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Abstract 

There is considerable uncertainty in the estimates of indirect N2O emissions as 

defined by the Intergovernmental Panel on Climate Change’s (IPCC) methodology. Direct 

measurements of N2O yields and fluxes in aquatic river environments are sparse and more 

data are required to determine the role that rivers play in the global N2O budget. 

The objectives of this research were to measure the N2O fluxes from a spring-fed 

river, relate these fluxes to the dissolved N2O concentrations and NO3–N loading of the river, 

and to try and define the indirect emission factor (EF5-r) for the river. 

Gas bubble ebullition was observed at the river source with bubbles containing 7.9 μL 

N2O L-1. River NO3–N and dissolved N2O concentrations ranged from 2.5 to 5.3 mg L-1 and 

0.4 to 1.9 μg N2O-N L-1 respectively with N2O saturation reaching 404%. Floating headspace 

chambers were used to sample N2O fluxes. N2O–N fluxes were significantly related to 

dissolved N2O–N concentrations (r2 = 30.6) but not to NO3–N concentrations. The N2O–N 

fluxes ranged from 38-501 μg m-2 h-1, averaging 171 μg m-2 h-1 (± Std. Dev. 85) overall. The 

measured N2O–N fluxes equated to an EF5-r of only 6.6% of that calculated using the IPCC 

methodology, and this itself was considered to be an over-estimate due to the degassing of 

antecedent dissolved N2O present in the groundwater that fed the river. 
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Introduction 

Atmospheric concentrations of N2O, a greenhouse gas (GHG), have increased since 

pre-industrial times to the present (Prinn et al., 1990, Rockmann et al., 2003)  and continue to 

rise at 0.2-0.3% yr-1 (Nevison, 2000b). Due to the lack of any stabilization in atmospheric 

GHG concentrations, parties to the United Nations Framework Convention on Climate 

Change (UNFCC) negotiated the Kyoto Protocol. This protocol sets targets for participating 

countries to reduce or take responsibility for their excess GHG emissions. An obligation of 

the parties that are signatories to the UNFCCC and the Kyoto protocol is the development 

and publication of an annual national inventory of all anthropogenic GHG emissions and 

removals. The IPCC methodology predicts that in many countries N2O will comprise at least 

10% or more of the aggregate GHG emissions (Nevison, 2000b); in New Zealand’s case, 

N2O emissions comprise 17% of the total aggregated GHG emissions per annum (New 

Zealand Climate Change Office, 2004). 

Guidelines on how to construct inventories have been prescribed by the 

Intergovernmental Panel on Climate Change (IPCC) and include a number of “default” 

assumptions and data for use in the calculation of GHG emissions and removals (IPCC, 

1997). The IPCC guidelines divide agricultural N2O sources into three categories: direct 

emissions from agricultural land, emissions from animal waste systems, and indirect 

emissions associated with nitrogen (N) that is removed in biomass, volatilized, leached, or 

exported from the agricultural land (Mosier et al., 1998). The aim of this methodology is to 

provide a standardized framework to account completely for the annual N2O production 

associated with agricultural practice on a per country basis. Each of the three N2O source 

categories typically contributes an equal 1/3 share of the total estimated agricultural N2O 

source (Nevison, 2000b). However, approximately 2/3 of the uncertainty in the total 
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agricultural N2O source is due to the wide range of estimates for indirect N2O emissions 

(Nevison, 2000b).  

The total global N2O source from agricultural soils stands at 6.3 Tg N yr-1(Mosier et 

al., 1998). Indirect emissions account for 2.1 Tg N yr-1 of this total; nitrogen leaching and 

runoff dominate the  indirect emission sources accounting for  over 75% of estimated indirect 

emissions (Mosier et al., 1998, Nevison, 2000b). Biological cycling of both the natural and 

anthropogenic N through aquatic ecosystems produces emissions of N2O via nitrification and 

denitrification. N2O production allied to N leaching and runoff is defined by the IPCC 

methodology as follows (IPCC, 1997, Mosier et al., 1998): 

 

NLEACH = (NFERT+ NEX) * FRACLEACH 

N2O(L) = NLEACH * EF5 

 

Where NLEACH (kg N yr-1) is the mass of fertilizer and manure N lost through leaching and 

runoff per annum, NFERT (kg N yr-1) the mass of fertilizer used per annum, NEX (kg N yr-1) 

the mass of manure N excreted by livestock per annum, and FRACLEACH the fraction of the 

fertilizer and manure N lost to leaching and surface runoff (range 0.1 - 0.8). The N2O 

emissions due to agricultural N loss through leaching and runoff (N2O(L)) are calculated by 

multiplying NLEACH by the emission factor (EF5) for leaching and runoff. The value of 

EF5 is the sum of the N2O emission factors for N2O losses from i) groundwater and surface 

drainage (EF5-g = 0.015 kg N2O–N per kg NLEACH), ii) rivers (EF5-r = 0.0075 kg N2O–N 

per kg NLEACH), and iii) coastal marine areas (EF5-e = 0.0025 kg N2O–N per kg 

NLEACH). The rationale behind the development of the default values for EF5-g, EF5-r and 

EF5-e have been previously described (Mosier et al., 1998, Nevison, 2000b). 
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 As noted above, current estimates of the total agricultural sourced N2O emissions 

equate to 6.3 Tg N yr-1 which is greater than the observed atmospheric increase of 3.9 Tg N 

yr-1. A simple explanation for this is that the IPCC methodology over-estimates the 

anthropogenic source (Nevison, 2000b). There is considerable discussion in the literature 

regarding the appropriate magnitude of the default factors for FRACLEACH and the 

components of EF5, with suggestions for possible improvements to the assumptions and the 

magnitudes of the default factors (Groffman et al., 2000, Nevison, 2000b, Groffman et al., 

2002, Reay et al., 2003). Actual measurements of N2O yields in aquatic river environments 

are sparse (Nevison, 2000b, Cole & Caraco, 2001) and an assumption commonly made is that 

the N2O yield is 0.5% for both nitrification and denitrification (Mosier et al., 1998, Seitzinger 

& Kroeze, 1998). Cole and Caraco (2001) measured N2O fluxes from the Hudson river and 

compared these with modelled estimates, determined using the model of Seitzinger and 

Kroeze (1998). They found the measured fluxes to be considerably lower than the modelled 

fluxes, as was the case for four out of seven other rivers, where measured values were also 

lower than modelled values. In the case of the Hudson river, the assumptions used in the 

model (Seitzinger & Kroeze, 1998) over-estimated denitrification and nitrification rates. 

