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Abstract

The research project reported in this thesis considers Multiple Distributed

Replications in Parallel (MDRIP), a hybrid approach to parallelisation of

quantitative stochastic discrete-event simulation. Parallel Discrete-Event

Simulation (PDES) generally covers distributed simulation or simulation

with replicated trials. Distributed simulation requires model partitioning

and synchronisation among submodels. Simulation with replicated trials can

be executed on-line by applying Multiple Replications in Parallel (MRIP).

MDRIP has been proposed for overcoming problems related to the large size

of simulated models and their complexity, as well as with the problem of

controlling the accuracy of the final simulation results.

A survey of PDES investigates several primary issues which are directly

related to the parallelisation of DES. A secondary issue related to implemen-

tation efficiency is also covered. Statistical analysis as a supporting issue is

described. The AKAROA2 package is an implementation of making such

supporting issue effortless.

Existing solutions proposed for PDES have exclusively focused on collect-

ing of output data during simulation and conducting analysis of these data

when simulation is finished. Such off-line statistical analysis of output data

offers no control of statistical errors of the final estimates. On-line control

of statistical errors during simulation has been successfully implemented in
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AKAROA2, an automated controller of output data analysis during simula-

tion executed in MRIP. However, AKAROA2 cannot be applied directly to

distributed simulation.

This thesis reports results of a research project aimed at employing

AKAROA2 for launching multiple replications of distributed simulation mod-

els and for on-line sequential control of statistical errors associated with a

distributed performance measure; i.e. with a performance measure which

depends on output data being generated by a number of submodels of dis-

tributed simulation. We report changes required in the architecture of AKAROA2

to make MDRIP possible. A new MDRIP-related component of AKAROA2,

a distributed simulation engine (mdrip engine), is introduced.

Stochastic simulation in its MDRIP version, as implemented in AKAROA2,

has been tested in a number of simulation scenarios. We discuss two specific

simulation models employed in our tests: (i) a model consisting of indepen-

dent queues, and (ii) a queueing network consisting of tandem connection

of queueing systems. In the first case, we look at the correctness of mes-

sage orderings from the distributed messages. In the second case, we look

at the correctness of output data analysis when the analysed performance

measures require data from all submodels of a given (distributed) simulation

model. Our tests confirm correctness of our mdrip engine design in the cases

considered; i.e. in models in which causality errors do not occur. However,

we argue that the same design principles should be applicable in the case of

distributed simulation models with (potential) causality errors.
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Chapter 1

Introduction

1.1 Parallelisation of Discrete Event Simulation

The MRIP (Multiple Replications in Parallel) approach in the AKAROA2

package runs stochastic on-line simulation with non-distributed simulation

models [1]. The thesis problem is that MRIP does not support stochastic

on-line simulation in distributed simulation which requires a model to be

partitioned and distributed. After conducting a survey of parallel discrete

event simulation (PDES) and performing some initial testing, the solution to

the thesis problem is focused on the MDRIP (Multiple Distributed Replica-

tions in Parallel) approach. MDRIP is a hybrid approach to parallelisation

of discrete event simulation allowing AKAROA2 to support distributed sim-

ulation.

This thesis work has contributed to design and implement MDRIP which

consists of mdrip engine as well as other associated software, such as subengines.

Through this thesis work, it is understood that stochastic on-line simulation

for distributed simulation is possible. However, model-dependency remains

a problem in design and implementation of subengines as well as how mdrip
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engine interacts with subengines.

PDES refers to executing Discrete Event Simulation (DES) on multiple

processors. DES is a very common scientific methodology across industrial

and scientific research areas. As technology evolves and the size and com-

plexity of system models increase, the importance of quantitative output

data analysis is increased as well. DES executed on a single processor is no

longer sufficient to support such progress. The obvious development is to

adopt parallel processing techniques to parallelise DES [4, 5, 17, 30, 36].

The problem of increasing model size comes from the event list. The core

operation of a DES lies in an event list that holds unprocessed events. As an

event is stochastically created, it is associated with a timestamp and inserted

into the event list. The event list processing removes the event with the small-

est timestamp value from the event list to run the simulation. Processing

the event list is a very time-consuming computational task. As the size of a

system model increases, the event list tends to grow proportionally. It is pos-

sible that a single processor may run out of computing resource and not be

able to finish processing the whole event list [53]. One solution is to decom-

pose a simulation model into smaller submodels running distributedly across

multiple processors. Therefore, the main event list is partitioned into several

shorter sub-event lists which are more suitable for each single processor to

process effectively. Most PDES research [2, 14, 15, 16, 17, 38] is concerned

with partitioning a model into submodels, synchronising events among dis-

tributed submodels according to sequencing and/or causality constraints,

and processing distributed events with timestamps in non-decreasing order.

The problem of increasing model complexity leads to increasing difficul-

ties in understanding system behaviours and analysing system performance.

Such model complexity can be reflected by the number of entities in a system
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model, the degree of aggregation among entities, and the dynamic nature of

a system. Perhaps network protocol design and Internet simulation best de-

scribe such a model complexity problem [36, 37]. To ease such problems,

distributed simulation allows to observe the interaction between submodels

and also enables performance evaluation at various granularity.

It has been pointed out that lack of quantitative and sequential analysis

on simulation output data results in a credibility crisis [3, 7]. Although sta-

tistical inference is part of very elementary academic scientific training, still

many studies are conducted without proper statistical analysis. Output data

analysis is usually conducted in an off-line fashion in that simulation output

data is processed after the simulation is finished. Thus, off-line simulation

comes with a fixed run length. The problem is that off-line simulation with

a fixed run length provides no chance of meeting pre-set confidence intervals

[29]. Therefore, proper statistical inference requires that analysis is run on-

line so that adjustable accuracy levels and confidence intervals are adaptively

and sequentially controlled. The AKAROA2 package is an implementation

which can automate output data analysis with either fixed or flexible run

lengths [3, 4, 5, 6, 7, 8].

On-line simulation may expect very long simulation run lengths in order

to produce sufficient numbers of observations for a required accuracy level.

In AKAROA2, MRIP is designed and implemented to run the simulation of

the same model with different streams of random numbers on multiple pro-

cessors. As the simulation run length from each single processor is added up

by multiple replications, an overall simulation speedup is achieved. There-

fore, run times are improved. Several experimental studies using MRIP in

AKAROA2 show promising results [3, 4, 5, 6, 7, 8, 22, 23]. Other similar

MRIP studies can be found in [10, 11, 55].
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The MRIP approach does not require model partitioning. Each simula-

tion run simulates a system model as a whole without model partitioning

and distribution. MRIP deals with multiple replications of non-distributed

simulation models. On the other hand, distributed simulation deals with

a single replication of a distributed simulation run. MRIP easily achieves

more efficient statistical speedup than distributed simulation, because sim-

ulation run length of distributed simulation is not multiplied. Moreover,

model-dependent synchronisation overheads may be very expensive for the

distributed simulation itself [5, 16]. Distributed simulation explores paral-

lelism of simulation models and focuses on partitioning a model into sub-

models and synchronising event messages among submodels. MRIP is fault

tolerant and consumes more memory resources than distributed simulation,

whereas distributed simulation is more useful to the problems related to

model size and complexity.

AKAROA2 as a PDES implementation of the MRIP approach is cur-

rently limited to non-distributed simulation models only [1]. To improve

the functionality of AKAROA2 with regard to increases of model size and

complexity, this thesis designs and implements a Multiple Distributed Repli-

cations in Parallel (MDRIP) approach. This new MDRIP approach allows us

to run distributed simulation under the quantitative and sequential control

of MRIP.

The following section describes requirements of this new MDRIP ap-

proach.
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1.2 The MDRIP Approach

For this thesis, a new PDES approach is proposed and implemented: Multi-

ple Distributed Replications in Parallel (MDRIP).

The objective of MDRIP is to establish the provision of quantitative

and sequential control of distributed simulation under MRIP. The concept

of MDRIP is to combine Multiple Replications in Parallel (MRIP) and dis-

tributed simulation.

Previous studies have mentioned similar ideas [5, 6, 12, 13]. Ewing,

McNickle, and Pawlikowski discussed the possible theoretical speedup of

combining both MRIP and distributed simulation in [5, 6]. Heidelberger

mentioned an alternative in theory to combine replications and distributed

simulation to reduce bias as well as improve efficiency [12, 13]. However,

this thesis work is the first attempt to design and implement the MDRIP

approach.

The following aspects identify what a MDRIP approach consists of in the

context of AKAROA2.

• Automation of Output Data Analysis

Automation of output data analysis in AKAROA2 refers to quantita-

tive and sequential control of accuracy levels of statistical errors and

confidence intervals of output results. Such automation reinforces the

capability for statistical inference.

From MRIP to MDRIP, the automation of output data analysis is

extended from simulation engine to mdrip engine, which manages dis-

tributed simulation running on subengines. As different streams of

random numbers are dispatched to distributed subengines, distributed

data observations are produced when the subengines receive the dis-
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tributedly allocated random numbers. Each subengine sends its data

observations back to its associated mdrip engine that collects and co-

ordinates distributed data observations.

As a result, MDRIP also reinforces statistical inference by automating

output data analysis.

• Logical Processes (LPs)

Most PDES research uses the term - Logical Process (LP) - to describe

a disjoint set of the whole simulation model running on one single

processor [16, 17, 19, 20]. Such a disjoint set, often equivalent to a

submodel or a set of some submodels, is itself a sequential computation

unit with local event list and local clock time. In this thesis, one LP

represents one distributed simulation subengine simulating a submodel

executed on one particular processor.

The development of MDRIP follows such term and definition - Logical

Process (LP) - to be able to transform model-related issues transpar-

ently from distributed simulation to MDRIP.

• Random Numbers

The MRIP approach under AKAROA2 simulates a model with multi-

ple runs using different streams of random numbers. Each simulation

run is handled by a simulation engine. Independent runs refer to us-

ing different streams of random numbers for each simulation engine.

Identical runs refer to the same simulation model for each simulation

engine. Thus, after multiple replications, output data from different

engines is guaranteed to be uncorrelated [5, 6, 7].

Figure 1.1 shows how random numbers work under MRIP in AKAROA2.

R1i represents the i -th random number in a sequence of random num-

6



ber stream for the first simulation run. Rni represents the i -th random

number in a sequence of random number stream for the n-th simulation

run.

Figure 1.1: Random Numbers in MRIP

To extend MRIP to MDRIP, the MRIP approach mentioned above

is maintained with each run developed further into a distributed sim-

ulation. With each simulation run as a distributed simulation, the

target simulation model is designed to be partitioned into submodels

handled by subengines running distributedly on multiple processors.

Each subengine of a simulation run requests a stream of random num-

bers via the mdrip engine of that simulation run from random number

generators managed by akmaster in AKAROA2. Upon receiving such

a request, akmaster then allocates a block of random numbers via
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the mdrip engine and dispatches such random numbers to associated

subengines. As a result, each subengine uses different streams of ran-

dom numbers to simulate its local events. Thus, output data from

different subengines is also guaranteed to be uncorrelated.

Figure 1.2 shows how random numbers work in the extension to the

MDRIP approach. Similarly, R1xi, R1yi, and R1zi represent the i -th

random numbers which are part of the sequences of random number

stream for each subengine x, y, and z of the first simulation run. Rnxi,

Rnyi, and Rnzi represent the i -th random numbers which are part of

the sequences of random number stream for each subengine x, y, and z

of the n-th simulation run.

Figure 1.2: Random Numbers in MDRIP
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• Newly Distributed Messages

The MDRIP approach in AKAROA2 requires two types of distributed

messages: random numbers and data observations. The messages of

random numbers maintain the stochastic characteristics of the MDRIP

approach. The messages of data observations are submitted to akmas-

ter via the mdrip engine. Such data observation messages supply raw

data for on-line output data analysis.

• Parallelisation Platform

MDRIP is a hybrid approach to parallelisation of discrete event sim-

ulation. Features related to parallelisation platform need to be exam-

ined. As far as the implementation is concerned, MDRIP is extended

from MRIP. Therefore, parallelisation platform of MRIP is followed to

ensure overall compatibility. Relevant features include hardware con-

figuration, operating system, AKAROA2 version, networking protocol,

and interprocess communication.

General information about hardware configuration, operating system,

AKAROA2 version, and networking protocols is listed as follows:

– AKAROA2 package version: 2.7.5.

– Operating System: Linux Red Hat 3.4.2-6.fc3

– CPU, Cache, and Memory:

CPU Cache Memory

cosc4xx Intel(R) Pentium(R) 4 CPU 2.80GHz 512 KB 1024 MB

cosc3xx Intel(R) Pentium(R) 4 CPU 2.40GHz 512 KB 512 MB

cosc2xx AMD Athlon(tm) XP 1600+ 256 KB 512 MB

– Network: TCP/IP over Ethernet
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– Interprocess communication: Message Passing via I/O

Multiplexing

In summary, this thesis work contributes to the design and implementa-

tion of the MDRIP approach in AKAROA2 which extends the current ver-

sion of simulation engine into mdrip engine with the capability of launching

simulation subengines and distributing submodels on multiple processors, as

well as retaining central management of quantitative and sequential control.

1.3 Thesis Layout

Chapter 1 gives an introduction on parallelisation of discrete event simula-

tion in general and discusses the requirements of the new hybrid MDRIP

approach. Chapter 2 reports a survey on previous PDES activities and dis-

cusses important PDES issues. Chapter 3 outlines design of the MDRIP

approach with overviews on various parallelisation approaches, networking

architecture, and system components. Chapter 4 describes implementation

of the MDRIP approach in details. Chapter 5 discusses testing efforts for

the development of the MDRIP approach. Chapter 6 provides conclusions

and suggests future work.
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Chapter 2

Survey of Parallel Discrete

Event Simulation

This survey investigates important issues related to PDES. Dating back to

early 80s, PDES emerged as a research field on the execution of discrete

event simulations on parallel/distributed computers [15, 16, 17].

For this thesis, eight issues have been identified with six are the primary

issues, one is the secondary issue, and the other one is a supporting issue.

The primary issues are directly related to the problems that can possibly

arise if the parallelisation of DES is to take place. For examples, model

partitioning, load balancing, interprocess communication, synchronisation,

interoperability, and performance studies. Among them, model partition-

ing, load balancing, and synchronisation issues are model-dependent which

means solutions can be different from model to model. While issues, such as

interprocess communication, interoperability, and performance studies, are

less model-dependent so that considerations may generally be shared by all

models.

Event list management is the secondary issue that is due to the algorithm
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efficiency of the event list implementation, rather than directly related to the

parallelisation of a DES.

One supporting issue addressed is statistical analysis which is either pro-

cessed on-line or off-line. Off-line simulation features fixed run length. How-

ever, off-line simulation provides no sequential control. On-line simulation is

particularly important to support better statistical inference on simulation

research. The AKAROA2 package [1] dedicates in stochastic on-line sim-

ulation and provides automated solutions on output data analysis to such

supporting issue.

After discussion on relevant issues of PDES, some thoughts on the MDRIP

approach are mentioned. PDES does not necessarily assume that statistical

analysis is adaptively controllable. However, as far as MRIP and MDRIP

are concerned, the central design concept is to employ adjustable statistical

accuracy with distributed simulation.

2.1 Issues

2.1.1 Model Partitioning

A simulation model is partitioned into multiple loosely coupled submodels

according to certain world view relationships. Each submodel is represented

by an LP or a set of LPs running on one processor. The simulation is run

by executing several submodels in parallel. These submodels are distributed

and simulated on multiple processors by communicating with each other via

interprocess communication mechanisms, such as message passing or shared

variables.

The major goal of model partitioning is to exploit the inherent parallelism

in simulation models in order to take advantage of parallel processing to

12



accelerate the simulation execution time [17, 65]. It requires certain domain

knowledge to be able to partition a simulation model effectively. Moreover,

it requires a certain understanding of PDES to be able to identify inherently

partitionable factors for the purpose of efficient PDES.

1. Graph partitioning

Graph theory is often used to assist analysis in the modelling phase,

especially in VLSI (Very Large Scale Integration) simulation [65, 71].

In general, graph partitioning refers to mapping a system model into

a partition scheme that groups strongly connected nodes into logical

blocks so that each block is about the same size with minimum commu-

nication links. Each block is mapped to one processor and the commu-

nication links between the blocks represent communication overheads.

