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SUMMARY

We introduce a numerical technique to model set-valued traction-separation laws in plate bending and
also plane crack propagation problems. By use of recent developments in thin (Kirchhoff-Love) shell
models and the extended finite element method, a complete and accurate algorithm for the cohesive
law is presented and is used to determine the crack path. The cohesive law includes softening and
unloading to origin, adhesion and contact. Pure debonding and contact are obtained as particular
(degenerate) cases. A smooth root finding algorithm (based on the trust region method) is adopted.
A step-driven algorithm is described with a smoothed law which can be made arbitrarily close to the
exact non smooth law. In the examples shown the results were found to be step-size insensitive and
accurate. In addition, the method provides the crack advance law, extracted from the cohesive law
and the absence of stress singularity at the tip.

key words: Crack propagation, cohesive traction-separation law, complementarity, plane problems,
plates

1. INTRODUCTION

Cohesive models of fracture are accepted as representative of the near-tip nonlinear zone of
quasi-brittle and certain ductile materials. The idea is attributed to Barenblatt [1]. These
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2 PEDRO M.A. AREIAS AND TIMON RABCZUK

models have certain attractive properties; for example, a pre-existent crack is not necessary.
Neither is the stress singularity in the crack tip which requires a specific discretization to
be represented. Because of this, numerous applications were carried out by several authors
(reviews are available in [2, 3, 4, 5]) and some software packages can currently be used. However,
it is known that for the problem to be well-posed, cohesive models must include an initially
rigid behavior (or at least as stiff as possible, as indicated by Alfano and Crisfield [6]). In finite
element codes, initially rigid models (also called extrinsic, see [7]) cannot be implemented when
only displacement degrees of freedom are used, and regularization adversely affects the results
[7, 8]. In particular, the crack profile and the cohesive zone length result different.

For explicit codes, Papoulia et al. [9] and Sam et al. [8] proposed specialized time-step
solutions, but the results can suffer from interpenetration stress locking due to opposite signs
in stress and opening displacement (as indicated by the conclusions of Papoulia et al. [9]) and a
new model was said to be required. At least two algorithms of solution to deal with the initially
rigid behavior exist: event-driven and step-driven algorithms. A generic comparison between
these methods is provided by Leine and Nijmeijer [10]. In summary, event driven algorithms
are analogous to constraint active-set strategies in optimization problems whereas step-driven
methods use the state of the constraints at each pre-established time-step. Step-driven methods
are appropriate for problems with a large number of complementarity conditions, but are
usually less accurate in terms of resolution [10]. We make use of a fixed-step driven method
and a smooth root-finder.

The locking effect did not occur in the examples shown here. If we identify the problem as
a NCP (non-linear complementarity problem, see also [11]), adhesion and unloading share the
same law unrelated with the behavior of the adjacent continuum. We can therefore employ
a rigorous surface-based traction-separation law with any particular continuum problem,
regardless of the method used to obtain the stress in the continuum. The advantages of this
approach were pointed out by T. Belytschko to the authors of this manuscript [12].

This differs from some perspectives in this field, where a continuum-based cohesive law
(the continuum constitutive law has to correctly represent the pre-localization response, the
localization surface and, in addition, the post-localization response) is often proposed. In
the work of Huespe et al. [13] the authors claim that no discontinuities occur with the
classical approach, but a comparison was not provided there. Here, we perform tests where
interpenetration stress locking is absent. The stress state can travel in a vertical half-line
limited by the maximum stress.

Analytical and numerical studies of fracture in plain strain and thin plates (plane stress) have
been disseminated in the literature (see, e.g. [14, 15]). These fail to provide a comprehensive
solution to the traction-separation behavior.

The introduction of set-valued traction-separation laws in the discrete nonlinear problem of
cohesive fracture leads to a NCP that can be solved by B-smooth solvers [16], interior point
methods or smoothing techniques [17]. The traction-separation laws contain an infinite initial
stiffness and also a compliance in loading which varies with time as an internal variable evolves
(note that, according to Elices et al. [4], hardening should be absent). Smoothing methods can
be implemented and use made of Newton method for smooth functions if some modifications
are introduced in the discrete formulation.

We shall see that if these are done, both smooth and non-smooth problems can be solved
with the same framework. From a solution viewpoint, either line-search or trust region methods
can be used in the inner stage of the method; a continuation method with adaptive smoothing

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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TRACTION-SEPARATION MODELS 3

parameters was proposed by Chen and Harker [18].
Trust-region methods are appropriate for continuous but not necessarily “quadratic-like”

functions: the search direction is obtained as a convex combination of Newton and the steepest
descent Cauchy step. A quadratic merit function is the indicator for the coefficient of the
combination.

Caution is exerted in the formulation of the modified cohesive problem, as smoothing can
introduce artificial spikes in the cohesive law. Details about this are given in section 3. In
addition, only quasi-static growth is shown in this paper and the crack propagation is known
to be stable for the experimental beam tests shown.

The paper is organized as follows: in section 2 the relevant quantities and the formulation are
introduced; in section 3 the mixed method is discussed with a bi-linear cohesive law. Section
4 describes the crack advance condition, which is based on the tip force. Both 2D and plate
bending examples are presented in section 5. Finally, the conclusion follows in section 6.