More data are required to determine the role rivers play in the N2O budget (Cole & Caraco, 

2001, Groffman et al., 2002). 

This study presents N2O flux data and associated river measurements from a spring-

fed river that flows through an agricultural landscape. The data are used to examine the 

relationship between the measured fluxes and a component of the EF5 emission factor, EF5-r. 

 

Materials and Methods 

This study was carried out on the LII river, situated in the Canterbury region of the South 

Island, New Zealand (Fig. 1). In the Canterbury Plains area confined and unconfined aquifers 
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carry water from the Southern Alps eastwards towards the Pacific Ocean. Aquifers are 

primarily composed of gravels with small proportions of finer textured sands and silts. The 

lower the percentage of sand and silt the greater the permeability and yield of the aquifer. 

Aquifers high in sand and silt are lower yielding and are referred to as aquitards (Bowden, 

1986). The uppermost water bearing layers over the inland plains have a high permeability 

and are referred to as unconfined aquifers. Rain water and river waters move into the 

unconfined aquifers and travel laterally towards the East Coast recharging the unconfined 

aquifers. Groundwater is vulnerable to contamination especially from associated land uses 

over the aquifers. In the coastal area around the city of Christchurch (Fig. 1) the groundwater 

flowing at shallow depth towards Christchurch city meets confining aquitards, and water is 

forced both below the aquitard and above the aquitard into the near-surface gravels and the 

spring-fed rivers (Bowden, 1986). Base flows in these spring-fed rivers are derived from the 

re-surfacing shallow groundwater (Bowden, 1986).   

The LII is a spring-fed river, 12 km long, commencing 10 m above sea level near 

Lincoln township (Lat./Long. 43.64673S, 172.49677E), and flows in a south westerly 

direction for a distance of 12 km whereupon it discharges into Lake Ellesmere (Fig. 1).  Four 

sampling sites were selected for this study. These were located evenly along the length of the 

river and had easy road access. Sites 1, 2, 3 and 4 were located at the 0, 4.4, 7.7 and 10 km 

from the spring. The LII river flows through land under agricultural stewardship that includes 

orchards, dairy, and sheep farms. The watershed area and N loading of the watershed are not 

readily definable. However, drainage ditches from the agricultural lands discharge into the 

LII at regular intervals. There are no direct point sources of effluent, such as dairy waste 

ponds, discharging into the LII. The river’s mean gradient was 0.08%. 

River flow measurements were performed using the velocity-area method (Mosley et 

al., 1992, Davie, 2003). In brief this entailed calculating the trapezoidal cross-sectional area 
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of the river and measuring the river velocity with a timed float. River depth was monitored at 

sites 3 and 4 using pre-existing flow gauges that had been installed by the regional council. 

Meteorological data was collected at the Lincoln University climate station, a distance of 3 

km from site 1. 

Floating chambers were constructed from round polypropylene “cake” containers 

(Decor®, product No. 350, Australia). The container lids were discarded and the containers 

inverted so that the open side formed the chamber base. The containers were shaped like a 

conical frustrum (radii of 10.1 and 11.3 cm at the chamber roof and water surface 

respectively; an internal height from chamber roof to water surface of 11.7 cm). A styrofoam 

annulus (8.5 cm wide, 11.7 cm deep) was attached around the chamber. The polypropylene 

chamber projected 1.5 cm into the water when floating on the river surface. This was in 

addition to the internal chamber height of 11.7 cm. The resulting headspace volume of the 

floating chamber was 4.2 L. A rubber septum was placed in the roof of the plastic chamber to 

facilitate headspace gas sampling. The septa were from blood evacuation tubes (BD, 

Dickinson, NJ.). Laboratory testing of the floating chambers showed no N2O production or 

consumption over a 60 minute period. Testing of the floating chambers on the LII river 

showed that N2O concentrations increased in a linear manner for up to 60 minutes. This time 

was well in excess of the 15 minute sampling times used in the study (see below). 

 Unless otherwise stated 10 replicate chambers were used at each site during sampling 

of the river surface gas fluxes. To determine the river surface gas fluxes the chambers were 

placed on the water surface, linked with 1 m lengths of string and allowed to drift freely with 

the river current. A terminal chamber was linked via string to an observer on the river bank 

who walked alongside the river. Chambers were deployed at the same position, and in the 

same sequence, on each sampling occasion. Chamber capture was performed after 15 minutes 
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by gently pulling the chambers back to quiet water alongside the bank, where gas sampling 

occurred. 

 Glass syringes equipped with three way large bore stopcocks (Part No. 2C6201, 

Baxter Healthcare Corp., Deerfield IL.) were used to take gas samples while the chambers 

remained floating on the river surface. A gas sample of 10 mL was taken from the headspace 

chamber and flushed to waste, twice. On the third occasion the 10 mL sample was injected 

into a previously evacuated (<0.01 atmosphere) 6 mL glass sample tube with a screw cap and 

rubber septum (Exetainer®, Labco Ltd., UK.), creating an internal over-pressure. Ambient air 

gas samples were also taken at each site when chamber headspace samples were obtained. 