A simulation model represents a Problem Graph (PG). A set of nodes

represents a set of LPs, while a set of links represents a set of commu-

nication channels. The node weight features the expected execution

time for the associated LP. The link weight features the amount of

message traffic expected over such link. The link direction features the

logical precedence of the nodes in a PG [42].

Nandy and Loucks [65] discuss partitioning quality, mentioning how a

model partitioning scheme affects the overall PDES performance. If the

conditions of interprocess communication and load balancing are the

same, different graph partitioning schemes have different performance

results. A good model partitioning scheme is expected to result in

low overhead of interprocess communication and well-balanced process

workloads among distributed processors. Otherwise, the performance

of parallelisation may be affected.

13



2. Static vs Dynamic partitionings

Whether a partitioning scheme is allowed to be changed or not during a

PDES run distinguishes static partitioning from dynamic partitioning.

Static partitioning is sometimes called sequential partitioning in that a

partition scheme is available prior to the PDES execution and remains

unchanged throughout the entire PDES execution. While dynamic

partitioning prepares an initial partition scheme and keeps modifying

the scheme in progress throughout the PDES execution. Static parti-

tioning is inflexible towards workloads balancing. However, dynamic

partitioning may introduce migration overheads caused by adjustable

workload balance [42].

Model partitioning is not a straightforward task. It requires extensively

iterative or refined processes. The efficiency of model partitioning is con-

cerned with trade-offs between reduction of intercommunication costs and

adequately distributed workload balance. The outcome of the model parti-

tioning determines the structures of communication topology and load bal-

ance which instead affect overall PDES performance.

2.1.2 Load Balancing

Load balancing refers to the distribution of the workload among multiple

processors where the workload means the number of events to be processed

[35]. The aim of load balancing is to arrange evenly distributed workloads,

or at least as evenly as possible, so that each processor is more efficiently

utilised and less idle. The idea is that higher processor utilisation results in

more efficient PDES.

Load imbalance may significantly degrade PDES performance due to idle

processors. However, the trade-off between load balancing and communica-
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tion costs has never been a simple task. Perfectly-balanced workload may

imply high communication costs. In order to minimise such communication

costs, PDES designs may need to compromise on load balancing and allow

certain idle times [35].

1. Static load balancing

If sufficient information of estimated workload is available before the

PDES simulation execution takes place, then static load balancing can

be applied. Nandy and Loucks [65, 68] apply static load balancing

together with conservative synchronisation using null messages.

If the event workload is varied during runtime, static load balancing

will not have the flexibility to adjust to such variation. As a con-

sequence, some processors may be heavily utilised, while some other

processors may be idle. Lack of adjustability is a weakness especially

in simulating dynamic systems. Such weakness may consequently de-

grades PDES performance. Furthermore, if information of estimated

workload is theoretically or experimentally inaccurate, then a PDES is

actually unbalanced right from the beginning [65].

Based on Time Warp, Nicol and Reynolds [66, 68] work on development

of load balancing from static to dynamic.

2. Dynamic load balancing

If sufficient information on estimated workload is not available before

the execution of PDES takes place, or if workloads may vary, then

dynamic load balancing is suitable in that workload distribution is

decided during runtime.

LPs distributed among multiple processors are migrated from one pro-

cessor to another according to variations of event workload. Such a
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dynamic feature is suitable for dynamic simulation models. For exam-

ple, Gan, et al., [35] uses dynamic load balancing in a supply chain

simulation model to keep inventory control at a balanced level.

When discussing optimistic synchronisation, Reiher and Jefferson [67,

68] emphasise on effective processor utilisation, instead of high proces-

sor utilisation, in that only actually committed computations are taken

into account. High processor utilisation does not necessary mean good

performance, if busy workload will possibly be rolled back later due

to optimistic synchronisation. Because process migration may gen-

erate high communication overheads from historical state-saved data,

Reiher and Jefferson suggest phase splitting [67, 68] to distinguish a

process between the old phase for historical state-saved data and the

new phase for message passing action itself. Only data in the new

phase is processed at the destined processor. Therefore, performance

is improved.

Instead of process migration, Schlagenhaft et al., [71] developes cluster

migration to adaptively control when, what, and where workload pro-

cesses are migrated over different processors. Improved performance is

reported with reduced rollbacks.

2.1.3 Interprocess Communication

Various aspects of interprocess communication related to PDES cover com-

munication topology, data exchanges (shared variables vs message passings),

underlying hardware platforms, geographical coverage, latency, bandwidth,

as well as networking types. Decisions made related to these aspects of com-

munication infrastructure are important in building effective PDES [16, 17].
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1. Communication topology

The outcome of a model partitioning scheme forms the communica-

tion topology of a PDES. Such topology lays out the overhead struc-

ture of interprocess communication. In the case of static partitioning,

the communication topology is fixed. Otherwise, the communication

topology will keep changing during the PDES execution. Decisions on

load balancing and synchronisation protocols further improve or ag-

gravate such overheads. The overhead of interprocess communication

is inevitable and should be minimised.

2. Shared variables vs message passings

There are two main approaches: shared variables mean that defined

variables are accessible by different processors. On the other hand,

message passings do not allow variables to be accessed by the other

processors, so that intercommunication among multiple processors is

by sending or receiving messages explicitly.

3. Underlying hardware platforms

The real time bounds of interprocess communication are determined

by the underlying hardware platforms. A brief taxonomy in Figure 2.1

on classification of parallel and distributed computers is taken from

[17].

- Shared-memory machines

Multiple processors access memory through a connected high-

speed switch. High-speed cache memory attached to each pro-

cessor stores frequently used data and instruction. Either shared

variables or message passings can be used.
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Figure 2.1: A Brief Taxonomy of Parallel and Distributed Computers

- Distributed-memory multiprocessors

Each processor unit consists of a CPU, cache memory, main mem-

ory, and communication controller handling explicit message sends

and receives. Only message passing is possible. Here, cache mem-

ory holds only local data and main memory is only local to each

processor.

- SIMD

Referring to single-instruction-stream, multiple-data-stream, a par-

allel processor uses a single instruction stream to control multiple

data streams.

- Distributed computers

The most popular hardware platform is characterised as intercon-

nected networks of stand-alone computers. Commonly used op-

erating systems include Linux, Unix, and Windows. Distributed
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computers are heterogeneous in two ways: one is of different man-

ufacturers, the other is of different switching facilities, such as

asynchronous transfer mode (ATM) or Ethernet.

It is noted that differences between parallel and distributed computers

are blurred. It is meaningless to draw a sharp line between parallel and dis-

tributed computers. Other features characterise underlying hardware plat-

forms are more important [17].

1. Geographical coverage

How the range of the PDES execution of distributed submodels is phys-

ically located. Such a coverage can be networked machines in a single

machine room, or distributed over the Internet across different coun-

tries. The details of geographical coverage set out the overhead of

latency.

2. Latency

Latency defines the communication delay measured by the time needed

to transfer a message from one processor to another. The common unit

of time is microseconds. Parallel computers normally have less than

100 microseconds latency, while distributed computers have hundreds

of microseconds. Satellite link is an example of very long latency which

may take up to seconds. On the other hand, Fujimoto et al., [72]

designs a rollback chip to empower hardware magnitude of very short

latency over extremely heavy used communication links such as for

state saving and rollback [68].

3. Bandwidth

Bandwidth refers to the capacity of a communication channel which

is hardware dependent. In general, the more bandwidth available, the
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less significant interprocess communication overheads become.

4. Networking types

In heterogeneous networks, the measures of bandwidth and latency

are varied. While in homogeneous networks, such measures are near

constant factors.

2.1.4 Synchronisation

As DES is developed into PDES and distributed events are processed on

multiple processors, causality constraints may arise because the future can

not be affected by the past [16]. Synchronisation or time management to

maintain such causality constraints contributes to the most dominant com-

munication cost of PDES. Consequently, the majority of PDES research has

focused on development of different synchronisation protocols with an aim

to improve simulation efficiency [14, 15, 16].

Conservative approaches strictly forbid causality errors. Optimistic ap-

proaches conditionally allow causality errors to happen, but will recover such

errors and re-run simulation since then. Hybrid approaches attempt to com-

bine advantageous aspects of both conservative and optimistic approaches

[15, 16].

1. Conservative Approaches

Conservative approaches need to decide when it is safe to process an

event. Lookahead is one particular crucial value which defines when

the next future event is likely to happen [16, 17]. If an LP contains an

unprocessed event in its local event queue, according to the timestamp

of this unprocessed event, this LP needs to decide that it will not

later receive another event with smaller timestamp value. Then this

unprocessed event is safe to be processed. If the LP can not decide

20



whether this unprocessed event is safe or not, the LP needs to be

blocked, which may result in deadlock. How to avoid or detect such

deadlock is the main concern for conservative approaches.

The earliest PDES synchronisation protocols, taking conservative ap-

proaches, were independently developed by Bryant in 1979 [39] and by

Chandy and Mirsa in 1986 [40]. Static communication topology was

assumed.

- From null messages to deadlock avoidance

Initially, Chandy and Mirsa used null messages to avoid dead-

locks. Sending a null message after each finishing process may

generate many unnecessary overheads. The CMB protocol refers

to the first and very basic conservative synchronisation approach

of PDES [39, 40].

A null message is a do-nothing message. After an LP finishes pro-

cessing an event, it sends a null message to notify all connected

nodes with the finishing time as the timestamp value of such a null

message. Null messages can avoid deadlock. The biggest draw-

back comes from the communication overhead of the null message

itself, because the null messages associated with correct events can

be a majority which is simply unnecessary and uneconomical.

Later, Chandy and Mirsa shifted to detect deadlocks rather than

to avoid them. Once deadlocks are detected, they are broken and

recovered. However, overheads are still a problem.

- SRADS

Reynolds [73] proposes SRADS protocol in which null messages

sent as an on-demand basis can reduce redundant communication

costs. When a receiving link with the smallest timestamp runs
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out of messages to process, which indicates a process is about

to block, a request next message is sent only to the link at the

sending side of the link. Although the time taken to receive a null

message by request is doubled due to request transmission and

send transmission [43].

- Deadlock detection and recovery

Deadlocks are not avoided. However, detection steps are taken

to discover when a simulation is deadlocked. Once a deadlock is

detected, it needs to be removed. A problem is that the size of dis-

tributed networks can be too large to efficiently detect deadlocks

in subnetworks. So, preprocessing deadlocks in each subnetwork

can be useful [44].

- Conservative time windows

Significant searching is required to determine if an event is safe

to process. To perform less searching, a range of LPs is set to

search for the next unprocessed event from the range of LPs. It

is model dependent to decide the bounds of the time windows.

If the range is small, the PDES is less parallel. If the range is

too large, it does little help to reduce searching costs. The size of

such a time window is referred to as the ’bounded leg’ by which

the minimum distance between LPs is used to determine if it is

safe to process an event [45].

- Conditional knowledge

Events are differentiated into definite events and conditional events.

It is always safe to process definite or unconditional events, while

related predicate needs to be satisfied first in order to convert a

conditional event to a definite event. Such predicate is arranged
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into processes as part of passing messages. If a conditional event

contains the smallest timestamp, it is still safe to process [46].

2. Optimistic Approaches

Optimistic approaches need to detect when a causality error has hap-

pened and recover such an error by rolling back previously processed

events. Rollback involves either regular state saving or sending a neg-

ative message (anti-message) to replace the original message. Normal

event messages refer to positive messages [16].

Jefferson [41] borrowed ideas of paging or segmentation from virtual

memory to define Virtual Time as a global, one-dimensional, temporal

system coordinates timestamps of distributed events. Virtual Time was

implemented in Time Warp which is the first PDES that synchronises

distributed events optimistically.

Global Virtual Time (GVT) refers to the smallest timestamp among all

unprocessed messages. GVT is a lower bound for determining rollback

actions. To compute GVT periodically is memory intensive, because

such periodical computation requires huge state saving data. State

saving is itself a programming practice consuming lots of memory.

- Time Warp

If an event message with timestamp smaller than the timestamp

of the last processed message is received, then a causality error

is detected. Such a received message resulting in rollback is a

straggler message. All previous events related to the received

message causing a straggler need to be undone [41].

- Georgia Tech Time Warp - GTW

Led by Fujimoto, Georgia Tech Time Warp (GTW) was developed
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to include various optimistic synchronisation techniques, such as

direct cancellation, advanced GVT computation, fossil collection

on-the-fly, etc., to optimise the cancellation of incorrect messages.

A graphical visualisation system for general purpose network com-

puting simulation, PVaniM, adds animation features for more in-

sight into advanced GTW [2, 17]. A hardware solution with a

rollback chip is designed to improve demanding memory require-

ments from state saving and rollback [68].

- Lazy cancellation

Gafni states that fix an incorrect timestamped message is cheaper

than to totally discard it. Only when the re-executed processes

make sure incorrect answers are produced, thus anti-messages are

sent to request rollback. Due to the recursive nature of rollback,

lazy cancellation is very sensitive to model dependency [47].

- Lazy re-evaluation

West [48] compares the state vector of a process before and after

a straggler event which is an event violating causality constraint

[17]. If the state has not been changed, it means such a process

is a correct event. Then there is no need to roll back, but to

skip the roll back and jump forward. Lazy re-evaluation works

particularly well with read-only or query events. However, it can

be difficult to implement and maintain.

- Moving Time windows

Sokol et al., [49] examines events with timestamps within a spe-

cific time frame to see if incorrectness has been propagated. If no

incorrect event is found within a specific time frame, then such

examinations just degrade the overall performance. In addition,
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there is no logical way to determine the period of such a time

frame.

- Direct cancellation

Instead of searching for where to cancel incorrect messages, anti-

messages are given higher priority than positive messages [51].

Fujimoto states the “dog chasing its own tail” effect in Time Warp

can be avoided as well as the costs to cancel incorrect messages

are reduced [17, 51].

- Wolf calls

Madisetti, Walrand, and Messerschmitt [50] use the straggler mes-

sage to embed control logic to notify messages infected by incor-

rect events. However, correct events may be idled, too. Thus

performance is further degraded. It is difficult to implement such

embedded control logic, because certain real-time values are not

feasible to obtain.

- Space-time graph

Chandy and Sherman [52] utilise a two-dimensional space-time

graph consisting of state variables on one axis and simulation

time on the other axis. Disjoint regions are partitioned and rep-

resented by LPs. LPs fill in their assigned regions and exchange

messages by updating boundary conditions. Until a fixed point

is computed, the message exchange is stopped. New messages

sent to other LPs will update boundary conditions. Such two-

dimensional space-time style shares the same concept of relaxation

from continuous simulation. In PDES, however, the time-space

area is specially defined as a rectangle for each LP [17, 52].
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- Memory management

Memory usage is a critical concern in particular for optimistic syn-

chronisation, because GVT and possible rollback computations

need huge memory resources. If all LPs have enough memory to

use, then that is not an issue. Once an LP runs out of memory in

its local processor, then the memory stall occurs resulting simula-

tion stall and incomplete. The objective of memory management

is to delay the possible occurrence of memory stall [57].

The solution to memory management depends on whether to

guarantee sufficient memory usage or to improve simulation com-

pletion ratio by adapted heuristics. The guaranteed approach

assumes the same amount of memory in both parallel and se-

quential executions and needs to find out the minimum required

memory for a specified synchronisation protocol. In order to pro-

vide such guarantee, sufficient memory is allocated and fixed. As

a result, execution time may suffer. However, any other adapted

approaches may run faster, but do not guarantee to complete the

simulation [57].

Fossil collection is performed to reuse memory and process un-

doable I/O actions. Batch fossil collection reclaims memory peri-

odically by searching through the sub-event lists of related LPs.

Such searching can be time-consuming. An extra FIFO queue

is arranged to hold processed events. On-the-fly fossil collection

reclaims memory from this FIFO queue only if required [16, 17].

If the size of the state and the number of states that must be

saved can be reduced, then less required memory will result in a

better situation to prevent unwanted memory stall.
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Memory will eventually stall. Jefferson [57] applies cancelback

to send back messages to LPs for memory recovery. Preiss and

Loucks [56] use pruneback to delete selected previously saved

states for recovering memory space.

- Rollback relaxation

When rollback occurs, only local recovery is performed. I/O

events are not synchronised. If basic definition of causality is

insignificant, then causality is not strictly obeyed. Therefore, in a

tactical sense, the final result will not be affected. This is a start-

ing point to tradeoff between causality maintenance and overall

PDES performance. It leads to unsynchronised approaches [31].

