate parts, with approximately 130 unique components. Figure 4-5 shows a photo 

of the device covered by the safety guard and mounted on its pedestal. The sub-

assembly drawing of the bottom shaft shown in Figure 4-6 is given as an example. A 

full set of manufacturing drawings, including assembly and sub-assembly drawings is 

included in Appendix A.   

 

Figure 4-5 The assembled knee joint wear tester 
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Figure 4-6 Manufacturing sub-assembly drawing 500: Bottom shaft general 

assembly and bill of materials 
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4.3.1 DESCRIPTION OF THE KNEE JOINT WEAR TESTER 

 

The top and bottom of the frame was constructed from 24mm steel plates, held together 

by four 40mm vertical columns. The large slots in the top and bottom plates are for 

access to the test components and the pneumatic hoses respectively. A regulator and 

pressure gauge attached to the bottom plate supplies air at a constant pressure to the air 

bellows. A 3 phase, 0.55KW motor and 25:1 reduction worm gearbox are mounted out 

to the left of the machine on a rectangular hollow steel (RHS) frame. Motion from the 

gearbox is transferred via a short shaft through a soft coupling (Figure 4-10) to the top 

shaft where a flywheel is used to smooth out fluctuations experienced by the gearbox 

from the reciprocating load of the machine. Power from the top shaft is transferred to 

the bottom shaft via two synchronous pulleys and a belt (Figure 4-10). The pulley ratio 

is 1:1. On the right hand end of the top shaft is a 12mm radius crank that drives the 

flexion extension motion of the FE shaft (Figure 4-9) via a conrod and a 25mm radius 

crank that is part of the FE shaft. This motion is transferred to the other two FE shafts 

via two more conrods, (these are called joining rods in the manufacturing 

drawings)(Figure 4-9). A femoral component (Figure 4-11) is mounted at the center of 

each FE shaft and location and drive is provided by a Morse taper. 

 

Two 30mm diameter shafts attached to the bottom plate are the rails for the linear 

bearings (Figure 4-7) that allow the AP translation. The four linear bearings are in 

pillow blocks that are bolted to the AP carriage (Figure 4-7) , a large aluminum block 
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that moves the tibial component back and forward. In the AP carriage are the angular 

contact bearings (Figure 4-7) that allow the internal external rotation of the IE shaft. 

The top of the IE shaft is pressed into the base of the “dieset”, so named as it is similar 

to a press tool dieset, with two vertical ground rods pressed into a base plate and a top 

plate that can move up and down on linear bushings. The 2KN load is provided by air 

bellows placed between the top and bottom plates of the dieset. The air supply for the 

air bellows runs through the hollow IE shaft. On top of the dieset top plate is the 

UHMWPE tibial test component and its holder (Figure 4-7). The test component sits on 

a flat ground 316L stainless plate with a polyacetal sample holder constraining motion 

in the horizontal directions and containing the bovine serum. These two components 

attached together are known as the tibial tray. 

  

There is a 6mm quick connect fitting and attached hose in each end of the polyacetal 

sample holder that is part of the fluid recirculation system. One hose is for bovine 

serum delivery from the peristaltic pump (Omega FPU-116) and the other for drainage 

to a reservoir below the machine. Each reservoir consists of a 1000ml plastic container 

with sealed lid and three hoses. The last hose is attached to a suction pump, to initiate 

siphoning on the drainage line. The fluid recirculation system is shown in Figure 4-8 

 

A conrod (Figure 4-9) attaches the adjustable radius crank on the right hand end of the 

bottom shaft drives to the AP carriage, creating the anterior posterior motion. The 

radius of this crank can be set between 0 and 12.5mm, giving an AP translation of 0 to 

25mm. On the left hand end of the bottom shaft is the IE crank (Figure 4-10) that is 
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adjustable in both phase and radius that controls the internal external rotation of the 

diesets and therefore the tibial components. Ball joints on the IE crank and dieset base 

plate are connected by the IE conrod, converting rotary motion of the IE crank to 

oscillatory motion of the first dieset with a 90° phase shift. This motion is then 

transferred to the other two dieset via joining rods. A Perspex safety guard covers the 

machine to keep observers from getting too close and getting injured. The electronic 

motor control is interlocked to the safety guard so that if the guard is raised the motor 

cuts out. The safety guard has the secondary function of reducing atmospheric dust 

getting into the machine. 

 

 

 

Figure 4-7 The knee joint wear tester during assembly 
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Figure 4-8 Fluid recirculation system 

 

 

Figure 4-9 Right side view of the knee joint wear tester 
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Figure 4-10 Front view of the knee wear tester 
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Figure 4-11 Left side view of the knee joint wear tester 

 

Simulation of the final machine design showed the tibial tray moving in the correct 

figure-eight profile. Examining the graph of the motion showed that the IE rotation was 

90º out of phase with FE and the AP translation and had the desired slide to roll ratio.  