Gas samples were analysed using a gas chromatograph (8610, SRI Instruments, CA.) 

interfaced to a liquid autosampler (Gilson 222XL, Middleton, WI.). The autosampler had 

been specially modified for gas analysis by substituting a purpose-built (PDZ-Europa, Crewe, 

UK) double concentric injection needle for the usual liquid level detector and needle.  This 

enabled the entire gas sample to be flushed rapidly from its septum-sealed container (6 mL 

Exetainer®) into the GC.   

The GC configuration was similar to that used by Mosier and Mack (1980)  and 

included two 0.3 cm OD stainless steel columns packed with Haysep Q connected in series, 

oxygen-free dry nitrogen carrier gas (40 mL min-1), and a 63Ni electron capture detector at 

320 oC. Gas samples were analysed within 1 to 2 days of sampling. Immediately prior to 

analysis the over-pressurised samples were all brought to ambient atmospheric pressure, 

using a double-ended hypodermic needle.  One end of the needle was placed at a constant 

depth (0.5 cm) just below the surface of some water in a small beaker while the other end 

pierced the Exetainer® septum.  A brief flow of bubbles resulted and when these ceased, the 

gas in the Eexetainer® was at ambient air pressure.  Dissipating the excess gas pressure 

through the water medium not only gave a visual indication of when the samples were at 
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ambient air pressure, it also avoided any potential contamination of the sample with ambient 

air. Reference gases (0.363 to 35.2 μL L-1, BOC Ltd. Auckland) were prepared following the 

same over pressure-equilibration procedure as described above. Detection limits for N2O 

analysis were considered significant if concentrations were 0.01 μL L-1 > than the ambient 

concentration. 

Water samples for measurement of dissolved gases were collected in 500 mL glass 

reagent bottles. Bottles were first rinsed with river water and then submerged ca. 20 cm 

below the water surface and allowed to fill completely. Then a glass stopper was inserted, 

prior to the bottle’s removal from the stream and its placement into a styrofoam insulated 

box, where it was stored until arrival back at the laboratory. River and air temperatures were 

measured in-situ using a portable pH meter fitted with a combination pH and temperature 

probe (HI9025, Hanna Instruments, Italy). 

Gas ebullition at the spring was collected by placing an inverted plastic funnel, 

connected to a 2 L volumetric glass flask full of water, below the water surface. As the gas 

was collected the water in the flask was displaced. After 2 L of gas was collected a rubber 

septum was used to seal the flask prior to transporting it back to the laboratory for gas 

analyses. 

Back in the laboratory the river water samples were subsampled and analyzed for 

dissolved oxygen (DO), inorganic–N (NH4–N, NO2–N, NO3–N), dissolved total organic 

carbon (TOC), electrical conductivity (EC), pH, and dissolved N2O.  DO was measured using 

the iodometric titration method with an azide modification (Clesceri et al., 1998). Inorganic-

N concentrations were determined using colorimetric methods and an auto-analyser with a 

detection limit for NO3-N L-1, NO2-N L-1 and NH4-N L-1 of 0.10, 0.01, and 0.01 mg L-1 

respectively (Alpkem FS3000 twin channel analyser; application notes P/N A002380 and P/N 

A002423). Dissolved TOC was calculated from the difference between dissolved total carbon 
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(TC) less dissolved inorganic carbon (TIC), i.e. TOC = TC-TIC. Dissolved carbon analyses 

were performed with a Shimadzu TOC-Analyser fitted with a Shimadzu ASI-5000A 

autosampler. The detection limit for dissolved organic carbon and inorganic was 1 mg L-1. A 

conductivity meter (CDM83, Radiometer, Copenhagen) was used to measure the EC of the 

water samples. 

Concentrations of dissolved gases in the river water samples were analysed according 

to Davidson and Firestone (1988) with appropriate Bunsen coefficients obtained for N2O 

(Young, 1981). Initially a microbial inhibitor (mercuric chloride) was added to the water 

sample (Kirkwood, 1992). However, use of the inhibitor was discontinued when tests showed 

no difference in the dissolved N2O results between inhibited and non-inhibited samples. 

Nitrous oxide equilibrium concentrations (nmol L-1) in the river water were determined using 

an atmospheric N2O partial pressure of 3.1 x10-7 atm and the appropriate solubility 

coefficient for N2O (mol L-1 atm-1) for the temperature of the water sampled (Weiss & Price, 

1980)). Dissolved N2O concentrations were then converted to units of μg N2O-N L-1. 

An N2O–N flux was calculated for the river reach between sites 1 and 4, according to 

the IPCC methodology and assumptions, using the following data: a NO3–N concentration of 

2.8 mg L-1, a river flow of 3.41 m3 s-1, and an average river width of 10 m with a length of 

10,000 m. A theoretical N2O flux ( ; mole mONF 2
-2 s-1) was also calculated using the stagnant-

two-film approach (Liss & Slater, 1974): 

H

ONON
WON K

pONVF 2
2

2
2 ]([ −−=  

Where KH was the Henry’s Law constant (atm. m3. mole-1), pN2O the partial pressure of N2O 

in the atmosphere (atm.), [N2O] the concentration of N2O in the water (mole m-3), and  

the transfer velocity (m s

ON
WV 2

-1). The value of was estimated from the transfer velocity of a ON
WV 2
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reference gas, oxygen, as  (Holmen & Liss, 1984). Transfer velocity of 

oxygen was assigned as discussed below in the results and discussion sections. 

22 913.0 O
W

ON
W VV ×=

River surface N2O flux measurements and associated water samplings were carried 

out on the LII river from autumn through to spring. Surface N2O flux measurements were 

taken on the 3rd, 17th, and 31st May, 17th June, 8th July, 16th August, and the 10th September. 