2. FORMULATION AND DISCRETIZATION

The constrained quasi-static thin plate bending problem consists of equilibrium equation,
mass conservation principle, the Kirchhoff-Love constraint, Dirichlet and Neumann boundary
conditions, stress-displacement jump cohesive law and the Cauchy Lemma for the cohesive
surface. These are grouped in the equation system (1). Figure 1 depicts the relevant ingredients.
A 2D plane stress (or strain) problem can be solved with the same underlying theory by
prescribing the out-of-plane displacement and modifying the elastic law.

The relevant domains are: the body in deformed Ω and reference Ω0 configurations, the
crack core in the deformed Γc and reference Γc0 configurations, the Dirichlet boundary Γu and
Neumann boundary Γt.

DivP T + b0 = 0
ρ0 = det[F ]ρ

Ci3 = δi3




 for x ∈ Ω

u = u for x ∈ Γu

t = t for x ∈ Γt

eq (σn, ∆u) = 0 for x ∈ Γc

det[F ]σn = nT
c (PN c) for x ∈ Γc

(1)

In (1), P is the first Piola-Kirchhoff stress tensor, b0 is the volume force vector in the
reference configuration; ρ0 and ρ are the reference and deformed mass density, respectively.
The customary notation is employed for the coordinates of a given point X : X is the reference
position vector and x is the deformed reference position vector. The deformation gradient, F ,
is given by ∂x

∂X
. The deformed and reference cohesive surface normals are related by:

N c =

(
∂x

∂X

)T

nc (2)

Note that (2) could also be written, in a more traditional form, with the use of norms.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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4 PEDRO M.A. AREIAS AND TIMON RABCZUK

The outer boundary of Ω, ∂Ω is partitioned into two boundaries: ∂Ω = Γu ∪ Γt. For a plate
or shell, mid surface coordinates θ1 and θ2 and a signed distance to the mid surface θ3 are
introduced so that an appropriate form of the equilibrium equation is obtained, based on one-
to-one correspondence X ↔ θi. For convenience, the mid surface coordinates θ1 and θ2 are
indexed as α and β (see [19]). Derivatives of a quantity (•) with respect to α are represented
as (•),α.

Γc

Ci3 = δi3

Γu

Γt

h

eq (σn, ∆u) = 0

Ω = Ω+ ∪ Ω−

Ω−
Ω+

t

∆u

Figure 1. Relevant quantities of the cohesive problem. The equation eq(σn, ∆u) = 0 represents the
force-displacement constraint corresponding to a particular traction-separation model. The thickness

h is assumed to be uniform.

Using this nomenclature, the weak form of the equilibrium equation is:

∫

Ω

sαβx,β · δx,α

√
Gdθ1dθ2dθ3 = δWE (3)

where sαβ are scalar components of the second Piola-Kirchhoff stress in the basis Xα ⊗Xβ

with α = 1, 2 and β = 1, 2. The Jacobian determinant is defined as
√

G = X ,1 · (X ,2 ×X ,3).
Recently, in [15], we introduced a method based on overlapping paired elements (applied to 4

node quadrilaterals) to represent crack propagation in thin shells that allows a relatively direct
implementation of element-wise fracture in plates and shells. The method uses two distinct
deformation maps, one for each part of the cracked shell. In pristine regions, the deformation
maps coincide. A signed distance function g(X) is adopted to identify the crack core Γc.

In the discretization by finite elements, the degrees of freedom are mid-side rotations and
corner-node displacements. Local duplication of homologous degrees of freedom is used in
cracked elements. The basis functions agree with those of the extended finite element method
(e.g. [20, 21, 22]), but a different perspective is taken. Additionally, in the present context, 4
additional degrees of freedom per element are used corresponding to the cohesive stresses.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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TRACTION-SEPARATION MODELS 5

Note that the directors in the deformed configuration follow independent deformation maps.
Using the signed distance to the crack surface, g(X) such that g(X) < 0 for X ∈ Ω−, g(X) > 0
for X ∈ Ω+ and X = 0 for X ∈ Γc0 we have Γc0 = {Xc ∈ R

3 : g(Xc) = 0}.
The shell element used in the discretization contains 4 corner nodes where the mid-surface

positions are interpolated and 4 mid-sides where rotations are interpolated. Implementation
details are given in reference [15]. For completeness, we provide the deformation map (in Ω):

x ≡ ϕ(X) =





r+(θ) + θ3n+(θ)︸ ︷︷ ︸
x+

, g(X) > 0

r−(θ) + θ3n−(θ)︸ ︷︷ ︸
x−

, g(X) < 0
(4)

where r is the mid-surface position and n the deformed director field.

The Cauchy Lemma and the cohesive use specific quadrature points of the extended finite
element method (XFEM). The tip advance criterion is the internal force at the tip.

3. NON-SMOOTH COHESIVE LAW AND THE MIXED METHOD

3.1. Introduction to cohesive traction-separation laws

The concept of cohesive force by Barenblatt [23, 24] (a review is presented in reference [1])
implies the finiteness of the stress caused by canceling of the singularity in the Westergaard
asymptotic field with the singularity created by a cohesive tip. A depiction of this concept
is provided in figure 2 where the mobile equilibrium crack (see Barenblatt [1] and Goodier
[25]) is represented. The position of points A and B is obtained as part of the solution of the
constrained boundary-value problem (BVP) stated in (1). The fracture process zone (FPZ) is
associated with a fracture stress f(x, d) where x is the position along the crack and d is the
opening at a given position. Point A, which is the infimum in x of the support of the cohesive
force function f(x, d), is a function of the opening displacement. Point B is distinct: its motion
is a consequence of equilibrium (hence the name equilibrium crack) by the imposition of a null
stress intensity factor. Other conditions are equivalent to this one: the maximum stress ahead
of the tip or the cusp-type shape of the opening profile of a cohesive crack. A zero force to
close the tip is also an equivalent in the discrete setting.