The 3 axis motion output from the simulation with a slide to roll ratio of 1 : 0.5 is 

shown in Figure 4-12 
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The 3 Motions with Slide to Roll Ratio 1 : 0.5
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Figure 4-12 Motion simulation results for a slide to roll ratio of 1 : 0.5 



 

 

71

4.4 DETAIL DESIGN – FE SHAFT 
 

The device was designed to last a minimum of 20 million cycles, so fatigue was a 

major design consideration. While no problems were encountered with the frame and 

other stationary parts, the cyclic stresses in the shafts were near the fatigue limit of the 

4340 steel used, necessitating careful design. This steel was chosen due to its high 

strength in the “as machined” form and availability. It was intended to use a material 

that would not need heat treatment, as this would add to the cost and would require post 

heat treatment grinding to achieve the required accuracy. The most challenging was the 

FE shaft and so the design process is given as an example. The top and bottom shafts 

were designed using the same method. The challenge for the FE shaft came from its 

diameter being constrained by the size of the femoral component and the need to 

provide clearance between the shaft and the tibial tray holding the bovine solution. The 

femoral component also needed be attached to the shaft at the point of the highest 

bending moment. From calculations it was found that using keyways, shoulders or 

threaded fasteners would create stress concentrations in the shaft that would lead to 

fatigue failure. A Morse taper was used as this would only introduce a small stress 

concentration at the start of the taper.   A free-body-diagram of the FE shaft is shown in 

Figure 4-13. 
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Figure 4-13 Free Body Diagram of FE Shaft Showing Forces and Bearing 

Reactions 

 

 

The four R forces are the horizontal and vertical reactions of the two bearings 

supporting the FE shaft. A, B, C and D are the positions of the left hand bearing, the 

femoral component, the right hand bearing and the conrod bearing respectively. The 

frictional force between the femoral and tibial components was calculated using the 

applied load and a dynamic coefficient of friction of 0.1 [32], the highest found for 

TKR. The moment from this force was also calculated. 
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NFF LoadFriction 20020001.0 =×== µ     (4.1) 

 

NmFrM FrictioncomponentFemoralFriction 5200025.0_ =×=×=   (4.2) 

 

The friction from the bearings was ignored since it was insignificant compared to the 

other frictional forces involved. Since the crank arm length on the FE shaft was the 

same as the femoral component radius, 25mm, the force on the crank arm required to 

rotate the shaft would be the same as the frictional force. The conrod provided this 

force for all three stations, so would be 600N. The joining rod transferred a force of 

400N to the remaining two test stations. This force was included for completeness of 

the diagram but was omitted in the bending moment and stress calculations, as it 

reduced the stress experienced in the shaft and due to a small amount of play in the 

joining rod bearings, there were two instances per cycle when the joining rod force was 

not acting.  

 

The bending moments from the 2KN Load were calculated using Equation (4.3)  for 

section AB and Equation (4.4) for section BC. The bending moment from the 600N 

conrod force was calculated using Equation (4.5) for section AC and Equation (4.6) for 

section CD [48] 

 

l
bxF

M Load
AB =       (4.3) 
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)( xl
l

aF
M Load

BC −=       (4.4) 

 

l
cxF

M Conrod
AC −=       (4.5) 

 

)( clxFM ConrodCD −−=      (4.6) 

 

The two bending moments were evaluated at 13 separate points along the FE shaft, 

including areas where there were stress concentrations and points of application of 

load. The two bending moments were perpendicular and so the magnitude of the 

combined bending moment was calculated by adding their vectors together. 

 

22
ConrodLoadCombined MMM +=  (4.7) 

 

The individual and combined bending moments down the length of the FE shaft are 

shown in Figure 4-14. A – D marked on the graph correspond to the position shown in 

Figure 4-13 
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Bending Moment Diagram for FE Shaft
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Figure 4-14 Bending moment diagram for FE shaft 

 

Maximum shear stress theory was used in Equation (4.8) [48] to calculate the minimum 

required diameter along the shaft. The variables used in the equation were: d =required 

diameter, n = safety factor, Ta = alternating torque, Se = modified endurance limit of 

the material, Tm = mean torque, Sy = modified yield strength of material, Ma = 

alternating bending moment, Mm = mean bending moment. The modified yield strength 

and endurance limit took into account stress concentrations, surface finish, size factors 

and reliability factors. 
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The finished FE shaft with femoral component is shown in Figure 4-15 The completed 

FE shaft with femoral component 

 

 

Figure 4-15 The completed FE shaft with femoral component 

4.5 TEST COMPONENTS 
Nine tibial components measuring 10 x 40 x 60mm were manufactured from a block of 

unirradiated GUR 1050 UHMWPE (Perplas Medical). To minimize 3rd body 

contamination the mill and the cutting tool were thoroughly cleaned before machining 

the test samples. 

 

To avoid the cost of purchasing 2” CoCr bar, and the required special tooling to cut it, 

it was decided to manufacture the first femoral components out of 316L stainless steel. 

While this is not ideal, stainless steel was commonly used in THR for many years and 

other researchers have used it for preliminary investigations [McGoulin]. 
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Polishing was carried out with the femoral component mounted on the FE shaft which 

was mounted in a lathe. It was then polished using a buffing wheel attached to a drill. 

The polishing media used was metal polish, 9� diamond paste, 1� diamond paste and 

finally colloidal silica.  A new buffing wheel was used for each grade of media. The 

finished femoral component is shown in Figure 4-16. Despite thoroughly cleaning the 

lathe, FE shaft and ultrasonically cleaning the samples between each media, 

contamination of the buffing wheels always left scratches on the femoral component. 

