Nat. Prod. Rep., 2006, 23, 26-78

Marine natural products

John W. Blunt,^{*a} Brent R. Copp,^b Murray H. G. Munro,^a Peter T. Northcote^c and Michèle R. Prinsep^d

- ^a Department of Chemistry, University of Canterbury, Christchurch, New Zealand. Email: john.blunt@canterbury.ac.nz
- ^b Department of Chemistry, University of Auckland, Auckland, New Zealand
- ^c School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- ^d Department of Chemistry, University of Waikato, Hamilton, New Zealand

Received (in Cambridge, UK) 11th November 2005 First published as an Advance Article on the web 9th January 2006 DOI: 10.1039/b502792f

This review covers the literature published in 2004 for marine natural products, with 693 citations (491 for the period January to December 2004) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is

on new compounds (716 for 2004), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies (8), and syntheses (80), including those that lead to the revision of structures or stereochemistries, have been included.

Covering: 2004. Previous review: Nat. Prod. Rep., 2005, 22, 15.

1	Introduction
2	Reviews
3	Marine microorganisms and phytoplankton
4	Green algae
5	Brown algae
6	Red algae
7	Sponges
8	Coelenterates
9	Bryozoans
10	Molluscs
11	Tunicates (ascidians)
12	Echinoderms
13	Miscellaneous
14	Conclusions
15	Acknowledgement
16	References

1 Introduction

Previous reviews in this series, published in 2003 and 2004, noted the passing of D. John Faulkner and Paul J. Scheuer, and acknowledged their contributions to the field of marine natural products. Sadly, we now have to note the death of Professor Kenneth L. Rinehart in June 2005. Professor Rinehart had an academic career at the University of Illinois that spanned nearly five decades (1954-2001). Rinehart, like Faulkner and Scheuer, was a pioneer in the study of natural products with significant contributions in the application of mass spectrometry to the solving of natural product structures and the emphasis placed on the search for bioactive compounds sourced from marine organisms. Professor Rinehart pioneered the use of bioassays in the field during collecting expeditions, thus identifying species that should be recollected in larger amounts while still at the site of collection. Lasting contributions from Professor Rinehart will be from his work on the ecteinascidins and didemnins, two of the still relatively few marine natural products in advanced stages of clinical trials (Yondelis[™] and Aplidine[™]).

This review is of the literature for 2004 and describes 716 new compounds from 259 articles, numbers that have increased by ~10% from those of each of the past few years. As in previous reviews, we show structures only for new compounds, or for previously reported compounds where there has been a structural revision or a newly established stereochemistry. Previously reported compounds for which first syntheses or

new bioactivities are described, are referenced, but separate structures are generally not shown.

2 Reviews

In 2004 a larger than customary number of reviews were published covering many different aspects of marine natural products, with two reviews^{1,2} giving overall coverage of the 2003 literature. Several reviews describe work derived from regional collections, including Southern Africa,³ the Japanese coasts with emphasis on drug leads from marine invertebrates,⁴ ecosystem comparisons in New Caledonia,⁵ cytotoxic natural products from Taiwan,⁶ bioactive compounds from Brazil,⁷ diterpenes from Dictyotacean brown algae from the tropical Atlantic American region,⁸ and the efforts of Faulkner, Scheuer, Paul and the NCI in Palau.⁹

Reviews with an ecological and/or antifouling focus include an account of biogenic compounds from marine algae with potential as antifouling agents,¹⁰ a general discussion of biofouling and antifouling,¹¹ a review of the recent literature on marine chemical ecology,¹² an account of chemical defense strategies of marine organisms,¹³ and some insights into the antimicrobial defenses of selected marine invertebrates.¹⁴ There have been three articles that explore the nature of immune systems in various phyla, including marine invertebrates.^{15,16,17} A somewhat speculative article compares selected marine and non-marine toxins, raising issues such as convergence and the role of symbiotic organisms.¹⁸

Synthetic efforts on marine natural products continue to expand, with reviews covering a variety of topics including *trans*-fused polycyclic ethers,¹⁹ the convergent

syntheses of polycyclic ethers,²⁰ the use of Suzuki-Miyaura cross-couplings for polycyclic ethers,²¹ and the total syntheses of oxazole-containing natural products.²²

Several reviews focus on studies on compounds from specific types of organisms, such as cytotoxic metabolites from marine algae,²³ anticoagulants from marine algae,²⁴ metabolites of marine-derived fungi,²⁵ antimicrobials and antifungals from marine microorganisms,²⁶ toxins from microalgae,²⁷ enzyme inhibitors from marine microbes,²⁸ glycosides from sea cucumbers,²⁹ medicinal and pharmaceutical products from macroalgae,³⁰ bioactive polypeptides from *Anemonia sulcata*,³¹ metabolites from several species of sponges of the genus *Plakortis*³² and specifically from *Plakortis simplex*,³³ peptide and peptide-like pheromones and kairomones from crustaceans,³⁴ toxins from Northern Adriatic mussels,³⁵ metabolites from the gorgonian corals of the genus *Junceella*,³⁶ and metabolites from symbiotic bacteria.³⁷

A broad range of bioactivities of marine natural products is reviewed in several articles, including marine pharmacology in 2000,³⁸ the merging of the potential of microbial genetics with biological and chemical diversity,³⁹ drugs and cosmetics from the sea,⁴⁰ unconventional natural sources for future drug discovery,⁴¹ new structures and bioactivities for small-molecule natural products,⁴² and marine natural products and related compounds in clinical and advanced preclinical trials.⁴³

Treatments for specific disease types is the subject of several reviews including the search for new candidates for cancer chemotherapy from natural products,⁴⁴ antitumour and cytotoxic compounds reported in 2001-2,⁴⁵ mechanism-targeted discovery of antitumour marine natural products,⁴⁶ antiviral marine natural products,⁴⁷ antifungal compounds from marine organisms,⁴⁸ and natural antimycobacterial metabolites.⁴⁹

Specific compound classes are reviewed in antimicrobial peptides from marine invertebrates,⁵⁰ bioactive peptides from marine sources,⁵¹ mycosporine-like amino acids,⁵² simple indole alkaloids and those with a nonrearranged monoterpenoid unit,⁵³ bioactive alkaloids,⁵⁴ bisindole alkaloids from sponges,⁵⁵ quinolizidine alkaloids from marine sources,⁵⁶ purines from marine organisms,⁵⁷ siderophores from marine microorganisms,⁵⁸ secosteroids of marine origin (1972-2004),⁵⁹ biologically active natural glycosides,⁶⁰ drimane sesquiterpenoids (1990-2002),⁶¹ diterpenoids (2002),⁶² diterpenoids (2003),⁶³ organohalogen compounds,⁶⁴ marine isocyanides and related compounds,⁶⁵ and allenic compounds.⁶⁶

Research on specific compounds is reviewed in articles on discodermolide,⁶⁷ curacin A,⁶⁸ agelasphin KRN7000,⁶⁹ ecteinascidin 743, aplidine and kahalalide F,^{70,71} amphidinolides (1986-2003),⁷² shark-repelling saponins mosesins and pavoninins,⁷³ lamellarins,⁷⁴ and the bisindole alkaloids dragmacidins and hamacanthins.⁷⁵

A brief review on "Drugs from the Sea – Who are the producers?" explores the hypothesis that microorganisms, either by way of ingestion or as symbionts, are the true source of bioactive compounds from marine invertebrates.⁷⁶ Two reviews on the use of mass spectrometry in peptidomics⁷⁷ and analysis of marine toxins⁷⁸ should be of general interest. The Marinlit database⁷⁹ continues to be updated and has again been used as the basis for the preparation of this present review.

3 Marine Microorganisms and phytoplankton

Increasingly, the field of marine microbes is becoming a focal point for research and rising numbers of novel compounds continue to be identified. An actinomycete, *Micromonospora* sp. obtained from *Didemnum proliferum* (Shishijima Is., Japan), produced the dibenzodiazepine alkaloid, diazepinomicin 1, which exhibited modest antimicrobial activity against selected Gram-positive bacteria.⁸⁰ Gutingimycin 2 is a highly polar trioxacarcin derivative from a Streptomyces species isolated from sediment (Laguna de Terminos, Gulf of Mexico).⁸¹ The absolute configuration was determined by X-ray analysis.⁸² The same Streptomyces species⁸¹ also yielded trioxacarcins D-F **3-5**, in addition to the known trioxacarcins A-C.^{83,84,85} The structures and absolute configurations of the new trioxacarcins followed from the X-ray analysis of gutingimycin 2 and the known stereochemistry of L-trioxacarcins A and B.⁸⁵ The trioxacarcins and gutingimycin 2 exhibited strong antibacterial activity against a range of test organisms. The antitumour activity of trioxacarcin D $\mathbf{3}$ was similar to that previously reported for trioxacarcins A–C,^{83,84,85} while trioxacarcin A and trioxacarcin D **3** were also potently antiplasmodial.⁸⁶ S. acrimycini, isolated from sediment (São Sebastião channel, Brazil), provided two dipeptide derivatives, 8-amino-[1,4]diazonane-2,5-dione 6 and leucyl-4hydroxyproline 7.⁸⁷ A cultured Nereus[™] strain of *S. aureoverticillatus* isolated from marine sediment (source not given) produced a macrocyclic lactam, aureoverticillactam 8, possessing moderate activity against human tumour cell lines. Some stereochemistry (2E, 6E) could be determined, but other olefins could not be assigned due to spectral overlap.⁸⁸ Two caprolactones **9** and **10** were produced from a *Streptomyces* species (mangrove sediment, Papua New Guinea). The proposed structures were based on GCMS experiments and proven by synthesis, while the absolute configurations of 9 and 10 were

established using chiral GC to compare the natural and synthetic stereoisomers. Compounds 9 and 10 displayed moderate phytotoxicity and concentration-dependent inhibition of human cancer cell lines, with concomitant low general cvtotoxicity.⁸⁹ A *Bacillus* species obtained from mud near the Arctic pole yielded three cyclopeptides, mixirins A-C 11-13. The absolute stereochemistries of the amino acid residues were determined (Marfey's), but not those of the fatty acid residues. The mixirins A-C inhibited the growth of human colon tumour cells (HCT-116).⁹⁰ Petrobactin sulfonate 14, along with petrobactin,⁹¹ was isolated from the oil-degrading marine bacterium *Marinobacter hydrocarbonoclasticus*,^{91,92} and is the first marine siderophore containing a sulfonated 3,4-dihydroxy aromatic ring. The structure of petrobactin sulfonate was elucidated from spectral data, resulting in a revision of the NMR assignments for petrobactin.⁹³ An actinomycete, *Verrucosispora* sp. (deep sediment, Sea of Japan), yielded the abyssomicins B-D 15-17, whose structures and relative stereochemistries were supported by X-ray analyses. The absolute stereochemistry of abyssomicin D 17 was determined (Mosher and Helmchen methods) and, through structural analogy, assumed to be the same for abyssomicins B 15 and C 16.94 Abyssomicin C 16 was identified as an inhibitor of the pathway between chorismic and para-aminobenzoic acids and was strongly active against Gram-positive bacteria.⁹⁵ Helquinoline 18, and the Nacetylkynuramine 19, were produced by a North Sea bacterium Janibacter limosus. Helquinoline displayed moderate activity against *B. subtilis*, *Streptococcus* viridochromogenes and Staphylococcus aureus.⁹⁶ Two cyclic peptides 20 and 21 were isolated from a bacterial Ruegeria species associated with cell cultures of a sponge Suberites domuncula (Gulf of Naples, Italy).⁹⁷ Two further peptides from the culture

were known synthetic compounds,^{98,99} but isolated for the first time from nature. A known peptide¹⁰⁰ and a new diastereoisomer **22** were also obtained, in addition to a peptide first reported from rabbit skin tissue.¹⁰¹ Cyclopeptides 20 and 21 exhibited moderate activity against *B. subtilis*.¹⁰² Two cyclodepsipeptides, petrosifungins A 23 and B 24, have been isolated from *Penicillium brevicompactum* derived from a sponge Petrosia ficiformis (Elba, Italy). The absolute configurations of the amino acids were determined (Marfey's).¹⁰³ A mixed culture of two *P. corylophilum* strains, (deep water sediment, Fiji/Matuka), provided the known fungal pigments anserinones A and B¹⁰⁴ along with three other pentaketides, (+)-formylanserinone B 25, (-)-epoxyserinone A 26 and (+)-epoxyserinone A 27. Two further minor constituents of the extract, hydroxymethylanserinone B 28 and deoxyanserinone B 29, were isolated but not completely purified. The relative stereochemistries of 25 and 26 were determined (NOE experiments and molecular mechanics calculations), but the stereochemistry of (+)formylanserinone B 25^{105} was subsequently revised from (9S) to (9R) based on recognition of discrepancies in published data.^{104,106} Similarly, the structure of (-)epoxyserinone A 26 has been clarified as the structure was incorrectly drawn in the original report.¹⁰⁵ The revised stereochemistry for **25** requires the absolute stereochemistry of **26** to be (2R, 3S, 4S, 9R).¹⁰⁷ Anserinone B and (+)-formylanserinone B 25 were the most active against a range of tumour cell lines.¹⁰⁵ P. citrinum, isolated from a red alga Actinotrichia fragilis (Okinawa, Japan), was the source of citrinadin A 30 that displayed modest cytotoxicity against L1210 and KB cell lines.¹⁰⁸ A Penicillium species, from a sponge Axinella verrucosa (Elba, Italy), produced the known compound communesin B¹⁰⁹ and the new congeners communesins C **31** and D **32**. Communesins B–

D exhibited moderate antiproliferative activity against several human leukemia cell lines and were active against brine shrimp.¹¹⁰ A mussel Mytilus edulis (Toyama Bay, Japan Sea) was the source of an *Aspergillus* species that yielded a polyketide, aspermytin A 33, with the absolute configuration being deduced from the CD spectrum. Aspermytin A 33 induced neurite outgrowth in rat pheochromocytoma cells.¹¹¹ Golmaenone **34**. a diketopiperazine alkaloid, was obtained from an Aspergillus species isolated from a red alga Lomentaria catenata (Ulsan City, Korea). The absolute stereochemistry was established (Marfey's) as were significant radical scavenging and UV-A protecting properties.¹¹² A. pseudodeflectus, isolated from an alga Sargassum fusiform (Miura Peninsula, Japan), was the source of pseudodeflectusin 35, an isochroman cytotoxic against human cancer cell lines.¹¹³ A diketopiperazine dimer **36** was obtained from a marine-derived A. niger supplied by the Australian Institute of Marine Sciences, and the absolute stereochemistry determined (chiral HPLC).¹¹⁴ A. niger, isolated from a sponge Axinella damicornis (near Elba, Italy), yielded seven metabolites; the bicoumanigrin 37, the structurally unusual 4-benzyl-1*H*-pyridin-6-one derivatives aspernigrins A 38 and B **39** and the pyranonigrins A–D **40–43**, which contain the unprecedented pyrano[3,2b]pyrrole skeleton. The absolute configurations of aspernigrin B 39 and pyranonigrin A **40** were established by quantum chemical calculations of the CD spectra. Also isolated was the known fungal pigment cycloleucomelone,^{115,116} which was moderately cytotoxic against human cancer cell lines in vitro, while aspernigrin B 39 was established as strongly neuroprotective.¹¹⁷ Cultivated mycelium of A. flavipes, isolated from a sea anemone Anthopleura xanthogrammica (Qingdao Bay, eastern China Sea), produced two cerebroside analogues, flavicerebrosides A 44 and B 45, with moderate activities against

the KB cell line.¹¹⁸ Aigialus parvus, isolated from mangrove wood (Thailand), provided the ketene acetal aigialone 46 and the spiroacetal aigialospirol 47. X-ray analysis of 46 established the relative stereochemistry only.¹¹⁹ The moderately cytotoxic oxopiperazine metabolites, gliocladins A–C 48–50, and glioperazine 51 were isolated from a strain of *Gliocladium* species separated from a sea hare *Aplysia kurodai* (Kata coast, Japan). Relative stereochemistries at all centres, except for C-3 in 48 and 49 and for C-8 in 51, were determined (NOESY).¹²⁰ Four cytotoxic diterpene glycosides, virescenosides R–U 52–55, were isolated from *Acremonium striatisporum* originating from a holothurian Eupentacta fraudatrix (Kitovoe Rebro Bay, Sea of Japan).¹²¹ The stereochemistry of C-13 in 55 was determined by comparison against known compounds.¹²² Apiospora montagnei, isolated from the inner tissue of an alga Polysiphonia violacea (North Sea near Helgoland), was the source of myrocin A 56, apiosporic acid 57, methyl 9hydroxyhexylitaconate 58 and the (-)-enantiomer 59 of the known (+)-hexylitaconic acid.^{123,124,125} Five leptosins O-P **60-64** were obtained from a *Leptosphaeria* species, originally separated from Sargassum tortile (Tanabe Bay, Japan),¹²⁶ but structural and absolute stereochemistry determinations were performed on the derived acetates. Leptosins O 60 and P 61 exhibited significant cytotoxicity against P388 cells while leptosins O 60 and S 64 were moderately cytotoxic to 39 human tumour cell lines.¹²⁷ *Emericella variecolor*, (marine sediment, Gokasyo Gulf, Japan), provided two new sesterterpenes, 6-epi-ophiobolin G 65 and 6-epi-ophiobolin N 66 along with six previously reported ophiobolins. All isolated compounds were cytotoxic against a neuroblastoma cell line.¹²⁸ The modestly cytotoxic cyclic dipeptides rostratins A-D 67-70 were isolated from *Exserohilum rostratum*, a fungal strain associated with a marine