We direct the reader to the textbook by Bažant and Planas [3] for a description and the
paper by Moës and Belytschko [26] for an application of this concept with the extended
finite element method. It is worth noting that cohesive laws are subject to the condition
that contact complementarity should be obtained as a limit case (null fracture energy and
maximum stress). Smoothing of the contact linear complementarity problem (LCP) has been
performed by Eterovic and Bathe [27].

The numerical treatment of cohesive laws appears to be less studied than the applications.
Originally, regularization was employed in the loading/unloading region of the curves and often
intrinsic (and in certain cases holonomic, [26]) laws were employed in numerical applications.
Smooth loading laws were used by Xu and Needleman [28] but do not constitute a solution for
the implementation in a displacement-based context.

After the papers by Falk et al. [29] and Alfano and Crisfield [6] it became clearer that

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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6 PEDRO M.A. AREIAS AND TIMON RABCZUK

Damaging material

fmax

Points A and B move and define the configuration

Crack
FPZ

d = 0

lFPZ

B Pristine materialA

Figure 2. The mobile equilibrium crack (see [1, 25]) and the fracture process zone (FPZ): points A
and B move according to the released energy and are here denoted configurational points.

results of initially rigid laws are different from those obtained with regularization, namely in
the multi-fracture and bifurcation contexts (see also [8]). Furthermore, very rigid laws induce
greater condition numbers of the Jacobian matrix in an implicit solution framework. The
cohesive problem with unloading is non-holonomic, which means that the conditions can only
be written with rate kinematical quantities (this also occurs with elasto-plasticity or when two
rigid objects contact in rolling [30]).

The identification of this problem as a complementary problem appears to have been first
done by Bolzon et al. [11] (a more complete analysis was performed by Tin-Loi and Tseng [31]).
However, the implementations are not amenable to be incorporated in classical finite element
codes. The authors in [31] have dealt exclusively with holonomic mode I, despite having a
correct representation of the initial infinite slope. The authors in [11] used a rigid-plastic law,
which resulted in a discrete variational inequality analogous to the one of elasto-plasticity and
hence the same algorithms could be employed. More recently, Tin-Loi and Que [32] performed
a comparison (limited to the holonomic case) between several methods to solve a LCP and
concluded that smoothing methods are appropriate from both the accuracy and efficiency
viewpoints. One striking fact in these tests is that no special treatment of the initial infinite
slope was discussed, which is the most troublesome aspect in modeling cohesive laws. We
try to avoid the simplifications in these works and will see that the complete non-holonomic
treatment makes use of a separate inspection of two degenerate cases.

We review the typical initially rigid cohesive law as depicted in figure 3. The area enclosed
between the initial loading curve and the d axis equals the critical fracture energy Gc, as
deduced by use of the J integral (e.g. see page 167 in [33]). We note that two complementarity
conditions exist for non-degenerate cases. For degenerate cases, only one complementarity
condition exists. The contact/unloading/reloading curve is valid for f < fmax and d ≤ d̃ and

the loading/stress free curve is valid for d > d̃ or f ≥ fmax.

The existence of the two degenerate cases and a set-valued force inhibits the use of standard
displacement-based methods. Note that the second degenerate case corresponds to the contact
LCP and occurs with d̃ = dc. It is also noteworthy that if Gc = 0, it follows that dc = 0 and

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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TRACTION-SEPARATION MODELS 7

no characteristic length exists. However, a characteristic force exists (fmax). In such case, the
drop fmax → 0 occurs instantaneously, with debonding of the cohesive surface. The switch
condition between these two conditions is an added complication that was not, to the authors’
knowledge, been treated before.

A method to solve this problem consists in smoothing both the complementarity conditions
and the switch condition and perform the iteration in the force-displacement space. This
increases the total number of degrees of freedom but results in a well conditioned algebraic
(non-symmetric) problem. We make use of a trust region algorithm (see also [34]) to solve the
constrained equilibrium problem.

Final law and Gc = 0

d̃ = dc

Contact

Stress free

Initial law

d̃ = 0

Properties: Gc and fmax

dc = 2Gc

fmax
dd̃

f
Internal variable: d̃ = inf{max

hist
(d), dc}

Loading

f = 0

fmax

Points not on the thick line are inadmissible

Unloading/Reloading

d− [d + d̃
f

fmax
− d

dc
(dc − d̃)]+ = 0

dcf
fmax
− (dc − d)+

Figure 3. The prototype model for the cohesive law. Unloading occurs to the origin. At a given time

step, the internal variable ed is fixed. Two degenerate cases are shown: the initial law and the contact
problem.

3.2. Effect of smoothed functions

Replacement of the “step” and “plus” functions by smooth approximations allow the use of
Newton-based root-finding algorithms. We view smoothing as distinct of regularization, as

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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the latter results in additional stiffness in the algebraic system. The purpose of smoothing
is the replacement of complementarity conditions and other non-smooth conditions (such as
branches) by more tractable constraints in the force (or stress)-displacement space.