3. Hybrid Approaches

Hybrid-styled PDES solutions are considered to be the future direction

[17]. The ideas to mix conservative and optimistic approaches take

enhanced performance into consideration.

- Filtered rollback

Lubachevsky, et al., [53] combines conservative bounded leg and

the optimistic moving time window, while the causality constraints

are violable and the minimum distances between LPs are adjusted

in order to optimise PDES.

- Switching SRADS

Also known as SRADS with local rollback, Dickens and Reynolds

[75] process an event conservatively in an LP until there is no safe

event, then switch to process an event optimistically, but possible

rollbacks are limited locally only in that LP. Such local rollbacks

approach is described as aggressive [14, 54].
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2.1.5 Event List Management

Various studies on data structures based on priority queues have been dedi-

cated to improving the performance of DES [58, 59, 60, 61]. The basic event

list management involves inserting an event into a queue (enqueue), sorted

and ordered by timestamps, and removing the event with the smallest times-

tamp from the queue (dequeue or delete-minimum). Hence, the per event

cost consists of inserting and removing an event from the event list. If the

focus is shifted to PDES, not only such two basic operations (enqueue and

dequeue) are important, but also fossil collection and rollback require to keep

track of processed and unprocessed events. As a result, data structures are

modified to allow for such PDES conditions.

An event list implemented with efficient data structures can keep the sec-

ondary effect to a possible minimum in order to prevent runaway processes.

Such secondary effect refers to the use of inefficient data structure for simula-

tion implementation that causes much worse performance degradation than

causing simply by increased search time.

Several synthetic benchmarks for performance evaluation are developed.

Based on synthetic workloads, these benchmarks tell how efficient a pending

event list is implemented [59, 62, 63, 64]. If the implementation of a pending

event list has not been tested under any performance benchmarks, then the

final performance evaluation of PDES will be unreliable.

1. Pending Event List

The core of discrete event simulation (DES) lies in managing a pending

event list (or set) that stores future events with simulation timestamps.

Events model the system changes occurred at discrete points in time.

The change of a timestamp means the change of the system state. This

is usually implemented as a priority queue with timestamps as the keys
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and simulation estimates as the values. Event list management is ac-

tually a sorting computation that is a very time-consuming computing

task and is the dominant computing cost of a DES. Efficient event

list processing is crucial to DES performance. PDES presents more

challenges. For example, Time Warp needs to consider both past and

future events because rollback is likely to happen.

2. Data Structures

Assumed the number of event is N , it has been shown that a sorted

linked list costs O(N) to insert an event and costs O(1) to remove

an event. A heap costs O(logN) to both insert and remove an event.

Calendar queues costs O(1) on average to insert and to remove an

event. Johns [58] experiments event list with two-list and Henriksen’s

event-set implementations. Event list management of DES provides

special cases for priority queue research.

Taken PDES into account, Ronngren et al., [59] has improved skew

heap of O(log(N)) execution time. Skew heap is an ordered binary tree

that descendant has lower priority. Meld operation merges two skew

queues into one and the heap property is preserved. Also lazy queue

[59] is a multi-list with average queue access time of N(1) and worst

case of O(log(N)). Brown [61] utilises another multi-list - calendar

queue with average queue access time at N(1) and worst case of O(N).

3. Synthetic Benchmarks

Synthetic workloads with varied message populations, queue sizes, and

numbers of unprocessed messages, are designed to test the efficiency

of data structures implemented for pending event list. In particular,

secondary effect should be isolated and not confused with overall PDES

performance analysis.
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- From Conventional Hold to Generalised Hold

Vaucher [64] generates the conventional Hold model with a syn-

thetic workload of long sequences of events performed on a fixed

size queue. Thus the average time per event operation is a func-

tion of the queue size. However, such fix scheme does not reflect

the performance degradation problems. Chou et al., [63] presents

a more realistic generalised Hold model in that the size of the

pending event list is not fixed.

- PHOLD

Fujimoto [62] proposes homogeneous workload with even message

density for each LP. The size of the pending event list is pre-

dictable.

- Arbitrary Flow Network Model

Heterogeneous workload is designed with varied message density

for each LP and the size of the pending event list can be increased

significantly. Such synthetic workload serves as a stress test, if the

efficiency of data structure is of major concern [59].

2.1.6 Statistical Analysis

Statistical analysis on simulation output data is generally considered as a

supporting issue. Off-line output data analysis is a major method among

simulation research. Such off-line simulation decides in advance how long

the simulation should run, therefore the simulation run length is pre-set and

fixed. On the other hand, on-line data analysis during simulation allows

simulation run length to be decided during the simulation. During such

sequential simulation, confidence intervals are tested to see whether accuracy

criteria of simulation are satisfied.
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1. Statistical Variability

Sauer and MacNair [28] consider that DES is coupled with statistical

variability from the use of random number streams. Pawlikowski [8]

states “Statistical inference is an absolute necessity in any situation

when the same (correct) program produces different (but correct) out-

put data from each run. Any sequence x1, x2, ..., xn of such output

data simply consists of realisations of random variables X1, X2, ...,

Xn”.

2. Confidence Intervals (CIs)

In analysing DES or PDES simulation output data, errors due to the

statistical variability should be analysed. CI is an estimated range

of statistical value for an unknown parameter, for example the mean

value. If the CI is 95% and the width of CI takes 5%, then the true

estimate mean value may most likely be contained in the range of

(92.5%,97.5%).

3. Sequential Control

The AKAROA2 package [1] automates the sequential control by ad-

justing pre-set confidence level allowing more exhaustive examinations

in simulation analysis [6, 7, 8]. Sequential control applies the stopping

rules to adaptively adjust levels of statistical accuracy [28]. The stop-

ping rule implemented in AKAROA2 is formulated as follows:

• δN - the current relative error of results

δmax - the maximum acceptable relative statistical error
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• Given δmax

if δN > δmax, then simulation is continued until the next check-

point

if δN ≤ δmax, then simulation is stopped

If the specified accuracy is reached, the simulation is terminated. If the

specified accuracy is not reached, the simulation is continued until the

specified accuracy is reached or the processors run out of processing

resources [1, 6, 28].

2.1.7 Interoperability (Extensibility)

Interoperability or extensibility of PDES covers state-of-the-art develop-

ments like federated simulations, reusability, High Level Architecture (HLA),

and web-based simulation [17]. The hybrid MDRIP approach has the po-

tential to interoperate with these developments. Interoperability focuses on

seamless PDES among different simulators. Extensibility looks at how a

simulator extends its work to co-simulate with other simulators. Interop-

erability and extensibility share similar issues in PDES, thus, this section

puts them together for discussion. Network researchers, Bajaj et al., [30]

identifies extensibility as one of the five simulation needs. Component-based

PDES design with composable modeling is essential to achieve effective in-

teroperability.

1. Federated simulations

Federated simulations refer to different simulators as different feder-

ates working together under a global conceptual model of an entire

simulation as a federation. Run time infrastructure (RTI) is designed

for time management required by such federated interoperation [17].
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Proxy concept is adopted to link complicated mappings between fed-

erates [19].

To be consistent with PDES, one federate is treated as an LP. Syn-

chronisation follows either conservative or optimistic approaches. Sim-

ulation federation entails PDES in heterogeneous networks [34].

2. Reusability

In terms of both modeling and software engineering practices, reusabil-

ity is highly desirable for PDES. Good reusability not only saves de-

velopment budget and time, but also encourages more interoperable

or extensible PDES activities. However, industry sectors tend to be

reluctant in reusability due to marketing and administrative reasons.

To design and validate a correct model is not a simple task. In the

case of large and complex systems, it is not feasible to develop every-

thing from scratch. For example the NS2 in network protocol design,

the split-programming model adopts C++ implemented in simulation

kernel and OTcl scripting language implemented in developing simu-

lation models as well as configuration and control of simulation run.

In addition to freely available libraries of protocol scripting, the object

oriented features of both C++ and Otcl further enhance reusability of

various networking models. And such reusability further advances the

overall network simulation research [30].

Reusability of PDES functions emphasises modular and component-

based design with well-defined interfaces. For example, through the

AKAROA2/NS2 interface, one can perform sequential controlled MRIP

simulation with many NS2 network protocols [22, 23]. RTI is another

example where the time management functions of PDES are reused

[2, 17, 18, 19, 20, 69].
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3. High Level Architecture (HLA)

HLA is a set of rules specifying for federated simulations. These rules

cover IFSpec (Interface Specification) and OMT (Object Model Tem-

plate). OMT includes FOM (Federation Object Model) and SOM

(Simulation Object Model). RTI (Runtime Infrastructure) defines a

software environment for distributed federates. One simulator needs

to implement its RTI functions to be able to federate with the other

simulator interoperating through RTI [17].

Dating back to 1983, the SIMNET (SIMulator NETworking) project

was designed for military training in virtual environments. After SIM-

NET, Distributed Interactive Simulation (DIS) defined standards of

interoperability regarding geographically distributed and autonomous

simulators. The Aggregate Level Simulation Protocol (ALSP) stem-

ming from DIS brought PDES to war game applications [17].

Began in 1995, High Level Architecture (HLA) defined PDES baseline

that DoD requires HLA compliant simulations. Previous PDES efforts

from DIS and ALSP were merged into an integrated and interoperated

simulation environment. The synchronisation in such PDES baseline

defined the Runtime Infrastructure (RTI) [2, 17].

For network simulation, PDNS is abbreviated as the Parallel and Dis-

tributed Network Simulator [2]. Network Simulator (currently NS2)

[21] is the most popular simulation software for telecommunication

and networking research. To parallelise NS2, PDNS federates sepa-

rate NS2 instantiations of different subnetwork modelling on multiple

processors. PDNS uses conservative block-based synchronisation im-

plemented in libSynk and RTIKIT. libSynk supports the communica-

tion and synchronisation API that scalability can achieve up to fifteen
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Figure 2.2: PDNS/GTNetS using RTI Library

hundreds processors, whereas RTIKIT is the runtime infrastructure

development kit to integrate federated simulation at runtime [2].

Figure 2.2 shows an example of how the RTI library can be interfaced

with different simulators, such as PDNS [2] and GTNetS [74]. Fujimoto

et al., [69] sees conservative synchronisation to be more suitable than

optimistic synchronisation in such federation simulation. Because roll-

back required by optimistic synchronisation needs to be implemented

in all federated simulators which is against the principle of federation

simulation.

4. Web-based Simulation

Web-based simulation runs simulation on the Internet [76]. Such browser-

based simulation associates with a world of hypermedia. Education
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and Internet gaming are fundamental applications. Common PDES

requirements include interactivity and collaborativity. In order to use

simulation models distributed on the web, Java and associated plat-

forms become a dominant technology for such web-based simulation,

because the object-oriented feature of Java programming language is

very suitable for simulation modeling [77].

2.1.8 Performance Studies

Due to the multifaceted diversity of PDES, several aspects, either quan-

titative or qualitative, are considered important for analysing the perfor-

mance of PDES. Some quantitative aspects commonly discussed include

speedup, processor utilisation, memory utilisation, critical path, and scal-

ability [5, 13, 15, 56, 69].

Speedup measures the objectives of the PDES. Processor utilisation is

concerned with how the chosen parallel platform supports the PDES objec-

tives. Memory utilisation shows how well the parallelly available memory

resources assist the PDES. Critical path analysis examines the efficiency of

different synchronisation protocols. Scalability covers the effectiveness of

large scale PDES.

Apart from the quantitative aspects, Reynolds [14] discusses several qual-

itative issues of design space concerning performance evaluation of PDES.

1. Speedup

- Simulation speedup is defined by the simulation time of one

processor divided by the simulation time of multiple processors

based on the same model. The efficiency of distributed simulation

can be derived from such simulation speedup that divides the

number of processors and describes how effective the processor
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utilisation is. The majority of PDES performance analysis is

focused on this. Linear speedup will be ideal, however, distributed

simulation conventionally needs to pay significant synchronisation

overheads [13, 15].

- Statistical speedup refers to the simulation time of one proces-

sor divided by the simulation time of multiple processors based

on the time to obtain system estimates of the same statistical er-

ror [13, 15]. Quantitative analysis on PDES, such as the MRIP

approach, concentrates on statistical speedup [5].

2. Memory Utilisation

Memory optimality evaluates how well the memory usage can be man-

aged to complete the simulation with the same amount of memory

in both parallel and sequential executions. Memory utilisation has a

direct impact on PDES using optimistic synchronisation [56].

3. Critical Path

Critical path defines the longest chain of causally dependent events and

constrains the execution of a model. To analyse the critical path is to

identify possible theoretical parallelism inherent from a model. The

critical path can be found either theoretically or in a pre-processing

experiment. The results of critical path analysis are important for

refining a PDES, especially for model partitioning and load balancing.

The experimental results are more realistic than the theoretical ones,

especially in new application domains.

Jefferson and Reiher [78] mention supercritical speedup in which none

conservative synchronisation can support parallelism beyond the re-

sult of critical path analysis, however, two optimistic synchronisation
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approaches are possible to achieve more parallelism than the result of

critical path analysis.

4. Scalability

Large-scale simulation, such as the large scale network simulation of

the Internet, requires scalable PDES instead of PDES with limited size

and complexity. Fujimoto et al., [69] discusses that available memory

and simulation time each run are key limitations concerning the sheer

volume of packets in large-scale simulation. To evaluate the scalability

of a PDES, the number of packet transmissions processed per second

of wallclock time (PTS) is an important measure.

Nicol [79] discusses that scalability may be possible if the increases

of model size do not affect load balancing and do not overgrow com-

munication overheads on parallel processors. In general, how scalable

a PDES can be mostly depends on how well the trade-off decisions

are made between load balancing and synchronisation overhead. A

conservative synchronisation model, QS, is implemented to verify such

scalability.

5. Design Space

Reynolds established the SPECTRUM testbed (Simulation Protocol

Evaluation on a Concurrent Testbed with ReUsable Modules) to sup-

port efficient evaluation of PDES. PDES is not all about conservative or

optimistic synchronisation approaches. He emphasised a design space

of various qualitative aspects of PDES as follows [14].

- Partitioning As a simulation model is partitioned into multiple

submodels, the parallelisation of PDES is by distributed submod-

els or LPs among multiple processors. Partitioning involves iden-

38



tifying suitable semantic boundaries among distinct sets of simu-

lation states. Such model partitioning and submodels distribution

result in local causality constraint that requires synchronising LPs

messages either conservatively or optimistically.

- Adaptability Optimistic synchronisation may switch to conser-

vative synchronisation subject to the number of rollbacks. For

example, dynamic load balancing adapts to changes of workload

among LPs during simulation.

- Aggressiveness Messages are processed conditionally. Optimistic

synchronisation approach, such as time warp, is an example of

maximal aggressiveness.

- Accuracy After a PDES simulation is finished, the sequential

order of distributed message passing is correct. Accuracy is not

a requirement, but a definition. Inaccuracy does exist in SRADS

[73] and moving time windows.

- Risk The purpose of risk is to allow utilisation of otherwise idle

computing resources. Either aggressiveness or inaccuracy could

lead to initiate or transfer risk messages. How much risk to take

is model dependent.

- Knowledge embedding Simulation state variables are shared,

as semantic attributes of simulation models are used to deter-

mine simulation processes. In order to provide useful uncondi-

tional knowledge so that the number of non-event messages can

be reduced. Usually, knowledge is embedded or state variables

are shared via parameter passing at run time. However, knowl-

edge embedding compromises on transparency and flexibility of

simulation processes. Whether or not to go embedding knowledge
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is an open problem.

- Knowledge dissemination An LP sends messages to other LPs

in order to allow other LPs to make simulation progress. Ex-

amples from conservative protocols include null messages, link

time, and appointments. One example from optimistic protocols

is an anti-message. Among these, appointment assumes knowl-

edge embedding. Disseminated messages are a form of redundant

computation.

- Knowledge acquisition LPs request information from the sim-

ulation environment on demand in order to make decisions on

processing pending event list. Therefore, computation is account-

able.

- Synchrony Loosely asynchronous, or time based, or timestepped

simulation should not be discarded, although the majority of

PDES is asynchronous or event based simulation.

2.2 Thoughts on the MDRIP Approach

Stopping rules to determine the simulation run length are implemented in

AKAROA2 [1]. The automated data analysers of MRIP in AKAROA2 sup-

port for on-line statistical analysis of simulation output data [1, 8]. In devel-

oping the MDRIP approach, processes of on-line statistical analysis should be

retained and reused to link with distributed simulation. From previous sur-

vey of PDES and understanding of MRIP implementation, MDRIP needs to

process message passings related to random numbers and observation data.