cyanobacterial mat (Lanai, Hawaii). Absolute configurations of the rostratins were determined (Mosher's).¹²⁹ Peribysins A-D 71-74, from a strain of Periconia byssoides originating from *Aplysia kurodai*,¹³⁰ are eremophilane sesquiterpenoids of which **73** and 74 represent a new class of furanofuran, and are potent inhibitors of the adhesion of HL-60 cells to HUVEC, with 74 being the most active.¹³¹ An eremophilane sesquiterpene, 7H239-A 75, was obtained from a xylariaceous fungus isolated from a *Nypa* (mangrove) palm frond (Kuala Selangor, Malaysia) and was cytotoxic towards a variety of cancer cell lines, with some selectivity for the CCRFCEM leukemia line.¹³² The diterpene phomactin H 76, with a novel skeleton including an oxepane moiety, was obtained from an unidentified surface fungus isolated from a brown alga *Ishige okamurae* (Tateishi, Japan). The structure and relative stereochemistry were determined by X-ray analysis.¹³³ Two halogenated alkenoates, 77 and 78 were isolated from an unidentified surface fungus of a red alga Gracillaria verrucosa (Jinha, Korea).¹³⁴ A total synthesis, using a Cr(II)/Ni(II) macrocyclisation, has been reported¹³⁵ for racemic phomactin G, from a marine fungal *Phoma* species.¹³⁶ A *Cladosporium* species from a brown alga Actinotrichia fragilis (Okinawa, Japan), produced two cytotoxic macrolides, sporiolides A 79 and B 80. Sporiolide A 79 was also moderately antifungal against a range of organisms, while both sporiolides were active against *Micrococcus luteus*.¹³⁷ Fuscoatrol A 81, a caryophyllene sesquiterpene, was isolated from *Humicola fuscoatra* associated with an unidentified colonial ascidian (Shikotan Is., Kuril Isles) with the structure being confirmed by X-ray analysis. Fuscoatrol A 81 displayed moderate antimicrobial activity and was cytotoxic against sea urchin eggs.¹³⁸ Lyngbya majuscula (Hector's Bay, Jamaica) was the source of three lipopeptides, jamaicamides A-C 82-84. Structural elucidation

included the use of the Accordion 1,1-ADEQUATE experiment.¹³⁹ This experiment detects ¹H-¹³C-¹³C spin systems for a wide range of ¹³C-¹³C coupling values and permits unequivocal distinction between 2- and 3-bond HMBC correlations. Only the C-23 stereochemistry of jamaicamide A 82 could be determined (Marfey's). Biosynthetic experiments suggested that the jamaicamides result from alternating PKS and NRPS assembly units, confirmed through cloning and identification of the biosynthetic gene cluster. The jamaicamides displayed cytotoxic, sodium channel blocking and ichthyotoxic activities.¹⁴⁰ Eleven chlorinated lipids, taveuniamides A-K **85–95**, were isolated from two mixed samples of L. majuscula and Schizothrix sp. (Taveuni Is., Fiji). Taveuniamides F 90, G 91 and K 95 exhibited relatively potent brine shrimp toxicity.¹⁴¹ From a total synthesis of kalkitoxin and its congeners, the absolute stereochemistry of this potent neurotoxin isolated from L. majuscula¹⁴² could be assigned as (3R, 7R, 8S, 10S, 2'R).¹⁴³ Kalkitoxin, from a second total synthesis, exhibited potent activity against HCT-116.144 A Symploca species (Fingers Reef, Guam) was the source of two cytotoxic compounds, micromide 96 and guamamide 97. Chiral HPLC and chemical derivatisation followed by comparison with synthetic standards established the absolute stereochemistry of **96**.¹⁴⁵ Isolation of 8-hydroxy-3,5-dimethyl-isochroman-1-one¹⁴⁶ from a mangrove fungus (coastal South China Sea) is the first report of this compound from a marine source.¹⁴⁷ A symbiotic dinoflagellate *Symbiodinium* species, from an acoel flatworm Amphiscolops species (source not given), produced the amphoteric iminium compound symbioimine **98**. The absolute stereochemistry was determined by X-ray analysis. Symbioimine 98 inhibited osteoclastogenesis of the murine monocytic cell line RAW264 and therefore has potential for use as an antiresorptive for prevention and

treatment of osteoporosis in postmenopausal women.¹⁴⁸ The cytotoxic 25-membered macrolide amphidinolide C2 99 was obtained from a dinoflagellate Amphidinium species isolated from an acoel flatworm *Amphiscolops* species (Sunabe, Okinawa).¹⁴⁹ Structural elucidation of (+)-amphidinolide A 100, also from an Amphidinium species, ^{150,151} has been completed through a combination of NMR analysis and total synthesis.¹⁵² Amphidinolide H¹⁵³ attenuated actin depolymerisation induced by diluting F-actin and enhanced the binding of phalloidin to F-actin and is therefore a useful tool for analyzing actin-mediated cell function.¹⁵⁴ A total synthesis of amphidinolide W 101, a 12membered macrolide isolated from an Amphidinium species,¹⁵⁵ has been completed with revision of the C-6 stereochemistry.¹⁵⁶ A total synthesis of amphidinolide X¹⁵⁷ has also been reported.¹⁵⁸ A dinoflagellate Amphidinium species, originally isolated from the surface wash of seaweeds (Lingshui Bay, Hainan Province, China), was the source of the potent cytotoxin lingshuiol 102.¹⁵⁹ The same culture yielded two further lingshuiols, A **103** and B **104**.¹⁶⁰ Two strains of a dinoflagellate *Protoceratium cf. reticulatum* (Sanriku, Iwate, Japan) were the source of four potent antitumour compounds, protoceratins 1–4. Protoceratin 1 was identical to the shellfish toxin 2-homoyessotoxin,¹⁶¹ while protoceratins 2–4 105–107 were determined to be the di-, mono- and tri-arabinosides of 2-homovessotoxin respectively.¹⁶² A Symbiodinium species, isolated in the free-living state from a Hawaiian tide pool, gave the polyhydroxy metabolite zooxanthellamide B 108, a δ -lactone analogue of zooxanthellamide A¹⁶³ which had previously been obtained from the same dinoflagellate.¹⁶⁴ Several Symbiodinium strains obtained from different researchers around Japan produced zooxanthellactone 109. The original strain used for the production was isolated from the foraminifer, Amphisorus hemprichii. The absolute

stereochemistry of zooxanthellactone 109, which was modestly cytotoxic against two human squamous cell carcinomas, was also established.¹⁶⁵ The polyether brevenal **110**, obtained from laboratory cultures of Karenia brevis as well as collections off the west coast of Florida during a red tide, competes with brevetoxin for a site associated with the voltage-sensitive sodium channel thus protecting fish from the neurotoxic effects of brevetoxin exposure. Brevenal may have utility as a model compound for the development of therapeutics to prevent, or reverse intoxication in red tide exposures.¹⁶⁶ A study in rats using short-term inhalation exposure to brevetoxin 3¹⁶⁷ suggested that the immune system may be a target of toxicity following brevetoxin inhalation.¹⁶⁸ The rapid effects of brevetoxin-2¹⁶⁹ and saxitoxin¹⁷⁰ on embryonic murine frontal cortex neuronal networks on microelectrode arrays have been reported.¹⁷¹ NMR studies on two synthetic diastereomeric models corresponding to the CDE/FG ring of prymnesins,^{172,173} suggested that the earlier stereochemical assignment of the E/F ring juncture in the prymnesins needs to be revised.¹⁷⁴ A total synthesis of oscillarin **111**, an antithrombotic peptide from Oscillatoria agardhii,¹⁷⁵ has been achieved, confirming the absolute stereochemistry proposed and correcting the structure of a subunit to the Δ^3 -pyrroline-containing unit shown. Bioassays confirmed that **111** is a potent thrombin inhibitor while the originally assigned structure is inactive. An X-ray analysis of a ternary complex between oscillarin and α -thrombin has been reported.¹⁷⁶ Synthetic (1*S*,2*S*) grenadamide had equal but opposite optical rotation from natural grenadamide from Lyngbya majuscula,¹⁷⁷ which is therefore the (1R,2R)-enantiomer 112.¹⁷⁸ Both enantiomers of xestodecalactone A¹⁷⁹ have been synthesised, and CD and chiral HPLC comparisons have confirmed the (R)configuration for the natural product.¹⁸⁰ Using inexpensive starting materials, concise

total syntheses of the maculalactones A,¹⁸¹ B¹⁸² and C,¹⁸² from a cyanobacterium Kyrtuthrix maculans, have been achieved. Results from optical rotation measurement, chiral HPLC and NMR spectroscopy in the presence of a chiral shift reagent established that natural maculalactone A is present in K. maculans as a partially racemic mixture.¹⁸³ Total synthesis of the Bacillus laterosporus polyketide antibiotics basiliskamide A and B^{184} confirmed the assignment of absolute configuration as (75, 85, 9R, 10S).¹⁸⁵ The first total synthesis of (+)-phomopsidin, a microtubule assembly inhibitor and isolated from a *Phomopsis* species.¹⁸⁶ has been achieved via a diastereoselective transannular Diels-Alder reaction.¹⁸⁷ The total synthesis of halovir A,¹⁸⁸ one of a series of linear, lipophilic peptides produced by a *Scytalidium* species, has been completed as part of a structureactivity relationship study of the series.¹⁸⁹ A one-pot multistep domino reaction from a starting enone of established absolute configuration was used to complete a total synthesis of the mangrove fungus metabolite (+)-xyloketal D.^{190,191} The dinoflagellate metabolite yessotoxin¹⁹² has been shown to induce a cyclosporin A-sensitive permeability transition in rat liver mitochondria and Morris Hepatoma 1C1 cells in the presence of permissive levels of calcium, and also induces membrane depolarisation.¹⁹³ The potent ichthyotoxin antillatoxin from Lyngbya majuscula,¹⁹⁴ along with three synthetic stereoisomers, were assessed for ichthyotoxicity and cytotoxicity in five different assay systems. In all assays the natural antillatoxin was the most potent.¹⁹⁵ Euplotin C_{2} ,¹⁹⁶ a sesquiterpene from a marine ciliate protist *Euplotes crassus*, displayed moderate activity against the protozoa Leishmania major and L. infantum and mild activity against Candida albicans.¹⁹⁷ An assay for inhibitors of lymphocyte function-associated molecule 1/intercellular cell adhesion molecule-1 (LFA-1/ICAM-1) mediated cell-cell adhesion

was used to identify new pharmacologically active compounds from marine cyanobacteria and algae.¹⁹⁸ Six of the sixty marine natural products tested significantly inhibited LFA-1/ICAM-1 mediated cell adhesion after primary and secondary testing. These compounds were cymathere aldehyde,¹⁹⁹ microcolins B²⁰⁰ and D,¹⁹⁸ avrainvilleol,²⁰¹ cymopol²⁰² and hormothamnione diacetate.^{203,204,205} The stereochemistry of a cyclisation product, and results of incorporation experiments with [1-¹³C]- and [1,2-¹³C₂]-acetates, were used to propose the course of geranylgeranyl diphosphate cyclisation in the biosynthesis of the phomactins^{206,207,208,136} from a marine fungal *Phoma* species.²⁰⁹ Incubation of a diatom *Rhizosolenia setigera* with [1-¹³C]-acetate indicated that the polyunsaturated monocyclic sesterterpene and triterpene metabolites are produced predominantly via the mevalonate pathway.²¹⁰

4 Green algae

Very few new secondary metabolites from green algae have been reported. Capisterones A **113** and B **114** are triterpene sulfate esters isolated from *Panicillus capitatus* (Cat Cay, Bahamas). Both compounds exhibited potent antifungal activity against the marine algal pathogen *Lindra thallasiae*.²¹¹

5 Brown algae

As noted in previous reviews, terpenes and polyphenolic compounds are the predominant metabolite classes found in brown algae. A sample of *Eisenia bicyclis*, a very common

Pacific-coast Japanese species, was purchased from a Japanese company and yielded a new phloroglucinol derivative **115**, and two known phloroglucinols, eckol²¹² and dieckol.^{213,214} All three compounds inhibited glycation and α-amylase, so may have an effect on complications of diabetes.²¹⁵ Phloroglucinol²¹⁶ and the derivatives eckstolonol,²¹⁷ eckol,²¹² phlorofucofuroeckol A²¹⁸ and dieckol,²¹³ isolated from *Ecklonia stolonifera* are tyrosinase inhibitors.²¹⁹ Five meroditerpenes, amentol chromane diacetate **116**, cystoseirone diacetate **117**, preamentol triacetate **118**, 14-*epi*-amentol triacetate **119** and 14-methoxyamentol chromane **120** were obtained from a *Cystoseira* species (Canary Islands).²²⁰ Two cytotoxic trihydroxylated diterpenes based on 12-

hydroxygeranylgeraniol, **121** and **122**, were isolated from *Bifurcaria bifurcata* (Atlantic coast of Morocco). The absolute configuration at C-12 in both compounds was established (Mosher's), but the stereochemistries of C-6 in **121** and C-7 in **122** could not be unambiguously determined.²²¹ *Scytosiphon lomentaria*, cultured in deep seawater, produced the bisnorditerpene **123**.²²² The secondary metabolite composition of *Dictyota dichotoma* (Aegean Sea) and *D. linearis* (Chios Is., Greece), were examined and new diterpenes isolated; isopachydictyolal **124** from *D. dichotoma* and 4 α -acetyldictyodial **125** from *D. linearis*.²²³ *D. dichotoma* (Karachi coast in the Arabian Sea) yielded three C-16 oxidised *seco*-dolastanes, dichotenols A-C **126–128**.²²⁴ A new dolabelladiene derivative **129** and the previously isolated 10,18-diacetoxy-8-hydroxy-2,6-dolabelladiene²²⁵ were characterised from *D. pfaffii* (Northeast Brazil).²²⁶ Both compounds showed strong anti-HSV-1 activity *in vitro* but little inhibition of HIV-1 reverse transcriptase. 10,18-Diacetoxy-8-hydroxy-2,6-dolabelladiene²²⁵ was the antifeedant component of *D. pfaffii* against the sea urchin *Lytechinus variegatus* and

generalist fishes.²²⁷ The diterpenes (6*R*)-6-hydroxydichotoma-3,14-diene-1,17-dial, and the 6-acetate derivative, from *D. menstrualis*,²²⁸ originally isolated from *D. dichotoma*,²²⁹ exhibited antiretroviral activity *in vitro*.²²⁸ Two glycerol derivatives, **130** and **131**, were obtained from *Sargassum parvivesiculosum* (Hainan Province, China).²³⁰ The sesquiterpene-substituted benzoic acid, dictyvaric acid **132**, was isolated from *Dictyopteris divaricata* (Shandong coast, China),²³¹ while seven cadinane sesquiterpenes, **133–139**, were obtained from *D. divaricata* (Qingdao coast, China). Structures and absolute configurations of **133–139** were established from spectroscopic data and X-ray

analysis of 133 and 136.²³² Six dibenzyl bromophenols 140–145,²³³ with different dimerisation patterns, and two propyl bromophenol derivatives, 146 and 147,²³⁴ were isolated from Leathesia nana (Shandong Province, China). X-ray analysis determined that 145 was a racemate. Compound 142 showed moderately selective cytotoxicity, and 140 may have been an artifact of isolation.²³³ Surprisingly, compound 146 was reported in another paper by the same authors.²³⁵ The moderately cytotoxic diphlorethohydroxycarmalol 148, from Ishige okamurae (Boso Peninsula, Japan),²³⁶ was characterised by conversion to the known nonaacetate.²³⁷ An enantioselective synthesis of the proposed structures for the bioactive (E)- and (Z)-usneoidones, from Cystoseira usneoides,²³⁸ has been completed by a convergent strategy.²³⁹ However, the spectroscopic data of the synthetic products differed significantly from the reported values. The phlorotannin derivatives 8,8'-bieckol²⁴⁰ and 8,4'''-dieckol,²⁴¹ from *Ecklonia cava* (Korean coasts), are inhibitors of HIV-1 reverse transcriptase (RT) and protease. Both compounds inhibited the RT more potently than the protease and the inhibitory activity of 8,8'bieckol against HIV-1 RT was comparable to that of nevirapine, a reference

compound.²⁴² Fucosterol^{243,244} was isolated from *Pelvetia siliquosa* and *in vivo* testing demonstrated that it is the main antidiabetic principle from *P. siliquosa*.²⁴⁵