The polishing was carried out in a machine shop and it is believed that the 

contamination came from the dusty and dirty environment. To obtain an implant grade 

polish will require facilities in a cleaner environment. 
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Figure 4-16 The polished femoral component 

 

 

 

Figure 4-17 Close up of the femoral component 
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5 VALIDATION 
To validate the performance of the knee joint wear tester a number of tests were 

performed, initially ranging from a few cycles to check the machines operation to a 

preliminary test of 82,000 cycles that had to be prematurely stopped due to fluid 

evaporation. The final experiment performed was a 1 million cycle wear test carried out 

at 1Hz. The machine performed as designed, without any component failures and the 

only stoppages were performed for weight loss measurements. The results showed wear 

rates and morphology similar to other wear testers and joint simulators. 

 

5.1 PRELIMINARY TEST 
 

This test was carried out using a 1 : 0.5 slide to roll ratio, so the results could be 

compared to those of Saikko et al [36, 37]. A 25% bovine serum (South Pacific Sera) 

solution was made up and 30ml added to each of the tibial trays. Since the water 

content in the bovine serum would evaporate during the test it was intended to 

manually top it up with deionised water every day. Unfortunately the rate of 

evaporation was much faster than this and the test ran dry after 82,000 cycles and was 

stopped. Figure 5-1 shows the polymer transfer layer on the femoral component that 

occurred under dry sliding conditions and was highly unrepresentative of in vivo knee 

wear conditions. Despite the fluid evaporation problem, the mechanical side of the 

device showed that it was capable of creating wear in the UHMWPE, as can be seen in 

Figure 5-2. A close up of the wear track in Figure 5-3 shows the scratches crossing 

each other at a narrow angle, indicating multidirectional motion. As a result of this test, 

the requirements for a fluid recirculation system were added to the design specification 

and the machine modified to accommodate the peristaltic pumps and associated 

hardware. 
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Figure 5-1 Polymer transfer layer on the femoral component  

 

 

 

Figure 5-2 Wear tracks in the UHMWPE surface 
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Figure 5-3 Close up of the wear track. Note the wear marks crossing each other 

 

5.2 MILLION CYCLE WEAR TEST - METHOD 

Three UHMWPE test samples and three identical UHMWPE soak controls were 

soaked in a 25% bovine serum solution for nine months to minimise fluid uptake 

during the test. These were cleaned, dried and weighed as follows: 

 

 

Rinse H2O 

5 min ultrasonic clean H2O + detergent 

Rinse H2O 

5 min ultrasonic clean H2O + detergent 
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Rinse H2O 

Rinse ethanol 

5 min ultrasonic clean ethanol 

Rinse ethanol 

Vacuum dry @ 0.001mm Hg for 30 min 

Weigh - 5 times per sample - Sartorius balance (0.1mg resolution) 

 

While handling samples during the weighing procedure the operator was always 

earthed to the balance, and samples not being weighed were stored on a metal plate that 

was earthed to the balance. The purpose of these procedures was to minimise the 

effects of static electricity on the measured mass of the samples. 

 

The machine and safety guard were wiped down and the femoral components, sample 

holders and fluid recirculation system were ultrasonically cleaned and rinsed before 

being assembled with the UHMWPE test samples. 200ml of bovine serum solution was 

added to each of the three reservoirs and the soak controls were stored in distilled 

water. The test was commenced using a 1 : 0.5 slide to roll ratio, ±7.5º IE rotation and a 

load of 2KN.  

 

Two minor modifications to the test rig were carried out during the test; shortly after 

starting the experiment the covers of the peristaltic pumps were removed to allow better 

cooling and at ¼ million cycles the fluid reservoirs were increased in size from 400ml 

to 1000ml. The recirculation of the bovine serum caused bubbles to form in the 

reservoir and some of the serum was lost as the foam escaped down the vacuum line. 

Increasing the reservoir size stopped the foam loss and also allowed the soak controls 

to be stored in the same solution as the test samples. For the remaining ¾ million cycles 

the soak controls were stored in the bovine serum. 

 

 The cleaning and weighing was performed at 251,000 cycles, 540,000 cycles, 765,000 

cycles and 1,003,000 cycles and the bovine serum was also replaced at 540,000 cycles. 
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The knee joint wear tester took just over two weeks to complete a million cycles and at 

the end of the test, after cleaning and weighing, two of the three samples were gold 

coated for SEM examination and the other retained for optical microscopy. 

 

5.3 RESULTS 

5.3.1 WEIGHT LOSS 

The mean wear rate for the UHMWPE tibial components was 14.7mg/106 cycles, with 

a range of 13.9 to 16.1mg/106 cycles. A graph of the weigh loss over the test is shown 

in Figure 5-4. The error bars shown are the maximum variation in the weight 

measurement of the individual samples. 
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Figure 5-4  UHMWPE weight loss 



 

 

84

5.3.2 VISUAL EXAMINATION 

The wear tracks in the UHMWPE samples show an indented area 27mm wide by 

17.5mm long with a polished or burnished appearance and the removal of machining 

marks left from manufacture. There are a number of scratches or gouges in the surface 

that have had their edges smoothed over and the majority of them tend to be near the 

edges of the wear track. Figure 5-5 displays a “v” shaped scratch showing the path of 

motion of a scratch on the femoral component relative to the motion of the UHMWPE 

sample. Perpendicular to the AP direction are two lines 10.5mm apart that are deeper 

than the other parts of the wear track. These two areas of high wear are called tractive1 

rolling zones, for reasons discussed later. 