Moreover, it requires a framework of centralised data management, such as

the global data analyser, to manage distributed data observation for on-line

sequential analysis on simulation output data.
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Chapter 3

Design

This chapter starts from overview of MDRIP first, then overviews on MRIP

and distributed simulations are also discussed. An introduction on two tar-

get models is given with an emphasis on model partitioning and distribution

details. Networking architecture is provided based on networking frame-

work, interprocess communication scheme, as well as connection manage-

ment. System components are presented to summarise features of the new

MDRIP functionality.

3.1 Overview of MDRIP

3.1.1 MDRIP

The goal of MDRIP is to run distributed simulation with on-line quantitative

and sequential control in multiple replications. In the context of AKAROA2,

it is to run distributed simulation under the control of one or more mdrip

engines centrally managed by the Global Data Analyser in akmaster. In

brief, the purpose of MDRIP is to enable distributed simulation controlled

by MRIP.
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A conceptual overview of the MDRIP approach is shown in Figure 3.1.

The Global Data Analyser receives data observation at checkpoints from the

Local Data Analyser and analysises data according to required statistical

accuracy. The Local Data Analyser processes different streams of observed

data from different submodels.

Different simulation models form different sequencing and causality con-

straints. How to coordinate these various data streams is dependent on how

the semantic relationships among submodels dictate the overall sequencing

constraints in the model. Therefore, the logic of such coordinations is differ-

ent from model to model.

Figure 3.1: Conceptual Overview of MDRIP

Such model-dependent logic for MDRIP can be organised with a compo-

sition of multiple linked list queues. Each element in a linked list queue only

knows its previous element and its next element. So the data observations

messages submitted from a submodel to an akslave machine are stored into
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an associated linked list queue with sequential ordering preserved. In addi-

tion, both insertion and retrieval of data observations from the linked list

are very efficient with O(1). Such sequential order preserving is crucial to

the composition. Otherwise, those distributed data observations might need

to be reordered when received by the Local Data Analyser.

Subengines representing subevents from submodels produce estimates.

Estimates are data observations. These estimates are sent to the Local Data

Analyser and are implemented as incoming messages received by the akslave

which extends engine into mdrip engine and stores streams of incoming mes-

sages into linked list queues accordingly. Because each stream of the incom-

ing messages represents timestamped subevents executed on each subengine

for each submodels, such incoming messages are sequentially ordered data.

Therefore, the first element of each linked list queue is the smallest times-

tamped subevent from a particular submodel. The mdrip engine only needs

to repeatedly remove the head of each linked list queue to compose the com-

bined observation data with proper sequencing semantics.

The goal of MDRIP is to combine both MRIP and distributed simula-

tions. Therefore, statistical speedup with adjustable accuracy level can be

used to evaluate multiple replications of distributed simulation.

Another view of MDRIP, taking required message passings into accounts,

is depicted in Figure 3.2. R1xi stands for the i -th random number for sub-

model x in the first simulation run. O1xi stands for the i -th data observation

of submodel x in the first simulation run.

In the context of AKAROA2, each simulation engine is associated with a

Local Data Analyser which interacts with the Global Data Analyser to pro-

cess quantitative and sequential control. To combine MRIP and distributed

simulation, the simulation engine is extended to mdrip engine which coop-
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Figure 3.2: Use of Independent Sequences of PRNs in MDRIP

erates with subengines of partitioned and distributed submodels executed on

multiple processors.

The mdrip engine involves passing messages of random numbers and data

observations between subengines. MDRIP uses the functionality of stochas-

tic quantitative and sequential control of MRIP which is shown as the mes-

sage passings between the Global Data Analyser and the Local Data Anal-

yser. MDRIP adds new functionality between the Local Data Analyser and

submodels which introduces distributed data observations produced by dis-

tributed subengines. Therefore, MDRIP is capable of processing distributed

simulation.
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3.1.2 MRIP

The MRIP approach currently featured in AKAROA2 supports only non-

distributed simulation. A conceptual overview of MRIP is depicted in Fig-

ure 3.3. Message passing in the MRIP does not need to be synchronised,

because each replication runs a whole simulation model with a stream of

independent random numbers. The Local Data Analyser does not need to

handle different data streams of data observation. There is only one data

stream of observed data from engine for each Local Data Analyser, thus no

complicated coordination is required.

Figure 3.3: Conceptual Overview of MRIP

Messages of random numbers and data observations are sent and received

between the Global Data Analyser of akmaster and the Local Data Analyser

of engine launched by akslave. MRIP is the same as MDRIP that interaction

between the Global Data Analyser and the Local Data Analyser comprises
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of quantitative and sequential control of on-line stochastic simulation. In

comparison of Figure 3.4 and Figure 3.2 shows that MRIP is different from

MDRIP in that random numbers and data observations of MRIP are not

distributed.

Figure 3.4: Use of Independent Sequences of PRNs in MRIP

MRIP offers statistical speedup because the numbers of observations col-

lected per unit time are proportionally increased as the number of processor

is added. However, the MRIP approach is still limited to simulating small

and basic models. In addition to limited modeling, the global context of

centralised quantitative and sequential control may require huge memory

[5, 6].
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3.1.3 Distributed Simulations

Most PDES studies [17, 18, 19, 20] are concerned with how to partition a

simulation model into submodels and how to distribute submodels across

multiple processors and do not pay much attention in statistical accuracy.

Most PDES emphasise on system speedup measured either by simulation

run length over number of processors or by processor utilisation. System

speedup mainly comes from breaking one very long event list into several

smaller subevent lists running among multiple processors. Despite being ca-

pable of simulating large and complex simulation models, the synchronisation

issues are not easy tasks and need to be well managed.

In the context of AKAROA2, a conceptual overview of a distributed

simulation is depicted in Figure 3.5. Various submodels execute on multiple

computers and generate distributed observation data.

Figure 3.5: Distributed Simulation in AKAROA2
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Wu et al., [19] reports an example of a distributed simulation depicted in

Figure 3.6. This PDES research relates to parallelisation of the commercial

OPNET. Each submodel is equivalent to each sequential simulator as a fed-

erate. The whole simulation model composed from the model repository acts

as a federation. Each submodel runs on one computer and exchanges data

between different submodels on other computers by message passings. RTI

library performs the necessary synchronisation among subevents of different

submodels according to certain synchronisation protocols. In this case, the

source code of the OPNET simulator is not available, therefore, a proxy

function is arranged to transform required message formats between each

two sequential simulators regardless of whether they are the same simulators

or not.

Figure 3.6: A Model Partitioned and Distributed
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Riley et al., [18] reports another example of a distributed simulation as

shown in Figure 3.7. It describes a generic framework for parallelisation of

different sequential simulators, such as OPNET and NS. Because different

simulators have different message formats, similar to the proxy function in

[19], a generic Interface is implemented to transform message formats be-

tween different sequential simulators when RTI performs synchronisation of

distributed events from different simulators.

Figure 3.7: Distributed Simulation with Different Simulators

A Conceptual Model as a whole model in the upper-left box of Figure 3.7

demonstrates a distributed simulation consisting of Simulator A, Simulator

B, and Simulator C. Each sequential simulator represents a submodel of the

whole model which is composed from the model repository. This case exper-

iments interoperability between sequential simulators and reuse of different
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model implementation. From the point of view of federated simulation, each

sequential simulator acts as a federate and the whole model is a federation.

Upon three cases of distributed simulation discussed, the one in the con-

text of AKAROA2 is different from the other two supported by RTI library.

The two major differences are assumption of on-line sequential control of

statistical errors and possibility of causality constraints.

The two distributed simulations supported by RTI library do not as-

sume that statistical errors have to be sequentially controlled, while the dis-

tributed simulation in AKAROA2 is restricted to on-line sequential control

of statistical errors. The advantages of assuming on-line sequential control of

statistical errors have been explained in Section 2.1.6. The disadvantage of

assuming on-line sequential control of statistical errors of final results is that

it can require huge amount of global data to keep track of all checkpoints of

data analysis.

The two distributed simulations supported by RTI library are capable of

dealing with possible causality constraints, because communication and syn-

chronisation services have been supported by RTI library through Interface

[18] or Proxy [19]. However, the distributed simulation in AKAROA2 has not

yet been examined by causality constraints. It needs to be pointed out that

communication and synchronisation services provided by RTI library are not

automatically and seamlessly applicable. If a simulator needs to communi-

cate with the other simulator through RTI library, then both simulators need

to implement their own Interface [18] or Proxy [19] functions.

The development of MDRIP at this stage assumes only the on-line se-

quential control of statistical errors of final results. Support for causality

constraints has not yet been included and will be model dependent.
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3.2 Modeling Phase

3.2.1 The Target Models

This thesis considers two queueing network models. The first one is a queue-

ing network with four independent queueing systems, as shown in Figure 3.8.

The second one is a queueing network with tandem connection of two servers,

as shown in Figure 3.9.

Figure 3.8: First Queueing Network - Four Independent Queueing Systems

In the first queueing network, customers randomly arrive in the queueing

network and are dispatched to one of the four independent queueing systems

S1, S2, S3, or S4 with equal probability. The services and service rates

provided by these four independent queueing systems are assumed to be

the same. Once a service is completed, the customer leaves the queueing

network.

ta denotes when a customer arrives in the queueing network for either

S1, S2, S3, or S4 queueing systems. ts denotes when a customer gets served

51



Figure 3.9: Second Queueing Network - Tandem Connection

by one of the four queueing systems. td denotes when a customer departs

from the service of the queueing network.

In the second queueing network, customers randomly arrive in the first

queue, wait for the service from the first server (S1), get served by S1, head

to the second server (S2), wait for the service from S2, get served by S2, then

leave this tandem queueing network.

t1a denotes timestamp when a customer arrives in S1. t1s denotes when

a customer gets served by S1. t1d denotes when a customer departs from the

service of S1. t2a denotes when a customer arrives in S2. t2s denotes when a

customer gets served by S2. t2d denotes when a customer departs from the

service of S2.

To keep model related issues in a consistent context, the following defi-

nitions and formula [62] are briefly explained:
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• ρ = server utilisation

• µ = traffic intensity

• λ = arrival rate

• TS = the mean service time

• TW = the mean waiting time

• TQ = the mean response time

• ρ = λTS

• TW = ρTS

1−ρ

• TQ = TW + TS

For the first queueing network, (ts − ta) or TW defines the mean waiting

time value of how long a customer needs to wait for the service of one of

the four queueing systems, S1, S2, S3, or S4. (td − ts) or TS gives the mean

service time for how long a customer spent in service by one of the four

queueing systems. (td − ta) or TQ tells the mean response time for how long

a customer stays in the queueing network.

For the second queueing network, (t1s − t1a) or T1W gives the mean

waiting time value of how long a customer needs to wait for the service of

S1. (t1d − t1s) or T1S tells the mean service time for how long a customer

gets served by S1. (t1d−t1a) or T1Q yields how long a customer spends in the

first queue and is often described as the mean response time. Accordingly,

(t2s − t2a) or T2W for the mean waiting time in S2, (t2d − t2s) or T2S for

the mean service time in S2, and (t2d − t2a) or T2Q for the mean delay or

response time in S2. The total mean response time that a customer spends
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in this queueing network consists of the mean response time in S1 and the

mean response time in S2, (T1Q + T2Q) or simply (t2d − t1a).

The statistics of interests in this thesis are concentrated on the total mean

waiting time, the total mean service time, and the total mean response time

of the queueing networks. For the first queueing network, the total mean

waiting time is simply TW , the total mean service time is TS , and the total

mean response time is TQ. For the second queueing network, the total mean

waiting time is (T1W +T2W ), the total mean service time is (T1S +T2S), and

the total mean response time is (T1Q + T2Q).

3.2.2 Partitioned and Distributed Models

The ideas of non-partitioned and non-distributed simulations of the target

models run by one engine on one processor are shown in Figure 3.10 and

Figure 3.11.

Figure 3.10: Non-partitioned and Non-distributed - First Queueing Network
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Figure 3.11: Non-partitioned and Non-distributed - Second Queueing Net-

work

In general, each round-edged square box represents one processor. The

arrow lines represent data flows that describe the semantic relationship which

forms the sequencing constraint of the target models.

For the first target model, the semantic information describes that sub-

models w, x, y, and z happen with equal probability. There is no sequence in

submodels, therefore, there is no sequencing constraint in this model. Cus-

tomers enter into the system are served by one of the four servers with equal

probability.

For the second target model, the semantic information describes that

submodel x must happen before submodel y, because customers depart from

the first server simulated by submodel x and arrive in the second server

simulated by submodel y. Customers do not depart from the second server

and then arrive the first server. Customers do not leave the second server

and go back to arrive in the first server, either. Therefore, the sequencing
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constraint dedicates that each subevent from the subengine x needs to be

followed by a subevent from the subengine y to complete an event with

an observed data composed for reporting to the Global Data Analyser in

akmaster.

The ideas of partitioned and distributed models run by subengines on

multiple processors are shown in Figure 3.12 and Figure 3.13.

Figure 3.12: Partitioned and Distributed - First Queueing Network

In Figure 3.13, the thick black line between subengine x and subengine

y indicates distributed messages directly passing between two networked

processors.

In Figure 3.12, because there is no sequencing constraint, there is no

thick black line in between subengines w, x, y, and z. Data exchanged di-

rectly between subengines reflect the semantics of the model among dis-

tributed submodels. In the case of the tandem queueing network shown

in Figure 3.13, data flown from the first subengine to the second subengine
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Figure 3.13: Partitioned and Distributed - Second Queueing Network

represents subevents happened in the first queue are followed by subevents

happened in the second queue.

Referring to Figure 3.11 and Figure 3.13, it is observed that such queueing

network in tandem does not include any semantic cycle, because only two

nodes (submodel x and submodel y) and one directed link from the first node

(submodel x) to the second node (submodel y). Therefore, the consequent

model partitioning does not expect any causality constraints. As a result,

the composition of distributed data observation in the mdrip engine for such

a tandem queueing network is simply an addition.

In Figure 3.13, the mdrip engine expects to receive two data streams of

data observation. One is from the subengine x simulating the first queueing

system, the other is from the subengine y simulating the second queueing

system. Because two queues connected in tandem dictate that data from the
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first data stream should always be followed by data from the second data

stream accordingly. Therefore, the coordination is simply iterative additions

of the according data from one data stream and the other that follows.

Further implementation and testing can see that the mdrip engine sup-

ports both target models with on-line sequential control of statistical errors.

The first target model, in Figure 3.8, with four independent queueing sys-

tems should produce the same estimates results whether such model is run

non-partitioned and non-distributed on one processor or is run partitioned

and distributed on four processors. The second target model, in Figure 3.9,

with two tandem connected queueing systems should produce similar esti-

mates results whether such model is run non-partitioned and non-distributed

on one processor or is run partitioned and distributed on two processors.
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3.3 Networking Architecture

3.3.1 Server/Client Framework

The framework of server/client or master/slave is the communication pattern

used by MRIP in AKAROA2 [1, 4].

With regards to reusability and extensibility, the server side and the

client side are the same as under the MRIP approach. The server&client

side is the new element designed to fit into the existing MRIP. The purpose

of this new networking element is to intercept existing sequential control

messages of MRIP and intercommunicate these messages with the distributed

subengines.

The overall message passings are intercommunicated among three parts

of the networking architecture. The following pseudo code describe how file

descriptors are structured to facilitate the networking architecture for the

MDRIP.

• server side

socket listen_file_descriptor

bind listen_file_descriptor

listen listen_file_descriptor

for loop

select listen_file_descriptor

if client requests a connection

accept listen_file_descriptor as connection_file_descriptor

for loop

request from client

respond to client

end loop

end loop
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• server&client

socket socket_file_descriptor

connect socket_file_descriptor

socket listen_file_descriptor

bind listen_file_descriptor

listen listen_file_descriptor

for loop

select listen_file_descriptor

if client in client array requests a connection

accept listen_file_descriptor as connection_file_descriptor

for loop

select listen_file_descriptor

request from client

respond to client

end loop

end loop

request to server

respond from server

• client side

socket socket_file_descriptor

connect socket_file_descriptor

request to server

respond from server
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3.3.2 I/O Multiplexing

I/O multiplexing with the select function is used to support the multitask-

ing of networking architecture for the MDRIP approach. I/O multiplexing

is one of the five I/O models available under UNIX [27]. The reasons to use

I/O multiplexing include:

• reusability and extensibility of MRIP in AKAROA2,

• the client side and the server&client side, each needs to handle multiple

file descriptors and multiple sockets at the same time,

• the server side and the server&client side, each needs to handle a

listening socket and its connected sockets,

• multiple protocols are possible.