Dissolved N2O concentrations were measured on the same dates as the N2O flux 

measurements and also on the 5th and 26th of April, and the 28th of July. Inorganic-N and 

dissolved carbon sample dates were the same as for the dissolved N2O samples but also 

included the 5th and 19th of March, and 1st of October. To establish if these results were 

representative of other spring-fed rivers, N2O flux and NO3–N measurements were also taken 

from another agriculturally influenced spring-fed river approximately 10 km to the north of 

the LII, the ‘Halswell’; and two other spring-fed rivers the ‘Avon’ and the ‘Heathcote’ that 

flow through the major urban centre of Christchurch, approximately 25 km away (Fig. 1). 

These other rivers were sampled on one occasion (18th August) using the same methods. 

 

Results 

Meteorological data and river chemistry 

Average wind run, and air temperatures over the study period were 342 km d-1 (range 

84 to 689 km d-1) and 9.2 oC (range 4.2 to 14.5 oC) respectively (Fig. 2). Maximum daily 

rainfall occurred in August with a maximum rainfall of 65 mm on August 6th (Fig. 2). The 

river flow ranged from 2.98 to 4.07 m3 s-1 with the respective residence times of the water in 

the LII river ranging from 10.2 to 7.5 h (Table 1) 

River water pH ranged from 6.2 to 7.6, and increased from site 1 (the source) to site 4 

(p < 0.05). Site 1 had significantly lower EC values than the other sites (p < 0.01), averaging 

160 μS cm-1 [± Std. Dev. 8]. The average EC values at sites 2, 3 and 4 averaged 190 μS cm-1 
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[± Std. Dev. 20] with no differences between these sites. At sites 2 to 4 the maximum EC 

values (259 μS cm-1) occurred immediately after a large rainfall event on 6th August. No 

increase in EC was measured at site 1 at this time. Water temperatures were stable at site 1 

(13.1 oC [± Std. Dev. 0.3]) and differed significantly from sites 2 to 4 (p < 0.01), where 

changes in river water temperature (range 8.1 - 13.0 oC) were driven by changes in air 

temperature. Correlations (r) between air temperature and water temperature for sites 2, 3 and 

4 were 0.91, 0.87 and 0.89 respectively. At site 1 the DO concentrations averaged 6.9 mg O2 

L-1 [± Std. Dev. 0.3] and were significantly lower (p < 0.05) than concentrations at sites 2 to 4 

where DO concentrations averaged 8.5 mg O2 L-1. At sites 2 to 4 the DO concentrations 

decreased by 2 mg O2 L-1 immediately following the high rainfall event in August for several 

days before returning to their previous levels. 

Concentrations of NO3–N in the river at sites 1, 3 and 4 were quite stable throughout 

the study averaging 2.8 mg L-1 and remained within the range of 2.3 to 3.3 mg L-1 (Table 2). 

However, at site 2 concentrations of NO3–N were higher (p < 0.01) and ranged from 3.4 to 

5.2 mg L-1 (Table 2). The NH4–N concentrations in the LII were an order of magnitude lower 

and constantly  < 0.2 mg L-1 (Table 2) with peak concentrations occurring at the start of the 

study in March, mid-April for (sites 2 -4), mid-winter (all sites), and following the high 

rainfall event in mid-August (sites 2-4). Concentrations of NO2–N were generally below the 

level of detection (0.01 mg L-1) except for sites 3 and 4 following the high rainfall event in 

mid-August when NO2–N concentrations were 0.02 and 0.04 mg L-1 respectively. 

Total organic-C concentrations were approximately 3 mg L-1 at the start of the study 

and then decreased in early April to be < 2 mg L-1 where they stayed except for the rise in 

August following the high rainfall event when levels increased significantly at sites 2 - 4 (Fig. 

3). Dissolved inorganic-C concentrations did not differ significantly between sites and were 
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lowest at the commencement of the study, mean concentrations ranging from 13 -14 mg L-1 

(Fig. 3).  

 

Dissolved N2O and N2O fluxes 

Gas ebullition was observed from the sediment at the spring (site 1). The concentration 

of N2O in the evolved gas bubbles, measured in May, was 7.9 μL L-1
. The average 

concentrations of dissolved N2O-N at the four sites, in the LII river, ranged from 0.43 to 1.89 

μg N2O-N L-1 and decreased (p < 0.01) with increasing distance from the spring (Table 3). 

Significant differences between sites did not occur until 17th of June when the dissolved N2O 

at sites 1 and 2 were significantly higher (p < 0.01) than at sites 3 or 4. This pattern continued 

until the end of the study. When averaged across all sampling times, the values of dissolved 

N2O at sites 1, 2, 3, and 4 were 1.36 (0.40), 1.33 (0.41), 0.74 (0.23), and 0.67 (0.24) μg N2O-

N L-1 respectively (numbers in brackets are standard deviations). These represent N2O 

saturation levels for sites 1, 2, 3, and 4 of 404 (119), 395 (118), 223 (68), and 201 (74) %, 

respectively (numbers in brackets ± Std. Dev.).  

Ratios of dissolved N2O–N: NO3–N ranged from 0.00015 to 0.00067 across all 

sampling dates (Table 3). The mean ratio N2O–N: NO3–N, over all sampling dates, decreased 

from site 1 to 4 with values of 0.00049 (±0.00011 Std. Dev.) to 0.00022 (±0.00007 Std. Dev.) 

respectively. A regression analysis of this ratio against distance downstream from the site 1 

was highly significant (r2 = 59.2%, p < 0.01). 

The N2O–N fluxes, from individual sampling dates, ranged from 38-501 μg m-2 h-1. 