 

Visual examination of the 316 stainless steel femoral components revealed numerous 

fine scratches in a very thin elliptical pattern covering the area in contact with the 

UHMWPE. A large proportion of the scratches were running along the FE direction, 

with the ends of the FE motion defined by an area of tightly curved scratches, created 

in this location as the majority of the IE rotation occurred near each end of the FE 

travel. There were several deeper scratches of the surfaces of the cylinders, as shown in 

Figure 5-6 of the femoral component from test station 1. The femoral components are 

shown on a black cloth to maximize the visibility of the scratches. When viewed in 

conjunction with Figure 5-7 of the corresponding UHMWPE component, it can be seen 

that the location of the large scratch on the femoral component (shown by arrow) 

matches the gouge in the UHMWPE test component. There was no appreciable 

difference in the number of scratches between femoral components 1 and 2, but number 

three had a higher level of fine scratches as shown in Figure 5-8. 

 

                                                 
1 The evidence for these two deep wear tracks 10.5mm apart being caused by tractive rolling is not 

conclusive. Gliding motion could instead be the cause. Further investigation is required to determine 

which wear mechanism caused the observed damage. 
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Figure 5-5 UHMWPE sample #2  

L to R: End section, tractive rolling zone, middle section, tractive rolling zone, end section 
 

 

Figure 5-6 Femoral component #1.  
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Figure 5-7 UHMWPE sample #1. 

 

Figure 5-8 Femoral component #3. 
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5.3.3 OPTICAL MICROSCOPY 

Low magnification showed the scratches visible to the naked eye, along with large 

smooth areas that had some gentle undulations. 1000x magnification of the polished or 

burnished areas revealed a densely packed rippled texture, with the majority of ripples 

between the tractive rolling zones running approximately perpendicular to the AP 

direction. Some areas of this zone had randomly oriented ripples as shown in Figure 

5-10 and near the middle of the wear track a number of ripple free areas were observed 

that were completely devoid of features at 1000x magnification. In two places near the 

tractive rolling line, small areas of ripples were found that ran nearly parallel to the AP 

direction. These ripples, shown in Figure 5-11 were much straighter and more uniform 

than others observed in other areas. Figure 5-9 shows the large gouge in UHMWPE 

sample #1 at 5x magnification. The same area is shown in Figure 5-13 at 500x 

magnification with densely packed ridges adjacent to the gouge and on this occasion 

they are running approximately perpendicular to the direction of the scratch.  

 

At 1000x magnification the regions at either end of the wear track appeared to be made 

up of three types of areas; ripples aligned 45º to the left of the AP direction, 45º to the 

right of the AP direction as well as randomly oriented. Some of the 45º oriented ripples 

are shown in Figure 5-12. Figure 5-14 at 1000x magnification shows one of the tractive 

rolling zones. The typical ripples can be seen, but these abruptly end and an unusual 

wear pattern is observed. The wear damage in this area is deeper than the surrounding 

ripples, being approximately 5�m below the main rippled surface. It appears that this 

small area of the surface has delaminated and left behind a network of random cracks.  

For the purpose of giving this feature a name in this thesis it will be called micro-

delamination to distinguish it from the larger scale delamination that is commonly 

found in UHMWPE that has been air irradiated and aged or is suffering from 

consolidation defects [49]. This surface feature continues for 2-3mm in a wavy line 10-

20�m wide that runs perpendicular to the AP direction, meaning that it only covers 
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approximately 0.01% of the total wear track area. Generally the orientation of the 

ripples on one side of the micro-delamination are quite different to the orientation of 

the ripples on the other side. Due to the depth of field limitations of optical microscopy, 

the photo does not fully show the differences in surface morphology between the 

common ripples and the micro-delamination area. 

 

 

 

 

Figure 5-9 Gouge from sample 1. Original magnification 5x 
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Figure 5-10 Randomly orientated ripples. 500x cropped to equal 1000x 

 

 

Figure 5-11 Ripples running almost parallel to the AP direction. Original 

magnification 1000x 
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Figure 5-12 Rippled texture from the IE zone running 45º to the AP motion. 

Original magnification 1000x 

 

 

Figure 5-13 Ripples perpendicular to a major scratch. 500x original magnification 
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Figure 5-14 Wear patterns from tractive rolling. Original magnification 1000x 

5.3.4 SCANNING ELECTRON MICROSCOPY 

The scanning electron microscope (JEOL JSM 6100) revealed further details of the 

typical ripple pattern of the worn UHMWPE surface as shown in Figure 5-15. The 

remains of a hard 3rd body particle that had been shattered and embedded in the 

UHMWPE is shown in Figure 5-16. The curved path that the particles lie on, show the 

direction of motion the femoral component took while traversing this area. Figure 5-17 

shows the ripple pattern in more detail. The rough edges of the ripples are an indication 

of the formation of fibrils, but the resolution is not high enough to confirm this. The 

ripple pattern has a periodicity of 1-2�m. Figure 5-18 and Figure 5-19 show large wear 

debris particles that are either in the process of being removed from or embedded into 

the surface of the UHMWPE. These particles are fairly elongated, being approximately 

15�m long and 0.5�m wide. 
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Figure 5-15 Rippled texture of the worn UHMWPE surface 

 

 

Figure 5-16 Third body debris embedded into the UHMWPE surface 
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Figure 5-17 Rippled surface texture at 10,000x 

 

 

Figure 5-18 Embedded wear debris 
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Figure 5-19 Embedded wear debris 

5.4 DISCUSSION 
 

5.4.1 WEIGHT LOSS 

 

The slide to roll ratio of 1 : 0.5 for this test was selected as it gave conditions very 

similar to those reported by Saikko et al [37] and would serve as a useful comparison.  