The MDRIP approach requires two-stage I/O multiplexing. The mul-

tiply of replications in MRIP between one akmaster and several akslaves

are intercommunicated by the first stage I/O multiplexing. The akslave

launches several simulation engines by using fork method to create differ-

ent child processes. MDRIP requires the extended mdrip engine to act as

an intermediate agent that coordinates random number requests and allo-

cations between subengines and akmaster as well as collects observed data

from subengines via the Local Data Analyser to the Global Data Analyser in

akmaster. The mdrip engine intercommunicates with multiple distributed

subengines through the second stage I/O multiplexing.

Referring to the networking architecture of the MDRIP, the first stage

I/O multiplexing corresponds to the intercommunication between the server

side and the server&client side. The second stage I/O multiplexing corre-

sponds to the intercommunication between the server&client side and the

client side.
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3.3.3 Connection Management

The concept of ’publish and subscribe’ is used to manage the networking

connection of server/client (or master/slave) framework in between akmaster

and akslave as well as between mdrip engine and subengine.

In MRIP, the server side publishes its network address, while the client

side retrieves the network address of the server side and subscribes to its

services. In extension to the MDRIP, the server side publishes its network

address, while the server&client side retrieves the network address of the

server side and subscribes to its services. At the same time, the server&client

side publishes its network address as well, while the client side retrieves the

network address of the server&client side and subscribes to its services.

In AKAROA2, akmaster publishes and stores its network address into

the ./akmaster file in which akslave looks for values of networking address

and connects to akmaster process. In the MDRIP extension, the mdrip

engine publishes and stores its network address into the ./sripslave file.

The subengine processes look for the network address of the related mdrip

engine and connects to that process.

The ’publish and subscribe’ concept used in connection management pro-

vides flexibility in building communication topology. Such flexibility is useful

in PDES implementation. Easy maintenance can be expected for large size

model with more networked processors. Separation of communication flows

and observation data flows is advantageous for future interoperability.
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3.4 System Components

The following details of system components reflect the process-oriented de-

signs from MRIP to MDRIP. Figures in this section are notated with a

round-edged rectangle representing a physical processor, a rectangle box rep-

resenting each UNIX process. Letters in box describe names of processes.

Lines between rectangle boxes represent messages being passed around dif-

ferent UNIX processes.

Since the design of MDRIP is to extend distributed simulation functions

from MRIP, reusability and extensibility are highly regarded as very impor-

tant qualities.

In AKAROA2, functions related to sequential control of statistical accu-

racy are very crucial software modules. Tremendous time and efforts have

been dedicated to design, implement, test, and validate these modules in

AKAROA2 [1, 3, 4, 5, 6, 7]. Effective reuse of these modules will shorten the

time needed to implement the MDRIP. Therefore, it is necessary to examine

the existing MRIP to verify such reusability practice.

If such reuse is effective for implementing the MDRIP approach, then the

automation of sequential data analysers in AKAROA2 will be more trans-

parent for further extensions to the other PDES simulators other than within

the AKAROA2.
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3.4.1 The Existing MRIP

The existing MRIP approach under AKAROA2 features networking architec-

ture of the server side and the client side, see Figure 3.14. The akmater pro-

cess launches akslave processes. The akrun process launches the simulation

process that asks the akmaster process to instruct the akslave process to

fork another unix process to launch simulation engine processes. An engine

process utilises processor cycles of a client side machine to process the event

list of a simulation model and also connects with the server side machine

to report observation data back to the akmaster process for further analysis

and report preparation. More than one akslave process can be launched

and each akslave process can fork more than one engine process.

Figure 3.14: engine in MRIP
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3.4.2 The New MDRIP

The existing MRIP is extended into the new MDRIP. The new MDRIP

approach is structured into the networking architecture of server side, in-

termediate server&client, and client side. akmaster, akslave, akrun, and

simulation processes all remain unchanged which has been described in

the previous subsection. Only the engine process is modified to include

MDRIP functions that transform the previous client side into an intermedi-

ate client&server. Such a mdrip engine process coordinates message passings

between server side and client sides. Distributed subengines run on client

sides and utilise their processors’ cycle to process each sub-eventlists. Fig-

ure 3.15 demonstrates the new MDRIP extended from MRIP and consisting

of mdrip engine and distributed subengines.

Figure 3.15: mdrip engine and subengines in MDRIP
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3.4.3 Publish and Subscribe

Features underlining the connection management which are extended from

MRIP to MDRIP are shown in Figure 3.16. Three new processes are created:

subengine, sripslavemaster_to_client, and client_to_sripslavemaster. The

server side does not need to know the address of the server&client side

beforehand. The client&server side does not need to know the address of

the client side, either. Instead, the server side publishes its address by

getting address information from environment variables and writing it into

a specified file. So does the server&client side. When a mdrip engine is

initiated, it searches for that specified file and reads the address information

of the akmaster, then subscribes to the server side by the connect method

in UNIX. When a subengine is initiated, it searches for that specified file and

reads the address information of the mdrip engine, then subscribes to the

server&client side by the connect method.

Figure 3.16: Connection Management
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3.5 Summary

This chapter outlines the design of the MDRIP approach with overviews on

MDRIP, MRIP, and distributed simulations. As MDRIP is extended from

MRIP, several conceptual overviews show how the Global Data Analyser

and the Local Data Analyser interact with multiple submodels which are

run by subengines. Two cases of distributed simulation with utilisation of

RTI library and without on-line output data analysis are also discussed.

Two target models based on queueing systems are analysed for their

system behaviours. Model partitionings are performed and submodels are

distributed.

Networking architecture of MDRIP is discussed with the framework of

server/client relationship, the I/O multiplexing in interprocess communica-

tion, and the connection management for flexible communication topology..

To progress from the conceptual design to implementation, system com-

ponents are illustrated from the existing MRIP to the new MDRIP, as well

as the ’publish and subscribe’ connection management.
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Chapter 4

Implementation

The MDRIP implementation is based on UNIX socket programming in a

Linux environment networked over the TCP/IP protocol. To ensure com-

patibility with the existing MRIP approach in AKAROA2, the C/C++ pro-

gramming language is used. Message formats are followed. The TCP/IP

protocol is chosen for reliable packet transmission needed by sequential con-

trol of statistical output data analysis in the MDRIP approach.

4.1 Sequential Control Messages from MRIP to MDRIP

• Important sequential control messages in MRIP include:

M_RNDQ to request random numbers

M_RNDA to allocate random numbers

M_CKPT to contain observed data at each checkpoint

Table 4.1 illustrates the message passing relationship between M_RNDQ,

M_RNDA, and M_CKPT messages. The basic source of random num-

bers in AKAROA2 is AkRandomReal() that requires M_RNDQ and

M_RNDA messages. Currently, AkRandomReal() uses a Combined
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Multiple Recursive pseudo random number generator (CMRG) with a

cycle period of around 2191 [1]. The AkObservation is the interface

routine between simulation modeling program (simulation engine) and

the data analysers. This interface routine requires M_CKPT messages.

Table 4.1: Message Passings: M_RNDQ, M_RNDA, and M_CKPT

server side client side

< − send M_RNDQ

receive M_RNDQ < −

send M_RNDA − >

− > receive M_RNDA

< − send M_CKPT

receive M_CKPT < −

• Important sequential control messages in MDRIP include:

M_RNDQ to request random numbers

M_RNDA to allocate random numbers

M_OBSV to contain timestamped data observation

M_CKPT to contain observed data at each checkpoint

M_OBSV is the new message created to coordinate distributed fea-

tures for MDRIP. Table 4.2 illustrates the relationship of message

passing between M_RNDQ, M_RNDA, M_OBSV, and M_CKPT

messages. The basic source of random numbers in AKAROA2 is

still AkRandomReal() that requires the same format of M_RNDQ and

M_RNDA messages. However, such relationship is modified in that

a server&client part is added to intercept and relay M_RNDQ and

M_RNDA messages. Partitioned submodels are run on distributed
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subengines so that each subengine sends observed data via the new

AkSripObservation interface routine. This AkSripObservation inter-

face routine sends M_OBSV messages to the intermediate server&client

part where mdrip engine receives M_OBSV messages, coordinates dis-

tributed features, and uses AkObservation interface routine to send

distributed observation for analysis on statistical errors.

Table 4.2: Message Passings: M_RNDQ, M_RNDA, M_OBSV and

M_CKPT

server side server&client client side

< − send M_RNDQ

receive M_RNDQ < −

< − send M_RNDQ

receive M_RNDQ < −

send M_RNDA − >

− > receive M_RNDA

send M_RNDA − >

− > receive M_RNDA

< − send M_OBSV

receive M_OBSV < −

call AkObservation routine

< − send M_OBSV

< − send M_CKPT

receive M_CKPT < −
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4.2 The subengine

In MDRIP, one or many subengine processes run partitioned and distributed

submodels as a simulation program. The objective of a subengine process

is to process a shorter sub-event list. The message passing of a subengine

is mainly involved at the client side. Table 4.3 shows that a subengine

requests and obtains random numbers for running its partitioned submodel

and calling AkSripObservation routine to report its observation data.

Table 4.3: Message Passings for subengine

server side server&client client side

< − send M_RNDQ

− > receive M_RNDA

call AkSripObservation routine

Unlike the MRIP approach where a simulation program is run as a simu-

lation engine launched by akslave process, the simulation program needs to

include akaroa.H header file for necessary processes with akmaster, such as

sending back observations via AkObservation routine. To get random num-

ber streams from akmaster, the simulation program includes akaroa/distributions.H

header. To use some basic modeling constructs, inclusion of akaroa/process.H

provides Process class and Hold for blocking the current process for a given

amount of simulation time. To include akaroa/resource.H, Resource class

can Acquire, Release, or Remove.

The same as engine in MRIP, the subengine for MDRIP includes akaroa.H,

akaroa/distributions.H, and/or akaroa/process.H and akaroa/resource.H.

The subengine process does produce observation data, but it send the obser-

vation data to the AkSripObservation routine instead of the AkObservation

routine. Thus, the inclusion of AkSripObservation.H is necessary.
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4.3 AkSripObservation routine

To extend MRIP to MDRIP, an AkSripObservation routine is created to

intermediate between simulation subengines and engines.

AkObservation is the most important AKAROA2 library routine. It

takes an observation and interfaces it with akmaster, updating associated es-

timates until the required accuracy is reached [1]. The use of AkObservation

realises the automation of stochastic quantitative and sequential control on

simulation output data. It is crucial for AkSripObservation routine to reuse

or be compatible with AkObservation.

AkSripObservation takes an observation from a subengine and sends

such observation to the mdrip engine that collects and coordinates dis-

tributed observations from distributed subengines. The message passing re-

lated to the AkSripObservaton routine is shown in Table 4.4.

Table 4.4: Message Passings for AkSripObservation

server side server&client client side

< − send M_OBSV

Once the AkSripObservation routine is called, it calls the modified

GetMasterConnection that establishes a connection between the subengine

process and the engine process to pass observation data from subengine to

engine. Thus, it is necessary to include sripslavemaster_to_client.H,

client_to_sripslavemaster.H, and

../engine/engine_to_master.H.

Once the mdrip engine receives the M_OBSV messages sent by subengines

calling AkSripObservation routine, the mdrip engine processes distributed

M_OBSV messages, calls AkObservation routine, and passes in the pro-

cessed values as the parameters.
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4.4 sripslavemaster_to_client and

client_to_sripslavemaster routines

The features of sripslavemaster_to_client and client_to_sripslavemaster

routines enable the connection management between the mdrip engine and

the subengines. It is similar to the interaction of connection management

between the akmaster and the slaves.

sripslavemaster_to_client is used by the mdrip engine to publish the

host address where the mdrip engine is initialised. The value of such host

address is written into a hidden file called “.sripslave”. It is almost identical

for master_to_client that akmaster publishes the host address where the

akmaster process is initialised. The difference is that the host address of

akmaster is written into a hidden file named “.akmaster”.

client_to_sripslavemaster is used by processes that need to subscribe

to the connection to the process of mdrip engine. It is almost identical to

client_to_master used by the processes to subscribe to the connection to

the akmaster process. The difference is that client_to_sripslavemaster

arranges a process to connect to the mdrip engine by the host address infor-

mation published by sripslavemaster_to_client in the hidden file “srip-

slave”, while client_to_master arranges a process to connect to the akmas-

ter by the host address information published by master_to_client.

Inclusions of sripslavemaster_to_client.H and client_to_sripslavemaster.H

are necessary for use of these two routines.
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4.5 GetMasterConnection routine

The GetMasterConnection routine in engine_to_master.C takes no param-

eter and returns an object of Connection class. Whenever a process calls this

routine, a connection to a target process is established and ready for massages

passing over it. The target process for the original GetMasterConnection

is the akmaster process. Therefore, all the processes that call the original

GetMasterConnection routine get connected to the akmaster process and

are able to send and receive messages with the akmaster process.

Since the design of the MRIP approach in AKAROA2 has laid tremen-

dous responsibility on the akmaster process, the GetMasterConnection rou-

tine is very frequently called. It is an obviously better practice that the

implementation of MDRIP should take the code reuse into account. To

follow the design of extending from MRIP to MDRIP and to reduce the im-

plementation time, all the functions related to quantitative and sequential

control in the well-tested MRIP approach should be retained.

It is identified that the GetMasterConnection is the key routine to be

changed. The modification on the GetMasterConnection routine focuses on

the differentiation between host addresses obtained from the environment

variables. The host address of the akmaster process is taken as the de-

fault value. Once the modified GetMasterConnection is called, the called

routine first checks if it can read the host address from the “.akmaster”

hidden file. If it fails to find the “.akmaster” hidden file, it means that

the called routine is seeking the connection to the mdrip engine instead of

the akmaster. Therefore, the connection to be established should be the

connection to the mdrip engine by the OpenSripConnection() from the

client_to_sripslavemaster. If it is successful to find the “.akmaster” hid-

den file, then it means that the called routine is seeking the connection to
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the akmaster instead of the mdrip engine. As a result, the connection to

the akmaster is established by the OpenConnection(host,post) from the

client_to_master.

In brief, the modified GetMasterConnection provides the new connection

management required for the extension from the MRIP to the MDRIP. In

addition, all the other functions that need the original GetMasterConnection

remain unchanged.

4.6 The mdrip engine

The purpose of the mdrip engine is to modify the original simulation engine

managed by akmaster and launched by akslave. The modifications focus on

the initialisation of message passing structure required by the mdrip engine,

the subscription (or connection) to the akmaster, the publishing of the host

address to the interested subengines and the required message passings and

coordinations for new messages: M_RNDQ and M_OBSV. Like the ori-

gional engine, the mdrip engine is still managed by akmaster and launched

by akslave.

The implementation of mdrip engine mainly consists of initialising the

mdrip engine, subscribing and connecting to the akmaster, as well as a

Srip() loop which intercommunicates message passings of random num-

bers and data observations between akmaster and subengines. The message

passings related to the mdrip engine are shown in Table 4.5.
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Table 4.5: Message Passings of mdrip engine

server side server&client client side

receive M_RNDQ < −

< − send M_RNDQ

− > receive M_RNDA

send M_RNDA − >

receive M_OBSV < −

call AkObservation routine

< − send M_OBSV

< − send M_CKPT

• Initialise the mdrip engine

Following three routines facilitate the initialisation of the mdrip engine:

1. InitSripTables(): similar to the InitTables() in akmaster.C

for the storage of related file descriptors in an array except that

this array is arranged for the message passings on the socket con-

nection between mdrip engine and subengines.

2. InitSripSockets(): similar to the InitSockets() in akmaster.C

for binding and creating a listen socket except that this listen

socket is created for the connection between mdrip engine and

subengines.

3. InitSripMasterAddress(): similar to the InitMasterAddress()

in akmaster.C except calling GetSripslaveMasterAddress in

sripslavemaster_to_client.C to query if any host address in-

formation is available in the “.sripslave” hidden file. If such host

address is not available, it means the first initialisation of the

mdrip engine. If such host address is available, it means more
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than once the the mdrip engine has been initialised and indicates

the situation of multiple replications.