6 Red algae

As for the brown algae, terpenes and polyphenolic compounds continue to be the predominant metabolite classes reported from red algae. Laurencia obtusa (Isla Grande, Panama), contained the oxygenated sesquiterpene chamigrenelactone 149.²⁴⁶ The sesquiterpene 150 and a halogenated C15 acetogenin 151, a stereoisomer of neoisoprelaurefucin,²⁴⁷ were isolated from *L. obtusa* (Tekirova, Turkey).²⁴⁸ Two halogenated diterpenes, 15-bromoparguer-9(11)-ene-16-ol 152 and 15-bromoparguer-7ene-16-ol 153, were obtained from *L. nipponica* (Troitsa Bay, Sea of Japan).²⁴⁹ Bioassayguided fractionation of an extract from L. intricata (Discovery Bay, Jamaica), gave the diterpene laurenditerpenol 154 and the absolute configuration at C-1 was established (Mosher's). 154 was a potent inhibitor of hypoxia-activated hypoxia-inducible factor-1 and of the angiogenic factor hypoxia-induced VEGF in T47D cells.²⁵⁰ Two phenylpropanoic acid derivatives, tichocarpols A 155 and B 156, were isolated from Tichocarpus crinitus (Katsurakoi coast of Japan). These two compounds, along with floridoside,²⁵¹ also isolated from the alga, exhibited antifeedant activity against the sea urchin Strongylocentrotus intermedius.²⁵² Inositol phosphoceramide 157 was isolated from Gracilaria verrucosa (Sea of Japan) and identified by GC and GCMS analysis.²⁵³ *Peyssonnelia caulifera* (Yanuca Is., Fiji) was the source of two enediyne ω 3 monoacyl glycerides, peyssonenynes A 158 and B 159, and a pyrone-containing ω 3 fatty acid

methyl ester, peyssopyrone 160, but the instability of the peyssonenynes prevented complete stereochemical assignment. Both peyssonenynes displayed activity at a similar level in a DNA methyltransferase enzyme inhibition assay.²⁵⁴ Rhodomela confervoides (Qingdao coast, China) was the source of seven new bromophenol derivatives 161–167, together with two known bromophenol compounds. X-ray analysis of 161 and 162 supported the structural assignments. The known synthetic compounds 3-bromo-5hydroxy-4-methoxyphenylacetic acid²⁵⁵ and 3-bromo-5-hydroxy-4-methoxybenzoic acid,²⁵⁶ were obtained as natural products for the first time.²⁵⁷ Seven brominated diterpenes of the parguerene and isoparguerene series isolated from Jania rubens (Red Sea coast of Egypt) included the novel deoxyparguerol-7-acetate 168. All the isolated diterpenes had anthelmintic activity and exhibited antitumour activity against Ehrlich ascites carcinoma in vitro with isoparguerol derivatives being slightly more effective than parguerol derivatives.²⁵⁸ The first total synthesis of (-)-presphaerene **169**²⁵⁹ from Sphaerococcus coronopifolius was achieved from (R)-glyceraldehyde²⁶⁰ and established the relative and absolute stereochemistries of 169 as well as the absolute stereochemistries of the co-occurring sphaeroanes (+)-presphaerol,^{261,262} isosphaerodiene 1^{263} and isosphaerodiene 2.²⁶³ The first enantioselective total synthesis of (+)brasilenyne^{264,265} was reported, starting from (S)-malic acid.²⁶⁶ Also reported in 2004 was the first total synthesis of the sesquiterpenoid (+)-palisadin B from Laurencia cf. palisada,²⁶⁷ utilising a new method for the formation of *trans-anti* cyclogeranyl-oxepene systems.²⁶⁸ Furoplocamioid C, prefuroplocamioid, pirene and a tetrachlorinated cyclohexane from *Plocamium cartilagineum*²⁶⁹ exhibited selective cytotoxicity against human tumour cell lines with pirene showing a specific and irreversible effect on SW480

cells.²⁷⁰ Halogenated metabolites from several species of *Laurencia* were tested for antibacterial activity against 22 strains of human pathogenic bacteria, including seven strains of antibiotic-resistant bacteria. Laurinterol,²⁷¹ isolaurinterol,²⁷² *allo*-laurinterol,²⁷³ cupalaurenol²⁷⁴ and 2,3,5,6-tetrabromoindole²⁷⁵ displayed a wide spectrum of antibacterial activity against Gram-positive bacteria including methicillin-resistant *Staphylococcus aureus*, penicillin-resistant *Streptococcus pneumoniae* and vancomycinresistant *Enterococcus faecalis* and *E. faecium*. Laurinterol and *allo*-laurinterol were particularly effective.²⁷⁶ Studies on vanadium bromoperoxidase isolated from marine red algae have established it as a catalyst in the biosynthesis of brominated cyclic sesquiterpene structures in the algae.²⁷⁷

7 Sponges

Unusual fatty acid derived metabolites are often isolated from sponges, and some motifs seem to be characteristic of the phylum; 2-methoxylated fatty acids are one such group of metabolites. A series of these compounds were synthesised, found to be active against mycobacteria, and proposed as a possible chemical defense mechanism in sponges.²⁷⁸ Two long 2-methyl substituted fatty acids **170** and **171** were isolated as methyl esters from *Halichondria panicea* (Sea of Japan, Russia).²⁷⁹ A Chinese *Spongia* species yielded the ceramides spongiamines A **172** and B **173**.²⁸⁰ Clarhamnoside **174**, a glycolipid containing an unusual L-rhamnose unit, was isolated from the Bahamian *Agelas clathrodes*.²⁸¹ The relative stereochemistry of the sugar units was determined from proton coupling constants determined with the use of a ¹³C-coupled HMQC experiment. The

absolute stereochemistry of the alkyl chain oxymethine of caminoside A, originally isolated from *Caminus sphaeroconia*, 282 has been determined as (10*R*) by the preparation of a TPP diester of the aglycone.²⁸³ An inhibitor of bacterial proteases, pachymoside A 175, was isolated from *Pachymatisma johnstonia* (Isle of Man).²⁸⁴ An α -glycosidase inhibitor, penasulfate A 176, was obtained from a Japanese Penares species using recycling HPLC.²⁸⁵ Mycale cecilia (Gulf of California, Mexico) yielded fourteen cytotoxic long chain pyrroles, mycalazals 3–13 177–187, and three nitrile-containing congeners, the mycalenitriles 1-3 188-190.²⁸⁶ A Korean Homaxinella species yielded three weakly cytotoxic butenolides, homaxinolides A-C 191-193, along with the moderately cytotoxic cyclopentenone, homaxinone A 194. Also isolated from the same collection was an unsaturated alcohol 195 previously known only as a synthetic intermediate.²⁸⁷ A pair of isomeric bisthiocyanates, thiocyanatins D₁ **196** and D₂ **197**, and the related thiocyanate-thiocarbamates, thiocyanatins E_1 **198** and E_2 **199**, were obtained as inseparable pairs from a South Australian Oceanapia species; all compounds were potent nematocides. Several related compounds were also tentatively identified by mass spectrometry.²⁸⁸ An acetylenic acid **200** has been obtained from a Chinese *Cinachyrella* australiensis.²⁸⁹ A Plakortis species (Canary Islands) contained plakolide A 201, a ylactone that inhibits inducible nitric oxide synthase activity.²⁹⁰ Two isomeric cytotoxic trans epoxides, plakorstatins 1 202 and 2 203, were isolated from *Plakortis nigra* (Sulawesi, Indonesia).²⁹¹ A Dominican *Plakortis anglospiculatus* provided two highly branched tricylic acids, spiculoic acids A 204 and B 205 which are thought to be the result of a Diels Alderase-catalyzed intramolecular [4+2] cycloaddition.²⁹² A series of glycosphingolipids were partially characterised from four Agelas species using tandem

HPLC/ESIMS and HPLC/LSIMS.²⁹³ Dideoxypetrosynol A, a polyacetylene originally obtained from a *Petrosia* species,²⁹⁴ induced apoptosis in human melanoma cells.²⁹⁵ Manzamenone A^{296} was a potent inhibitor of β DNA polymerase and only weakly active against the α form of the enzyme.²⁹⁷ A lysophosphatidylcholine, originally isolated from Spirastrella abata,²⁹⁸ has been shown to increase intracellular Ca²⁺ concentration in human leukemia cells.²⁹⁹ Mycalazal 2 and mycalazol 11, pyrrole-containing lipids isolated from *Mycale micranthoxea*,³⁰⁰ have been synthesised using a Stille coupling.³⁰¹ A synthesis of (2R,5Z,9Z)-2-methoxyhexacosa-5,9-dienoic acid, from Topsentia roquensis,³⁰² has been accomplished using a novel HgO mediated O-alkylation.³⁰³ A racemic synthesis of plakortone E 206^{304} has established the relative stereochemistry, ³⁰⁵ and an asymmetric synthesis of plakortone G 207³⁰⁶ defined both the relative and absolute stereochemistries.³⁰⁷ Two dimeric peroxides, dihalenaquinolides A **208** and B 209, were isolated from a Taiwanese Petrosia elastica.³⁰⁸ A very potent cytotoxin, psymberin 210, related to the pederin family of metabolites, was obtained from a series of Papua New Guinean collections of *Psammocinia* species.³⁰⁹ In an independent study, a compound named irciniastatin A, having the same NMR characteristics as 210 but claiming different stereochemistry at C-8, and the keto analogue irciniastatin B 211 were isolated from Ircinia ramosa (Borneo).³¹⁰ Four calyculin analogues, calyculin J 212, calyculinamide F 213, des-N-methylcalyculin A 214 and the known calyculinamide A,³¹¹ were obtained from a Japanese Discodermia calyx. All four compounds were potent inhibitors of protein phosphatase 2A.³¹² A prokaryotic gene cluster, proposed to be responsible for the biosynthesis of onnamide A, has been isolated from the metagenome of *Theonella swinhoei*. The specific PKS cluster is distinct from many others by the lack

of an acyltransferase domain, a characteristic that it shares with the pederin gene cluster. The onnA cluster was found only in the chemotypes of T. swinhoei that produce onnamide A and the theopederins.³¹³ In a series of five consecutive papers the large-scale synthesis of discodermolide is described, culminating in the production of 60 g of enantio-pure material.³¹⁴ Discodermolide, a microtubule stabilizing agent, was originally isolated from a deepwater *Discodermia disoluta*.³¹⁵ The level of commitment involved in this large-scale synthesis of a highly complex marine natural product is a measure of the importance of the field of marine natural products to medical research and the pharmaceutical industry. Sponges continue to be a rich source of novel and biologically active peptides. The dysinosins B-D 215-217, from a Queensland Lamellodysidea chlorea, were inhibitors of serine protease factor VIIa and thrombin.³¹⁶ The microtubuledestabilizing peptide, milnamide C 218, was obtained from an Auletta species (Papua New Guinea).³¹⁷ Milnamide D **219**, isolated from a *Cymbastela* species and reported in 2003,³¹⁸ was inadvertently omitted from the previous review.¹ An asymmetric synthesis of milnamide A 220^{319} and the subsequent autoxidation to milnamide D established the relative and absolute stereochemistry of these two potent antimitotic compounds.³²⁰ Scleritoderma nodosum (Philippines) contained the cytotoxic cyclic peptide scleritodermin A **221**.³²¹ Another Philippine sponge, *Clathria (Thalvsias) abietina*, yielded two isomeric disulfide-bridged heptapetides, microcionamides A 222 and B 223, with cytotoxic and antitubercular activities.³²² An unusually cyclised peptide, callynormine **224**, isolated from *Callyspongia abnormis* (Kenya), represents a new class of heterodectic cyclic peptide, the endiamino peptides, which contain an α -amido- β aminoacrylamide functionality.³²³ Axinella carteri (Caroline Islands) yielded the

octapeptide cyclonellin 225.³²⁴ Kendarimide A 226, a linear peptide obtained from a Haliclona species (Sulawesi, Indonesia), reversed P-glycoprotein-mediated multi-drug resistance in mammalian cells.³²⁵ A large depsipeptide, neamphamide A **227**, with potent cytoprotective activity against HIV-1 was isolated from a Papua New Guinean Neamphius huxlevi.³²⁶ Phakellistatin 13, recently isolated from *Phakellia fusca*, ³²⁷ has been synthesised, confirming the natural L configuration of the tryptophan residue.³²⁸ Phakellistatin 13 was also converted by photo-oxidation into phakellistatin 3 and isophakellistatin 3, both originally obtained from P. carteri.³²⁹ Miraziridine A, isolated from *Theonella* aff. *mirabilis*, ³³⁰ has been synthesised and is an inhibitor of three classes of proteases.³³¹ Callipeltin A, originally isolated from a New Caledonian Callypelta species,³³² acts as an ionophore, increasing the contraction of vascular tissues in the presence of Na⁺ ions.³³³ The complex structures and often spectacular biological activity of sponge-derived macrolides and their related congeners provide attractive targets and considerable challenges to natural product and synthetic chemists alike. Examples of these include the two oxazole-containing macrolides neohalichondramide 228, (19Z)halichondramide 229 and a related ring opened compound secohalichondramide 230 obtained from *Chondrosia corticata* (Guam),³³⁴ and the three cytotoxic mycalolides, 30hydroxymycalolide A 231, 32-hydroxymycalolide A 232, and 38-hydroxymycalolide B 233 isolated from a Japanese Mycale magellanica.³¹² Latrunculeic acid 234, from Negombata (Latrunculia) magnifica³³⁵ (Gulf of Eilat, Red Sea), is clearly related to the latrunculin macrolides, isolated previously from the same sponge.³³⁶ Spongidepsin 235, originally isolated from a Spongia species (Vanuatu),³³⁷ has been synthesised independently by two groups defining both relative and absolute configurations.^{338,339}

The relative stereochemistry of dictyostatin 236, originally obtained from a *Spongia* species,³⁴⁰ has been determined (Murata's method), revising the original structure.³⁴¹ Two independent groups have confirmed this relative stereochemistry and absolute configuration by synthesis.^{342,343} Five antiproliferative lasonolide congeners, lasonolides C-G 237-241, were isolated from a *Forcepia* species (west coast of Florida).³⁴⁴ A larger recollection of the producing organism, Spirastrella coccinea, yielded sufficient spirastrellolide A 242 for further spectroscopic examination and derivative preparation. Originally reported with a molecular formula of $C_{53}H_{86}O_{19}$,³⁴⁵ an extensive re-analysis led to the determination of a new molecular formula, exchanging H₃O₂ for Cl, and structural revision (as shown). The relative stereochemistries of segments C-3-C-7, C-9-C-24, and C-27–C-38 were established from ROESY data obtained at 800 MHz.³⁴⁶ The synthesis of a series of diastereomers of a degradation fragment of reidispongiolide A 243, originally isolated from *Reidispongia coerulea*,³⁴⁷ has led to a reassignment of the relative stereochemistry of the C-7-C15 fragment.³⁴⁸ The potent cytotoxin 13deoxytedanolide, from *Mycale adhaerans*, ³⁴⁹ has been shown to bind to the 60S large ribosomal subunit.³⁵⁰ Two brominated biphenyl ethers 244 and 245 were isolated from Phyllospongia dendyi (Palau), along with a series of related known compounds. Some of the known dihydroxy congeners showed inhibitory activity towards the assembly of microtubules.³⁵¹ A tricyclic dipeptide betaine, dysibetaine PP **246**, and two cyclopropane betaines, dysibetaines CPa 247 and CPb 248, were isolated from an aqueous extract of Dysidea herbacea (Yap, Micronesia).³⁵² A Japanese Spongia species produced the moderately antifungal spongiacysteine 249.353 Three aromatic amino acid-derived alkaloids, hamigeroxalamic acid 250, hamigeramine 251, and hamigeramide 252 were

isolated from a Mediterranean Hamigera hamigera.³⁵⁴ Esmodil 253, known previously as a synthetic drug, has been found as a metabolite of a South Australian Raspailia species.³⁵⁵ A series of twenty new phloeodictine alkaloids **254–273**, together with several known congeners, were obtained from Oceanapia fistulosa (New Caledonia). The compounds were characterised by LCMS from a complex mixture that showed antiplasmodial activity against chloroquine-resistant Plasmodium falciparum.³⁵⁶ Alkylpyridine-derived alkaloids are a characteristic of sponges that continue to provide an assortment of unusual metabolites. Viscosaline 274 was obtained from Haliclona viscosa (Russian Arctic Ocean).³⁵⁷ The same sponge, but from Svalbard in the Norwegian Arctic, yielded haliclamines C 275 and D 276.³⁵⁸ Three inhibitors of histone deacetylase, cyclostellettamine G 277 and dehydrocyclostellettamines D 278 and E 279, were isolated from a Japanese Xestospongia species.³⁵⁹ A Brazilian Pachychalina species yielded the cytotoxic ingenamine G 280, the previously described cyclostellattamine G, and four new congeners, cyclostellattamines H, I, K and L 281-284.³⁶⁰ An Amphimedon species (Southern Japan) contained tetrahydrohalicyclamine 285 and 22-hydroxyhalicyclamine **286**, both of which inhibit the growth of mammalian cells.³⁶¹ A new aruguspongine/xestospongine analogue, araguspongine M 287, has been described from *Neopetrosia exigua* (formerly *Xestospongia exigua*) from Palau.³⁶² Hachijodine B, originally isolated from a *Xestospongia* species, ³⁶³ has been synthesised, along with the proposed structure of ikimine B originally isolated from an unidentified sponge,³⁶⁴ but the spectra of the synthetic ikimine B did not match that of the natural product suggesting a possible incorrect assignment of the original structure.³⁶⁵ Three manzamine alkaloids 288–290 have been isolated from an Indonesian Acanthostrongylophora species. The