The mean weight loss for this experiment of 14.7mg/million cycles was close to the 

14.5mg/million cycles reported by Saikko et al. The two main differences between the 

tests were as follows; scratches to the femoral components showed that 3rd body wear 

occurred in this test but was not reported in Saikko et al’s experiment, and Saikko et al 

used a sphere rather than a cylinder as a femoral component which had the effect of 

creating higher peak contact stresses but a smaller width of wear track. The net effect 
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of these differences could not be fully quantified, however results from Mcgoulin et al 

[23] suggested that they were small when compared to such things as the effect of IE 

rotation. For the same slide to roll ratio, McGoulin’s group found a wear rate of only 

3mg / million cycles despite the occurrence of third body wear and higher contact 

stresses, although the load was lower. The primary difference here was a lack of IE 

rotation. 

 

 There was a large range of knee joint simulator wear rates reported in the literature, 

due to a lack of universally agreed conditions to test the implants under, as well as 

different implant designs and materials. Earlier studies had values ranging from less 

than 2mg/106 cycles to over 70mg/106 cycles [23] but the range has now decreased as 

some of the previous variables, such as distilled water or bovine serum for lubrication 

have now been largely standardized. Wang et al [18] obtained a wear rate of 

13.4mg/106 cycles using a Duracon TKR with a 2.5Mrad irradiated UHMWPE tibial 

component, and Kawanabe et al [50] found wear rates of 15.1±2.6mg/106 cycles and 

18.8 ±2.7mg/106 cycles with Biomet AGCs. The effect of the 2.5Mrad irradiation dose 

on the wear of the TKR was not thought to be huge, as Saikko et al [37] also tested 

material irradiated at 2.5-4Mrad and found a wear rate 17% lower than non-irradiated 

UHMWPE. While there were many differences between these simulator studies and the 

wear test described here, the use of simplified TKR components, loads, motions and 

materials have produced similar wear rates.  

 

Despite ultrasonic cleaning of components and other equipment and careful handling of 

the samples, external debris got into the bovine serum. It was then embedded in the 

UHMWPE surface where it scratched the 316 stainless steel femoral components and 

these in turn scratched and gouged the UHMWPE surface. This is known as third body 

wear and the majority of this debris was thought to have come from construction 

activity of another project using the same room that involved cutting and dust 

generation. Femoral component number three had the most scratches and this test 

station also recorded the highest wear rate of 16.1mg /106 cycles. To reduce or 
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eliminate 3rd body wear and obtain more accurate results, future tests should be carried 

out in a considerably cleaner environment and the 316 stainless steel femoral 

components should instead be made of the considerably harder cobalt chrome.  

 

To minimise the use of bovine serum, the soak controls were stored in distilled water 

for the first 251,000 cycles. This mistake of treating the soak controls differently to the 

actual wear samples became apparent at the first weigh in at ¼ million cycles where all 

the samples were cleaned and weighed. Some of the soak controls showed a larger 

weight loss than some of the wear samples, whereas no change or a very small weight 

gain was expected. As a consequence of treating the soak controls differently from the 

test samples, their use in correcting the fluid absorption of the test samples was no 

longer valid and so were not used. However the effect of not using soak controls was 

expected to be minimal as the UHMWPE samples had been pre-soaking in bovine 

serum for nine months, which should have left them very close to a fully saturated 

equilibrium state. This error was shown to be reasonably small, as during the remaining 

¾ million cycles in the reservoirs with bovine serum, the soak controls showed a 

weight change of less than 1 mg. 

 

5.4.2 WEAR DEBRIS 

The fibrils and other wear debris particles retrieved from TKR are generally larger than 

those retrieved from THR, with one study finding the mean sizes being 1.7�m and 

0.6�m respectively. Predominantly the shape of the TKR debris was spherical with 

occasional fibrillar attachments and flakes. The largest particle reported was 22�m 

[51]. The flat and elongated wear debris identified in this thesis, measuring 

approximately 15�m long, was considerably larger than the above mean and the shape 

was also quite different. It was most likely the difference in morphology was caused by 

the particles becoming embedding in the UHMWPE surface and then being repeatedly 

flattened and elongated by the action of the femoral component. These few random 

wear particles embedded in the UHMWPE sample were highly unlikely to be 
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representative of the particle size distribution produced during this wear test. Proper 

wear debris isolation using potassium hydroxide digestion of the bovine serum was 

hampered by the unavailability of 0.2�m polycarbonate filters and by the not totally 

unexpected failure of 0.22�m nitro-cellulose filters due to the potassium hydroxide 

solution. Future debris isolation should be carried out using the correct filters. 

 

5.4.3 UHMWPE WEAR SURFACE  

 

Visual examination of the wear surfaces showed the typical polished surface that is 

usually found in retrieved implants as well as from knee joint simulator tests. Unlike 

some older implants, no large scale delamination or cracking was observed, but this 

was not expected as high quality UHMWPE was used and it had not been air irradiated 

and aged. The fine scratches from 3rd body wear that were observed on the surface of 

the femoral component are reasonably common [23], [52], although the larger scratches 

and gouges in the UHMWPE are less so.  