• Subscribe to the akmaster

After the mdrip engine is initialised, a connection to the akmster is

established by subscribing to the akmaster calling the modified

GetMasterConnection(). Because the mdrip engine is launched by the

akslave on the same host machine, the searching for “.akmaster” hidden

file should be successful and a socket connect will be subscribed to the

akmaster according to the host address from the “.akmaster” hidden

file.

This subscription provides socket connections needed between akmas-

ter and mdrip engine and ensures that all the quantitative and se-

quential controls under the MRIP approach are maintained under the

MDRIP approach.

• The Srip() loop

After the mdrip engine is initialised and the connection to the akmaster

is subscribed, the Srip() loop is called to form the second layer of the

two-layer I/O multiplexing for intercommunicating message passings

between mdrip engine and subengines.

– Two-layer I/O multiplexing

According to the server&client side of the server/client framework

specified in the design of networking architecture and the choice

of I/O multiplexing used for the MDRIP approach, a two-layer

multiplexing is formed.

Inside the Srip() loop features a for loop to select specified

socket connections by an array of file descriptors and accept in-
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coming connections from the subengines.

When the accept of incoming connections receives a listen socket,

a new socket connection will be made for a particular subengine

with a specified file descriptor. Further message passings between

the mdrip engine and that particular subengine will utilise such

connection. Three possible messages are discussed in details as

follows.

– Three possible messages

Once a new socket connection is established, the mdrip engine is

ready to receive messages from a particular subengine and the par-

ticular subengine is ready to send messages to the mdrip engine.

Following three messages are possibly expected:

∗ The M_VREQ message

This message has nothing to do with the MDRIP approach.

It acts as a by-pass action concerning with code reuse of the

original MRIP functions.

∗ The M_RNDQ message

The original M_RNDQ message format remains unchanged.

No new message format is required for the mdrip engine and

the subengines to intercommunicate random numbers. The

original engine requests and consumes the random numbers,

while the mdrip engine transfers and relays the random num-

bers. The subengine is similar to the engine that only re-

quests and consumes random numbers.

∗ The M_OBSV message

This is a new message format that consists of one integer

for the number of the parameter and two real values for the
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value of observed data and the value of the timestamps. Once

a M_OBSV message is working, the associated logic of dis-

tributed data observation is processed in order to produce a

value composed from a set of distributed LPs.

– Composition of distributed data observation

Considering the tandem queueing network of the second target

model in Figure 3.9, the mdrip engine needs to arrange two linked

list queues to store or enqueue incoming messages from S1 and

S2 separately. Once all linked list queues are not empty, then

the mdrip engine will start to dequeue each linked list queue and

compose these dequeued data. For the example of the tandem

queueing network, this composition involves the dequeued data

of the first linked list queue added onto the dequeued data of the

second linked list queue according to the semantics of tandem

relationship. If the estimate of interests is the total service time,

then each such addition shows the total service time of a customer

in the tandem queueing network. If the estimate of interests is the

total response time, then each such addition represents the total

response time of a customer in the tandem queueing network.

Following code snippet explains the compose feature in Srip()

loop for the second target model. lr1 and lr2 stand for linked

list one and linked list two. v1, v2 are the observation val-

ues of dequeued data of the incoming subevents. t1, t2 are

the distributed timestamp values of dequeued data of incoming

subevents. Values of dequeued data are produced in subengines

where submodels are executed. data1, data2 are data elements

in the linked lists. The v is the value of data observation after

the compose feature is processed in that v = v1 + v2. The +
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operation is the compose feature which is an addition operation

simulating the first queueing system connected with the second

queueing system in tandem. Each v value is then passed as a pa-

rameter of AkObservation routine. As a result, on-line sequential

control of statistical errors implemented in MRIP is extended to

MDRIP.

if (lr1 != NULL && lr2 != NULL) {

v1 = lr1->data1;

t1 = lr1->data2;

v2 = lr2->data1;

t2 = lr2->data2;

v = v1 + v2;

lr1 = remove(lr1);

lr2 = remove(lr2);

AkObservation(v);

}

If the target model is changed, then the compose feature needs to

be changed to follow the correct semantics of a new target model.

The number of linked list queues in mdrip engine will need to

be changed to reflex the number of multiple processor required

by the new target model. For example, the first target model

in Figure 3.8 and in Figure 3.12 requires four processors for four

subengines to run four submodels. As a result, four linked list

queues need to be arranged in the Srip() loop for the associated

compose feature. Details are discussed in 5.2.5 for composing

four linked list queues.

Figure 4.1 explains how the linked list queues work in the mdrip

engine for the second target model. The mdrip engine is respon-

sible in composing such data observation and submitting such
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composite observed data to the Local Data Analyser that will

report to the Global Data Analyser.

Figure 4.1: Two Streams of Linked List Queue in mdrip engine

4.7 Summary

This chapter discusses the implementation of MDRIP. Major features of

MDRIP are explained through message passings, related routines, and pro-

cesses. These features include the sequential control messages from MRIP to

MDRIP, the mdrip engine process, the subengine process, the AkSripObservation

routine, the sripslavemaster_to_client and client_to_sripslavemaster

routines, and the GetMasterConnection routine.

Source codes for examples of mdrip engine implementing the first and

the second target models can be found in Appendix A.
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Chapter 5

Testing

The testing of the MDRIP development progressed from the initial testing,

to the verification testing, and to the experimental testing.

Initially, the design focus was to implement an AKAROA2/PDNS link-

age software. At a later verification stage, the first target model in Fig-

ure 3.8 with a queueing network of four independent queueing systems was

arranged to verify the correctness of the native MDRIP implementation in

AKAROA2. The native MDRIP implementation mainly refers to the mdrip

engine, subengine, AkSripObservation routine, and other supporting rou-

tines. At the final experimental stage, the second target model with tandem

queueing systems partitioned into distributed submodels was executed by

the mdrip engine controlled by akmaster in AKAROA2.

Using the first target queueing network model with multiple independent

queueing systems helps to verify the correctness of the MDRIP implementa-

tion without considering the correctness of modeling issues. The correctness

of such MDRIP functionality refers to the correct preservation of message

orderings for distributed messages.

It is important during the verification testing to separate the MDRIP
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implementation issues and the modeling issues. Because such independency

ensures that no sequencing constraint as yet no causality constraint existed

among distributed subengines. Therefore, values of message passings can be

tested to confirm whether or not the MDRIP implementation is correctly

preserved the message orderings of distributed subengines.

However, the first target queueing network model in Figure 3.8 does not

show how the MDRIP implementation in AKAROA2 handles more compli-

cated modeling issues, such as potential sequencing and/or causality con-

straints. The second target queueing network model in Figure 3.9 with tan-

dem connection provides a sequencing constraint to test whether or not the

overall MDRIP implementation is still valid.

The experimental testing shows that the MDRIP implementation is valid

provided the sequencing constraint introduced from the tandem connec-

tion model. The experimental results justify that the MDRIP implemen-

tation successfully creates a platform where distributed simulation can be

arranged to run in AKAROA2 with on-line stochastic quantitative and se-

quential control on statistical errors. However, more complicated sequencing

and/or causality constraints should be resolved by subengines, not by the

new MDRIP functionality.

5.1 Initial Testing

The initial design focus was motivated by the development of the Paral-

lel/Distributed NS2 - PDNS [2] as well as the AKAROA2/NS2 linkage soft-

ware [22]. The initial idea was to develop an AKAROA2/PDNS linkage

software to verify the MDRIP approach. Initial testing mainly comprised

installation and testing of both the PDNS and the AKAROA2/NS2 linkage

software in the Linux environment at the CSSE. The purpose was to assess
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compatibility and other supporting issues.

The PDNS reuses a huge database of networking modeling scripts avail-

able for the sequential NS [2, 21]. Not only are these networking modeling

scripts freely available but also very popular and important in networking re-

search. The AKAROA2/NS2 linkage software runs the sequential NS2 under

the control of MRIP in AKAROA2. One example [23] using such modeling

script from NS2 via the linkage software with the multiple replications of

MRIP in AKAROA2 demonstrates the benefits of on-line sequential control

on statistical accuracy from such interoperation.

PDNS uses a federated simulation approach and a blocking based con-

servative synchronisation [2]. To use PDNS, each time one needs to prepare

a specific block of code in an Otcl script in order to specify the routing

topology related to a specific distributed simulation model. This step is not

very efficient and time consuming.

The webpage for the AKAROA2/NS2 linkage [22] reports some link er-

rors using the new interface of ns-2 v.2.26. This interface covers the re-

quired features of parallelisation in PDNS. At the initial stage of this thesis

work, it was found that by commenting out some blocks of code in the

AKAROA2/NS2 linkage software, such link errors disappeared. However,

such new features of parallelisation in PDNS can not be integrated directly

MRIP in AKAROA2.

In further attempt to work around the PDNS software and to conduct

an on-going survey on PDES, we learnt that the native implementation of

MDRIP in AKAROA2 would be more feasible than the implementation of

the AKAROA2/PDNS linkage, especially in consideration of reusing on-

line sequential control functionality already implemented and well-tested in

AKAROA2. Therefore, a design decision was made to shift the focus from
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the AKAROA2/PDNS linkage to the native implementation of MDRIP in

AKAROA2. Such implementation is mainly realised by the mdrip engine,

subengine, and associated supporting routines.

The initial testing identifies:

• Priority of MDRIP development: Instead of linking AKAROA2 and

PDNS, the sequential control features of MRIP should be extended

first to a simple distributed simulation. Because on-line sequential

control of statistical errors has been well implemented in AKAROA2,

reusability will enhance implementation efficiency.

• Key features of MDRIP for design and implementation include concep-

tual overviews, target models, networking architecture, system compo-

nents, as well as related processes and routines.

• How MDRIP is different from the other PDES approaches in that on-

line output data analysis is sequentially controlled, so that statistical

errors can be tested.

• Separation of communication topology and observation data flows fea-

tures publish and subscribe connection management and well-defined

message formats for message passings. It provides flexibility in commu-

nication topology and supports greater interoperability in the future.

5.2 Verification Testing

The first queueing network model with four independent queueing systems

is arranged into two base cases to verify the correctness of the MDRIP im-

plementation. Specifically, the sequencing orders of data observations sent

from each subengine to associated mdrip engine need to be preserved when
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mdrip engine receives and processes these distributed messages. Such order

preservation is essential to the extension of quantitative and sequential con-

trol from MRIP to MDRIP, so that mdrip engine can process ordered data

observations from distributed submodels.

The independence of such queueing systems is designed to exclude mod-

eling issues during the verification of the correctness of the MDRIP imple-

mentation. Since data does not exchange in between queues, when the first

queueing network model is partitioned into four submodels executed over

four processors in parallel, there is no message passings required in between

the four processors. The compose function which merges multiple incom-

ing streams of data observations from each LP needs to reflect such semantic

relationship. In the second base case, such compose function expects to re-

ceive a stream of data combinedly from four subengines and directly relays

this stream of data to akmaster via the AkObservation routine.

Each subengine is equivalent to an LP. Each incoming stream of data

observations from a LP is received by mdrip engine and stored into a linked

list queue. If the incoming stream of data has a sequence, then such linked list

queue can preserve the data sequence. The goal of the verification testing

is to see whether such data sequence is still preserved in partitioned and

distributed case.

5.2.1 Base Cases

The four independent queueing systems are arranged as each a M/M/1

queue. As seen in Figure 3.8, there is only one source of customers randomly

arrives in the network. When a customer arrives in the network, he/she is

assigned with equal probability to one of the four queues to wait for ser-

vice from the allocated queueing server. The service time of each queueing

87



server is exponentially distributed. The customer leaves the network when

the service is finished.

In the non-partitioned and non-distributed case of Figure 5.1, there is

only one LP running on one processor for one subengine running all sub-

models. All streams of random numbers are allocated to this processor.

And requests of random numbers from this subengine can only come from

this processor. As a result, the compose function only handle one linked list

queue in this base case.

Figure 5.1: Non-partitioned and Non-distributed Base Case

If such queueing system is partitioned into subsystems, four queues in

parallel are partitioned into four subsystems. Each subsystem runs on one

processor. Figure 3.12 shows the model partitioning. Each subsystem repre-

sented by a LP behaves as one M/M/1 queue. Because they are networked

in parallel and independent of each other, no data exchange required among

these queues. Such semantics depict no specific message ordering of data

observation required in between each parallel processors.
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In other words, the order preservation only matters in each incoming

distributed data stream from each LP. Because the incoming distributed

data stream is observation data with timestamp values recording when the

associated events been processed.

For the partitioned and distributed case of Figure 5.2, multiple streams of

random numbers are allocated for each LP that runs a subsystem, since each

LP requests random numbers via the mdrip engine by itself. Four linked list

queues are needed for mdrip engine to compose.

Figure 5.2: Partitioned and Distributed Base Case

The verification testing considers only the implementation correctness of

the native MDRIP approach and isolates the modelling issues that could

interfere such correctness. Because the four independent M/M/1 queues in

parallel do not present the characteristic that subevent data distribute and

exchange among each others. It could be added that the modelling scenario

of the base cases are too artificial to be considered realistic. Nevertheless,

this verification testing helps to set out the boundary of MDRIP features.
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MDRIP processes correctly distributed data observation and assumes that

observation data contains no causality errors. Because causality errors should

have been resolved before such observation data is collected and sent to mdrip

engine.

We argue that the design principles of the MDRIP implementation are

applicable in the case of distributed simulation models with potential causal-

ity errors. The design principles of MDRIP are referred to as the supports

of on-line stochastic quantitative and sequential control of simulation output

data extended from akmaster of MRIP. MDRIP expects distributed obser-

vation data which is the simulation output data from distributed subengines.

5.2.2 The Compositions

As each LP sends observed data via the mdrip engine to the akmaster, the

mdrip engine receives the observed data and buffers the data into each linked

list queue. The mdrip engine then dequeues the data from each linked list

queue and merges these data according to specific semantic rules which reflect

the model behaviours. Because the linked list queues preserve the message

ordering when the subevents send observed data to the mdrip engine, the

compose function in the mdrip engine needs to coordinate the correct set

of disjoint subsets.

Figure 5.3 demonstrates what to compose in the case of four linked list

queues.
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Figure 5.3: Compose Four Linked List Queues

Referring to Figure 3.12 and Figure 5.3 for the four independent M/M/1

queues in parallel, the compose feature is captured by following code snippet

in the Srip() loop in mdrip engine:

if (lr1 != NULL && lr2 != NULL && lr3 != NULL && lr4 != NULL) {

v1 = lr1->data1; v2 = lr2->data1; v3 = lr3->data1; v4 = lr4->data1;

t1 = lr1->data2; t2 = lr2->data2; t3 = lr3->data2; t4 = lr4->data2;

if (t1 <= t2 && t3 <= t4) {

if (t1 <= t3)

lr1 = remove(lr1); AkObservation(v1);

else

lr3 = remove(lr3); AkObservation(v3);

}

if (t1 > t2 && t3 <= t4) {

if (t2 <= t3)

lr2 = remove(lr2); AkObservation(v2);

else

lr3 = remove(lr3); AkObservation(v3);
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}

if (t1 <= t2 && t3 > t4) {

if (t1 <= t4)

lr1 = remove(lr1); AkObservation(v1);

else

lr4 = remove(lr4); AkObservation(v4);

}

if (t1 > t2 && t3 > t4) {

if (t2 <= t4)

lr2 = remove(lr2); AkObservation(v2);

else

lr4 = remove(lr4); AkObservation(v4);

}

}

Four linked list queues are arranged for the mdrip engine: lr1, lr2,

lr3, and lr4. v1, v2, v3, v4 are the observation values dequeued from

the linked list queues in mdrip engine enqueued by observation data from

incoming subsystems. t1, t2, t3, t4 are the distributed timestamp values

dequeued from the linked list queues in mdrip engine enqueued by observa-

tion data from incoming subsystems. These distributed timestamp values

are given by each subengine and are actually representing the ordering se-

quency required to be preserved. Therefore, the four inside if statements

are implemented to compare and arrange the correct ordering sequency of

the incoming data elements before dequeuing them and passing them to

AkObservation. Because the four subsystems are independent and no direct

data flow among each others, the compose feature is simply to relay the val-

ues of dequeued data observations and directly pass into the AkObservation

routine. No extra operation is required here.