activities of several known manzamine alkaloids as potent antiinflammatory, antifungal, and anti-HIV-1 agents were also reported.³⁶⁶ Indole-based alkaloids are well represented among sponge metabolites. Three further iodinated indole alkaloids, plakohypaphorines D-F 291-3 are reported from *Plakortis simplex* (Bahamas). Plakohypaphorines B-D have significant antihistamine activity.³⁶⁷ The weakly cytotoxic guanine-containing 6hydroxydiscodermindole 294 was obtained from Discodermia polydiscus (Bahamas).³⁶⁸ An antifouling alkaloid, 8,9-dihydrobarettin 295, has been isolated from Geodia *barretti*,³⁶⁹ The recently reported revised structure for barettin,³⁷⁰ from *G. baretti*,³⁷¹ has been synthesised confirming the revised structure.³⁷² Using LCMS, barettin has been detected at biologically-significant concentrations in water surrounding live G. barretti specimens.³⁶⁹ An enantiospecific synthesis of the (+)-dragmacidin F has established the absolute configuration of the natural product as (4'S,6"S,6"'S).³⁷³ Two thiomethylcontaining β -carbolines, dragmacidonamines A 296 and B 297, were isolated from a Dragmacidon species (Adaman Islands, India).³⁷⁴ A Thorectandra species (Palau) produced a β-carboline alkaloid **298** with moderate cytotoxicity.³⁷⁵ A series of fused bisindole-derived compounds 299-306 in the fascaplysilin series were isolated from Fascaplysinopsis reticulata (Indonesia).³⁷⁶ Pyrrologuinones and pyrroloiminoquinones are associated with sponges, particularly members of the Order Poecilosclerida. Zyzzyanone A 307, which is moderately cytotoxic and inhibits division of fertilised sea urchin eggs, was isolated from an Australian Zyzzya fuliginosa.³⁷⁷ Two β-Dribopyrrologuinoline alkaloids 308 and 309 were obtained from a South African Strongvlodesma aliwaliensis.³⁷⁸ Four new discorhabdins, 3-dihydro-7,8dehydrodiscorhabdin C 310, 14-bromo-3-dihydro-7,8-dehydrodiscorhabdin C 311,

discorhabdin V 312, and 14-bromo-1-hydroxydiscorhabdin V 313 were isolated from the South African Tsitsikamma pedunculata. In the same article, the tsitsikammanamines A **314** and B **315** are reported from *T. favus* along with 1-methoxydiscorhabdin D **316** and 1-aminodiscorhabdin D **317** from *Latrunculia bellae*.³⁷⁹ Also isolated from *L. bellae* was discorhabdin G*, identical in structure with discorhabdin I 318 which was reported, along with discorhabdin L **319**, from *Latrunculia brevis* (Argentina).³⁸⁰ Fortunately, some of the confusion over the earlier naming of the discorhabdin series has been resolved in a 2005 review on pyrroloiminoquinones.³⁸¹ Cribrostatin 7 **320**, a cytotoxic quinone alkaloid was obtained from a *Petrosia* species (Philippines).³⁸² A Chinese *Cinachyrella* australiensis contained isolumichrome 321.²⁸⁹ Bisdemethylaaptamine 322 and the 9-Osulfate analogue **323** were isolated from an Indonesian *Aaptos* species.³⁸³ The racemic spiro-polycyclic aromatic alkaloid lihouidine 324, obtained from a new species of Suberea (Lihou reef, Coral Sea), showed cytotoxic activity.³⁸⁴ Syntheses of 7-methoxy-1,6-dimethylisoquinoline³⁸⁵ from a *Xestospongia* species,³⁸⁶ 6-hydroxy-7methoxyisoquinolinemethanol³⁸⁷ from a *Haliclona* species,³⁸⁸ and cribrostatin 6³⁸⁹ from a Cribrochalina species,³⁹⁰ have been completed. Renieramycin A, from a Reniera species,³⁹¹ had antileishmanial activity.³⁹² A *Leucetta* species (Papua New Guinea) provided spiroleucettadine 325 which showed antibacterial activity against Enterococcus durans.³⁹³ Leucetta chagosensis (Sulawesi, Indonesia) contained naamines F 326 and G **327** as well as kealiinines A–C **328–330**. Naamine G was strongly antifungal.³⁹⁴ Monanchora unguifera (Jamaica) provided 1,8a;8b,3a-didehydro-8a-hydroxyptilocaulin **331**, together with the known 8β isomer, which co-crystallised in perfect order with an approximate inversion centre.³⁹⁵ Monanchorin **332**, a new bicyclic metabolite and the

pentacyclic crambescidin acid **333**, previously reported as the ethyl ester,³⁹⁶ have both been isolated from *Monanchora ungiculata* (Maldive Islands).³⁹⁷ Two phakellin alkaloids, **334** and **335**, active as human lipoxygenase inhibitors, were found in an Agelas species (Papua New Guinea).³⁹⁸ An Okinawan Agelas species provided the nagelamides A-H 336-343 and 9,10-dihydrokeramadine 344. The nagelamides were antibacterial, while nagelamide G inhibited protein phosphatase 2A activity.³⁹⁹ A systematic analysis of CD spectra and Mosher acid derivatives suggested that the configuration of longamide A, from Agelas longissima, ⁴⁰⁰ be revised to (4R).⁴⁰¹ (±)-Sceptrin, ^{402,403} from Agelas sceptrum, ⁴⁰⁴ and (\pm)-dibromosceptrin⁴⁰³ from Agelas conifera, ⁴⁰⁵ have both been synthesised. The conversion of ageliferin into sceptrin using microwave irradiation also revealed a possible alternative biosynthetic pathway linking the pyrrole-imidazole alkaloids.⁴⁰⁶ The synthesis of dehydrobatzelladine C, originally isolated from two *Monanchora* species³⁹⁶ has been reported.⁴⁰⁷ The first enantiospecific synthesis of agelastatin A, isolated from Agelas dendromorpha,⁴⁰⁸ has been achieved.⁴⁰⁹ The HIVactive alkaloid batzelladine A, from a *Batzella* species,⁴¹⁰ has been synthesised in an enantio-pure form.⁴¹¹ Crambescidin 800, originally isolated from *Crambe crambe*,⁴¹² caused myelogenous leukemia cells to differentiate into erythrocytes.⁴¹³ The schulzeines A-C 345-347 were isolated from *Penares schulzei* (Hachijo-kojima Is., Japan).⁴¹⁴ The configurations of these unusual sulfonated long chain aromatic alkaloids, potent inhibitors of yeast α -glucosidase, were determined from a combination of chemical degradation and modified Mosher's method. A series of bromotyrosine alkaloids, the purpurealidins A-H 348-355, were reported from a *Psammaplysilla purpurea* (India).⁴¹⁵ Purpurealidin B 349 was antibacterial. Two potent antagonists of the sarcoplasmic

reticulum calcium channel RyR1-FKBP12, the sulfonates 356 and 357, were isolated from *Ianthella basta* (Guam), along with 34-O-sulfatobastadin-9 **358**.⁴¹⁶ A sulfurcontaining nucleoside, hamiguanosinol 359, was obtained from a Mediterranean Hamigera hamigera.³⁵⁴ A bromotyrosine oxime that inhibits mycothiol-S-conjugate amidase, isolated from an *Oceanapia* species,⁴¹⁷ has been synthesised.⁴¹⁸ The same molecule was also synthesised independently through a trifluoromethyloxazole intermediate.⁴¹⁹ A total synthesis of the eurypamides, first isolated from a Palauan Microciona eurypa,⁴²⁰ resulted in revised stereochemistry for eurypamide A 360 and confirmed the structures of eurypamides B-D.⁴²¹ Two macrocyclic merosesquiterpenoids, likonides A 361 and B 362, were obtained from a Kenvan Hvatella species.⁴²² 17-Oisoprenyldictyoceratin-C 363 was isolated from a Philippine Spongia species.⁴²³ An amino-merosesquiterpenoid, 5-epi-smenospongorine 364, isolated from Dactylospongia elegans (Flores, Indonesia), caused the differentiation of K562 leukemia cells into erythrocytes.⁴²⁴ A Papua New Guinean Psammocinia species contained chromarols A-E **365–369**, inactivators of human 15-lipoxygenase through a redox mechanism similar to that reported for a range of known meroterpenoids.⁴²⁵ Makassaric acid **370** and subersic acid 371, isolated from an Acanthodendrilla species (Sulawesi, Indonesia), were inhibitors of MAPKAP kinase 2.426 Petrosia (Strongvlophora) corticata (Papua New Guinea) contained the anti-invasion active meroditerpenoid strongylophorine-26 372.⁴²⁷ A series of merosesquiterpenoids from a variety of sponge sources were assessed for hemolytic and cytotoxic properties.⁴²⁸ Similarly, a further range of sponge-derived merosesquiterpenoids were active as antioxidants.⁴²⁹ Smenospongine, originally isolated from a Smenospongia species,430 caused K562 leukemia cells to differentiate into

erythrocytes.⁴³¹ A series of polyprenylated hydroquinones and benzoic acids of sponge origin inhibited phosphatase CDC25A.⁴³² Puupehenone, originally isolated from a Hawaiian sponge,⁴³³ inhibited the differentiation of endothelial cells into tubular structures, an important step in angioneogenesis.⁴³⁴ Chloropuupehenone⁴³³ has been synthesised.⁴³⁵ An aromatic sesquiterpenoid **373** was isolated from a *Didiscus* species (Thailand).⁴³⁶ Stylotella aurantium (Great Barrier Reef) yielded a carbonimidic dichloride stylotellane D 374.437 The weakly antibacterial hyrtiosenolides A 375 and B 376 were isolated from a Red Sea Hyrtios species.⁴³⁸ The boneratamides A-C were isolated as their methyl esters **377–379** from an Indonesian *Axynyssa aplysinoides*.⁴³⁹ The relative stereochemistry of boneratamide A 377 was established by X-ray analysis, while boneratamides B 378 and C 379 differ in their relative configurations at either one or both of C-18 and C-23. The antimicrobial germacrane sesquiterpenoid 380, and the bisurea analogue **381**, were obtained from an *Axinvssa* species (Thailand).⁴⁴⁰ Two sesquiterpene isothiocyanates 382 and 383 were obtained from an Okinawan Stylissa species.⁴⁴¹ The biosynthesis of the carbonimidic dichloride sesquiterpenoids, the stylotellanes A and B, was examined in the producing organism *Stylotella aurantium* (Great Barrier Reef). Feeding experiments with ¹⁴C-labeled metabolites established that CN, SCN, and farnesyl isothiocyanate were intermediates in the biosynthetic pathway to these dichloroimines.⁴⁴² A total synthesis of hamigeran E,⁴⁴³ from a New Zealand Hamigera tarangaensis, has been reported.⁴⁴⁴ (6R,7S)-7-amino-7,8-dihydro- α bisabolene, from a *Halichondria* species,⁴⁴⁵ has been synthesised.⁴⁴⁶ Helianane, isolated from *Haliclona fascigera*,⁴⁴⁷ was synthesised employing a vacuum thermolytic ring expansion step.⁴⁴⁸ A Kenyan *Raspailia* species gave two purine alkaloid-derivatised

diterpenes asmarines G **384** and H **385** and the diterpenoid barekol **386**, together with several related known compounds.⁴⁴⁹ A *Raspailia* species (Madagascar) produced further asmarines, I-K **387–389**, and the diterpenoid nosyberkol **390**.⁴⁵⁰ A furanoditerpenoid 391, and two related norditerpenoids 392 and 393, that inhibit the lyase activity of DNA polymerase β , were obtained from an unidentified Dictyoceratid sponge from Papua New Guinea.⁴⁵¹ A bright vellow encrusting Aplysillid sponge, tentatively identified as Aplysilla sulphurea from S. E. Queensland, contained the cytotoxic and nematocidal compound chromodorolide C **394**, along with the known A and B congeners.⁴⁵² Acanthella cavernosa (Philippines) provided 10-formamido-kalihinol F 395 and 15formamido-kalihinol F **396**, both of which inhibited bacterial folate biosynthesis.⁴⁵³ A norgracilane- 397 and three new aplysulphurane-type spongian diterpenoids 398-400 were isolated from *Dendrilla membranosa* (South Shetlands, Antarctic),⁴⁵⁴ and by forming complexes between (R) and (S) 2,2,2-trifluoro-1-(9-anthryl)ethanol and the γ methylbutenolide of **397** the absolute stereochemistries were established (as drawn). Aplysulphurane-type spongian diterpenoids, with antiinflammatory properties, were also reported from a New Zealand Chelonaplysilla violacea.455 Two compounds from this series, named as pourewic acid A 398 and cadlinolide C 399, were found in both collections along with the formate-containing pourewanone 401, methyl pourewate B 402, 15-methoxypourewic acid B 403, and an inseparable mixture of the diastereoisomeric cadlinolides D 404, with relative stereochemistries established as drawn. The optical rotation of the New Zealand-derived pourewic acid A, which was small, was comparable to but opposite in sign to that reported for the Antarctic sample, but the measurements were made in different solvents (CH₂Cl₂ vs. CHCl₃). Further

resolution of the absolute stereochemistries will require more rigorous chiroptical evaluation of the samples. In contrast, an Anvers Is., Antarctic, collection of Dendrilla membranosa yielded the aromatic antimicrobial spongian diterpenoids, membranolides B-D 405-407.⁴⁵⁶ The three diterpenoid isocyanides 408-410, isocyanate 411, and isothiocyanate 412 were isolated from the same Okinawan Stylissa species that had yielded the previously described isothiocyanate sesquiterpenes 382 and 383.⁴⁴¹ All metabolites displayed weak cytotoxicity. The biosynthetic origins of the isocyanide and isothiocyanate carbon of a variety of sesqui- and diterpenes isolated from Amphimedon terpenensis and an Axinyssa species (Great Barrier Reef), have been investigated. For all compounds specific incorporation of ¹⁴C-thiocyanate was demonstrated.⁴⁵⁷ A racemic synthesis of kalihinol C, first isolated from an Acanthella species,⁴⁵⁸ has been reported.⁴⁵⁹ Three cytotoxic norsesterterpenoids, tasnemoxides A-C 413-415, have been isolated from a Red Sea *Diacarnus erythraenus*.⁴⁶⁰ An *Acanthodendrilla* species (Indonesia) provided the cytotoxic acantholides A-E 416-420. Acantholide B 417 was antimicrobial.⁴⁶¹ A Korean *Psammocinia* species contained three cytotoxic sesterterpenoids, psammocinins A1 421, A2 422 and B 423.⁴⁶² (6Z)-Neomanoalide-24,25diacetate **424** was obtained from a Palauan *Luffariella* species.⁴⁶³ A *Brachiaster* species (Thailand) yielded the same manoalide congener 424, the (E) isomer 425 and the potently antitubercular 12-deacetoxyscalarin-19-acetate **426**.⁴⁶⁴ Five moderately cytotoxic sesterterpenoids, three scalaranes 427–429 and two linear furanoterpenoids 430 and 431, were obtained from a Korean Smenospongia species.⁴⁶⁵ Hyrtios erectus (Hainan Is., China) contained the linear furanoterpenoid 5,10-dihydroxyfurospinulosine-1 432, two formylhyrtiosal congeners 433 and 434, and 12α -O-acetylhyrtiolide 435.⁴⁶⁶ Stoeba

extensa (Japan) gave the cytotoxic furanosesterterpenoid shinsonefuran 436 along with halisulfate 7 **437**.⁴⁶⁷ The C-8 stereochemistry of halisulfate 7, originally isolated from a *Coscinoderma* species,⁴⁶⁸ has been revised to that shown on the basis of careful NOE analysis.⁴⁶⁷ A scalarane-type sesterterpenoid **438**, and a related oxycyclic congener **439**, were obtained from a Madagascan *Phyllospongia madagascarensis*.⁴⁶⁹ Two different. undescribed Madagascan species of Lendenfeldia contained a linear furanoterpenoid 440 with potent HIV-1 reverse transcriptase inhibitory activity, along with four scalarane-type sesterterpenoids 441-444.470 Suberites caminatus (King George Is., Antarctica) contained oxaspirosuberitenone 445 and 19-epi-suberitenone 446.⁴⁷¹ In an independent study, a Suberites species, also collected from King George Is., Antarctica, yielded suberitenones C 447 and D 448, and suberiphenol 449.472 Untenospongin B from an Okinawan *Hippospongia* species,⁴⁷³ has antimicrobial activity.⁴⁷⁴ A structural comparison of the PLA₂ inhibitory activity of the petrosaspongiolides, isolated from Petroaspongia *nigra*,⁴⁷⁵ was reported.⁴⁷⁶ Using bioassay-guided fractionation, heteronemin⁴⁷⁷ was reisolated as a farnesyl transferase inhibitor from Hyrtios reticulata.478 Cacospongionolide E from Fasciospongia cavernosa⁴⁷⁹ has been synthesised.⁴⁸⁰ A synthesis of (-)-(18S)-variabilin from Ircinia variabilis⁴⁸¹ has been achieved.⁴⁸² Four cytotoxic steroids 450-453 were obtained from Axinella cf. bidderi (Yemen, Indian Ocean).⁴⁸³ Phorbas amaranthus (Florida) contained four moderately cytotoxic nor-ring A steroids, phorbasterones A-D 454-457 of which 456 and 457 were isolated as C-24 epimeric mixtures.⁴⁸⁴ Nakiterpiosin **458** and nakiterpiosinone **459**, both potent cytotoxins, were obtained from Terpios hoshinota (Okinawa).⁴⁸⁵ An Italian Cliona nigricans produced the potently cytotoxic polychlorinated steroids clionastatins A 460 and B
461.⁴⁸⁶ The C31 steroid, ophirasterol **462**, was isolated from a Colombian *Topsentia ophiraphidites*.⁴⁸⁷ Two steroidal saponins, erylosides K **463** and L **464**, were isolated from a Jordanian specimen of the same sponge, *Erylus lendenfeldi*, from which eryloside A was originally isolated.^{488,489} *Rhabdastrella* aff. *distincta* (Hainan Is., China) provided four isomalabaricane-type triterpenoids isogeoditins A **465** and B **466**, 13-(*E*)-isogeoditin A **467**, and 22,23-dihydrostellettin B **468**.⁴⁹⁰