For the linear case a perturbed method was proposed by Chen and Harker [35] where the
orthogonality condition was relaxed. With smoothing methods this condition is also relaxed.
For the non-linear case, it was found by Chen and Mangasarian [17] that, under certain
conditions, the smooth problem is solvable and has as limit the solution of the NCP.

We make use of part of the formulation established in [17] where a method is proposed to
solve nonlinear (and also mixed) complementarity problems. Instead of the line-search used in
their work, we here use a trust region method because the crack opening modifies the radius
of convergence of the Newton method, as will be shown.

Chen and Mangasarian [17] provide a catalog of smooth replacement functions. We direct the
reader to the proofs by Chen and Harker [18] and Chen and Mangasarian [17]. In particular, as
a relation is established with interior point methods, proofs concerning the iteration trajectory
make use of similar conclusions.

A smooth modification of the step function is given by (x ∈ R):

s(x, α) =
1

1 + e−αx
(5)

where the parameter α can be calculated for a given tolerance. We prescribe tol = xs=1−ǫ−xs=ǫ

and obtain:

α =
2

tol
ln

(
1− ǫ

ǫ

)
(6)

This smooth function can be derived using probability density functions. Further properties
are provided in references [17, 18]. The corresponding smoothed “plus” function is given by
integration of s:

p(x, α) = x +
1

α
ln(1 + e−αx) (7)

with p[x, α(tol)] ≤ x+ + log(2)
α(tol) where x+ = max(0, x). Note that the form of the functions

(5) and (7) is adequate for x > 0 but should be modified for x < 0 to avoid floating point
overflow. The selection of these functions is not irrelevant for the solution. Other methods can
be generated using distinct functions. For example, an interior point method is generated by
selecting an interior point smoothing function:

pip(x, α) =
x +

√
x2 + 4/α

2
(8)

As alluded before, caution should be taken in the use of smoothed functions to avoid“spikes”.
For example, for a branch function such as y = x/c1 : x < c1, y = (1−x)/(1−c1) : x ≥ c1 with
x ∈ [0, 1] and c1 ∈ [0, 1], the maximum of y in this interval is 1, however, the corresponding
smoothed function ys = p(c1 − x)x/c1 + p(x− c1)(1− x)/(1 − c1) is unbounded as c1 → 0.

The smooth replacements must also ensure that the solution of the original problem is
the same as the solution of the replacement problem as tol → 0. It is clear that x+ =
limα→+∞ p[x, α]. However this should occur with the solution of the NCP problem, if exists.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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Chen and Mangasarian [17] and, more recently Chen and Harker [18] have shown that it is the
case under the conditions given below. The statement of the NCP is:

Find x in R
n such that xi ≥ 0, G(xi) ≥ 0 and G(xi)xi = 0. This is equivalent to

xi = [xi −G(xi)]+

where G(x) is a differentiable function from R
n to R

n. Note that, due to non-negativity of the
components, it follows that G(xi)xi = 0 ⇔ x ·G(x) = 0.

A NCP is said to be strongly monotone if

∃k ∈ R
+ : ∀x, y ∈ R

n [G(x)−G(y)] · (x− y) ≥ k‖x− y‖2

It is known that a strongly monotone NCP has a unique solution (see [18]).

For a Lipschitz continuous G(x) (i.e. ∃K ∈ R : ‖G(x)−G(y)‖ ≤ K‖x−y‖, ∀x, y ∈ R
n)

and strongly monotone NCP, let x(α) be a solution of xi − p[xi −G(xi), α] = 0, i = 1, . . . , n.
Then, for the solution x of the NCP it follows that:

∃Cp ∈ R+ : ‖x(α)− x‖p ≤ Cpγp log(2)/α, p = 1, 2,∞ (9)

with γ1 = n, γ2 =
√

n and γ∞ = 1. The existence of a solution for the smoothed problem
(x(α)) is still subject to proof under the previous conditions. For a solvable NCP, the following
theorem (the proof is given by Chen and Mangasarian [17]) follows:

Theorem 1. Let the NCP be solvable. If δ1 ≥ log 2 and α > 0, the NCP conditions are

approximately satisfied as

(−x)+ ≤
δ1

α
1, (−G(x))+ ≤

δ1

α
1, [x ·G(x)]+ ≤

nC(δ1)

α2

with C(δ1) = max{2, (eδ1 − 1) log2(eδ1 − 1)}

For the present applications, it remains to show that our NCP is strongly monotone. Even
for Hookean elasticity, this condition cannot presently be ensured. For a LCP, Tin-Loi and
Tseng [31] also mention this problem, but the application of the solution method does not
appear to be affected.

3.3. Treatment of a prototype cohesive law

The set-valued cohesive law shown in figure 3 can be given by the following non-smooth
equation:

eq(d, f) = 0 (10)

A corresponding smoothed version for the non-degenerate case is introduced making use of
the smoothing parameter α(tol) in (6):

eqs[d, f, α] = eq1[d, f, α]ab + eq2[d, f, α](1 − ab) (11)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
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10 PEDRO M.A. AREIAS AND TIMON RABCZUK

with

a =s(d̃− d, α)

b =s

(
dc − dc

f

fmax
, α

)
(12)

and

eq1[d, f, α] = d− p

[
d + d̃

f

fmax
− d

dc

(dc − d̃), α

]

eq2[d, f, α] = p[dc − d, α]− dcf

fmax

(13)

which, for Gc = 0.5, and fmax = 1 is represented in figure 4 for several values of d̃ and tol.
The gradient of eqs(d, f) can be calculated using the chain rule. This is performed with a

computer algebra software. However, it is interesting to represent it in the space d− f for our
specific material properties (see figure 5) with tol = 0.5 and d̃ = 0.2. Note that the derivatives
are also smooth, and a therefore a (non-symmetric) smooth solver can be used to solve the
algebraic nonlinear system:

F =

{
requ.(u, f)
eqs[d(u), f ]

}
= 0 (14)

for u and f . In the system (14), requ. represents the vector of discrete equilibrium equations (n
components), eqs represents the vector of smoothed conditions (m components). The nonlinear
system with m + n unknowns is solved by the trust region method shown in table II, see also
[34]. The degrees of freedom corresponding to f and d are scaled (with the conditions f 6= fmax

and d 6= dc) so that the cohesive law is the one depicted here.
The nonlinear solver makes use of the Jacobian of (14), which is generally non-symmetric:

K =

[
∂r
∂u

∂r
∂f

∂eqs

∂u

∂eqs

∂f

]
(15)

The number of degrees of freedom and sparsity pattern of (15) change during the solution.
A characteristic which is different from previous implementations of the cohesive law in the

context of XFEM, is that caution should be taken to avoid duplication of constraints. Note
that after exhaustion of the cohesive law (d̃ > dc) the diagonal term f − f of the Jacobian is
equal to 1, and therefore no elimination of the corresponding f degree-of-freedom is required.
The system (14) is solved by a monolithic approach.

A simple test of the use of the trust region method and fixed time steps is depicted in figure
6.

Note that there are no signs of ill-conditioning, but the method entails the costs of a non-
symmetric Jacobian.

For k = 1000, we test the sensitivity of the non linear solver with respect to the solution
parameter tol and also the average number of time steps nstep. The monitored quantities are
the average number of iterations nav

iter and the maximum number of iterations in a given step
nmax

iter . The initial trust radius is 1 and a tolerance of toltr = 1× 10−6 is employed for the trust
region method. Table I shows the results. A near-insensitivity to the curvature is noted.
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Table I. Average number of iterations and maximum number of iterations in a given time step, as a
function of tol and nstep. The relevant properties are k = 1000 and ǫ = 0.01.

nstep tol nav
iter nmax

iter

300 Steps 0.02 1.55 7
0.05 1.72 9
0.1 1.97 8
0.5 2.10 6
1 2.06 3
2 2.03 3

100 Steps 0.02 1.63 7
0.05 1.99 9
0.1 2.22 9
0.5 2.25 7
1 2.28 4
2 2.23 3

50 Steps 0.02 1.77 7
0.05 2.22 9
0.1 2.47 9
0.5 2.55 7
1 2.39 4
2 2.39 4

4. CRACK ADVANCE CRITERION AND ORIENTATION

For cohesive cracks, the crack advance problem is of more direct address than for non-cohesive
cracks. From a strict reading of Barenblatt’s work, the advance of a crack is supported
by the existence of an initial positive slope (and zero stress for zero displacement) in the
stress-displacement law. We already observed that this is not consistent with a continuum-
discontinuum transition, as it would cause an abrupt unloading of neighbor regions.

Our theory for crack advance is based on the similarity (in loading) of the crack tip cohesive
stress distribution (Barenblatt’s second hypothesis and Goodier’s third postulate [25]). When a
new extension of the crack surface is required, we assume that, at the instant of surface creation,
the new part of the cohesive stress cancels the pre-existent normal stress distribution. This
is equivalent to assume that no stress jump occurs. From this condition we obtain both the
orientation of newly formed crack surfaces and the crack advance. The former is calculated
from the zero jump condition and the latter is obtained from the internal force required to
close the tip. We introduce the condition for advance:

f tip · eI < 0 (16)

where f tip is the internal force at the tip, resulting from the combined effects of opening forces
and the cohesive law. In loading, a cusp-shaped tip closing is expected to correspond to a null
(resulting) stress intensity factor, as discussed by Barenblatt [1]. For sufficiently long cohesive
tails (figure shows a typical tail 16), the traditional finite element resolution can be adequate
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Table II. Trust region method. The degrees of freedom ui and fj are grouped in array z.

Step Tasks
Initialization

Data toltr, R0

Iteration counter and initial radius niter = 0, R = R0

Function evaluation

Store previous values for niter > 0 fold = f

mold = m

Evaluate the residual F

Objective f = 0.5F · F
Jacobian of F J = ∂F

∂z

Jacobian of f g = JT F

Temporary value p = Jg

Update of radius

Calculate merit for niter > 0 rd = Jd, m = f + d · g + 0.5rd · rd

Calculate evolution ratio niter > 1 ρ = fold−f

mold−m

Update the radius for niter > 1 ρ < 0→ R = 0.5R

0 < ρ ≤ 0.95→ R =
[
0.5 + 0.5

(
ρ

0.95

)2
]
R

ρ > 0.95→ R =
[
1.01 + 0.99e−( ρ−1

0.95−1 )
2
]
R

Step determination

Newton step dN = −J−1F

Verify Newton step ‖dN‖ ≤ toltr →declare success and exit

‖dN‖ ≤ R→ d = dN go to update of unknowns

Unconstrained step (Cauchy) du = −
(

g·g
p·p

)
g

Verify unconstrained step ‖du‖ ≥ R→ d = − R
‖g‖g go to update of unknowns

Dogleg Solve for h ∈ [0, 1] : a1h
2 + a2h + a3 = 0

with a1 = ‖dN − du‖2, a2 = du · (dN − du), a3 = ‖du‖2 −R2

d = du + h(dN − du)
Update of unknowns

Make temporary update z ← z + d

niter = niter + 1 go to function evaluation

to represent this cusp. We verify this in a plate bending numerical examples.

