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Abstract. Schlick’s approximation of the term xp is used primarily to reduce the 
complexity of specular lighting calculations in graphics applications. Since 
moment functions have a kernel defined using a monomial xpyp,  the same  
approximation could be effectively used in the computation of normalized geo-
metric moments and invariants. This paper outlines a framework for computing 
moments of various orders of an image using a simplified kernel, and shows the 
advantages provided by the approximating function through a series of  
experimental results. 

1   Introduction 

Geometric moments and moment invariants have been extensively used as feature 
descriptors in several pattern recognition and vision related applications [1],[2],[3]. 
Even though many other types of complex and orthogonal moments have also been 
developed in order to get improved feature representation capability in a moment set, 
geometric moments continue to be popular as they have a simple structure that can be 
easily implemented. A number of fast algorithms for the computation of geometric 
moments can therefore be found in literature [4],[5], including VLSI implementations 
[6]. Geometric moments are usually normalized or scaled to reduce the dynamic range 
of values. Most commonly found applications of geometric moments are pattern rec-
ognition, template matching, image classification, and pose estimation. 

This paper proposes a completely new approach to computation of normalized geo-
metric moments and their invariants using Schlick’s approximation. The approxima-
tion of the term xp by a simple fraction of polynomial functions when x has a value 
less than 1, is found to be useful in lighting calculations involving specular reflec-
tions[7],[8]. Lighting involves a huge amount of computations in many graphics ap-
plications with large polygonal count. Schlick’s approximation is used in such cases 
to get better frame rates by significantly reducing the number of multiplications in the 
specular component. Since geometric moments are also based on monomials of the 
form xpyq, we could use Schlick’s approximation to have a computationally simpler 
representation of the kernel, and a correspondingly fast algorithm to compute the 
invariants. In this paper we give the general formulation of normalised geometric 
moments and  their invariant functions, and demonstrate how Schlick’s approximation 
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could be used effectively in this framework. Most importantly Schlick’s approxima-
tion finds application in pattern recognition and image classification where normal-
ized invariants are used as feature descriptors. 

The organisation of this paper is as follows. The next section gives an overview of 
geometric moments and introduces normalized translation invariants. Schlick’s ap-
proximating functions and their extensions that are suitable for defining normalized 
moments are given in Section 3. Experimental results showing the invariant character-
istics of normalized moments using Schlick’s approximation, as well as the reduction 
in computational complexity with the proposed method are provided in Section 4. 
Conclusions and possible extensions of the work presented in this paper are given in 
Section 5. 

2   Geometric Moments and Invariants 

The two dimensional geometric moments of an image intensity distribution I(x, y), is 
defined as follows [3]: 
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where p, q  are positive integers, and mpq denotes moments of order p+q. For an image 
of size MxN pixels (0≤ x<M, 0≤ y<N) , the above moment integral is often computed 
as 
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The coordinates of the image cetnroid can be computed from the first order mo-
ments as follows: 
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The central moments defined below are used for translation-invariant recognition 
of images. 
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From the above equation, it is clear that central moments evaluated at high orders 
tend to become numerically unstable due to the monomial structure of the kernel 
functions.  Image coordinate values are usually normalized to a value less than 1 by 
dividing by the image size, in order to eliminate this problem. With coordinate nor-
malization, moment values tend to zero instead of infinity as the moment order  
increases. Normalization also helps in reducing the sensitivity of moment functions to 
image noise. We use the following definition for normalized translation-invariants: 
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Both the above terms can take values in the range [−1, 1]. The kernel of Eq.(5) in-
volves product terms that can add to the complexity of a moment computation proc-
ess, especially when the values of p and q are large.  But this function can be easily 
approximated by a simple fraction containing two polynomials and only linear terms, 
at the same time preserving the desired invariant properties. This approximation can 
drastically reduce the amount of computations required for high order invariants. 

3   Schlick’s Approximation 

The Schlick’s approximation of an exponential function  xp ,  where  x ∈ [0,1),  is 
given by [7] 

xppx

x
xS p −+

=)(  ,          p ∈ [1,∞),                     

              = 1,             if  p = 0.                                                    (7) 

The above formula is commonly used in Computer Graphics to approximate the 
term (cosφ)f that appears in the traditional Phong’s illumination model for specular 
reflections [8], with a simple function that does not require eponentiation. Interest-
ingly, Sp(x) represents the ratio of a linear interpolation between 0 and 1 (given by x in 
the numerator) to a linear interpolation between p and 1 (given by p(1−x)+ x  in the 
denominator), with x as the parameter for interpolation. Thus Sp(x) has a value rang-
ing from 0 to 1, for all p.   Fig. 1 gives a plot of variations of xp with respect to x∈ 
[0,1),   for different values of p. Fig. 2 shows that the function in (7) closely approxi-
mates the values of xp. It is also clear from the figure that Schlick’s approximation 
provides a slower convergence to zero for x<1, as the value of  p is increased. 
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Values of pow(x,p)
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Fig. 1. A graph showing the values of the monomial xp for various values of p 

Schlick's Approximation
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Fig. 2. A graph showing the approximations of xp using Schlick’s functions, for different values 
of p 
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We note here that the normalized coordinate variables used in moment computa-
tion as given in Eq. (6) have an extended range [−1, 1].  We correspondingly extend 
the Schlick’s approximation function in Eq. (7), for x∈ (−1, 1) as follows: 
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  Sp(x) = 1,             if  p = 0.                                                 (8) 

The translation invariants given in Eq.(5) can now be rewritten based on the above 
definition as follows: 
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In the following, we analyse the effect of approximation on accuracy and invariant 
characteristics of the above functions. 