 

Optical microscope examination of the polished surface revealed ripples running 

perpendicular to the main direction of motion in the middle section, as well as ripples 

with random orientations. These are common features of both worn replacement hip 

and knee UHMWPE components [18], [37], [26] and are the typical wear surface 

produced by sliding wear [35]. The ripples at both ends of the wear track showed a 

more random orientation, with a reasonable proportion running ±45° to the AP 

direction. This was thought to be caused by the greater rate of IE rotation in these areas 

leading to a complex pattern of wear tracks that crossed each other in multiple 

directions. The ripples found in the tractive rolling zone that were almost parallel with 

the AP direction were thought to be caused by the rolling motion in this area. Similar 

ripples with a very uniform and straight appearance had also been found by Tamura et 

al [35] in areas of UHMWPE that have undergone rolling in TKR joint simulator 
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studies, and these had also been reported in retrieval studies [53] in areas where rolling 

was thought to have occurred.  

 

The two lines 10.5mm apart that ran perpendicular to the AP direction were thought to 

be the result of tractive rolling. Based on visual examination of the depth of the wear 

tracks, these two lines had the highest wear rate on the surface of the UHMWPE, with 

the exception of large 3rd body gouges. The mechanisms by which tractive rolling is 

thought to occur and how it may relate to the “micro-delamination” found within the 

tractive rolling zone seen in Figure 5-14 is discussed below. For an instant at the start 

and half way through each cycle, both the AP translation and FE rotation are stationary. 

Even though the wear tester was set to a slide to roll ratio of 1 : 0.5, the initial motion 

would be pure rolling (1:1) as the “play” in the mechanisms would allow the frictional 

force between the femoral and tibial components to cause rolling. Once the “play” in 

the system was taken up, the tangential force between the two components would 

increase until it exceeded the frictional force and then sliding with a slide to roll ratio of 

1: 0.5 would occur. This period where tangential forces exist while pure rolling occurs 

is known as tractive rolling [32] and has been shown to cause deeper wear tracks [54] 

as the shear stresses induced in the UHMWPE are higher than when sliding occurs. In 

the experiment reported here the two tractive rolling lines are approximately 1mm from 

each end of the AP translation, which fits with Schwenke et al’s [54] findings of 

tractive rolling damage occurring just after pure rolling.  

 

Knowing that tractive rolling occurs during the initiating or breaking of rolling [32] and 

gait analysis has shown this to occur two times per cycle [54], it could be expected to 

be a common phenomenon in TKR. However such a pronounced line or micro-

delamination has not been observed in retrieved implants and although not exhaustive, 

searches in the literature for photos or a description of micro-delamination have not 

returned any positive results. However that is not to say this phenomenon does not 

exist. The lack of a well defined tractive rolling line in retrieved TKR is caused by the 

slide to roll transition point changing due to variations in the patients gait and the lack 
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of micro-delamination can be explained by the more common sliding wear mechanisms 

removing the tractively rolled surface before the micro-delamination has a chance to 

occur. While Saikko et al [36], [37] did not report this phenomenon, photos from their 

experiment of a UHMWPE sample show greater wear depth near the ends of the wear 

track, similar to this experiment. Since micro-delamination was only observed over 

0.01% of the total wear trackin this experiment, it would be quite easy to miss it during 

microscope examination. 

 

The depth of the micro-delamination surface below the adjacent rippled surface and the 

sudden drop to the lower surface suggests that it was unlikely to be caused by the 

common sliding wear mechanisms of abrasive wear or ripple formation followed by 

fibril pullout (previously known as adhesive wear), as it is hard to envisage how the 

surface of the femoral component could actually reach the surface of the micro-

delamination without causing significant rounding the corners of the surrounding 

rippled surface. 

 

It is thought that the micro-delamination found here is the most extreme form of 

tractive rolling damage and will only occur in joint simulators under high stresses and 

where the slide to roll transition point is constant and repeatable. Consolidation defects 

are a known cause of large scale delamination (>0.5mm) [49] and may also be a 

contributing factor for micro-delamination by providing a sub-surface crack initiation 

point that is then grown by the tractive rolling shear stresses. Although the lubrication 

mechanisms were not explicitly studied, the lower component velocities near the 

tractive rolling zones (as opposed to the middle of the wear track) are more likely to 

result in boundary lubrication, asperity contact and associated higher wear rates and 

transmission of tangential forces.  

 

While multidirectional motion has been proven to be a major factor in the wear rates 

and mechanism of adhesive type wear, its effect on tractive rolling induced micro-

delamination is unknown. It occurred during this experiment where IE rotation was 
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included, but further research will need to be carried out to determine the importance of 

multidirectional motion on this wear mechanism.  

 

The aim of research in this area is to gain a better understanding of the mechanisms and 

processes of UHMWPE wear in THR and from this to develop improved products and 

ultimately better clinical outcomes. Further investigation is required to either prove or 

disprove micro-delamination wear in a non-irradiated UHMWPE and in the process 

may yield insight into the mechanisms of higher wear rates in tractive rolling zones. 

This could be confirmed by a more detailed surface examination, monitoring the 

frictional force throughout the cycle and adding displacement transducers to the axes of 

motion to determine if tractive rolling is occurring.  
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6 CONCLUSIONS AND 

RECOMMENDATIONS 
 

6.1 CONCLUSIONS 
 

From the literature it was found that multidirectional motion occurs in TKR and is an 

important aspect for recreating UHMWPE wear similar to in vivo conditions. It was 

also found that the type of motion of the femoral component relative to the tibial 

component, namely sliding, rolling or gliding produced different wear rates and 

mechanisms. Other researchers using wear testers had investigated each of these 

phenomenon individually but had not investigated the two combined and this led to the 

aim of the project, the design of a 3 station knee joint wear tester capable of 

investigating the effects of slide to roll ratio on UHMWPE wear in total knee 

replacements.  