8 Coelenterates

There was a slight increase in new chemistry identified from coelenterates in 2004 compared to the number reported in 2003. The glycerol derivative **469** was reported from a gorgonian *Junceella juncea* (South China Sea).⁴⁹¹ The acyl glycerol ethers **470** and **471** and ceramide **472** were isolated from a *Lobophytum* species (Indian Ocean).⁴⁹² The stereochemical assignment of **472** was achieved by analysis of derivatives of hydrolysis products. The sphingosines **473** and **474** were obtained as mildly antibacterial components of an Indian Ocean gorgonian *Pseudopterogorgia australiensis*.⁴⁹³ Structurally-related lipids **475**⁴⁹⁴ and **476**⁴⁹⁵ were isolated from *Junceella juncea* and a *Lobophytum* species respectively, with stereochemical assignments of **475** being made by analysis of hydrolysis products. An *Alcyonium* species (Senegal) was the source of glycolipids **477** and **478**.⁴⁹⁶ The chloromacrolactones, lytophilippines A **479**, B **480** and C **481**, were isolated as bioactive constituents from a Red Sea hydroid *Lytocarpus philippinus*.⁴⁹⁷ The absolute configuration of **479** was established based upon comprehensive derivatisation and chemical degradation studies in concert with *J*-based

analysis and molecular modeling. The moderately cytotoxic pentapeptide gymnangiamide **482** was isolated from a Philippines hydroid *Gymnangium regae*.⁴⁹⁸ Chemical degradation and derivatisation, followed by HPLC analysis allowed the determination of the absolute configuration of **482**. The related clavulazols, A **483** and B 484, are two new pyrazine derivatives from *Clavularia viridis* (Taiwan).⁴⁹⁹ Furanones 485 and 486 were obtained, in addition to a number of other compounds, from a Taiwanese soft coral *Sinularia nanolobata*.⁵⁰⁰ The absolute configuration of **485**, and by association 486, was established by comparison with spectroscopic data previously reported for synthetically-derived 485. Prostanoids 487-493 were also isolated from a Taiwanese C. viridis.⁵⁰¹ The absolute configurations of all compounds were assigned by comparison of CD spectra with that for clavulone I. 492 was the most potent cytotoxin in the series. The structurally-related punaglandins, originally isolated in 1985 from a Hawaiian Telesto riisei, 502,503 inhibit ubiquitin isopeptidase activity 504 while several members of a synthetically-derived library of punaglandin-related analogues exhibited similar cytotoxic potency to that observed for the natural product punaglandin 3.505 An unusual bicyclic prostanoid, carijenone **494**, was obtained from an Eastern Pacific octocoral *Carijoa multiflora*.⁵⁰⁶ The absolute configuration of (+)-tricycloclavulone **495**, from an Okinawan *Clavularia viridis*,⁵⁰⁷ has been established by enantioselective total synthesis.⁵⁰⁸ The guaiane-skeleton sesquiterpenes menverins A–D **496–499** were isolated from Menella verrucosa (South China Sea).⁵⁰⁹ The instability of the compounds was noted, particularly that of **497** which was observed to dehydrate to **500** in the NMR tube (CDCl₃). Bioassay-guided fractionation of a Taiwanese soft coral Lemnalia cervicorni yielded the known mildly cytotoxic sesquiterpene lemnalol as well as the inactive

metabolites cervicol **501**, isolemnalol **502** and the ketone **503**.⁵¹⁰ The ketone **503** was isomeric with 4-oxo- α -ylangene⁵¹¹ and exhibited identical ¹³C and NOESY NMR data consistent with an α -orientation of the isopropyl group. Sarcophyton glaucum (Kitungamwe Reef, Kenya) yielded, in addition to other known compounds, the mildly cytotoxic sesquiterpene guaiacophine **504**.⁵¹² Five nardosinane-skeletoned sesquiterpenes, armatins A-E 505-509, were isolated from a Taiwanese Nephthea armata.⁵¹³ Diketone **510** was also reported for the first time as a natural product. *Isis hippuris* (coast of Taiwan) was the source of isishippuric acids A **511** and B **512**.⁵¹⁴ Sesquiterpene **512** exhibited moderate *in vitro* cytotoxicity towards tumour cell lines. Cladidiol 513, a mild inhibitor of acetylcholinesterase, was obtained from a Cladiella species (Andaman Is., India).⁵¹⁵ Sesquiterpenes 514–517 were isolated from *Clavularia koellikeri* (Okinawa).⁵¹⁶ Mosher's method secured the absolute stereochemistry of **515**, which on acetylation gave 514 securing the absolute configuration of this compound as well. The absolute configuration of 517, previously reported as a synthetic intermediate, ⁵¹⁶ followed from comparison of the $[\alpha]_D$ with literature values.⁵¹⁶ (+)-Cyclocolorenone **518**, previously known as a terrestrial metabolite, and the 1α -OH analogue **519** were isolated from a soft coral Nephthea species (Andaman and Nicobar Islands, Indian Ocean).⁵¹⁷ Nanonorcaryophyllenes A **520** and B **521** were obtained from *Sinularia* nanolobata (Taiwan).⁵⁰⁰ The absolute configuration of **520** was the opposite of a stereochemically-defined microbially-derived metabolite of caryophyllene. The structure of the sesquiterpene alcyopterosin N, from the sub-Antarctic soft coral Alcyonium paessleri,⁵¹⁸ has been confirmed by total synthesis.⁵¹⁹ Nine meroditerpenoids, chabrolonaphthoquinone A 522, chabrolohydroxybenzoquinones A-D 523-526, and

chabrolobenzoquinones A-D 527-530, were isolated from a Taiwanese Nephthea *chabrolii*.⁵²⁰ The merosesquiterpene **531**, previously reported as a synthetic intermediate,⁵²¹ has been obtained from a *Scleronephthva* species (South China Sea).⁵²² Three publications in 2004, presenting new pterosin diterpene glycosides from the soft coral *Pseudopterogorgia elisabethae*, unfortunately led to duplication in structures and trivial names. Ata *et al.* reported structures of pseudopterosins P 532 and Q 533 in addition to elisabethins E 534 and F 535 from *P. elisabethae* (Bahamas).⁵²³ Hydrolysis and comparison of optical rotation data supported the presence of β -L-xylose in both 532 and **533**. Both pseudopterosin P and Q, as well as previously reported analogues pseudopterosins A-E and K isolated from the same soft coral specimens, exhibited antibacterial activity towards Gram-positive bacteria, but not towards Gram-negative organisms. Elisabethins E 534 and F 535 were inactive in the same assays. Working with P. elisabethae (Colombian Caribbean), Duque et al. isolated seven diterpene glycosides, pseudopterosins P–V 536–542.⁵²⁴ The absolute configuration of the aglycone of 536 was established by phenolic O-benzylation at C-9, sugar removal by hydrolysis and comparison of NMR and chiroptical data reported for the known benzyl ether. In the case of 536–539, the sugar was identified as an appropriately acetylated α -L-fucopyranoside by hydrolysis, derivatisation and chromatographic analysis, while β -D-arabinopyranoside was the sugar moiety present in 540-542. The structures presented for pseudopterosins U 541 and V 542 are isomeric with those previously reported for pseudopterosins O and N respectively.⁵²⁵ Confusingly, in the original publication that reported pseudopterosins N and O⁵²⁵ the structures were drawn as bearing xyloside sugar moieties, while the text suggested the structures contained D-arabinose sugars. The NMR data reported for

pseudopterosins U and V are not coincident with the values previously reported for pseudopterosins O and N. Rodriguez et al., also working with P. elisabethae (Colombian Caribbean), isolated eleven diterpene glycosides that they named pseudopterosins P 537, Q 538, R 543, S 544, T 536, U–Z 545–550, and two seco-pseudopterosins, H 551 and I 552.⁵²⁶ The absolute configuration of the sugars in 551 and 552 were not determined they are arbitrarily represented in this review as D. Of the metabolites reported by Rodriguez et al., 543 and 544 represent unique diacetate derivatives. Whereas Duque et al. reported 540–542 claiming the presence of a β -D-arabinose sugar, Rodriguez et al. reported the apparently isomeric structures 549, 545 and 546 respectively as containing an α -D-arabinoside moiety, together with 547 and 548, also containing this moiety. The NMR and optical rotation data reported for the α -/ β - anomer pairs 541/545 and 542/546 were identical (but different to pseudopterosins N and O, see above), indicating a lack of congruity between the structures and their stereochemistries. As of October 2005 these issues had not been addressed and resolved in the scientific literature. Diterpenes 537, 538, 545–548, 551 and 552 displayed activity in a number of biological assays including antiinflammatory, cytotoxicity and antiinfective evaluation.^{524,526} The relative stereochemistry of the cubitane-skeleton diterpene 553, from Eunicea laciniata (Barbados), was determined by use of a T-ROESY NMR experiment.⁵²⁷ Cembranes 7,8dihydroflabellatene A 554 and B 555 were isolated from extracts of a sea pen *Gyrophyllum sibogae* (South Africa).⁵²⁸ The relative stereochemistry of **554** was secured by X-ray analysis (Mosher's method failed), while the absolute configurations of 554 and 555 were equated to those of the known sponge metabolites 556 and 557.⁵²⁹ Cembrane 554 exhibited potent antiproliferative activity towards tumour cell lines. Sarcophydiol

558 was isolated from a Sarcophyton species (Hainan Is., China).⁵³⁰ Cembradienes 559-563 were obtained from a *Eunicea* species (Colombian Caribbean).⁵³¹ The structure and relative configuration of 559 was established by X-ray analysis, confirming that 559–562 contained the unusual C2-C12 ether linkage, while the inter-relationships between 559-562 were established by chemical conversion. Mild growth inhibition of *Plasmodium* falciparum was observed for 559, 560 and 562. Of three norditerpenoids, scabrolides E-G 564–566, from a Taiwanese Sinularia scabra, 564 was a modestly potent growth inhibitor against two tumour cell lines.⁵³² Cembratrienes 567 and 568, containing the rare (12Z) geometry, were isolated from a new species of Sarcophyton (Great Barrier Reef).⁵³³ The same study also led to the determination of the absolute configuration (MPA ester) of sarcoglaucol-16-one **569**⁵³⁴ and, by comparison of CD spectra, sarcophine **570**.⁵³⁵ The acetate derivative 571, also present in a Kenyan Sarcophyton glaucum, was identified as a natural product.⁵¹² A number of rearranged and halogenated semisynthetic derivatives of sarcophine have been prepared and evaluated in a range of biological assays.^{536,537} Neodolabellan-skeleton diterpenes 572 and the modestly cytotoxic 573 were isolated from an Okinawan soft coral Clavularia koellikeri.⁵¹⁶ The structure and relative stereochemistry of 572 were established by X-ray analysis, while oxidation of 573 yielded 572. The absolute configuration of 573, and hence of 572, was secured (Mosher's). Nanolobatins A-C 574-576 were reported from Sinularia nanolobata (Taiwan).⁵⁰⁰ All three diterpenes exhibited modest cytotoxicity towards tumour cell lines. The structure and relative configuration of ciereszkolide 577, a rearranged cembrane from a Caribbean sea plume *Pseudopterogorgia kallos*, was established by X-ray analysis.⁵³⁸ Further examination of the same species from the same location also afforded

the hexacyclic diterpene, bielschowskysin **578**, secured by X-ray analysis.⁵³⁹ Modest biological activity towards *Plasmodium falciparum* and human tumour cell lines was observed. A number of new briarane-skeleton diterpenes were isolated from coelenterates in 2004. Fragilide A 579⁵⁴⁰ and junceellolide I 580⁵⁴¹ were obtained in separate studies from the same collection of Junceella fragilis (southern coast of Taiwan). Another collection of J. fragilis, this time from the South China Sea, afforded junceellonoids A 581 and B 582,⁵⁴² while extracts of *J. juncea*, (also South China Sea) yielded juncins O-O **583–585**.⁵⁴³ Briaexcavatolides W **586**.⁵⁴⁴ and X–Z **587–589**.⁵⁴⁵ were obtained from a Taiwanese Briareum excavatum. A sea whip Ellisella species (Okinawa) was the source of briaranes **590–593**, of which **591** and **592** were inhibitors of cytokinesis.⁵⁴⁶ The same paper also reported **594–597** and a number of known diterpenes from a sea pen *Pteroides* species (Indonesia). One of the known diterpenes, 12-O-desacetyl-12-Obenzovlpteroidine,⁵⁴⁷ demonstrated *in vitro* reversal of multi-drug resistance properties. The absolute stereochemistry of minabein-4 598 was established by X-ray analysis.⁵⁴⁸ From this it was concluded that the C-2/C-9 diastereomeric structure reported for nuiinoalide-D, isolated from Junceella gemmacea, 549 which exhibits identical ¹³C NMR data to 598, was incorrect. Kitungolides A-C 599-601 are unusual coumarin-containing diterpenes from a new genus of Kenyan soft coral.⁵⁵⁰ Pregnanes **602** and **603**, previously reported as synthetic intermediates, ^{551,552} were isolated from a *Scleronephthya* species (South China Sea).⁵²² The Δ^{20} -pregnanes **604** and **605**, from an Indopacific *Carijoa* species, were identified as moderately potent inhibitors of the mitochondrial respiratory chain.⁵⁵³ Carijoa multiflora (Panama) gave the unusual chlorinated pregnanes 606 and **607**.⁵⁵⁴ Pregnane **608**, previously known as a synthetic intermediate, ⁵⁵⁵ and the diacetoxy-

analogue **609** were isolated from a Taiwanese *Subergorgia mollis*.⁵⁵⁶ The pregnane saponin 610, from a Panamanian Muricea cf purpurea, is unusual because it contains Lgalactose linked to the aglycone by an α -glycosidic bond.⁵⁵⁷ The sugar configuration was determined by hydrolysis, derivatisation and comparison of CD spectra with the corresponding synthetically-prepared α -D and β -D-galactose derivatives. Interestingly, a saponin bearing the same overall structure and comparable $[\alpha]_D$ value, but with a β glycosidic linkage **611**, was reported from *Eunicea laciniata* (Barbados).⁵²⁷ The natural product 612 was isolated from a *Lobophytum* species (Andaman and Nicobar Islands).⁵⁵⁸ while the 19-hydroxylated steroids acanthovagasteroids A-D 613-616 were reported from Acanthogorgia vagae (South China Sea).⁵⁵⁹ The 19-acetoxysterols armatinols A 617 and B 618 were isolated as mildly cytotoxic components from a Taiwanese Nephthea armata.⁵¹³ Two new, **619** and **620**, and three known sterols were obtained from Sarcophyton glaucum (Taiwan).⁵⁶⁰ Whilst 619 and 620 were inactive, two of the known sterols exhibited modest cytotoxicity towards a panel of mouse and human tumour cell lines. The modestly cytotoxic steroids 621–627 were isolated from an Antarctic octocoral Dasystenella acanthina.⁵⁶¹ The absolute configuration at C-24 in **621** was established (Mosher's). Bioassay-directed fractionation of extracts of Dendronephthya gigantea (Green Is., Taiwan) yielded dendronesterones A-C 628-630 of which 628 exhibited mild cytotoxicity.⁵¹⁰ In addition to the diterpenes reported above, the cholic acid derivatives **631** and **632** were obtained from an *Eleutherobia* species (Pohnpei, Micronesia).⁵⁴⁸ The structure of the first A-nor-hippuristanol steroid 633, a mildly cytotoxic constituent of a Taiwanese *Isis hippuris*, was established by X-ray analysis.⁵¹⁴ Steroidal glycoside **634** was isolated from Junceella juncea (South China Sea).⁴⁹¹ The structure of 24-methylene-

cholesta- 3β , 5α , 6β , 19-tetraol, a mildly cytotoxic sterol from *Nephthea albida* and *N. tiexieral verseveldt*, ⁵⁶² has been confirmed by synthesis from stigmasterol. ⁵⁶³ A number of steroids, from a range of coelenterates, exhibited significant inhibition of the 5α -reductase enzyme. ⁵⁶⁴ The structures of three mildly cytotoxic biscembranoids, methyl tortuoates A **635** and B **636** from *Sarcophyton tortuosum* (Hainan Is.), ⁵⁶⁵ and nyalolide **637**, from a Kenyan *Sarcophyton glaucum*, ⁵¹² were established by X-ray analyses of **635** and **637**. The structures of all three are arbitrarily presented in this review as bearing the purported absolute configuration of the related metabolite methyl sartortuoate. ⁵⁶⁶ Two unusual mixed-skeleton terpenoids were also reported from soft corals in 2004. Stolonilactone **638**, putatively derived from condensation of a cembrane diterpenoid and trisnorsesquiterpene fragments, was obtained from an Okinawan *Clavularia koellikeri*. ⁵⁶⁷ The structure of polymaxenolide **639**, from a hybrid soft coral *Sinularia maxima x S. polydactyla* (Guam), was established by X-ray analysis, ⁵⁶⁸ and represents the fusion of a cembrane diterpene with an africanane-type sesquiterpene.