Mean fluxes of N2O–N at sites 1 and 2 were higher than those at sites 3 and 4 for the majority 

of sample dates (Table 4). When averaged over the entire period of the study the N2O–N 

fluxes from sites 1, 2, 3 and 4 were 197(88), 241(86), 136(49), and 110(29) μg m-2 h-1 

respectively (numbers in brackets ± Std. Dev.), with the average fluxes from sites 1 and 2 
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significantly higher (p < 0.01) than those from sites 3 and 4. The overall mean N2O–N flux 

was 171 μg m-2 h-1 (± Std. Dev. 85). The N2O fluxes and NO3–N concentrations measured 

from the LII river were typical of those measured from the other local agricultural and urban 

spring-fed rivers (Fig. 4a). Of the other rivers, which flow through Christchurch, the Avon 

river had the highest N2O–N flux (973 μg m-2 h-1), 1 km from its source, and the lowest NO3–

N concentrations (Fig. 4a). 

The mean N2O–N fluxes and the mean dissolved N2O concentrations showed no 

relationship to the corresponding NO3–N concentrations (Fig. 4a, 4b). The regression 

between the mean dissolved N2O concentrations versus the mean N2O–N fluxes, for all sites, 

was significant (r2 = 0.31, p < 0.05) and further improved if the additional data points of zero 

flux with a mean equilibrium N2O-N concentration of 0.34 μg N2O-N L-1 were included (r2 = 

0.58, p < 0.01, Fig. 5). If data from site 1 were excluded, on the basis that some of the N2O in 

the measured flux was almost certainly due to ebullition events, then the regression improved 

to r2 = 0.74.  Predicted N2O fluxes, based on dissolved N2O concentrations are plotted in 

Figure 5 based on oxygen transfer velocities of 0.5x10-4 m s-1 and 2.5 x10-4m s-1 and are 

discussed below. 

The gross advective daily discharge of dissolved N2O downstream from site 4 equalled 

0.20 kg dissolved N2O–N d-1, based on an N2O concentration of 0.67 μg N2O–N L-1 and a 

mean flow of 3.41 m3 s-1. This was less than the daily N2O–N flux of 0.41 kg N2O–N d-1 

evolved from the 10 km reach of river leading to site 4, based on a mean river width of 10 m 

and a mean N2O–N flux of 171 μg m-2 h-1. The daily discharge of NO3–N downstream from 

site 4, equated to 825 kg NO3–N d-1, based on the mean NO3–N concentration of 2.8 mg L-1 

and a mean flow of 3.41 m3 s-1. Thus the daily mean loss of N2O–N was insignificant 

compared to the NO3–N lost, equalling just 0.07% of the NO3–N discharged from site 4. 
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The IPCC default value for EF5–r (0.0075 kg N2O kg-1 NO3–N) yielded a calculated 

daily flux of 6.2 kg N2O–N d-1 from the LII river whereas the average measured flux was 

0.41 kg N2O–N d-1 i.e. just 6.6% of that calculated using the IPCC methodology. 

 

Discussion  

River chemistry 

The values of pH, EC, and DO in the LII were typical of natural freshwater systems 

(Dojlido & Best, 1993). The measured values of temperature, pH, EC, TOC and DO were 

relatively constant at site 1 indicating that water chemistry at this site was predominately 

influenced by the water discharged from the spring and relatively unaffected by the climatic 

changes, physical, and/or biological inputs that subsequently influenced the LII river 

chemistry downstream from site 1. The observed increases in NH4–N at site one between 

April and August are not readily explainable but could be related to high populations of 

aquatic birdlife resident there during this time.  

The high rainfall event in August followed a period of snowfall and the surrounding 

land was water-saturated. Due to the intensity of the rainfall event, overland flow of water 

occurred. This accounted for the increased levels of NH4–N, EC and TOC, and the observed 

decrease in DO following the rainfall event. Interestingly the NO2–N levels also increased at 

this time, possibly indicating a period of denitrifying activity following the high rainfall 

event. Other studies have also found elevated TOC concentrations occurring from surface or 

near surface runoff following storm events (Inamder et al., 2004). Dissolved oxygen levels 

indicated that the LII was generally well oxygenated throughout the study period.  

 

Dissolved N2O and NO3–N 

 15



   

The higher NO3–N concentrations at site 2 were atypical. Further NO3–N addition(s) 

must have occurred either from drainage tributaries or from further groundwater flow(s), with 

high NO3–N concentration, between sites 1 and 2. Flows at sites 1 and 2 were not gauged but 

it was readily apparent, visually, that the river flow was greater at site 2 than at site 1. 

Additional work needs to be performed to clarify where and how this NO3–N input occurs.  

Assuming nil production of N2O in the river, and assuming no other inputs, there 

should have been a decrease in the dissolved N2O concentration, due to N2O degassing from 

the water surface between sites 1 and 2. This was not observed despite the relatively high 

N2O fluxes measured. Thus additional inputs of N2O occurred either via in-situ 

nitrification/denitrification processes or the further addition of water(s) containing high levels 

of dissolved N2O. Additional N2O inputs could have occurred as for NO3–N, as described 

above. Dowdell et al. (1979) measured dissolved N2O in agricultural drainage waters. 

Alternatively in-stream production of N2O could also have occurred due to microbial 

processes. Denitrification as a source of N2O cannot be ruled out, despite the well oxygenated 

status of the LII, because it could have been occurring at the interface between the anaerobic 

sediments and water-body (Petersen et al., 2001). 

The decrease in both the NO3–N and dissolved N2O–N concentrations between sites 2 

and 3 could, again, have been due to dilution from water with lower NO3–N and dissolved 

N2O–N concentrations, or via consumption processes. Further additions of water to the LII 

between sites 2 and 3 occurred through a multitude of drainage ditches. 