 

A full design specification was created and the machine designed and manufactured to 

meet this. The device has 3 individual test stations that have 57º flexion extension, 

variable anterior posterior translation from 0 to 25mm and internal external rotation of 

15º that is 90º out of phase from the other two motions. Each test station has its own 

fluid reservoir and recirculation system and the load per station can be set at any force 

up to 2KN.  

 

A million cycle validation test was successfully carried out on non-irradiated 

UHMWPE samples using a 2KN load with a slide to roll ratio of 1 : 0.5. The mean 
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wear rate was 14.7mg/106 cycles which was in good agreement with the 14.5mg/106 

cycles reported by Saikko et al, who used a very similar load and motion profile. 

Examination of the wear tracks by visual, optical and SEM methods revealed a surface 

morphology similar to other reported wear testers, knee joint simulator and retrieved 

total knee replacements. The surface featured some scratches caused by 3rd body debris 

as well as polished areas. Under magnification these polished areas revealed a fine 

ripple pattern, with a periodicity of approximately 1-2�m. Some of these areas showed 

randomly oriented ripples, while others showed an orientation perpendicular to the 

primary direction of motion. Small areas of uniform ripples running parallel to the 

primary direction of motion were also observed which are indicative of rolling motion. 

The results from the validation study show that the knee joint wear tester is capable of 

producing wear rates and wear mechanisms similar to those observed in other wear 

testers and knee joint simulators. Therefore this machine is suitable for further 

investigations into the effects of slide to roll ratio on UHMWPE wear under 

multidirectional motion and met the major aim of the project. 

 

Although not a specific design requirement, an interesting and unexpected phenomenon 

of tractive rolling was identified near each end of the AP motion. This was shown as a 

line of wear that was deeper than the surrounding wear track, and within this tractive 

rolling zone micro-delamination approximately 5�m deep was observed. While large 

scale delamination is a regular occurrence in aged air irradiated tibial components as 

well as poorly consolidated UHMWPE, delamination on such a small scale is not. 
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6.2 RECOMMENDATIONS AND FUTURE WORK 
There are a number of changes that could be made to the knee joint wear tester to 

improve its accuracy in recreating UHMWPE wear and measuring the factors that 

influence this wear. Possible future work is discussed below. 

 

6.2.1 FEMORAL COMPONENT 

The femoral components should be made from cobalt chrome (ASTM F75 or F1537) 

and polished to an implant grade surface finish of 0.05�m Ra. The greater hardness of 

the cobalt chrome would give it considerably better resistance to 3rd body scratching 

than the 316 stainless steel. The combined effect of these two factors would greatly 

reduce abrasive wear and gouging and therefore would be more representative of an in 

vivo TKR. 

 

6.2.2 TESTING ENVIRONMENT 

While the Perspex cover over the machine provided some protection against dust in the 

room, it was not sufficient to prevent debris from getting into the bovine serum which 

in turn caused 3rd body wear. Ideally, further experiments would be carried out in a 

temperature controlled clean room, but the lack of availability of such a facility leads to 

the more practical solution of installing a continuous supply of filtered air into the 

Perspex safety guard to act as a mini clean room. Thorough cleaning of the room before 

the test and careful handling of the components during setup, cleaning and weighing 

would also help minimize the chance of getting debris in the test chambers. 
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6.2.3 WEIGHING PROCEDURE 

The effects that static electricity had on the weight measurements were reduced by 

earthing the samples to the balance, but it is thought that repeatability of the 

measurements could be further improved by performing the weighing in a high 

humidity, temperature controlled room. 

 

6.2.4 WEAR DEBRIS ISOLATION 

The purchase of 0.2�m polycarbonate filters specifically designed for imaging of 

particles extracted from fluids would allow proper wear debris isolation and analysis. 

 

6.2.5 COEFFICIENT OF FRICTION MEASUREMENT 

Measurement of coefficient of friction at a high sampling rate would provide useful 

data that could be used to help determine when tractive rolling was occurring and the 

tangential forces involved. It may also give some insight into the lubrication conditions, 

by comparing the coefficient of friction to the velocity of the components at different 

positions during the cycle. The dieset top plate, which is attached to the tibial tray, has 

a thin section with strain gauges attached. The intention was to use these integrated 

“load cells” for friction measurements, but initial tests showed significant hysteresis as 

the direction of motion changed. Therefore a non-linear calibration is required to obtain 

meaningful data. 

 

6.2.6 FE, AP AND IE ROTATION MEASUREMENT 

The motions of the three axes were determined with Solidworks and Cosmos Motion 

based on ideal mechanisms with no slop or play in them. In reality there is some play in 

the bearings and linkages and although not large, is thought to be one of the factors that 
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caused tractive rolling. Attaching rotary and linear encoders to the appropriate axes 

would give the exact motion of the test components which could be used to determine 

the location and length of the tractive rolling zones. This data could then be compared 

with the friction results and surface examination.  

 

6.3 FUTURE WORK 
Further validation of the wear tester could be carried out by testing UHMWPE that has 

been air irradiated and aged, as well as other samples that have been irradiated in an 

inert atmosphere. Based on clinical experience, it is expected that the air irradiated and 

aged UHMWPE would show large scale delamination wear and the highest wear rate, 

followed by the non-irradiated material and finally inert atmosphere irradiated 

UHMWPE with the lowest wear rate. If the knee joint wear tester produced these 

results, the confidence in future experiments performed on the machine would be 

enhanced. 