9 Bryozoans

The number of new secondary metabolites reported from bryozoans in 2004 remains small. Six alkaloids, calibugulones A-F **640–645**, were isolated from *Calibugula intermis* (Palau) with the structures of **641** and **642** being confirmed by chemical interconversion. All calibugulones displayed cytotoxicity against murine IC-2^{WT} tumour cells *in vitro* with **644** being the most potent.⁵⁶⁹ Two syntheses of calibugulones employing similar methods from an isoquinoline dione,⁵⁷⁰ or 5-aminoisoquinoline⁵⁷¹ were reported almost

simultaneously. The potent and selective inhibition of the dual specificity phosphatase Cdc25B was also reported for these compounds.⁵⁷⁰ Larvae of *Bugula neritina* (Morehead, North Carolina) were the source of bryostatin 20 646, along with the known bryostatin 10⁵⁷² and an as yet uncharacterised bryostatin.⁵⁷³ Proof that *Endobugula sertula*, the bacterial symbiont of *Bugula neritina*, is the producer of the bryostatins was recently obtained.⁵⁷⁴ The bryostatins are concentrated in the bryozoan larvae and give protection against predation by fish, but the adults are unprotected. The bryostatins represent the first marine example of a microbial symbiont producing an antipredator defense for its host.⁵⁷⁴ Flustra foliacea ("Steingrund", North Sea) was the source of deformylflustrabromine B 647 along with a number of previously reported compounds. All compounds were tested *in vitro* for affinity towards the $\alpha 4\beta 2^*$ and $\alpha 7^*$ subtype of the neuronal nicotinic acetylcholine receptor using radioligand binding assays, with deformylflustrabromine⁵⁷⁵ and deformylflustrabromine B 647 showing affinities in the lower micromolar range.⁵⁷⁶ Myriaporones are polyketide-derived compounds originally isolated from a bryozoan Myriapora truncata. 577,578 The total syntheses of myriaporones 1 648, 3 649 and 4 650 have been reported by two groups allowing determination of the previously undetermined C-5 and C-6 configurations.^{579,580} The first enantioselective synthesis of the *Flustra foliacea* metabolite (-)-flustramine B⁵⁸¹ has been accomplished. employing a cascade addition-cyclisation strategy.⁵⁸²

10 Molluscs

There was a decrease in new chemistry identified from molluscs in 2004. Bioassaydirected fractionation of extracts from Mytilus galloprovincialis (coast of Italy) afforded the cytotoxic chlorosulfolipid **651**.⁵⁸³ The relative configurations were deduced from NMR data, while the absolute configuration was based upon comparison with related compounds from the same source. Collections of *Mytilus edulis* and *Cerastoderma edule* in the presence of a Dinophysis acuta bloom (coast of Norway) afforded PTX-12 652, a new member of the pectenotoxin family that occurs as a pair of C-36 equilibrating diastereoisomers.⁵⁸⁴ A brevetoxin analogue, brevetoxin B5 **653**, was isolated from a New Zealand cockle Austrovenus stutchburvi and also detected in two other mollusc species, Perna canaliculus and Crassostrea gigas.⁵⁸⁵ The structure was elucidated by comparison with related toxins brevetoxin B1 and PbTx-2 and confirmed by chemical conversion from PbTx-2. A sea hare Dolabella auricularia (Japan) afforded the cytotoxic depsipeptide aurilide **654**.⁵⁸⁶ The absolute stereochemistry of **654** was determined by analysis of hydrolysis products and confirmed by enantioselective synthesis. Aurilide exhibits potent in vitro cytotoxicity, toxicity in in vivo evaluation and strongly stabilises microtubules, but with a different mechanism from that exhibited by taxol. The relative stereochemistry was established for the cytotoxic glycosidic macrolide dolastatin 19 655 from *D. auricularia* (Gulf of California).⁵⁸⁷ It has been demonstrated that mate attraction in sea hares of the genus Aplysia is mediated via attractin peptides that contain a conserved Ile-Glu-Glu-Cys-Lys-Thr-Ser heptapeptide sequence.⁵⁸⁸ Haterumaimides L **656** and M **657** and 3β-hydroxychlorolissoclimide **658** were obtained as cytotoxic components from *Pleurobranchus albiguttatus* and *P. forskalii* (Philippines).⁵⁸⁹ Structurally-related chlorinated diterpenes have been reported previously from

Lissoclinum ascidians, ^{590,591} supporting the assertion that the mollusc compounds are diet-derived. The isolation of a number of scalarane-skeleton metabolites, including 659 and 660 from a nudibranch Glossodoris rufomarginata (South China Sea), was proposed to be dietary-linked as the nudibranchs were found on an unidentified sponge which contained scalaradial.⁵⁹² Tribromoimidazole **661** was reported for the first time as an antimicrobial natural product from the egg masses of Spanish and Chilean collections of Trunculariopsis trunculus, Ceratosoma erinaceum and Trophon geversianus, with the structure confirmed by synthesis.⁵⁹³ Sesquiterpenes **662–664** were isolated from a nudibranch *Phyllidiella pustulosa*, (Hainan Is., South China Sea).⁵⁹⁴ The absolute configuration of **662** was established by chemical conversion to a known diene. The absolute stereochemistry of oxazinin-3 665, from North Adriatic Sea mussels,⁵⁹⁵ was established by synthesis,⁵⁹⁶ while the structure and absolute stereochemistry of azaspiracid-1 666, originally obtained from Irish collections of Mytilus edulis, 597 has been revised as a consequence of stereoselective total synthesis.^{598,599} The structure of cyercene A, a pyrone polypropionate from a Mediterranean *Cyerce cristallina*,⁶⁰⁰ has been confirmed by synthesis.⁶⁰¹ Austrodoric acid **667**, from an Antarctic nudibranch Austrodoris kerguelenensis.⁶⁰² has been synthesised with comparison of CD spectra being used to establish the absolute configuration of the natural product.⁶⁰³ The structure proposed for onchidin,⁶⁰⁴ a cytotoxic depsipeptide from a pulmonate *Onchidium* species but possibly of cyanobacterial origin, has been synthesised and exhibited different spectroscopic data to that observed for the natural product.⁶⁰⁵ A full account of the stereoselective synthesis of (+)-brasilenyne, an antifeedant haloether from a sea hare Aplysia brasiliana,²⁶⁴ has been reported.²⁶⁶ Enantioselective syntheses of (–)-tochuinyl

acetate 668 and (-)-dihydrotochuinyl acetate 669⁶⁰⁶ defined the absolute configurations of the sesquiterpenes that were isolated from a nudibranch *Tochuina tetraquetra* and its dietary soft coral Gersemia rubiformis.⁶⁰⁷ Dolastatin 18 670, from Dolabella *auricularia*, 608 has been synthesized, confirming the original (*R*) stereochemistry of the *N*-Me-Phe unit.⁶⁰⁹ The absolute configuration of ulapualide A **671**, the renowned bioactive macrolide from egg masses of a nudibranch Hexabranchus sanguineus,⁶¹⁰ has been solved by X-ray analysis of a complex with G-actin.⁶¹¹ The sponge metabolite renieramycin M can be converted to jorumycin 672,⁶¹² a cytotoxic isoquinoline alkaloid comparable in potency to ecteinascidin 743, which was originally isolated from a nudibranch Jorunna funebris (Mandapam, India).⁶¹³ The absolute configuration of (+)norrisolide 673, from a nudibranch *Chromodoris norrisi*,⁶¹⁴ has been established by stereoselective synthesis,⁶¹⁵ while the biogenetically-proposed stereoisomer of acanthodoral 674, from a nudibranch Acanthodoris nanaimoensis,⁶¹⁶ has also been synthesised.⁶¹⁷ The *de novo* biosynthesis of aglajnes-1 and -3, linear and 4-hydroxy- α pyrone polypropionate metabolites previously isolated from opistobranch molluscs Aglaja depicta⁶¹⁸ and Bulla striata⁶¹⁹ respectively, has been established by [1-¹⁴C]propionate feeding experiments.⁶²⁰ Cell-free preparations of Oxvnoe olivacea can convert the dietary algal metabolite caulerpenyne⁶²¹ into oxytoxin-2,⁶²² the main defensive metabolite of the mollusc.⁶²³ The biosynthesis of 3-alkylpyridine alkaloids haminol-1 and -2, from a Mediterranean Haminoea orbignyana, 624 has been studied using $[1,2^{-13}C_2]$ acetate incorporation, establishing elongation with acetate of a nicotinic acid starter unit.⁶²⁵ Parguerol and isoparguerol, originally from *Aplysia dactylomela*,⁶²⁶ induced neurite outgrowth in PC-12 cells with modest potency.⁶²⁷ The shellfish biotoxin

yessotoxin¹⁹² was a potent opener of the permeability transition pore on inner mitochondrial membranes.¹⁹³

11 Tunicates (ascidians)

While the number of new metabolites isolated from ascidians has remained essentially static for each of 2002 and 2003, a slight decrease was reported in 2004. As with previous years, the majority of the metabolites reported from ascidians are derived from amino acids. (2S,3R)-2-Aminododecan-3-ol 675 was reported as an antifungal component of Clavelina oblonga (Brazil).⁶²⁸ The absolute stereochemistry was secured by preparation of the dibenzoyl derivative and comparison of CD data with structurally-defined model compounds. The first examples of acetylenic lipids from an organism of the phylum Chordata 676-679 were isolated from an unidentified ascidian of the family Polyclinidae (Spain).⁶²⁹ Biselides A 680 and B 681 were obtained from an Okinawan ascidian from the family Didemnidae.⁶³⁰ Absolute stereochemistry was implied by comparison of NMR and CD data with those reported for the corrected absolute configuration of haterumalide NA.^{631,632} A stereoselective total synthesis⁶³³ has confirmed the structure and absolute configuration of bistramide A 682 from Lissoclinum bistratum.⁶³⁴ The absolute configurations of lepadins D^{635} 683, E^{635} 684 and H^{636} 685, from a *Didemnum* species⁶³⁵ and Aplidium tabascum,⁶³⁶ have been ascertained by stereoselective total synthesis.⁶³⁷ 1,3-Dimethyl-8-oxoisoguanine 686 was isolated from an ascidian Pseudodistoma cereum (New Zealand).⁶³⁸ An Australian Atriolum robustum was the source of amino acidderived metabolites 687-691.⁶³⁹ The absolute stereochemistries of 687 and 688 were

established by degradative derivatisation studies while only the relative configurations of methylthioadenosine analogues 690 and 691 were determined. Compound 690 was a relatively potent partial agonist of human A₃ adenosine receptors. A Palaun Botrylloides tyreum afforded the weakly cytotoxic tyrosine analogues botryllamides E-H 692-695.⁶⁴⁰ Cystodytes cf. violatinctus (Kenya) gave violatinctamine 696, which in solution was proposed to exist as a rapidly interconverting mixture of imino-phenol (shown) and amino quinone-methide tautomers.⁶⁴¹ Lissoclibadin 1 697 was isolated as a mildly antibacterial component of an Indonesian Lissoclinum cf. badium.⁶⁴² The relative orientations of the aromatic rings were based upon molecular modelling studies. Fascaplysin analogues **301** and **698–701** were obtained from a *Didemnum* species (Chuuk Atoll, Micronesia), while **301** was also isolated from a sponge *Fascaplysinopsis reticulata* (Fiji).³⁷⁶ Asymmetric syntheses of (+)-arborescidine A, (–)-arborescidine B and (-)-arborescidine C, antipodes of the natural products 702–704 from a New Caledonian Pseudodistoma arborescens,⁶⁴³ have been achieved via use of the Noyori catalytic asymmetric hydrogen transfer reaction.⁶⁴⁴ The synthetic arborescidines had opposite optical rotations to those of the natural products, establishing the absolute configurations as drawn and claimed originally,⁶⁴³ but opposite to those claimed in a subsequent revision.⁶⁴⁵ Three lamellarin alkaloids, lamellarins γ 705, α 706 and ε 707 were reported from *Didemnum obscurum* (Indian Ocean),⁶⁴⁶ while solid-phase syntheses of lamellarins Q and O have been reported.⁶⁴⁷ Four further ecteinascidins, ETs 731 708, 745b 709, 808 710 and 815 711 from *Ecteinascidia turbinata* were disclosed in a patent.⁶⁴⁸ Full accounts of the biomimetic synthesis of the dimeric prenylated quinone (-)-longithorone A⁶⁴⁹ from Aplidium longithorax, 650,651 of the corrected structure of diazonamide A, 652 and the

isolation and synthesis of an endogenous sperm-activating and attracting factor from *Ciona intestinalis*⁶⁵³ have been reported. The structures of cyclic peptides bistratamides E, G and J,^{654,655} from *Lissoclinum bistratum*,⁶⁵⁶ botryllazine B,⁶⁵⁷ from a Spanish Botryllus leachi,658 and subarine,659 a potentially ring-opened pyridoacridine alkaloid from an unidentified Singaporean ascidian,⁶⁶⁰ have been confirmed by syntheses. Molecular dynamics simulations have modelled the interaction of didemnins A and B^{661,662} with human elongation factor eEF1A in the presence of GTP, an interaction that leads to inhibition of protein synthesis.⁶⁶³ Monomeric analogues of the heterodimeric antimicrobial peptide halocidin from *Halocynthia aurantium*⁶⁶⁴ have been prepared, leading to the identification of a more potent antimicrobial and less haemolytic variant.⁶⁶⁵ Further biological investigation of the meridianins, aminopyrimidineindole alkaloids originally from *Aplidium meridianum*,⁶⁶⁶ has revealed that they inhibit various protein kinases, prevent cell proliferation and induce apoptosis,⁶⁶⁷ while polycarpine, an alkaloid from *Polycarpa clavata*,⁶⁶⁸ and a dimethyl analogue both induced apoptosis via p53 and caspase-3 dependent pathways.⁶⁶⁹

12 Echinoderms

There was a slight increase in new compounds identified from echinoderms in 2004 compared to 2003. In addition to a number of known metabolites, xanthosine **712** was isolated from a starfish *Asterias rollestoni* (Yellow Sea, China).⁶⁷⁰ A ganglioside molecular assemblage, LMG-4, the major entity of which is represented by **713**, was obtained from a Japanese starfish *Luidia maculata*.⁶⁷¹ The ganglioside displayed

neuritogenic activity against PC12 cells in the presence of nerve growth factor. A structurally more complex ganglioside molecular entity CJP4 714, also exhibiting neuritogenic activity, was isolated from a Japanese feather star *Comanthus japonica*.⁶⁷² The progesterone derivative 715 was obtained from a Russian starfish *Lethasterias* nanimensis chelifera,⁶⁷³ while the polyhydroxysterol **716** was isolated from a Pacific starfish Asterina pectinifera.⁶⁷⁴ Brine shrimp assay-directed fractionation of a starfish Certonardoa semiregularis, (Komun Is., Korea) extract, afforded twelve polyhydroxysterols 717–728 and two saponins 729 and 730.⁶⁷⁵ Side-chain configurations were determined either by Mosher analysis (certonardosterols Q₂ 718, A₃ 725, A₄ 726, B₄ 727 and certonardoside H₄ 730) or biogenetic arguments (certonardosterols Q₁ 717, Q₃ 719, Q₄ 720, Q₅ 721, Q₆ 722, Q₇ 723, D₅ 728 and certonardoside H₃ 729). All of the compounds tested exhibited modest *in vitro* cytotoxicity towards a panel of human tumour cell lines. In a separate study of the same organism from the same location, a further eleven sterols 731–741 and eight saponins 742–749 were identified.⁶⁷⁶ A glycoside, phrygioside A 750 and the corresponding aglycone 751, were isolated from a starfish Hippasteria phrygiana (Sea of Okhotsk).⁶⁷⁷ The steroid-taurine conjugate, triseramide 752, was a mildly bioactive component of a Fijian starfish Astropecten triseriatus.⁶⁷⁸ The Far-Eastern starfish Henricia sanguinolenta and H. leviuscula *leviuscula* yielded the saponins sanguinosides A 753 and B 754.⁶⁷⁹ The C-24 configuration of 754 was based on biogenetic considerations. Further investigation of the side-chain absolute stereochemistries of henriciosides H₁ 755, H₂ 756 and H₃ 757, originally isolated from a Far-Eastern starfish *H. derjugini*,⁶⁸⁰ (Mosher's) established that 755 is, in fact, identical to the previously reported steroid laevisculoside I_{1}^{681} and that 756 has the (24*R*,25*S*) configuration while **757** is (24*R*,25*R*).⁶⁸² Linckosides C–E **758–760**, from the Okinawan starfish *Linckia laevigata*, induced neurite outgrowth in PC12 cells.⁶⁸³ The relative configurations of C-24 and C-28 in **759** were established, with the same configurations implied for **758**. The triterpene aglycones, philinopgenins A–C **761– 763**, were obtained from the acid hydrolysate of the crude glycoside fraction from a sea cucumber *Pentacta quadranglasis* (South China Sea).⁶⁸⁴ The philinopgenins are possibly artefacts. Two saponins, thyonosides A **764** and B **765**, were isolated from the sea cucumber *Thyone aurea* (Namibia).⁶⁸⁵

13 Miscellaneous

Two 21-residue antimicrobial peptides, arenicin-1 **766** and arenicin-2 **767** were obtained from a polychaete worm *Arenicola marina* (White Sea, Russia).⁶⁸⁶ Diatom-derived conjugated aldehydes such as (2*E*,4*E*)-decadienal continue to be of interest, exhibiting cytotoxicity towards a number of different organisms including bacteria, algae, fungi, echinoderms, molluses and crustacea⁶⁸⁷ in addition to inhibiting fertilization success in broadcast-spawning invertebrates.⁶⁸⁸ The structure of the antipredatory chemical defense compound 2,3,4-tribromopyrrole from a hemichordate worm *Saccoglossus kowalevskii*,⁶⁸⁹ has been confirmed by synthesis.⁶⁹⁰ Mass spectrometric analysis of stable isotope incorporation experiments determined that Cypridina luciferin, an alkaloid utilised by the bioluminescent crustacean *Cypridina (Vargula) hilgendorfii*, is biosynthesised from L-tryptophan, L-arginine and L-isoleucine.⁶⁹¹ Gymnorrhizol **768**, an unusual macrocyclic polydisulfide possessing an unprecedented carbon skeleton, has been isolated from a mangrove *Bruguiera gymnorrhiza* (Guangxi Province, China). The structure was confirmed by X-ray analysis.^{692,693}

14 Conclusions

In this review, the structures of 767 compounds have been reported. The biological testing on, or biological properties of, 380 compounds is included. Using numbers extracted from MarinLit,⁷⁹ the geographic origins of compounds reported in 2004 are compared with those up to 2003 (Fig. 1a). The geographical descriptors used in MarinLit are somewhat imprecise, ranging from exclusive to inclusive, but Australia, the Caribbean, the Indian Ocean, Japan, the Mediterranean and the Western Pacific clearly stand out as the sources for two-thirds of the reports on marine natural products, with Japan being the clear leader. What is most notable about the data for 2004 (Fig. 1b) is the marked increase in citations relating to the China Sea. Also shown in Fig. 1 is the relative proportion of articles for each region reporting bioactivity ("bioarticles"). These, taken collectively, suggest the possibility that greater attention is being paid to searching for, or commenting on, bioactive compounds (55% in 2004 *vs.* 49% up to 2003).