In general, the Srip() loop in mdrip engine serves as one common input
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of random numbers, because each subengine required to send request through

and receive allocated random numbers from the mdrip engine. Above outer

if statement can only be executed when all the linked list queues are not

empty. It means that on-line sequential control of statistical errors is exe-

cuted in parallel with the subengines producing data observations. The event

list management is handled by the subengines which include process.H and

resource.H rather than by the mdrip engine. In other words, mdrip engine

does not handle the event list management, because mdrip engine does not

run the simulation model.

5.2.3 General Verification

From previous code snippet, it is observed that such compose feature needs to

merge sets of dequeued data from multiple linked list queues. Such compose

function is the key feature of the MDRIP implementation. As the number of

the linked list queues increases, the efficiency of such merge implementation

will be critical.

Following three questions are asked to test such verification. Previous two

questions concern whether the mdrip engine receives correct data observation

from each subengine. The third question concerns whether the compose

function itself is working correctly in mdrip engine.

• Are the data formats of MDRIP messages correct?

If the formats of M_RNDQ and M_RNDA are correctly reused as well

as the format of M_OBSV is well implemented under existing MRIP

function, then the data formats of MDRIP messages are correct. If

the data format of a message is not correct, then message passings are

based on meaningless data.

• Does the AkSripObservation routine correctly intercommunicate MDRIP
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messages between the mdrip engine and subengines?

AkSripObservation sends observed data from each subengine to the

mdrip engine. Adding a counter function in the AkSripObservation

routine which numbers each sending message can test whether the mes-

sage ordering is preserved after the observed data is sent to the mdrip

engine.

• Does the mdrip engine correctly coordinate MDRIP messages?

Such coordination is done by the compose feature implemented in the

mdrip engine after data observation is received and buffered into each

linked list queue. How to compose these dequeued data defines the

compose features that should reflect the semantic logic of simulated

model.

The correctness of the MDRIP implementation for the base cases can be

tested via the values of the counter function incremented at each subengine

and sent via the third parameter of AkSripObservation to be received by

mdrip engine. For the case of the four independent queues, the sequence of

1,1,1,1,2,2,2,2,3,3,3,3,... is collected. The values of the sequence of

numbers confirm the order-preserving feature of using linked list queues for

incoming messages distributedly from each subengine.

The following experimental testing attempts to add modelling issues. For

the second target model of a queueing network with two queueing systems

connected in tandem, a socket connection is established between two proces-

sors, each running a simulation of M/M/1 queue, by a subengine. Data is

passed through such socket connection from one processor to the other and

data observation is collected distributedly from each subengine. Thus, the

logic of the compose feature needs to be modified. As a result, impacts

from the modelling issues can be examined under the MDRIP approach.
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5.3 Experimental Testing

5.3.1 Testing Scenarios

The second target model of a queueing network with two M/M/1 queues

in tandem is executed under various parallelisation approaches. From the

perspective of testing design, several scenarios are described in diagrams. A

round-edged rectangle represents one single processor. A line between two

round-edged rectangles represents a communication channel, such as a socket

connection. N denotes the number of replications.

The purpose of the experimental testing is to evaluate whether results

of estimates referring to three statistics of interests are valid under different

testing scenarios. The three statistics of interests discussed in Chapter 3.2 are

total mean waiting time, total mean service time, and total mean response

time.

Based on the queueing network of two M/M/1 queues connected in tan-

dem, the theoretical values are calculated for system utilisation ρ ranging

from 0.1 up to 0.9. Raw figures in details are provided in Appendix B. The

final experimental results of on-line simulation show that the MDRIP im-

plementation is applicable in the case of distributed simulation. As a result

of on-line stochastic quantitative and sequential control on automated out-

put data analysis, graphs related to parameters of interests are plotted and

discussed.

Brief discussions concerning speedup are also included, however, evalua-

tion of speedup is suggested for the future work.
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1. MRIP base case, N = 1

Figure 5.4 demonstrates the scenario where the MRIP approach runs

the simulation model on only one processor, therefore, only one ak-

slave, one engine, and one replication. The tandem queueing network

is not distributed, because the whole model is running on one proces-

sor. This MRIP base case is usually used for testing of AKAROA2

implementation.

Figure 5.4: MRIP, N = 1

Since only one processor is utilised, the speed/time measured in this

case serves as a base unit to compare with other potential speedup.

This base case itself is just an on-line stochastic DES.
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2. MRIP, N > 1

The MRIP approach runs the simulation model over multiple proces-

sors as shown in Figure 5.5. More than one akslaves and engines pro-

duce multiple replications. The target model run in each replication is

still not distributed simulation, because the whole model is running on

each processor. As N > 1, multiple replications are where statistical

Figure 5.5: MRIP, N > 1

speedup can be achieved. The speed/time measured in this N > 1

case is used to compare with the MRIP base case N = 1 to evaluate

whether the statistical speedup can be obtained if N is increased [4, 5].
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3. MDRIP non-distributed base case

The MDRIP non-distributed base case shown in Figure 5.6 is mainly

for the testing of MDRIP implementation. Because there is only one

subengine running the whole tandem queueing model, however, mdrip

engine is used to receive observation data from the only one subengine

and send such data observation via AkObservation to akmaster.

Figure 5.6: Non-distributed MDRIP

The comparison between this MDRIP non-distributed base case and

the MRIP base case should show the basic computation overhead differs

between MRIP and MDRIP. The speed/time measured in the MDRIP

non-distributed base case is expected to be more than the speed/time

measured in the MRIP base case. Such information should reflect the

cost of introducing the mdrip engine.
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4. MDRIP base case with distributed simulation

The MDRIP base case is shown in Figure 5.7 where the single replica-

tion is performed by only one akslave launching only one mdrip engine.

The simulation model is partitioned and distributed in this case. Be-

cause there are more than one subengines. Each queueing system in

the tandem queueing network is executed on one particular subengine.

As a subevent of one customer leaving the first queue simulated on

the first subengine, the subevent of this customer that arrives at the

second queue is distributed to the second subengine and simulated on

the second subengine.

Figure 5.7: Distributed MDRIP, N = 1

In this case, mdrip engine processes observed data distributedly from

distributed simulation executed on two parallel processors.

To compare the speed/time between the MDRIP distributed base case

and the MDRIP non-distributed base case should distinguish the com-
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putational overheads of the same simulation model but in non-distributed

and distributed cases. This comparison excludes the overhead factor

of mdrip engine.

To compare the speed/time between the MDRIP distributed base case

and the MRIP base case should distinguish the computation overheads

of the same simulation model but in non-distributed and distributed

cases. This comparison includes the overhead factor of mdrip engine.

5.3.2 Specific Verification

As modelling issues are considered, following two questions are raised:

• Does the subengine correctly apply existing modeling library of AKAROA2

and use AkSripObservation routine to report observation results to the

mdrip engine?

If the parameters of interests are compared between the theoretical

results and the experimental results, they should exhibit very close

similarity. The experimental results at the following subsection prove

this to be true. Theoretical results are close to the experimental results,

therefore, the MDRIP implementation does correctly support existing

modeling library of AKAROA2.

• Are results of MDRIP simulation consistent with expectation of MDRIP

requirements and designs?

The parameters of interests for this experimental testing include the

total mean waiting time, the total mean service time, and the total

mean response time in the queueing network system with two M/M/1

queueing systems connected in tandem refering to the second target

model.
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TotalMeanWaitingT ime + TotalMeanServiceT ime

= TotalMeanResponseT ime

It can be observed that the values from the total mean waiting time

plus the values from the total mean service time are about the same

as the total mean response time.

After theoretical results calculated and experimental results are col-

lected, these results of output data analysis in the next subsection show

that MDRIP development in this thesis work meets the expectation of

MDRIP requirements and designs.

5.3.3 Experimental Results

In all the cases, Total Mean Waiting Time (Figure 5.8), Total Mean Service

Time (Figure 5.9), and Total Mean Response Time (Figure 5.10), MRIP

N=1 is slightly different from MRIP N=2, because different streams of ran-

dom number are requested and allocated. MRIP N=1 is the same as Non-

distributed MDRIP because they are actually using the same set of random

numbers. Non-distributed MDRIP has mdrip engine in the server&client

side to relay such random number messages. Distributed MDRIP is also

slightly different from the other set of data because the random numbers

requested and allocated to the first subengine is different from the random

numbers dispatched to the second subengine. In addition, the waiting time

T2W in S2 of Figure 3.9 is subject to when a customer leaves at t1d. Such

dynamic behaviour is reflected by the distributed subengines.

All the experiments are performed with the service rate at 10 for each

queue, or the mean service time equals to 0.1 at each queue. Therefore,

two queues connected in tandem are expected the service rate to be 20, or

equivalently the mean service time at 0.2.
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1. Total Mean Waiting Time
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Figure 5.8: Total Mean Waiting Time for the Second Target Model

Figure 5.8 shows that five sets of total mean waiting time appear to

be the results of correct simulations. As the system gets more heavily

utilised, the total mean waiting time is increased exponentially. Similar

to one single M/M/1 queueing system, whereas, the amount of time

is double. It corresponds to two M/M/1 queueing systems connected

in tandem which reflects the addition composition discussed before

related to the second target model.
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2. Total Mean Service Time
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Figure 5.9: Total Mean Service Time for the Second Target Model

In the case of Total Mean Service Time in Figure 5.9, all five sets of data

are close to each other because the total service time combined from

the first subengine and the second subengine are independent from each

other. These service time values are dependent on the distribution of

service rate. Therefore, as the system becomes busy, the total service

time will not change much. Theoretical values are constant as the

system utilisation changed. The total mean service time are correct

simulation results which are nearly twice of the mean service time 0.1

at each queue indicating the addition composition.
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3. Total Mean Response Time
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Figure 5.10: Total Mean Response Time for the Second Target Model

Figure 5.10 shows that five sets of total mean response time are correct

simulation results following the approximate sum of the total mean

waiting time and the total mean service time. As expected, the total

mean response time is increased exponentially as the system utilisation

ρ is varied from 0.1 to 0.9 and the values of the total mean response

time are nearly twice of the mean response time for a single M/M/1

queue.

Raw data can be referred to Appendix B.
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5.4 Summary

This chapter discusses testing issues of MDRIP development cover initial

testing, verification testing, and experimental testing.

The initial testing found out that implementation of native mdrip engine

is more feasible than implementation of AKAROA2/PDNS linkage, espe-

cially in the reuse of on-line sequential control functionality. The implemen-

tation of network topology and data flows is better kept separate.

The verification testing analyses the correct preservation of ordering se-

quency of distributed data elements among multiple linked list queues in

mdrip engine. The composition of the first target model is verified. The

result showed the design and implementation of mdrip engine, subengines,

and other supporting routines are correct.

The experimental testing tested the second target model based on four

different testing scenarios. Three statistical estimates are discussed: The

Mean Waiting Time, the Total Mean Service Time, and the Total Mean

Response Time. Theoretical values are calculated to compare experimental

results with four different testing scenarios. It shows that MDRIP is possible

to support on-line output data analysis with sequential control of statistical

errors when the simulation is partitioned and distributed.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The MDRIP approach consists of the design and implementation of an mdrip

engine that extends quantitative and sequential control services from MRIP

controlled by akmaster. Two-stage I/O multiplexing provides the effec-

tive framework of interprocess communication required by MDRIP. Random

numbers messages and data observation messages are successfully distributed

among subengines via mdrip engine.

The development of MDRIP is a series of efforts attempting to interop-

erate sequential on-line simulation with automated statistical inference and

distributed simulation with partitioned submodels. MDRIP is able to sup-

port quantitative and sequential analysis with flexible run lengths as well

as analyse different parameters from different submodels at a controllable

manner. It is important that observation data is uncorrelated whether the

simulation is non-distributed or distributed. Simulation credibility is guar-

anteed by adaptively adjusting the level of statistical errors. Large-sized

and complex simulation models can be divided into smaller submodels for
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detailed examination and the interaction between submodels assists in un-

derstanding dynamic system behavior.

The main contribution of this thesis can be considered as establishing a

base platform for exploring MDRIP simulation in AKAROA2.

Modeling issues are isolated in verification testing based on the queueing

network of multiple independent queueing systems. Experimental testing

includes modeling issues based on validated MDRIP platform. The queueing

network with two M/M/1 queues connected in tandem is used to experiment

the implementation of MDRIP. Mean values of the estimates: total waiting

time, total service time, and total response time are produced in four different

parallelisation conditions as well as in comparison of theoretical calculation.

The results demonstrate that the design and implementation of MDRIP

works effectively and produces correct simulation results.

In conclusion, the mdrip engine successfully provides the base for ex-

changing necessary messages passings of on-line sequential simulation anal-

ysis extended from MRIP to MDRIP. AkSripObservation is the new inter-

face routine for submodels to submit distributed data observations for the

stochastic on-line simulation managed by akmaster.

6.2 Future Work

During the development of MDRIP, following ideas have been identified for

possible future work.

- In extension from the base platform, testing MDRIP with multiple

mdrip engines.

- Possible interoperation between mdrip engine and HLA/RTI contracts.

- Evaluation of larger and more complex simulation models.
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Appendix A

Source Code

1. mysim.C mdrip engine for the first target model

#include <akaroa.H>

#include <akaroa/distributions.H>

#include <akaroa/exit.H>

#include <stdio.h>

#include <stdlib.h>

#include <iostream.h>

#include <string.h>

#include <netdb.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/param.h>

#include <unistd.h>

#include <fcntl.h>

#include <signal.h>

#include "gethostname.H"

#include "ipc/connection.H"

#include "message.H"

#include "args.H"

#include "slave_to_engine.H"

#include "master_to_client.H"

#include "ipc/error.H"

#include "debug.H"

#include "akaroa/exit.H"

#include <sys/socket.h>
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#include <sys/select.h>

#include <sys/time.h>

#include <sys/resource.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <time.h>

#include "simulation.H"

#include "boolean.H"

#include "environment.H"

#include "tagged_block.H"

#include "sripslavemaster_to_client.H"

#include "client_to_sripslavemaster.H"

#include "checkpoint.H"

#include "akaroa.H"

#include "../engine/engine_to_master.H"

#include "client_to_master.H"

#include "akaroa/process.H"

#include "AkSripObservation.H"

#include "../engine/engine_environment.H"

extern "C" { int getdtablesize(); }

int srip_max_fds; /* Max file descriptor + 1 */

Connection **srip_connections; /* Mapping from socket fd -> handler */

sockaddr_in srip_master_addr; /* Address bound to listen socket */

int srip_listen_sock; /* Socket for accepting connections */

fd_set srip_select_rd_fds; /* File descriptors to select for reading */

fd_set srip_select_wr_fds; /* File descriptors to select for writing */

Connection *m = 0;

void InitSripTables();

void InitSripSockets();

void InitSripMasterAddress();

void Srip();

int main(int argc, char *argv[]) {

InitSripTables();

InitSripSockets();

InitSripMasterAddress();

m = GetMasterConnection();

Srip();

}

void InitSripTables()
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{

srip_max_fds = FD_SETSIZE;

srip_connections = new Connection*[srip_max_fds];

for (int i=0; i<srip_max_fds; i++)

srip_connections[i] = 0;

}

void InitSripSockets()

{

socklen_t srip_namelen = sizeof(srip_master_addr);

srip_listen_sock = socket(AF_INET, SOCK_STREAM, 0);

if (srip_listen_sock < 0)

goto bad;

srip_master_addr.sin_family = AF_INET;

srip_master_addr.sin_addr.s_addr = INADDR_ANY;

srip_master_addr.sin_port = 0;

if (bind(srip_listen_sock, (sockaddr *)&srip_master_addr, sizeof(srip_master_addr)))

goto bad;

if (getsockname(srip_listen_sock, (sockaddr *)&srip_master_addr, &srip_namelen) < 0)

goto bad;

if (listen(srip_listen_sock, 100) < 0)

goto bad;

FD_ZERO(&srip_select_rd_fds);

FD_SET(srip_listen_sock, &srip_select_rd_fds);

return;

bad:

perror("sripslave: Failed to create srip listen socket");

Exit(1);

}

static void KeepSripSocketAlive(int fd)

{

int value = 1;

setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *)&value, sizeof(value));

}

struct llq{

double data1, data2;

struct llq *next;

};

typedef struct llq qlist;

qlist * add(qlist *lptr, double d1, double d2);
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qlist * remove(qlist * lptr);

void clearqueue(qlist * lptr);

qlist * add(qlist *lptr, double d1, double d2) {

qlist * lp = lptr;

if (lptr != NULL) {

while (lptr -> next != NULL)

lptr = lptr -> next;

lptr -> next = (qlist *) malloc (sizeof (qlist));

lptr = lptr -> next;

lptr -> next = NULL;

lptr -> data1 = d1;

lptr -> data2 = d2;

return lp;