To obtain the orientation of a pre-existent cohesive crack, we make use of the fact that no
jump in stresses should occur when the surface is formed. With a cohesive law, if we have pure
mode I, this is equivalent to have zero tangential displacement, as a non-zero value would
mean that a tangential stress would be released upon crack advance. The same terms can be
applied for mode II and III. This criterion is of an extraordinary simplicity; an illustration
is given in figure 7. This can be directly obtained from the crack tip opening displacement
components decomposed along each of the directions represented in the figure. Details about
how this is performed are given by Sutton et al. [36] for a somehow different situation (the
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Erdogan-Sih criterion).

θt

eIII

eII

P

Q

eI

uII(θt) = ∆u · eII = 0 (mode I)

Figure 7. An example for mode I crack orientation based on zero stress jump.

For the elasto-plastic case (not discussed here), the COD concept is still applicable, whereas
the application of configurational integrals is subject to certain conditions (such as inhibition
of unloading).

5. NUMERICAL EXAMPLES

Results from verification tests are presented. The examples serve to inspect the main
ingredients of the method, and also the implementation. In post-processing, elements are
divided to create realistic crack evolution pictures.

Elasticity is considered (using the Saint-Venant model) and the piece-wise linear cohesive
model with tol = 0.01dc. For the trust region method we use a tolerance of toltr = 1 × 10−6.
Small enough load (and displacement) steps are used to avoid spurious crack holding. The
advance can occur for any number of elements ahead of the tip.
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5.1. In plane bending of a beam

A rectangular beam subject to in-plane loading is tested for several values of the fracture
energy. The overall response and the effect of mesh refinement are inspected. This test
is essentially a plane stress situation in mode I as rotations and out-of-plane motion are
prescribed (the independent opening of top and bottom surfaces is performed in the subsequent
example). The relevant properties are shown in figure 8. A number of features is intentionally
left out from this test, so that conclusions concerning the cohesive law can be obtained without
added complications.

E = 210 GPa

ν = 0.3

Upper limit

Forced propagation

0.1 m

10× 100 and 20× 200 el. meshes

u(t)

0.1 m

1 m

0.01 m

u(t)

0.2 0.6 1

0.02 m

−0.02 m

Monotonically increasing

Alternating

t (pseudo-time)

fmax = 100 MPa

Figure 8. Beam bending under cyclic loading. Relevant properties, boundary conditions and
geometrical data.

With a monotonic imposed displacement u(t) = u0t, the load-deflection results are shown
in figure 10 for 3 values of the fracture energy Gc ∈ {0, 5000, 20000} N/m. For verification
purposes, in this example the Rankine criterion is adopted. The evolution of the radius of the
trust region method is depicted in figure 11 for the cases Gc = 5000 N/m (dc = 0.1 mm) and
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Gc = 20000 N/m (dc = 0.4 mm). The radius value is reset every time step. Clearly, we can
see why classical Newton implementations (even with line search) are inefficient for NCP and
LCP (such as elasto-plasticity). The combination of Cauchy step with the Newton step allows
a robust solution without step cuts. Note that small steps are used to ensure accuracy in the
integration. Any step size can be used, and the method never failed to converge during our
test session, but some preliminary convergence study is advised.

Another revealing test can be performed by starting the enrichment before the stress reaches
fmax. The points in the d−f diagram should be in the vertical loading region d = 0, f ≤ fmax

and therefore the results should not be affected by the early enrichment. The same cannot be
said about delayed enrichment. For the finer mesh and Gc = 5000 N/m this fact is illustrated
in figure 9. We can see that premature enrichment is not critical (for proportional loading),
confirming the correct implementation of the degenerate situation shown in figure 3. The two
classical methods to introduce a cohesive law (either holonomic or regularized) are obviously
unable to provide this type of immunity to premature enrichment.
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Figure 9. Effect of premature and delayed enrichment time in the load-deflection results (Gc = 5000
N/m)

For higher values of the critical energy release rate, a decrease of the stress at the tip is
observable when premature enrichment is forced.

For an imposed end-displacement of the piecewise linear type, the load-deflection results are
shown in figure 12. Also shown are the (averaged) stress forces f at the elements containing
a crack for the case Gc = 20000 N/m with a 10× magnification. We can be observe the
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Figure 10. Beam under in-plane bending with monotonic end loading. Load-deflection results. The
time steps are shown as point markings.

damage effect resulting from the cohesive law: the compliance is substantially increased after
application of one load-reversal cycle. Another result to retain is that a very sharp curve is
obtained in the reversals, which corroborates our indication that the problem is being correctly
solved. No artificial detachments or spurious responses occurred. During the compression stage,
it was noted that the cohesive force was zero in some points and hence some detachment should
occur.

5.2. Verification of the crack path and the cohesive stress

An inspection of the 2D crack path obtained with the proposed method is done using two
known examples from the literature. The first example is a plain concrete fracture test (Gálvez
et al. [37]) of a notched plate asymmetrically loaded by a vertical point load.