Insert Figures 1a and 1b

A second point of comparison is the type of biological activity reported which can grouped into eight areas - Anticancer, Antibiotic (which includes antifungal and antimalarial), Antiinflammatory, Antiviral, Immunomodulatory, Various, Agricultural and Methodology. Fig. 2 shows the types of the testing carried out up to, and including, 2004.

Insert Figure 2

The actual data for 2004 did not vary significantly from that reported cumulatively, but was suggestive that the "catch-all" category of Methodology was increasing. Testing with an anticancer outcome remains far and away the most used assay, but increasingly results are appearing in the literature for antimalarial, antitubercular and antiinfective assays against drug-resistant microorganisms and in time these areas will stand out against the cumulative record. There can be no doubt of the urgent need for new therapeutics in those areas, but also in agricultural areas where resistance to the standard anthelmintics is becoming a serious problem.

15 Acknowledgement

We thank Dr Sunny Hu for the collection of data and diagrams for this review, and for proof reading.

16 References

- J. W. Blunt, B. R. Copp, M. H. G. Munro, P. T. Northcote and M. R. Prinsep, *Nat. Prod. Rep.*, 2004, **21**, 1.
- 2 R. A. Hill, Annu. Rep. Prog. Chem. Sect. B, 2004, 100, 169.
- 3 M. T. Davies-Coleman and D. R. Beukes, S. Afr. J. Sci., 2004, 100, 539.
- 4 N. Fusetani, J. Synth. Org. Chem. Japan, 2004, 62, 1073.
- 5 D. Laurent and F. Pietra, *Chem. Biodivers.*, 2004, 1, 539.

- 6 S.-S. Lee and W.-L. Chang, *Curr. Med. Chem.*, 2004, **11**, 1461.
- R. G. S. Berlinck, E. Hajdu, R. M. da Rocha, J. H. H. L. de Oliveira, I. L. C.
 Hernández, M. H. R. Seleghim, A. Claudia Granato, E. V. R. de Almeida, C. V.
 Nuñez, G. Muricy, S. Peixinho, C. Pessoa, M. O. Moraes, B. C. Cavalcanti, G. G.
 F. Nascimento, O. Thiemann, M. Silva, A. O. Souza, C. L. Silva and P. R. R.
 Minarini, *J. Nat. Prod.*, 2004, 67, 510.
- 8 M. A. Vallim, J. C. De Paula, R. C. Pereira and V. L. Teixeira, *Biochem. Syst. Ecol.*, 2004, **33**, 1.
- 9 D. J. Faulkner, D. J. Newman and G. M. Cragg, *Nat. Prod. Rep.*, 2004, **21**, 50.
- 10 P. Bhadury and P. C. Wright, *Planta*, 2004, **219**, 561.
- 11 N. Fusetani, Nat. Prod. Rep., 2004, 21, 94.
- 12 V. J. Paul and M. P. Puglisi, Nat. Prod. Rep., 2004, 21, 189.
- 13 G. Pohnert, Top. Curr. Chem., 2004, 239, 179.
- E. Bachère, Y. Gueguen, M. Gonzalez, J. de Lorgeril, J. Garnier and B. Romestand, *Immunological Reviews*, 2004, **198**, 149.
- E. S. Loker, C. M. Adema, S. M. Zhang and T. B. Kepler, *Immunological Reviews*, 2004, 198, 10.
- 16 M. Kasahara, T. Suzuki and L. Du Pasquier, *Trends in Immunology*, 2004, 25, 105.
- 17 B. Rinkevich, *Immunological Reviews*, 2004, **198**, 25.
- 18 J. W. Daly, J. Nat. Prod., 2004, 67, 1211.
- 19 K. Fujiwara and A. Murai, Bull. Chem. Soc. Japan, 2004, 77, 2129.
- 20 M. Inoue, Org. Biomol. Chem., 2004, 2, 1811.
- 21 M. Sasaki and H. Fuwa, *Synlett*, 2004, **11**, 1851.

- 22 V. S. C. Yeh, *Tetrahedron*, 2004, **60**, 11995.
- V. Roussis, C. Vagias and L. A. Tziveleka in *Plants That Fight Cancer*, eds. S. E.
 Spridon and M. G. Barberaki, CRC Press LLC, Boca Raton, Fla., 2004, p. 195, 274.
- 24 K. Matsubara, Curr. Med. Chem.: Cardiovasc. & Hematol. Agents, 2004, 2, 13.
- 25 T. S. Bugni and C. M. Ireland, Nat. Prod. Rep., 2004, 21, 143.
- 26 V. S. Bernan, M. Greenstein and G. T. Carter, *Curr. Med. Chem.: Anti-Infective Agents*, 2004, 3, 181.
- 27 H. Katircioglu, B. S. Akin and T. Atici, Afr. J. Biotechnol., 2004, 3, 667.
- 28 C. Imada, Mar. Biotechnol., 2004, 6, 193.
- 29 Z.-R. Zou, Y.-H. Yi, S.-Y. Zhang, D.-Z. Zhou and H.-F. Tang, *Zhongguo Haiyang Yaowu*, 2004, 23, 46.
- 30 A. J. Smit, J. Appl. Phycol., 2004, 16, 245.
- 31 L. Béress, J. Toxicol. Toxin Rev., 2004, 23, 451.
- 32 F. Rahm, P. Y. Hayes and W. Kitching, *Heterocycles*, 2004, 64, 523.
- 33 V. Costantino, E. Fattorusso, M. Menna and O. Taglialatela-Scafati, *Curr. Med. Chem.*, 2004, **11**, 1671.
- 34 D. Rittschof and J. H. Cohen, *Peptides*, 2004, **25**, 1503.
- 35 P. Ciminiello and E. Fattorusso, Eur. J. Org. Chem., 2004, 2533.
- P.-J. Sung, H.-H. Gwo, T.-Y. Fan, J.-J. Li, J. Dong, C.-C. Han, S.-L. Wu and L.-S.
 Fang, *Biochem. Syst. Ecol.*, 2004, **32**, 185.
- 37 J. Piel, Nat. Prod. Rep., 2004, 21, 519.
- A. M. S. Mayer and M. T. Hamann, Mar. Biotechnol., 2004, 6, 37.

- C. E. Salomon, N. A. Magarvey and D. H. Sherman, *Nat. Prod. Rep.*, 2004, 21, 105.
- 40 A. Kijjoa and P. Sawangwong, *Marine Drugs*, 2004, 2, 73.
- 41 M. Tulp and L. Bohlin, *Drug Discovery Today*, 2004, 9, 450.
- 42 D. D. Baker and K. A. Alvi, Curr. Opin. Biotechnol., 2004, 15, 576.
- 43 D. J. Newman and G. M. Cragg, J. Nat. Prod., 2004, 67, 1216.
- 44 S. Aoki, Nat. Med., 2004, 58, 251.
- 45 A. M. S. Mayer and K. R. Gustafson, *Eur. J. Cancer*, 2004, 40, 2676.
- 46 D. G. Nagle, Y. Zhou, F. D. Mora, K. A. Mohammed and Y. Kim, *Curr. Med. Chem.*, 2004, **11**, 1725.
- 47 K. R. Gustafson, N. Oku and D. J. Milanowski, *Curr. Med. Chem.: Anti-Infective Agents*, 2004, **3**, 233.
- 48 T. F. Molinski, Curr. Med. Chem.: Anti-Infective Agents, 2004, 3, 197.
- A. L. Okunade, M. P. F. Elvin-Lewis and W. H. Lewis, *Phytochemistry*, 2004, 65, 1017.
- 50 J. A. Tincu and S. W. Taylor, Antimicrob. Agents Chemother., 2004, 48, 3645.
- 51 A. Aneiros and A. Garateix, J. Chromatogr. B, 2004, 803, 41.
- T. Rezanka, M. Temina, A. G. Tolstikov and V. M. Dembitsky, *Folia Microbio.*, 2004, 49, 339.
- 53 M. Somei and F. Yamada, *Nat. Prod. Rep.*, 2004, **21**, 278.
- 54 M. Kuramoto, H. Arimoto and D. Uemura, *Marine Drugs*, 2004, 1, 39.
- 55 C. G. Yang, H. Huang and B. Jiang, Curr. Org. Chem., 2004, 8, 1691.
- 56 J. P. Michael, Nat. Prod. Rep., 2004, 21, 625.

- 57 H. Rosemeyer, Chem. Biodivers., 2004, 1, 361.
- 58 J. Li and Z. Chi, J. Ocean University of China, 2004, 3, 40.
- 59 D. Sica and D. Musumeci, *Steroids*, 2004, **69**, 743.
- 60 V. M. Dembitsky, Chem. Biodivers., 2004, 1, 673.
- 61 B. J. M. Jansen and A. de Groot, *Nat. Prod. Rep.*, 2004, **21**, 449.
- 62 J. R. Hanson, Nat. Prod. Rep., 2004, 21, 312.
- 63 J. R. Hanson, Nat. Prod. Rep., 2004, 21, 785.
- 64 G. W. Gribble, J. Chem. Educ., 2004, 81, 1441.
- 65 M. J. Garson and J. S. Simpson, *Nat. Prod. Rep.*, 2004, **21**, 164.
- 66 A. Hoffmann-Röder and N. Krause, Angew. Chem. Int. Ed., 2004, 43, 1196.
- 67 M. V. Nora De Souza, *TheScientificWorldJOURNAL*, 2004, 4, 415.
- 68 P. Wipf, J. T. Reeves and B. W. Day, Curr. Pharm. Des., 2004, 10, 1417.
- 69 N. Nishi and H. Kawai, *BIO Clinica*, 2004, **19**, 1002.
- 70 J. Jimeno, G. Faircloth, J. M. Fernández Sousa-Faro, P. Scheuer and K. Rinehart, *Marine Drugs*, 2004, 1, 14.
- M. D'Incalci, M. Simone, M. Tavecchio, G. Damia, A. Garbi and E. Erba, J.
 Chemotherapy, 2004, 16, 86.
- 72 J. Kobayashi and M. Tsuda, Nat. Prod. Rep., 2004, 21, 77.
- 73 J. R. Williams and H. Gong, *Lipids*, 2004, **39**, 795.
- 74 C. Bailly, Curr. Med. Chem.: Anti Cancer Agents, 2004, 4, 363.
- 75 T. Kawasaki, Meiji Yakka Daigaku Kenkyu Kiyo, 2004, **33**, 13.
- 76 P. Proksch, R. Edrada and R. Ebel, *BIOforum Europe*, 2004, 8, 44.

- G. Baggerman, P. Verleyen, E. Clynen, J. Huybrechts, A. De Loof and L. Schoofs,*J. Chromatogr. B*, 2004, 803, 3.
- 78 D. A. Volmer and L. Sleno, *LCGC North America*, 2004, **22**, 926.
- 79 MarinLit database, Department of Chemistry, University of Canterbury: http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml
- 80 R. D. Charan, G. Schlingmann, J. Janso, V. Bernan, X. Feng and G. T. Carter, J. *Nat. Prod.*, 2004, **67**, 1431.
- R. P. Maskey, M. Sevvana, I. Usón, E. Helmke and H. Laatsch, *J. Antibiot.*, 2002, 55, 1031.
- R. P. Maskey, M. S. I. Usón, E. Helmke and H. Laatsch, *Angew. Chem. Int. Ed.*, 2004, 43, 1281.
- 83 F. Tomita, T. Tamaoki, M. Morimoto and K. Fujimoto, J. Antibiot., 1981, 34, 1519.
- 84 T. Tamaoki, K. Shirahata, T. Iida and F. Tomita, J. Antibiot., 1981, 34, 1525.
- 85 K. Shirahata, T. Iida and N. Hirayama, *Tennen Yuki Kagobutsu Toronkai Koen Yoshishu*, 1981, **24**, 199.
- R. P. Maskey, E. Helmke, O. Kayser, H. H. Fiebig, A. Maier, A. Busche and H. Laatsch, J. Antibiot., 2004, 57, 771.
- 87 I. L. C. Hernández, M. L. Macedo, R. G. S. Berlinck, A. G. Ferreira and M. J. L. Godinho, *J. Brazil. Chem. Soc.*, 2004, 15, 441.
- 88 S. S. Mitchell, B. Nicholson, S. Teisan, K. S. Lam and B. C. M. Potts, *J. Nat. Prod.*, 2004, **67**, 1400.
- K. Stritzke, S. Schulz, H. Laatsch, E. Helmke and W. Beil, *J. Nat. Prod.*, 2004, 67, 395.

- 90 H. L. Zhang, H. M. Hua, Y. H. Pei and X. S. Yao, *Chem. Pharm. Bull.*, 2004, 52, 1029.
- K. Barbeau, G. Zhang, D. H. Live and A. Butler, J. Am. Chem. Soc., 2002, 124, 378.
- 92 R. J. Bergeron, G. Huang, R. E. Smith, N. Bharti, J. S. McManis and A. Butler, *Tetrahedron*, 2003, **59**, 2007.
- 93 S. J. H. Hickford, F. C. Küpper, G. Zhang, C. J. Carrano, J. W. Blunt and A. Butler, *J. Nat. Prod.*, 2004, 67, 1897.
- B. Bister, D. Bischoff, M. Ströbele, J. Riedlinger, A. Reicke, F. Wolter, A. T. Bull,
 H. Zähner, H.-P. Fiedler and R. D. Süssmuth, *Angew. Chem. Int. Ed.*, 2004, 43, 2574.
- J. Riedlinger, A. Reicke, H. Zähner, B. Krismer, A. T. Bull, L. A. Maldonado, A.
 C. Ward, M. Goodfellow, B. Bister, D. Bischoff, R. D. Süssmuth and H.-P. Fiedler, *J. Antibiot.*, 2004, 57, 271.
- R. N. Asolkar, D. Schröder, R. Heckmann, S. Lang, I. Wagner-Döbler and H.
 Laatsch, J. Antibiot., 2004, 57, 17.
- M. Mitova, G. Tommonaro, U. Hentschel, W. E. G. Müller and S. De Rosa, *Mar. Biotechnol.*, 2004, 6, 95.
- 98 Y. Fusaoka, E. Ozeki, S. Kimura and Y. Imanishi, *Int. J. Pept. Protein Res.*, 1989,
 34, 104.
- T. Guedez, A. Nunez, E. Tineo and O. Nunez, J. Chem. Soc. Perkin Trans. 2, 2002, 2078.

- 100 D. Hoffmeister, K. Ichinose, S. Domann, B. Faust, A. Trefzer, G. Dräger, A. Kirschning, C. Fischer, E. Künzel, D. W. Bearden, J. Rohr and A. Bechthold, *Chem. Biol.*, 2000, 7, 821.
- 101 K. Ienaga, K. Nakamura and T. Goto, *Tetrahedron Lett.*, 1987, 28, 1285.
- 102 M. Mitova, S. Popov and S. De Rosa, J. Nat. Prod., 2004, 67, 1178.
- 103 G. Bringmann, G. Lang, S. Steffens and K. Schaumann, J. Nat. Prod., 2004, 67, 311.
- 104 H. Wang, K. B. Gloer, J. B. Scott and D. Malloch, J. Nat. Prod., 2004, 67, 163.
- 105 J. T. Gautschi, T. Amagata, A. Amagata, F. A. Valeriote, S. L. Mooberry and P. Crews, J. Nat. Prod., 2004, 67, 362.
- 106 H. Wang, K. B. Gloer, J. B. Scott and D. Malloch, J. Nat. Prod., 2004, 67, 1637.
- 107 J. T. Gautschi, T. Amagata, A. Amagata, F. A. Valeriote, S. L. Mooberry and P. Crews, J. Nat. Prod., 2004, 67, 1638.
- M. Tsuda, Y. Kasai, K. Komatsu, T. Sone, M. Tanaka, Y. Mikami and J. Kobayashi, Org. Lett., 2004, 6, 3087.
- 109 A. Numata, C. Takahashi, Y. Ito, T. Takada, K. Kawai, Y. Usami, E. Matsumura, M. Imachi, T. Ito and T. Hasegawa, *Tetrahedron Lett.*, 1993, 34, 2355.
- R. Jadulco, R. A. Edrada, R. Ebel, A. Berg, K. Schaumann, V. Wray, K. Staube andP. Proksch, *J. Nat. Prod.*, 2004, 67, 78.
- 111 S. Tsukamoto, S. Miura, Y. Yamashita and T. Ohta, *Bioorg. Med. Chem. Lett.*, 2004, **14**, 417.
- 112 Y. Li, X. Li, S.-K. Kim, J. S. Kang, H. D. Choi, J. R. Rho and B. W. Son, *Chem. Pharm. Bull.*, 2004, **52**, 375.