The observed drop in the dissolved N2O concentration, between sites 2 and 3, was not 

maintained between sites 3 and 4, a distance of 2.3 km, despite the water still being over-

saturated with N2O (> 200%). This suggests that the N2O flux from the river surface was 

matched by N2O inputs over this reach of the river. Again further work is required to identify 

the source(s) and scale of the N2O inputs. It was noticeable that over this stretch of the river 
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that the geometry of the river became shallower and broader thus there was a larger sediment 

area exposed per unit volume of water. This may have contributed to more anaerobic 

sediment surfaces for in-situ N2O production (Petersen et al., 2001). Alternatively it may be 

that the NO3-N measurements were not sensitive enough to detect the possible transformation 

of NO3-N to N2O-N. As noted above the daily advective loss of N2O-N from site 4 was only 

0.07% of the NO3-N discharged. Assuming the same fraction of NO3-N was being 

transformed to N2O-N would require a decrease in the NO3-N concentration of only 0.002 mg 

NO3-N L-1. This is well below the level of detection for the NO3-N analyses. 

 

N2O fluxes and IPCC calculations 

As observed from the ebullition events and high levels of N2O saturation in the water 

it can be concluded that N2O was introduced into the river at its source, site 1. Furthermore, 

dissolved N2O was probably introduced into the LII along the reach from site 1 to site 2 via 

other tributaries or possibly further groundwater flow. The EF5-g component of EF5 was 

formulated on the basis that the N2O formed in surface soils undergoes transport with 

leaching water to the groundwater and eventually degasses to the atmosphere by upward 

diffusion or following entry of groundwater into surface waters (Mosier et al., 1998). A study 

by Reay et al. (2003) demonstrated how rapidly N2O degassing from drainage waters can 

occur. It is apparent that degassing of N2O already present in the groundwater, hereafter 

referred to as antecedent N2O, contributed significantly to the N2O fluxes measured in our 

study, especially between sites 2 and 3, as can be seen from the following calculation. Based 

on an LII river velocity of 0.28 m s-1 it requires 3.3 h for river water to travel between sites 2 

and 3, through an estimated area of 33000 m2. Assuming further, a river flow of 3 m3 s-1, and 

the drop in dissolved N2O was as measured i.e. 1.34 to 0.67 μg N2O–N L-1, then the 

calculated N2O–N flux equates to 219 μg m-2 h-1, which is of quite similar magnitude to the 
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actual mean fluxes measured at sites 2 and 3 of 136 μg m-2 h-1 (49 Std. Dev.) and 110 μg m-2 

h-1 (29 Std. Dev.) respectively. Thus in this study where the LII river is fed from an aquifer, 

and is of a relatively short length, degassing of antecedent N2O appears to be a dominant 

component of the N2O emissions.  

  The average N2O–N flux from the LII was intermediate in magnitude 

compared with other studies where in-situ N2O surface fluxes have been physically measured 

from streams or rivers. Nitrous oxide fluxes from the Hudson river, Platte river, and a stream 

exiting a rice paddy area have been recorded as having N2O–N fluxes of 6, 6, and 240-56580 

μg N2O–N m-2 h-1 respectively with corresponding NO3–N levels of 0.6, 0.1-11.2, and 20 mg 

NO3–N L-1 (MacMahon & Dennehey, 1999, Hasegawa et al., 2000, Cole & Caraco, 2001). 

The ratios of N2O–N: NO3–N measured in this study are within the range of values reviewed 

and quoted by Nevison (2000a) who found values of 0.0002 -0.0044 (groundwater) and 

0.0005 - 0.01 (drainage ditches), with no strong difference between groundwater and 

drainage ditches. The lack of any significant relationships between the NO3–N concentrations 

dissolved N2O–N, and the N2O–N fluxes supports the suggestion that degassing of the 

antecedent N2O–N load occurred without any concurrent transformation of the NO3–N load 

(Reay et al., 2003). 

 We have made the assumption that all of the NO3–N in the LII was anthropogenic and 

calculated our “IPCC flux” using the EF5-r component of 0.0075. Our average measured 

N2O–N flux was only 6.6% of that calculated using the IPCC approach. In other words for 

the LII an EF5-r factor of 0.0005 was more appropriate. This is a large discrepancy and the 

possibility that our measurement method introduced significant bias needs to be considered. 

Our measured fluxes could possibly have underestimated the actual fluxes due to the 

headspace methodology used. The gas transfer velocity of a gas from water to the atmosphere 

is affected by both water turbulence and wind speed (MacIntyre et al., 1995). Thus the water 
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surface turbulence under our headspace enclosures may have varied compared with that of 

the surrounding river. Likewise the lack of wind inside the headspace may also have caused 

lower fluxes; the wind run was significant (Fig. 2). In addition the bobbing motion of 

chambers on the water can create pressure fluctuations that may also influence the gas 

transfer velocity (MacIntyre et al., 1995). 

 Predicted N2O emissions, based on dissolved N2O concentrations, were presented in 

Figure 5 using 2 arbitrary values of the transfer velocity. These values were chosen so that 

the predicted fluxes represented the upper and lower limits of the measured fluxes. The 

majority of the measured headspace flux data fell between these two arbitrary boundaries. 

The values of  used in Figure 5, 2.28 x10ON
WV 2 -4 and 3.65 x10-5 m s-1, correspond to oxygen 

transfer velocities of 2.5 x10-4 and 4.0 x 10-5 m s-1 respectively. As noted above transfer 

velocity is dependent on wind flow. Out wind speed data was collected at a height of 10 m 

with the average daily wind run equal to 342 km d-1 or 3.95 m s-1.  Interpolating the data of 

Liss (1973) provides an oxygen transfer velocity of approximately 5 x10-5 m s-1 at this wind 

speed. However, it is well recognized that wind speed decreases closer to the water surface 

via the usual logarithmic profile (Israelsen & Hansen, 1962). Conversion of the wind speed at 

10 m (Z1) to a wind speed at a height of 0.05 m above the water surface (Z2) can be achieved 

using: 
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⎝
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Where Z0 equals the “effective roughness height”, assumed to be 0.01 m, and U1 and U2 are 

the respective wind speeds at heights Z1 and Z2. Thus the average wind speed at 0.05 m above 

the average water is calculated to equal 0.92 m s-1. Given that this is the more likely wind 

speed at the water surface in our study then the transfer velocity for oxygen also decreases. If 

the data of Liss (1973) is extrapolated this value is approximately1 x10-5 m s-1. These 
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calculations suggest that our measured fluxes and methodology used were in general 

agreement with theoretically derived fluxes. These theoretically derived fluxes were 

dependent on the value of the oxygen transfer velocity assumed which was in turn highly 

dependent on wind speed. In future, experimentation should include wind speed 

measurements taken at the water surface so that more accurate transfer velocities can be 

calculated. 