The problem is summarized in figure 13. The cracked beam and the tip detail are shown
in figure 14. A comparison between the Rankine criterion (without averaging) and our model
is presented in figure 15, along with the envelope of experimental results reproduced from
[37]. In addition to the manifest good behavior in this linear-elastic problem, our criterion is
not conditioned by the underlying constitutive model. In the implementation, the criterion is
applied directly in the first intersection of the crack core with an element edge. The distribution
of the cohesive force f is given for a sequence of time steps in figure 16.

The irregularity noted with the Rankine-calculated path is caused by the incompatible stress
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Figure 11. Beam under in-plane bending with monotonic end loading. Variation of the trust radius
(R) for all iterations and time steps.

field. An inversion of the crack path trajectory occurs and the analysis stops prematurely. This
result of the Rankine criterion is not unforeseen.

The load-deflection curve is given in figure 17, along with the experimental envelope and
the results from Areias and Belytschko [38] who used a 3D model with regularized unloading.
Note that averaging was used before by these authors to avoid the inversion of the crack path.
A difficulty with averaging (this also applies to the domain integral) is the definition of domain
size.

As the cohesive stress is an independent field, there is a complete decoupling with the
continuum. In terms of root-finding convergence, the resulting properties are exceptionally
good, as can be observed in figure 18. Usually one iteration is performed in each time step. The
trust radius only reduces when closing/opening iterations occur. For comparison, a regularized
cohesive law and the holonomic case are also shown. It is clear that, if we exclude unloading,
then the problem is almost linear and the convergence behavior is very good before the
discontinuous transition. When this is reached, the method fails to converge. In addition,
although use can be made of the original Barenblatt condition in closed form (see the seminal
work of Moës and Belytschko [26]), the model is incomplete. The regularized model also fails
to converge prematurely, as shown in that figure.

The second example is a double-edge notched beam subject to two opposing opening forces
and a third constant force in the right edge. This third force induces a smooth crack turning
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Figure 12. Beam under in-plane bending with oscillatory end loading. Load-deflection results and
deformed meshes (magnified 10×). Also represented are the cohesive forces, with a maximum of 100

MPa for the tension cases and a minimum of −534 MPa for the compression case.

away from the notch orientation.

This example was initially proposed by Gálvez et al. [39] as a test for the accuracy of
numerical implementations of crack growth. In that paper, the Erdogan-Sih criterion (see
[33]) was used with success. As shown by Shen and Shen [40], this criterion coincides with
the minimization of the potential energy with respect to the kink angle, for elastic isotropic
materials.

However, it requires the values of the stress intensity factors (they can be calculated with a
variety of techniques, such as the J-integral or extracted from the COD components) and also
specialized tip elements. The present method, besides being applicable to general nonlinear
situations, can be used with standard element formulations.
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Figure 13. Relevant data for the single edge notched beam (see details in reference [37]). The mesh
contains 2625 elements.

Notch edge

Figure 14. Crack path (over the real deformed geometry) and tip detail for the single edge notched
beam.
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Figure 15. Crack path comparison between the proposed method and the Rankine criterion for the
single edge notched beam.

Figure 19 shows the relevant ingredients of the problem. The deformed mesh with a crack
is shown in figure 19. The crack path under proportional loading obtained with our method is
clearly smooth.

A comparison with the experimental envelope of Gálvez et al. [39] is shown in figure 21.
There is a good agreement between the experimental data and the predicted results. Note that
fracture of PMMA requires large strain capabilities, which we have.
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Figure 16. Sequence of time-steps with the distribution of the cohesive stress f . The value of the
vertical displacement of point B in figure 13 is shown. Note that only the relevant propagation region

is depicted.
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Figure 17. Single edge notched beam: load versus displacement of point A, vA. The experimental
envelope from [37] is also shown.
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Figure 18. Single edge notched beam: trust radius as a function of the number of iterations for all
time steps. For comparison, the results of a regularized model (with a penalty parameter equal to

fmax1 × 103/dc) are also shown, along with the holonomic case.
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Figure 19. Geometry, boundary conditions, and relevant material properties for the double-edge
notched beam.

Displacement: 1.457× 10−2 m
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Displacement: 2.958× 10−2 m

Figure 20. Sequence of deformed (coarse) meshes with explicit crack path. The displacement of point
A is monitored.
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Figure 21. Experimental [39] and predicted crack paths. The coarse mesh contains 12700 elements and
the refined mesh 40400.
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5.3. Out of plane bending

It can be observed that less intricate methods are available to obtain some of the previous
results. In the presence of out-of-plane bending, the method works works differently.

In rods, plates and shells, through-the-thickness cracks occur when at least one, but not
necessarily all, points in a given cross-section satisfy a given critical condition. If not critical,
remaining points should then behave as if no crack existed.

Let us consider the beam depicted in figure 22. Load-deflection results for this new situation
are shown in figure 23. For Gc = 10000, the evolution of the cohesive stress vectors at the
boundary are shown in figure 24. It can be seen that a non-uniform distribution of stress
magnitudes occurs in compression. For v = 22.0 × 10−4 only the inner core of the clamped
region is cracked. The lower edge of the clamped region is under tension and opening whereas
the upper region closes in contact and adhesion because f < fmax. It can be observed that
shell kinematics are sufficient to model a wide variety of crack propagation situations.