} else {

lptr = (qlist *) malloc (sizeof (qlist));

lptr -> next = NULL;

lptr -> data1 = d1;

lptr -> data2 = d2;

return lptr;

}

}

qlist * remove(qlist * lptr) {

qlist * tp;

tp = lptr -> next;

free (lptr);

return tp;

}

qlist *lr1 = NULL;

qlist *lr2 = NULL;

qlist *lr3 = NULL;

qlist *lr4 = NULL;

void Srip() {

int srip_fd;

int s_fd[2];

for (;;) {

fd_set read_fds = srip_select_rd_fds;

fd_set write_fds = srip_select_wr_fds;

int result = select(srip_max_fds+1, &read_fds, &write_fds, NULL, NULL);

if (result < 0) {
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perror("mysim: select");

//exit(1); }

if (result == 0) {}

if (result > 0) {

for (srip_fd = 0; srip_fd < srip_max_fds+1; srip_fd++) {

if (FD_ISSET(srip_fd, &read_fds)) {

if (srip_fd == srip_listen_sock) {

sockaddr srip_addr;

socklen_t srip_addrlen = sizeof(srip_addr);

int d_fd;

Connection *srip_c = 0;

d_fd = accept(srip_listen_sock, &srip_addr, &srip_addrlen);

KeepSripSocketAlive(d_fd);

srip_c = new Connection(d_fd);

FD_SET(d_fd, &srip_select_rd_fds);

srip_connections[d_fd] = srip_c;

} else if (srip_fd == m->fd) {

if (debug) {

fprintf(debug_file, "SripRecvingMasterConnection: Recv: ");

ReportError(debug_file); }

//goto bad;

} else {

Message srip_msg;

char srip_buf[MAX_MSG_LEN];

if (srip_connections[srip_fd]->Recv(srip_msg, srip_buf, sizeof(srip_buf)) < 0)

{

if (debug) {

fprintf(debug_file, "AcceptSripConnection: Recv: ");

ReportError(debug_file); }

FD_CLR(srip_fd, &srip_select_rd_fds);

delete srip_connections[srip_fd];

srip_connections[srip_fd] = NULL;

} else {

if (srip_msg == M_VREQ) {

Environment *env = EngineEnvironment();

env->SendTo(srip_connections[srip_fd]);

} else {

switch (srip_msg)

{
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case M_NPAR:

break;

case M_RNDQ:

m->Send(M_RNDQ);

Message msg_s;

char buf_s[MAX_MSG_LEN];

int exp;

unsigned long mant;

if (m->Recv(msg_s, buf_s, sizeof(buf_s)) < 0) {

perror("m->Recv(msg_s, buf_s, sizeof(buf_s)");

//goto bad;

} else {

char * buffer;

buffer = getenv("HOST");

if (msg_s == M_RNDA) {

sscanf(buf_s, "%d %lu", &exp, &mant);

srip_connections[srip_fd]->Send(msg_s, buf_s); }

}

break;

case M_OBSV:

int n;

double x, t;

double v1, v2, v3, v4, t1, t2, t3, t4;

sscanf(srip_buf, "%d %lg %lg", &n, &x, &t);

if (srip_fd == 7)

lr1 = add(lr1, x, t);

if (srip_fd == 9)

lr2 = add(lr2, x, t);

if (srip_fd == 10)

lr3 = add(lr3, x, t);

if (srip_fd == 11)

lr4 = add(lr4, x, t);

if (lr1 != NULL && lr2 != NULL && lr3 != NULL && lr4 != NULL) {

v1 = lr1->data1;

v2 = lr2->data1;

v3 = lr3->data1;

v4 = lr4->data1;

t1 = lr1->data2;

t2 = lr2->data2;
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t3 = lr3->data2;

t4 = lr4->data2;

if (t1 <= t2 && t3 <= t4) {

if (t1 <= t3) {

lr1 = remove(lr1);

AkObservation(v1);

} else {

lr3 = remove(lr3);

AkObservation(v3); }

}

if (t1 > t2 && t3 <= t4) {

if (t2 <= t3) {

lr2 = remove(lr2);

AkObservation(v2);

} else {

lr3 = remove(lr3);

AkObservation(v3); }

}

if (t1 <= t2 && t3 > t4) {

if (t1 <= t4) {

lr1 = remove(lr1);

AkObservation(v1);

} else {

lr4 = remove(lr4);

AkObservation(v4); }

}

if (t1 > t2 && t3 > t4) {

if (t2 <= t4) {

lr2 = remove(lr2);

AkObservation(v2);

} else {

lr4 = remove(lr4);

AkObservation(v4); }

}

}

break;

default:

error = E_BABL; //

if (debug) {
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fprintf(debug_file, "AcceptSripConnection: ");

ReportError(debug_file);

}

}}}}}}}}}

void InitSripMasterAddress() {

char buf[MAX_MSG_LEN];

char srip_host[32];

int srip_port, srip_pid;

if (GetSripslaveMasterAddress(srip_host, srip_port, srip_pid) == 0) {

fprintf(stderr, "%s\n%s %d %s %s%s\n%s\n%s\n",

"sripslave: There already seems to be an sripslave running as",

"process", srip_pid, "on", srip_host, ". If that process no longer exists,",

"remove the file ’.sripslave’ from your home directory and run",

"sripslave again.");

system("rm ~/.sripslave");

//Exit(1); }

if (SetSripslaveMasterAddress(ntohs(srip_master_addr.sin_port)) < 0) {

if (error == E_EXIS) {

ReportError("sripslave");

//Exit(1); }}

}

2. mysim.C mdrip engine for the second target model

#include <akaroa.H>

#include <akaroa/distributions.H>

#include <akaroa/exit.H>

#include <stdio.h>

#include <stdlib.h>

#include <iostream.h>

#include <string.h>

#include <netdb.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/param.h>

#include <unistd.h>

#include <fcntl.h>

#include <signal.h>

#include "gethostname.H"

#include "ipc/connection.H"
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#include "message.H"

#include "args.H"

#include "slave_to_engine.H"

#include "master_to_client.H"

#include "ipc/error.H"

#include "debug.H"

#include "akaroa/exit.H"

#include <sys/socket.h>

#include <sys/select.h>

#include <sys/time.h>

#include <sys/resource.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <time.h>

#include "simulation.H"

#include "boolean.H"

#include "environment.H"

#include "tagged_block.H"

#include "sripslavemaster_to_client.H"

#include "client_to_sripslavemaster.H"

#include "checkpoint.H"

#include "akaroa.H"

#include "../engine/engine_to_master.H"

#include "client_to_master.H"

#include "akaroa/process.H"

#include "AkSripObservation.H"

#include "../engine/engine_environment.H"

extern "C" { int getdtablesize(); }

int srip_max_fds; /* Max file descriptor + 1 */

Connection **srip_connections; /* Mapping from socket fd -> handler */

sockaddr_in srip_master_addr; /* Address bound to listen socket */

int srip_listen_sock; /* Socket for accepting connections */

fd_set srip_select_rd_fds; /* File descriptors to select for reading */

fd_set srip_select_wr_fds; /* File descriptors to select for writing */

Connection *m = 0;

void InitSripTables();

void InitSripSockets();

void InitSripMasterAddress();

void Srip();
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int main(int argc, char *argv[]) {

file_x = fopen("X.txt","w");

file_y1 = fopen("Y1.txt","w");

file_y2 = fopen("Y2.txt","w");

InitSripTables();

InitSripSockets();

InitSripMasterAddress();

m = GetMasterConnection();

Srip();

fclose(file_x);

fclose(file_y1);

fclose(file_y2);

}

void InitSripTables()

{

srip_max_fds = FD_SETSIZE;

srip_connections = new Connection*[srip_max_fds];

for (int i=0; i<srip_max_fds; i++)

srip_connections[i] = 0;

}

void InitSripSockets()

{

socklen_t srip_namelen = sizeof(srip_master_addr);

srip_listen_sock = socket(AF_INET, SOCK_STREAM, 0);

if (srip_listen_sock < 0)

goto bad;

srip_master_addr.sin_family = AF_INET;

srip_master_addr.sin_addr.s_addr = INADDR_ANY;

srip_master_addr.sin_port = 0;

if (bind(srip_listen_sock, (sockaddr *)&srip_master_addr, sizeof(srip_master_addr)))

goto bad;

if (getsockname(srip_listen_sock, (sockaddr *)&srip_master_addr, &srip_namelen) < 0)

goto bad;

if (listen(srip_listen_sock, 100) < 0)

goto bad;

FD_ZERO(&srip_select_rd_fds);

FD_SET(srip_listen_sock, &srip_select_rd_fds);

return;

bad:
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perror("sripslave: Failed to create srip listen socket");

Exit(1);

}

static void KeepSripSocketAlive(int fd)

{

int value = 1;

setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *)&value, sizeof(value));

}

struct llq{

double data1, data2;

struct llq *next;

};

typedef struct llq qlist;

qlist * add(qlist *lptr, double d1, double d2);

qlist * remove(qlist * lptr);

void clearqueue(qlist * lptr);

qlist * add(qlist *lptr, double d1, double d2) {

qlist * lp = lptr;

if (lptr != NULL) {

while (lptr -> next != NULL)

lptr = lptr -> next;

lptr -> next = (qlist *) malloc (sizeof (qlist));

lptr = lptr -> next;

lptr -> next = NULL;

lptr -> data1 = d1;

lptr -> data2 = d2;

return lp;

} else {

lptr = (qlist *) malloc (sizeof (qlist));

lptr -> next = NULL;

lptr -> data1 = d1;

lptr -> data2 = d2;

return lptr; }

}

qlist * remove(qlist * lptr) {

qlist * tp;

tp = lptr -> next;

free (lptr);

return tp;
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}

qlist *lr1 = NULL;

qlist *lr2 = NULL;

void Srip() {

int srip_fd;

char * buffer;

buffer = getenv("HOST");

for (;;) {

fd_set read_fds = srip_select_rd_fds;

fd_set write_fds = srip_select_wr_fds;

int result = select(srip_max_fds+1, &read_fds, &write_fds, NULL, NULL);

if (result < 0) {

perror("mysim: select");

//exit(1); }

if (result == 0) {}

if (result > 0) {

for (srip_fd = 0; srip_fd < srip_max_fds+1; srip_fd++) {

if (FD_ISSET(srip_fd, &read_fds)) {

if (srip_fd == srip_listen_sock) {

sockaddr srip_addr;

socklen_t srip_addrlen = sizeof(srip_addr);

int d_fd;

Connection *srip_c = 0;

d_fd = accept(srip_listen_sock, &srip_addr, &srip_addrlen);

KeepSripSocketAlive(d_fd);

srip_c = new Connection(d_fd);

FD_SET(d_fd, &srip_select_rd_fds);

srip_connections[d_fd] = srip_c;

} else if (srip_fd == m->fd) {

if (debug) {

fprintf(debug_file, "SripRecvingMasterConnection: Recv: ");

ReportError(debug_file); }

//goto bad;

} else {

Message srip_msg;

char srip_buf[MAX_MSG_LEN];

if (srip_connections[srip_fd]->Recv(srip_msg, srip_buf, sizeof(srip_buf)) < 0) {

if (debug) {

fprintf(debug_file, "AcceptSripConnection: Recv: ");
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ReportError(debug_file); }

FD_CLR(srip_fd, &srip_select_rd_fds);

delete srip_connections[srip_fd];

srip_connections[srip_fd] = NULL;

} else {

if (srip_msg == M_VREQ) {

Environment *env = EngineEnvironment();

env->SendTo(srip_connections[srip_fd]);

} else {

switch (srip_msg) // srip

{

case M_NPAR:

break;

case M_RNDQ:

m->Send(M_RNDQ);

Message msg_s;

char buf_s[MAX_MSG_LEN];

int exp;

unsigned long mant;

if (m->Recv(msg_s, buf_s, sizeof(buf_s)) < 0) {

perror("m->Recv(msg_s, buf_s, sizeof(buf_s)");

//goto bad;

} else {

char * buffer;

buffer = getenv("HOST");

if (msg_s == M_RNDA) {

sscanf(buf_s, "%d %lu", &exp, &mant);

srip_connections[srip_fd]->Send(msg_s, buf_s); }}

break;

case M_OBSV:

int n;

double x, t;

double v1, t1, v2, t2, v;

sscanf(srip_buf, "%d %lg %lg", &n, &x, &t);

if (srip_fd == 8)

lr1 = add(lr1, x, t);

if (srip_fd == 10)

lr2 = add(lr2, x, t);

if (lr1 != NULL && lr2 != NULL) {
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v1 = lr1->data1;

t1 = lr1->data2;

v2 = lr2->data1;

t2 = lr2->data2;

v = v1 + v2;

lr1 = remove(lr1);

lr2 = remove(lr2);

AkObservation(v); }

break;

default:

error = E_BABL; //

if (debug) {

fprintf(debug_file, "AcceptSripConnection: ");

ReportError(debug_file); }

}}}}}}}}

}

void InitSripMasterAddress() {

char buf[MAX_MSG_LEN];

char srip_host[32];

int srip_port, srip_pid;

if (GetSripslaveMasterAddress(srip_host, srip_port, srip_pid) == 0) {

fprintf(stderr, "%s\n%s %d %s %s%s\n%s\n%s\n",

"sripslave: There already seems to be an sripslave running as",

"process", srip_pid, "on", srip_host, ". If that process no longer exists,",

"remove the file ’.sripslave’ from your home directory and run",

"sripslave again.");

system("rm ~/.sripslave");

system("rm ~/.sripslave1");

//Exit(1); }

if (SetSripslaveMasterAddress(ntohs(srip_master_addr.sin_port)) < 0) {

if (error == E_EXIS) {

ReportError("sripslave");

//Exit(1); }}

}
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Appendix B

Raw Data

Second Target Model

Total Mean Waiting Time, Confidence = 0.95, Precision = 0.05

System Theoretical MRIP N=1 MRIP N=2 Non-distributed Distributed

Utilisation (ρ) MDRIP MDRIP

0.1 0.0222 0.021741 0.0220228 0.021741 0.0220265

0.2 0.05 0.0490309 0.0486354 0.0490309 0.0489828

0.3 0.0858 0.0832042 0.0849586 0.0832042 0.0829591

0.4 0.1334 0.131632 0.135164 0.131632 0.134503

0.5 0.2 0.185845 0.202744 0.185845 0.193577

0.6 0.25 0.300044 0.299653 0.300044 0.290347

0.7 0.4666 0.497983 0.456182 0.497983 0.480533

0.8 0.8 0.80436 0.841997 0.80436 0.788964

0.9 1.8 1.84751 1.74727 1.84751 1.80531
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Total Mean Service Time, Confidence = 0.95, Precision = 0.05

System Theoretical MRIP N=1 MRIP N=2 Non-distributed Distributed

Utilisation (ρ) MDRIP MDRIP

0.1 0.2 0.201042 0.20085 0.201042 0.201042

0.2 0.2 0.201136 0.200965 0.201136 0.201136

0.3 0.2 0.203757 0.200201 0.203757 0.203757

0.4 0.2 0.199059 0.201397 0.199059 0.199059

0.5 0.2 0.20012 0.200558 0.20012 0.20012

0.6 0.2 0.199555 0.202608 0.199555 0.199555

0.7 0.2 0.198174 0.20245 0.198174 0.198174

0.8 0.2 0.198875 0.202162 0.198875 0.198875

0.9 0.2 0.19801 0.200941 0.19801 0.19801

Total Mean Response Time, Confidence = 0.95, Percision = 0.05

System Theoretical MRIP N=1 MRIP N=2 Non-distributed Distributed

Utilisation (ρ) MDRIP MDRIP

0.1 0.2222 0.221834 0.22281 0.221834 0.221834

0.2 0.25 0.254168 0.247477 0.254168 0.24824

0.3 0.2858 0.281816 0.279767 0.281816 0.27435

0.4 0.3334 0.333758 0.334333 0.333758 0.336464

0.5 0.4 0.386135 0.400286 0.386135 0.383055

0.6 0.5 0.479794 0.50004 0.479794 0.500497

0.7 0.6666 0.688089 0.677462 0.688089 0.684553

0.8 1 0.99884 1.04254 0.99884 1.00735

0.9 2 2.03915 1.9264 2.03915 2.00062
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