Given the above discussion on degassing it appears that the calculated IPCC flux is 

not only an overestimation but that the EF5-r factor for the LII was actually considerably < 

0.0005 due to the dominant role played by degassing of antecedent N2O. This is despite the 

potential for underestimating the flux with the chamber methodology used. In practice a 

discrete measurement of EF5-g is extremely difficult, requiring detailed and extensive 

resources to acquire knowledge on the presence of groundwater flows into a river and their 

respective dissolved N2O concentrations. In most instances the antecedent N2O contribution 

to a river flux measurement will be unknown. It has been previously indicated that 

denitrification in alluvial aquifers, where N2O concentrations may be up to 100 times greater 

than the concentrations in the overlying river water, may contribute to dissolved N2O 

concentrations in river water (MacMahon & Dennehey, 1999). Thus, as this study 

demonstrates, caution must be exercised in assigning N2O fluxes from river surfaces solely to 

the EF5-r emission factor if contributions from EF5-g are present. 

Of course river N2O emissions could be treated as strictly that, i.e. the N2O flux from 

the river system in question, since this is an easily definable area from which to take actual 

flux measurements. Then if the catchment’s area and NO3–N leaching load are known 

perhaps an amalgamated EF5 emission factor for the river system can be derived for the 

catchment concerned. In our study, neither the catchment’s area nor the NO3–N leaching load 

were readily definable due to the flat nature of the surrounding landscape and the unknown 
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groundwater contributions to the aquifer feeding the river. Further research needs be 

performed to derive the exact origins and potential processing of the N2O in the LII river and 

this could be performed using isotopic studies. 

Previously the few river studies that have measured N2O fluxes directly have been 

performed on either large rivers (MacMahon & Dennehey, 1999, Cole & Caraco, 2001) or on 

a small agricultural stream (Hasegawa et al., 2000). Clearly water residence times and river 

geometries vary and these in turn will influence the potential for in-stream processing of 

NO3–N (Petersen et al., 2001). For example, the residence time in the Hudson river study 

averaged 0.15 yr (Cole & Caraco, 2001) while in our study the estimated residence time was 

< 11 h. This short residence time may help to explain the relatively conserved NO3–N loading 

in the LII, despite the continual presence of water soluble organic carbon. Further work is 

also required to assess the in-situ NO3–N transformations in rivers such as the LII. 

Our results may have significant implications for New Zealand’s river systems given 

that  the rivers are relatively short, by world standards, and will have short residence times 

when compared to those of other studies e.g. MacMahon & Dennehey (1999). 

This study also reinforces the comments made by Reay et al.(2003), who cautioned 

against making total N2O flux estimates for drainage waters based on measurements at 

widely spaced sampling points. Had we measured fluxes at only site 1 or only site 4 we 

would have obtained a misleading result. The cumulative data from four sites provides a 

more informed appraisal of the variation and magnitude of the fluxes, but clearly 

demonstrates the need for spatially intensive sampling. Clearly a key factor in determining 

where to measure river N2O fluxes is the possible presence of contributing groundwater flows 

that may contain antecedent dissolved N2O. This will depend on the hydrological network of 

the river source. Aquifer-fed rivers may behave differently to those rivers where significant 

contributions come from overland flows. Our study highlights the suggestion made that the 
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IPCC methodology for assessing indirect N2O emissions be at least partially spatially explicit 

(Groffman et al., 2002). River factors such as the ratio of depth: width, speed, gradient, 

residence time, and water sources should perhaps be considered. Our results also support the 

hypothesis that the IPCC methodology over-estimates the anthropogenic source of N2O 

(Nevison, 2000b), at least with respect to the EF5 emission factor. 

In summary our flux measurements from the river surface indicate significant 

degassing of antecedent N2O with a relatively conserved NO3–N loading. The measured N2O 

fluxes, concentrations of dissolved N2O, and N2O–N: NO3–N ratios were all within the range 

of previously reported values. Calculation of an EF5-r factor, based on the LII river NO3–N 

load and measured N2O–N fluxes yielded a result that was approximately 6.6% of the IPCC 

default EF5-r value. However, included in this calculation is a contribution from antecedent 

N2O that should really be included in an EF5-g emission factor. Further work is required to 

separate out the magnitude of the N2O–N fluxes from these two sources. 
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Table 1 Water velocities, river flow and residence times of the LII river at Site 4 

Season Date Average water 
velocity 
(m s-1) 

River flow 
 

(m3 s-1) 

Residence 
time 
(h) 

Fall 31-May 0.26 2.98 10.2 
Winter 17-Jun 0.30 3.34 9.1 
Winter 8-Jul 0.28 3.32 9.2 
Winter 16-Aug 0.23 3.35 9.1 
Spring 10-Sep 0.32 4.07 7.5 
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Table 2 Mean nitrate-N (NO3-N) and ammonium concentrations (NH4-N) in the LII river 
over time, standard error of the mean was < 0.01 in all cases (data not presented). 
N form Season Date Site 1 Site 2 Site 3 Site 4 