4   Experimental Results 

In this section we present the results of a comparative analysis of the two methods for 
moment computation based on Eqs(5) and (9). Fig. 3 shows a binary image of size 
200x200 pixels used in the experiments. For this image, the centroid (Eq.(3)) has 
coordinates (106.4, 105), with the origin of the image coordinate system located at the 
bottom-left corner. 

 
Fig. 3. Binary image of an aircraft model used for experimental evaluation of the proposed 
method 

The values of 0pμ̂ computed using Eqs.(5) and (9) for the above image are shown 

in Fig. 4. The values obtained using Schlick’s approximation matches closely with the 
original values when p is odd. Higher order moments tend to become zero because of 
coordinate normalization, but Schlick’s approximation yields an offset when p is 
even, and this offset could be useful in a feature vector used for pattern matching.  
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Comparison of Moments (q=0)
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Fig. 4. Comparison of central moments with and without Schlick’s approximation 

This offset also appears for functions ppμ̂ , but converges to zero as the value of p is 

increased. 
The primary advantage a Schlick’s approximation based moment function gives is 

the large reduction in the number of multiplications required for the monomial kernel. 
The computational time required for evaluating moments of order p was analysed 
with the value of p ranging from 0 to 100 (Fig. 5). The computations were performed 
on a 2.8GHz Intel-Pentium 4 CPU with 1 GB of RAM. Figure 4 gives a comparison 

of CPU times with the values of  qp yx ˆ,ˆ  in Eq. (5) computed using (i) repeated multi-

plication, (ii) built-in “pow()” function and (iii) Schlick’s approximation (Eq. (8)). In 
all the three cases, moments were computed using the straight forward direct-sum 
method. The computational time could be further reduced by using the separabili-
typroperty of the kernel functions. This property is not affected by Schlick’s  
approximation. 

Moment functions that are invariant with respect to rotational transformations were 
derived by Hu, using the theory of algebraic invariants.  If we use the translation in-
variants given in Eq.(5) , (9) in Hu’s algebraic expressions, then we get moments that 
are both translation and rotation invariant. Our experiments show that moments 
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Comparison of CPU Time
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Fig. 5. Comparison of CPU times with the moment kernel computed using the exponential 
function and Schlick’s approximation 

obtained using Schlick’s approximation can  be utilized to form invariants, but we 
have to take note of the errors introduced by the approximation. There is clearly a 
trade-off between the approximation errors and the computational advantage that 
Schlick’s approximation provides in the calculation of invariants. As an example, we 
consider a fourth-order invariant given by 

0422404 2 μμμ ˆˆˆ ++=K                                               (10) 

The plots in Fig. 6 can be used to verify the invariant characteristics of the above 
function, computed with and  without Schlick’s approximation. It may also be noted 
that the error introduced by Schlick’s approximation reduces with order (Fig. 4), and 
higher order invariants tend to become more accurate when compared with invariants 
formed with monomial functions. 

The translation invariant characteristics are not found to be affected by Schlick’s  
approximation. This is because the parameter in Schlick’s function is computed after 
translating the image to the centroid, as given in Eq. (6).   
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Rotation Invariant Using Geometric Moments
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Rotation Invariant Using Schlick's Approx.
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Fig. 6. Comparison of moment invariants computed using original moments and Schlick’s 
approximation 

5   Conclusion 

This paper has shown that Schlick’s approximation for the function xp could be used 
to compute normalized geometric moments and invariants for applications in pattern 
recognition. The approximation replaces the power functions in the kernel of the mo-
ment definition by simple rational polynomials, resulting in a significant reduction of 
the amount of computations. The paper has used an extended version of Schlick’s 
approximation to suit the range [−1, +1] of the normalized coordinates. Experimental 
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results have shown that while translation invariant characteristics can be accurately 
preserved in central moments computed using Schlick’s approximation, rotation inva-
raints have larger error introduced range and magnitude. This error, however is found 
to be within acceptable range for image classification and recognition. The computa-
tional advantage provided by Schlicks approximation far outweighs the problems 
associated with an increase in the variance of moment values. 

The paper has thus introduced a mathematical tool used in the field of Computer 
Graphics to the image analysis area. Schlick’s approximation could be used in con-
junction with other methods for fast computation of moments. Further work in this 
area could be directed towards an analysis of approximation errors in the presence of 
image noise, and the derivation of generalized affine invariants using Schlick’s ap-
proximation. 
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