(Consistent units)

fmax = 200× 106

E = 2.1× 1011

ν = 0.3

Gc = {10000, 20000, 50000, 100000}

0.1

0.003

Clamped

0.01

Transverse displacement (v)

Figure 22. Out of plane bending of a beam: mesh, boundary conditions and material properties
(discretization with 1000 elements). Consistent units are used.

To inspect the solution performance, a tolerance (tol)-versus number of iterations (nmax
iter )

study is performed for Gc = 10000 and using the last analysis point shown in figure 25 (it
corresponds to v = 6.25 × 10−3). We choose this case as it forces the crossing of two high
curvature regions in loading. The relative DOF tolerance is toltr = 1× 10−7. Figure 25 shows
that the total number of iterations is nearly independent of tol. Therefore, the smoothed law
can be made as accurate as desired.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–6
Prepared using nmeauth.cls

Page 28 of 38

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

TRACTION-SEPARATION MODELS 29

−10

 0

 10

 20

 30

 40

 50

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

F

v x 0.01

G_c:
10000
20000
50000

100000

Figure 23. Load-deflection results for several values of Gc.

5.4. Crack path in a simply supported square plate

This example shows mode I fracture in a simply supported square plate subject to uniform,
motion-dependent pressure. The purpose here is to test the crack path algorithm in mode I.
The plate dimensions are 1×1×0.01 consistent units, the elastic properties are E = 210×109,
ν = 0.3 for the elasticity modulus and the Poisson coefficient, respectively. The maximum
normal stress is fmax = 500× 106. The crack path is calculated using the COD. Two regular
meshes are used: 20× 20 and 100× 100.

A sequence of deformed configurations is shown in figure 26. The displacement components
of the mid-surface are prescribed at the boundary and therefore pressure can increase up to
very high values. Due to the use of COD components, determination of the crack path requires
a element-by-element approach, and this results in some irregularity, also seen before in the 2D
example. In reality, inhomogeneity will eventually produce an analogous effect. We inhibited
the “crossed” crack pattern known to occur in the simply supported case, as this would create
an unnecessarily complex situation for the degrees-of-freedom in the center of the plate (usually
this is solved empirically by removing the affected element). Wrinkles occur around the main
crack because pressure starts to bend the crack faces.

The pressure versus mid-point displacement results are shown in figure 27 for the coarse
and refined meshes. Some difference is observable, since crack paths are slightly distinct. In
addition, localized bending behavior tends to increase the out-of-plane displacement at the
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Figure 24. Evolution of cohesive stress vectors for Gc = 10000 consistent units.
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Figure 25. .Results (tol/dc) versus number of iterations (nmax
iter ) for Gc = 10000 and v = 6.25 × 10−3.

plate’s center.

5.5. Circular plate under pressure: mode III

A clamped circular plate with uniform mid-surface pressure, is allowed to fracture in a circular
section of the clamped boundary. Consistent units are used; the plate radius is 1 and thickness
is 0.01. The elasticity modulus is E = 210×109, Poisson coefficient is ν = 0.3 and the maximum
shear stress is fmax = 7× 105. Maximum applied pressure is p = 1× 106.

A small premature crack originating from an imperfection (90% of the critical stress) is
triggered in two elements in that region.

Three mesh densities (1200, 2700 and 4800 elements) and two values of fracture energy
(Gc = 0 and Gc = 50000 N/m) are used for comparison. A critical value of 2 degrees in the
CTOA is employed for the crack advance in the Gc = 0 case. Pressure is increased in steps of
500 consistent units which were found to be sufficient to avoid artificial crack arrest.

A sequence of deformed meshes with the cohesive vectors is shown in figure 28. The evolution
of the cohesive stress vectors (the product of mode III direction and the force degree of freedom)
at early stages is represented in the figure 29. Relatively large openings still produce substantial
stress.
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p = 9.7× 107 p = 4.55× 108

p = 7.1× 105
p = 5.1× 105

Figure 26. Square plate under pressure: sequence of deformed configurations (non-prescribed crack
path). The refined mesh is shown.
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Figure 27. Square plate: pressure/mid-point displacement results.
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Figure 28. Circular plate under uniform pressure: Sequence of time steps.
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Figure 29. Circular plate under uniform pressure: Cohesive stress vectors.

The load versus out-of-plane displacement results are shown in figure 30. Robust and
reasonably mesh independent results are obtained. It is worth noting that the fracture indicator
has a substantial effect if Gc = 0. A difference in the pressure value is indicated in figure 30.
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The reason for this is that cohesive forces are absent and therefore a sudden jump occurs at
initiation. If Gc 6= 0, there is no difference, since the cohesive forces hold the two parts together
before the release. The difference can be eliminated by using a small value for Gc.
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Figure 30. Circular plate under uniform pressure: Load versus out-of-plane displacement.
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6. CONCLUSION

The equilibrium problem with a cohesive traction-separation law was written as a
complementarity problem. A method based on smooth replacement of the plus f(x) ≡ x+ =
max(0, x) and sign functions involved in the complementarity problem was introduced. This
allowed a classical root-finding method to be applied to an enlarged algebraic nonlinear (and
non-symmetric) system, but involving smooth functions only. Specifically, a variant of the trust
region method was used in the solution of this problem.

Within this framework, loading, reloading and unloading situations were represented as
accurately as desired. The method allowed the use of through-the-thickness cracks in plates
for situations where not all the points along the thickness were critical at initiation. It was
also verified that the crack path could be directly determined, and the method was applied to
a variety of situations with high degree of success. The fracture propagation part of the code
is now very robust.
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