Fall 5th March 3.25 4.72 2.63 2.56 NO3-N 
(mg L-1)  19th March 3.24 5.19 2.77 2.69 
  5th April 3.07 3.36 2.86 2.29 
  26th April 2.98 3.48 2.91 2.82 
  3rd May 2.83 3.71 2.85 2.81 
  17th May 2.88 3.59 2.95 2.95 
  31st May 2.85 3.82 3.05 3.06 
 Winter 17th June 2.83 4.11 2.95 2.88 
  8th July 2.83 3.90 2.94 2.93 
  28th July 2.91 3.73 2.85 2.88 
  16th August 2.88 3.75 2.58 2.59 
 Spring 10th September 2.92 3.80 2.82 3.12 
  1st October 2.91 3.86 2.70 2.98 
       

Fall 5th March 0.06 0.06 0.12 0.06 NH4-N 
(mg L-1)  19th March 0.01 0.01 0.06 0.03 
  5th April 0.00 0.05 0.03 0.04 
  26th April 0.01 0.05 0.05 0.05 
  3rd May 0.01 0.01 0.02 0.02 
  17th May 0.02 0.03 0.03 0.03 
  31st May 0.04 0.03 0.03 0.03 
 Winter 17th June 0.06 0.06 0.07 0.08 
  8th July 0.04 0.02 0.04 0.04 
  28th July 0.01 0.01 0.01 0.01 
  16th August 0 0.02 0.08 0.11 
 Spring 10th September 0 0 0 0 
  1st October 0 0 0 0 
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Table 3 Mean dissolved N2O-N concentrations (μg N2O-N L-1); n = 3 numbers in brackets are 
standard error of the mean) and dissolved N2O-N: NO3-N ratios. 

 Season Date Site 1 Site 2 Site 3 Site 4 
Dissolved 
N2O-N 

 
Fall 5th Apr. 1.37 (0.11) 1.09 (0.12) 0.77 (0.07) 0.54 (0.06)

  26th Apr. 1.43 (0.01) 1.08 (0.17) 1.06 (0.16) 1.10 (0.18)
  3rd May 1.04 (0.42) 1.27 (0.03) 0.74 (0.03) 0.65 (0.01)
  17th May 1.11 (0.46) 1.38 (0.06) 0.79 (0.04) 0.69 (0.01)
  31st May 1.26 (0.28) 0.76 (0.55) 0.68 (0.06) 0.49 (0.01)
 Winter 17th Jun. 1.89 (0.12) 1.88 (0.01) 0.88 (0.02) 0.73 (0.01)
  8th Jul. 1.35 (0.03) 1.12 (0.04) 0.51 (0.01) 0.45 (0.01)
  28th Jul. 1.21 (0.04) 1.12 (0.01) 0.52 (0.01) 0.43 (0.01)
  16th Aug. 1.49 (0.03) 1.94 (0.03) 0.81 (0.26) 0.94 (0.01)
 Spring 10th Sep. 1.68 (0.05) 1.50 (0.02) 0.65 (0.01) 0.52 (0.01)
    
Ratio 
N2O-N: NO3-N 

 
Fall 5th Apr. 0.00045 0.00032 0.00027 0.00024

  26th Apr. 0.00048 0.00031 0.00036 0.00039
  3rd May 0.00037 0.00034 0.00026 0.00023
  17th May 0.00039 0.00038 0.00027 0.00023
  31st May 0.00044 0.00020 0.00022 0.00016
 Winter 17th Jun. 0.00067 0.00046 0.00030 0.00025
  8th Jul. 0.00048 0.00029 0.00017 0.00015
  28th Jul. 0.00041 0.00030 0.00018 0.00015
  16th Aug. 0.00052 0.00052 0.00032 0.00036
 Spring 10th Sep. 0.00057 0.00040 0.00023 0.00017
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Table 4. Mean dissolved N2O-N fluxes (μg m-2 h-1). Numbers in brackets are standard errors 

of the mean, n = 3. 

Season Date Site 1 Site 2 Site 3 Site 4 

Fall 3rd May 307 (28) 173 (44) 179 (15)   90 (7) 

 17th May 109 (6) 223 (7) 151 (10) 119 (5) 

 31st May 299 (13) 320 (14)   78 (6)   89 (6) 

Winter 17th June 183 (12) 311 (30) 139 (9) 131 (7) 

 8th July   93 (8) 241 (12)   90 (2)   75 (2) 

 16th August 211 (10) 272 (4) 195 (6) 124 (9) 

Spring 10th September 188 (10) 173 (10) 106 (6) 138 (4) 
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Figure Legends 

 

Fig. 1 Map showing global and regional locality of the study site. 

 

Fig. 2 Meteorological data recorded at a distance of 3 km from site 1. 

 

Fig. 3 Dissolved water soluble carbon concentrations in the LII river water over time at each 

site. Numerals in the legend refer to site number while OC and IC refer to organic and 

inorganic carbon respectively. 

 

Fig. 4 The relationship between N2O–N fluxes and NO3–N concentrations for the LII river 

(sites 1 to 4), Avon, Heathcote and Halswell rivers, 7 sample dates (Fig 4a); and the 

relationship between dissolved N2O and the NO3–N concentrations for the LII river, 

10 sample dates (Fig. 4b) 

 

Fig.5 Relationship between the mean N2O–N fluxes and mean dissolved N2O 

concentrations for sites 1 to 4. Error bars are ± standard error of the mean, y axis n = 

10, x axis n = 3). Also shown are the equilibrium concentrations of N2O in the river 

water and the predicted N2O fluxes at N2O transfer velocities ( )of  2.28 x10ONV 2 -4 

(solid line) and 3.65 x10-5 m s-1 (dotted line). 
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Figure 1 
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Figure 2 
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Figure 4 
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Figure 5 
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