 

A series of three experiments should be carried out to investigate the effects of slide to 

roll ratio under multidirectional motion. This should be carried out using UHMWPE 

irradiated in an inert atmosphere as the majority of tibial components are irradiated for 

sterilization and cross-linking and a typical dose would be between 2.5-4MRad. 

Throughout all these experiments, further investigations into tractive rolling and micro-

delamination could be performed to gain a better understand of the factors influencing 

this wear mechanism, how it relates to in vivo tractive rolling and its associated higher 

wear rate. 
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APPENDICES 

APPENDIX A  LINEAR BEARINGS 
Model used was SSE PB M30 DD 
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APPENDIX B AIR BELLOWS 
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APPENDIX C PERISTALTIC PUMP 
Model was FPU-116-Dual-240V 
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 arrangement for Dieset # 1.
 For Diesets 2 & 3 see drawing 301
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G

Dieset
General Assembly

A

A 310 Die Set Base Plate
B 311 Die Set Top Plate
C 312 Air Bellows 1S3-013
D 313 Dieset Pin
E 315 Dieset Linear Bush Holder
F 320 IE Shaft
G 321 IE Shaft Lock Nut 
H 322 IE Shaft Locking Washer
I 323 IE Shaft Lock Nut Spacer
J 330+ IE Balljoint Spacer 17mm
K 331 IE Balljoint Spacer 13.5mm
L 332 IE Balljoint Spacer 6mm
M 333 IE Balljoint Spacer 3mm 1 Chamfer
N 334+ IE Balljoint Spacer 3mm 2 Chamfer
O 811* IE Balljoint Inner SI 8 E
P 340 SS Tibial Base Plate
Q 341 PE Sample
R 342 Sample Cover Plate
S 344 Polyacetal Sample Holder
T 350 Socket Head Shoulder Screw M6x20
U 351 Socket Head Shoulder Screw M8x30
V 352 Socket Head Shoulder Screw M8x40
W 353 M4 x 20 Cap Screw
X 354 M4 x 25 Cap Screw
Y 355 M4 x 40 Cap Screw
Z 356 M6 x 20 Cap Screw
AA 360# 1/8" Air Fitting M-01AN-6 (SMC) Not Shown
AB 314 Glacier Linear Bearing 1610DU
Item Part No. Description
* = Shown for reference only
+ = Used in Diesets 2 & 3 - See Drawing 301
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DIESET DETAIL

B A 310 Die Set Base Plate
B 312 Air Bellows 1S3-013
C 320 IE Shaft
D 330 IE Balljoint Spacer 17mm
E 332 IE Balljoint Spacer 6mm
F 333 IE Balljoint Spacer 3mm 1 Chamfer
G 334 IE Balljoint Spacer 3mm 2 Chamfer
H 811 IE Balljoint Inner SI 8 E
I 352 Socket Head Shoulder Screw M8x40
J 360 1/8" Air Fitting M-01AN-6 (SMC)
Item Part No Description
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P

Q

Top Shaft
General Assembly

1 : 3   (A3)

A 410 Top Shaft 
B 420 Flywheel
C 421 Flywheel Spacer
D 422 Flywheel Key
E 430 KM6 Lock Nut M30 x 1.5
F 431 MB6 Locking Washer
G 440 Reflex E20 Coupling
H 441 Coupling Key
I 450 8mm x 30mm x 44 tooth Pulley
J 460 Gearbox Shaft
K 461 Retaining Ring B27.7M - 3AM1-25
L 462 Gearbox Shaft Retaining Washer
M 470 M8 x 16 Cap Screw
N 471 Socket Head Set Screw M8 x 16
O 254 M4 x 8 Cap Screw
P 242 Washer M4x25x2
Q 241 Conrod Bearing Spacer 20mm ID
Item Part No. Description
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& Bill of Materials

Bottom Shaft
General Assembly

N

A 510 Bottom Shaft
B 520 IE Crank Key
C 521 IE Crank Mounting Plate
D 522 IE Crank Adjustment Plate 
E 523 IE Crank Pin
F 524 IE Crank Pin Washer
G 530 M8 x 16 Low Head Cap Screw
H 531 M6 x 16 Cap Screw
I 532 M3 x 6 Cap Screw
J 536 M3 x 10 Washer
K 534 M12 Nut Thin
L 254 M4 x 8 Cap Screw
M 242 Washer M4x25x2
N 241 Conrod Bearing Spacer 20mm ID
O 450 8mm x 30mm x 44 tooth Pulley
P 811 Ball Joint Inner SI 8 E
Q 511 AP Crank Adjustment Plate
R 533 M5 x 20 Cap Screw
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General Assembly

G

FE Crank Shaft

Crank Arm Configuration 

H

A
A

Section A-A

E

C
A

I

for Station 3

* Station 1 is the closest to the motor / gearbox

Crank Arm Configuration 

J

600

A 610 FE Crank Shaft
B 620 FE Crank Arm Spacer Short
C 621 FE Crank Arm Spacer Long
D 630 CoCr Cylinder
E 631 CoCr Cylinder Retaining Sleeve
F 632 KM4 Lock Nut M20x1
G 633 FE Lock Nut Spacer
H 241 Conrod Bearing Spacer 20mm ID
I 242 Washer M4x25x2
J 254 M4 x 8 Cap Screw
Item Part No. Description
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