- A. Ogawa, C. Murakami, S. Kamisuki, I. Kuriyama, H. Yoshida, F. Sugawara and Y. Mizushina, *Bioorg. Med. Chem. Lett.*, 2004, 14, 3539.
- S. P. B. Ovenden, G. Sberna, R. M. Tait, H. G. Wildman, R. Patel, B. Li, K. Steffy,N. Nguyen and B. M. Meurer-Grimes, *J. Nat. Prod.*, 2004, 67, 2093.
- E. Jagers, E. Hillen-Maske, H. Schmidt, W. Steglich and E. Horak, Z. Naturforsch. *B Chem. Sci.*, 1987, 42, 1354.
- E. Jagers, E. Hillen-Maske and W. Steglich, Z. Naturforsch. B Chem. Sci., 1987,
 42, 1349.
- J. Hiort, K. Maksimenka, M. Reichert, S. Perovic-Ottstadt, W. H. Lin, V. Wray, K. Steube, K. Schaumann, H. Weber, P. Proksch, R. Ebel, W. E. G. Müller and G. Bringmann, *J. Nat. Prod.*, 2004, 67, 1532.
- T. Jiang, T. Li, J. Li, H.-Z. Fu, Y.-H. Pei and W.-H. Lin, J. Asian Nat. Prod. Res., 2004, 6, 249.
- P. Vongvilai, M. Isaka, P. Kittakoop, P. Srikitikulchai, P. Kongsaeree and Y. Thebtaranonth, J. Nat. Prod., 2004, 67, 457.
- 120 Y. Usami, J. Yamaguchi and A. Numata, *Heterocycles*, 2004, 63, 1123.
- 121 S. S. Afiyatullov, T. A. Kuznetsova, V. V. Isakov, M. V. Pivkin, N. G. Prokof'eva and G. B. Elyakov, *J. Nat. Prod.*, 2000, **63**, 848.
- S. S. Afiyatullov, A. I. Kalinovsky, T. A. Kuznetsova, M. V. Pivkin, N. G.Prokof'eva, P. S. Dmitrenok and G. B. Elyakov, *J. Nat. Prod.*, 2004, 67, 1047.
- 123 A. Isogai, M. Washizu, K. Kondo, S. Murakoshi and A. Suzuki, *Agric. Biol. Chem.*, 1984, 48, 2607.
- 124 M. Varoglu and P. Crews, J. Nat. Prod., 2000, 63, 41.

- 125 C. Klemke, S. Kehraus, A. D. Wright and G. M. König, *J. Nat. Prod.*, 2004, 67, 1058.
- 126 C. Takahashi, A. Numata, Y. Ito, E. Matsumura, H. Araki, H. Iwaki and K. Kushida, J. Chem. Soc. Perkin Trans 1, 1994, 1859.
- 127 T. Yamada, C. Iwamoto, N. Yamagaki, T. Yamanouchi, K. Minoura, S. Hagishita and A. Numata, *Heterocycles*, 2004, **63**, 641.
- 128 H. Wei, T. Itoh, M. Kinoshita, Y. Nakai, M. Kurotaki and M. Kobayashi, *Tetrahedron*, 2004, **60**, 6015.
- R. X. Tan, P. R. Jensen, P. G. Williams and W. Fenical, *J. Nat. Prod.*, 2004, 67, 1374.
- 130 T. Yamada, M. Iritani, M. Doi, K. Minoura, T. Ito and A. Numata, *J. Chem. Soc. Perkin Trans. 1*, 2001, 3046.
- T. Yamada, M. Iritani, K. Minoura, K. Kawai and A. Numata, Org. Biomol. Chem., 2004, 2, 2131.
- 132 L. A. McDonald, L. R. Barbieri, V. S. Bernan, J. Janso, P. Lassota and G. T. Carter, *J. Nat. Prod.*, 2004, **67**, 1565.
- 133 K. Koyama, M. Ishino, K. Takatori, T. Sugita, K. Kinoshita and K. Takahashi, *Tetrahedron Lett.*, 2004, 45, 6947.
- 134 X. Li, S.-K. Kim, J. S. Kang, H. D. Choi and B. W. Son, *Bull. Korean Chem. Soc.*, 2004, 25, 607.
- 135 W. P. D. Goldring and G. Pattenden, Org. Biomol. Chem., 2004, 2, 466.
- 136 M. Sugano, A. Sato, Y. Iijima, K. Furuya, H. Kuwano and T. Hata, *J. Antibiot.*, 1995, 48, 1188.

- 137 H. Shigemori, Y. Kasai, K. Komatsu, M. Tsuda, Y. Mikami and J. Kobayashi, *Marine Drugs*, 2004, 2, 164.
- O. F. Smetanina, T. A. Kuznetsova, A. V. Gerasimenko, A. I. Kalinovsky, M. V. Pivkin, P. C. Dmitrenok and G. B. Elyakov, *Russ. Chem. Bull.*, 2004, 53, 2643.
- 139 R. T. Williamson, B. L. Marquez, W. H. Gerwick and F. E. Koehn, *Magn. Reson. Chem.*, 2001, **39**, 544.
- 140 D. J. Edwards, B. L. Marquez, L. M. Nogle, K. McPhail, D. E. Goeger, M. A. Roberts and W. H. Gerwick, *Chem. Biol.*, 2004, 11, 817.
- 141 R. T. Williamson, I. P. Singh and W. H. Gerwick, *Tetrahedron*, 2004, 60, 7025.
- T. Okino, M. Wu, N. Sitachitta, L. M. Nogle, B. L. Marquez, R. T. Williamson, W.
 H. Gerwick, T. F. Murray, K. Colson, T. Asano, F. Yokohawa and T. Shioiri, *Tennen Yuki Kagobutsu Toronkai Koen Yoshishu*, 2000, 42, 175.
- 143 F. Yokokawa, T. Asano, T. Okino, W. H. Gerwick and T. Shioiri, *Tetrahedron*, 2004, 60, 6859.
- 144 J. D. White, Q. Xu, C.-S. Lee and F. A. Valeriote, *Org. Biomol. Chem.*, 2004, 2, 2092.
- P. G. Williams, W. Y. Yoshida, R. E. Moore and V. J. Paul, *J. Nat. Prod.*, 2004, 67, 49.
- 146 A. Ballio, Corsi e Seminari di Chimica, Consiglio Nazionale delle Ricerche e Fondazione F. Giordani, 1968, 11 140.
- 147 X.-H. Song, X.-H. Liu and Y.-C. Lin, *Redai Haiyang Xuebao (Journal of Tropical Oceanography)*, 2004, 23, 66.

- 148 M. Kita, M. Kondo, T. Koyama, K. Yamada, T. Matsumoto, K.-H. Lee, J.-T. Woo and D. Uemura, *J. Am. Chem. Soc.*, 2004, **126**, 4794.
- 149 T. Kubota, Y. Sakuma, M. Tsuda and J. Kobayashi, *Marine Drugs*, 2004, 2, 83.
- J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Ohizumi, T. Yamasu, T. Sasaki and
 Y. Hirata, *Tetrahedron Lett.*, 1986, 27, 5755.
- 151 J. Kobayashi, M. Ishibashi and H. Hirota, J. Nat. Prod., 1991, 54, 1435.
- 152 B. M. Trost and P. E. Harrington, J. Am. Chem. Soc., 2004, 126, 5028.
- 153 J. Kobayashi, H. Shigemori, M. Ishibashi, T. Yamasu, H. Hirota and T. Sasaki, J. Org. Chem., 1991, 56, 5221.
- S.-Y. Saito, J. Feng, A. Kira, J. Kobayashi and Y. Ohizumi, *Biochem. Biophys. Res. Commun.*, 2004, **320**, 961.
- 155 K. Shimbo, M. Tsuda, N. Izui and J. Kobayashi, J. Org. Chem., 2002, 67, 1020.
- 156 A. K. Ghosh and G. Gong, J. Am. Chem. Soc., 2004, 126, 3704.
- 157 M. Tsuda, N. Izui, K. Shimbo, M. Sato, E. Fukushi, J. Kawabata, K. Katsumata, T. Horiguchi and J. Kobayashi, J. Org. Chem., 2003, 68, 5339.
- 158 O. Lepage, E. Kattnig and A. Fürstner, J. Am. Chem. Soc., 2004, 126, 15970.
- 159 X.-C. Huang, D. Zhao, Y.-W. Guo, H.-M. Wu, L.-P. Lin, Z.-H. Wang, J. Ding and Y.-S. Lin, *Bioorg. Med. Chem. Lett.*, 2004, 14, 3117.
- 160 X.-C. Huang, D. Zhao, Y.-W. Guo, H.-M. Wu, E. Trivellone and G. Cimino, *Tetrahedron Lett.*, 2004, 45, 5501.
- 161 M. Satake, A. Tubaro, J.-S. Lee and T.Yasumoto, Nat. Toxins, 1997, 5, 107.
- 162 M. Konishi, X. Yang, B. Li, C. R. Fairchild and Y. Shimizu, *J. Nat. Prod.*, 2004, 67, 1309.

- 163 K.-I. Onodera, H. Nakamura, Y. Oba and M. Ojika, *Tetrahedron*, 2003, 59, 1067.
- 164 K.-I. Onodera, H. Nakamura, Y. Oba and M. Ojika, *Biosci. Biotechnol. Biochem.*, 2004, 68, 955.
- 165 K.-I. Onodera, T. Fukatsu, N. Kawai, Y. Yoshioka, T. Okamoto, H. Nakamura and M. Ojika, *Biosci. Biotechnol. Biochem.*, 2004, 68, 848.
- A. J. Bourdelais, S. Campbell, H. Jacocks, J. Naar, J. L. C. Wright, J. Carsi and D. G. Baden, *Cell. Mol. Neurobiol*, 2004, 24, 553.
- 167 H.-N. Chou and Y. Shimizu, Tetrahedron Lett., 1982, 23, 5521.
- J. M. Benson, F. F. Hahn, T. H. March, J. D. McDonald, M. L. Sopori, J. Seagrave,
 A. P. Gomez, A. J. Bourdelais, J. Naar, J. Zaias, G. D. Bossart and D. G. Baden, J. *Toxicol. Environ. Health*, A, 2004, 67, 1443.
- Y.-Y. Lin, M. Risk, S. M. Ray, D. Van Engen, J. Clardy, J. Golik, J. C. James and
 K. Nakanishi, *J. Am. Chem. Soc.*, 1981, **103**, 6773.
- 170 J. L. Wong, R. Oesterlin and H. Rapoport, J. Am. Chem. Soc., 1971, 93, 7344.
- 171 N. V. Kulagina, T. J. O'Shaughnessy, W. Ma, J. S. Ramsdell and J. J. Pancrazio, *Toxicon*, 2004, 44, 669.
- 172 T. Igarashi, M. Satake and T. Yasumoto, J. Am. Chem. Soc., 1996, 118, 479.
- 173 T. Igarashi, M. Satake and T. Yasumoto, J. Am. Chem. Soc., 1999, 121, 8499.
- M. Sasaki, M. Ebine, H. Takagi, H. Takakura, T. Shida, M. Satake, Y. Oshima, T. Igarashi and T. Yasumoto, *Org. Lett.*, 2004, 6, 1501.
- 175 R. Engh, S. Konetschny-Rapp, H.-W. Krell, U. Martin and C. Tsaklakidis, *PCT Int. Appl.*, 1997, WO97/21725

- 176 S. Hanessian, M. Tremblay and J. F. W. Petersen, J. Am. Chem. Soc., 2004, 126, 6064.
- 177 N. Sitachitta and W. H. Gerwick, J. Nat. Prod., 1998, 61, 681.
- 178 J. R. Al Dulayymi, M. S. Baird and K. Jones, Tetrahedron, 2004, 60, 341.
- R. A. Edrada, M. Heubes, G. Brauers, V. Wray, A. Berg, U. Gräfe, M. Wohlfarth,
 J. Mühlbacher, K. Schaumann, Sudarsono, G. Bringmann and P. Proksch, *J. Nat. Prod.*, 2002, 65, 1598.
- 180 G. Bringmann, G. Lang, M. Michel and M. Heubes, *Tetrahedron Lett.*, 2004, 45, 2829.
- 181 W.-Y. Tsui, G. A. Williams and G. D. Brown, *Phytochemistry*, 1996, 43, 1083.
- 182 S.-C. Lee and G. D. Brown, J. Nat. Prod., 1998, 61, 29.
- 183 G. D. Brown and H.-F. Wong, *Tetrahedron*, 2004, 60, 5439.
- 184 T. Barsby, M. T. Kelly and R. J. Andersen, J. Nat. Prod., 2002, 65, 1447.
- 185 D. J. Lipomi, N. F. Langille and J. S. Panek, Org. Lett., 2004, 6, 3533.
- 186 M. Namikoshi, H. Kobayashi, T. Yoshimoto and T. Hosoya, *J. Antibiot.*, 1997, 50, 890.
- T. Suzuki, K. Usui, Y. Miyake, M. Namikoshi and M. Nakada, *Org. Lett.*, 2004, 6, 553.
- 188 D. C. Rowley, S. Kelly, C. A. Kauffman, P. R. Jensen and W. Fenical, *Bioorg. Med. Chem.*, 2003, 11, 4263.
- 189 D. C. Rowley, S. Kelly, P. Jensen and W. Fenical, *Bioorg. Med. Chem.*, 2004, 12, 4929.

- 190 Y. Lin, X. Wu, S. Feng, G. Jiang, J. Luo, S. Zhou, L. L. P. Vrijmoed, E. B. G. Jones, K. Krohn, K. Steingröver and F. Zsila, J. Org. Chem., 2001, 66, 6252.
- 191 K. Krohn and M. Riaz, Tetrahedron Lett., 2004, 45, 293.
- M. Murata, M. Kumagai, J. S. Lee and T. Yasumoto, *Tetrahedron Lett.*, 1987, 28, 5869.
- C. Bianchi, R. Fato, A. Angelin, F. Trombetti, V. Ventrella, A. R. Borgatti, E. Fattorusso, P. Ciminiello, P. Bernardi, G. Lenaz and G. P. Castelli, *Biochim. Biophys. Acta*, 2004, 1656, 139.
- 194 J. Orjala, D. G. Nagle, V. L. Hsu and W. H. Gerwick, J. Am. Chem. Soc., 1995, 117, 8281.
- W. I. Li, B. L. Marquez, T. Okino, F. Yokokawa, T. Shioiri, W. H. Gerwick and T. F. Murray, *J. Nat. Prod.*, 2004, 67, 559.
- 196 G. Guella, F. Dini, A. Tomei and F. Pietra, J. Chem. Soc. Perkin Trans. 1, 1994, 161.
- 197 D. Savoia, C. Avanzini, T. Allice, E. Callone, G. Guella and F. Dini, Antimicrob. Agents Chemother., 2004, 48, 3828.
- 198 S. Takamatsu, D. G. Nagle and W. H. Gerwick, Planta Med., 2004, 70, 127.
- 199 P. J. Proteau, Ph.D. Dissertation, Oregon State University, 1993.
- 200 F. E. Koehn R. E. Longley and J. K. Reed, J. Nat. Prod., 1992, 55, 613.
- 201 H. H. Sun, V. J. Paul and W. Fenical, *Phytochemistry*, 1983, 22, 743.
- 202 H. E. Högberg, R. H. Thomson and T. J. King, J. Chem. Soc. Perkin Trans. 1, 1976, 1696.

- 203 W. H. Gerwick, A. Lopez, G. D. Van Duyne, J. Clardy, W. Ortiz and A. Baez, *Tetrahedron Lett.*, 1986, 27, 1979.
- 204 W. H. Gerwick, J. Nat. Prod., 1989, 52, 252.
- 205 N. R. Ayyangar, R. A. Khan and V. H. Deshpande, *Tetrahedron Lett.*, 1988, 29, 2347.
- M. Sugano, A. Sato, Y. Iijima, T. Oshima, K. Furuya, H. Kuwano, T. Hata and H. Hanzawa, J. Am. Chem. Soc., 1991, 113, 5463.
- M. Chu, I. Truumees, I. Gunnarsson, W. R. Bishop, W. Kreutner, A. C. Horan, M. G. Patel, V. P. Gullo and M. S. Puar, *J. Antibiot.*, 1993, 46, 554.
- 208 M. Sugano, A. Sato, Y. Iijima, K. Furuya, H. Haruyama, K. Yoda and T. Hata, J. Org. Chem., 1994, 59, 564.
- 209 T. Tokiwano, E. Fukushi, T. Endo and H. Oikawa, Chem. Commun., 2004, 1324.
- 210 G. Massé, S. T. Belt and S. J. Rowland, *Phytochemistry*, 2004, 65, 1101.
- 211 M. P. Puglisi, L. T. Tan, P. R. Jensen and W. Fenical, *Tetrahedron*, 2004, 60, 7035.
- 212 Y. Fukuyama, M. Kodama, I. Miura, Z. Kinzyo, M. Kido, H. Mori, Y. Nakayama and M. Takahashi, *Chem. Pharm. Bull.*, 1989, **37**, 349.
- 213 Y. Fukuyama, I. Miura, Z. Kinzyo, Y. Nakayama, M. Takahashi and M. Kido, *Tennen Yuki Kagobutsu Toronkai Koen Yoshishu*, 1983, 26, 126.
- 214 Y. Fukuyama, I. Miura, Z. Kinzyo, H. Mori, M. Kido, Y. Nakayama, M. Takahashi and M. Ochi, *Chem. Lett.*, 1985, 739.
- 215 Y. Okada, A. Ishimaru, R. Suzuki and T. Okuyama, J. Nat. Prod., 2004, 67, 103.
- 216 C. F. Cross, E. J. Bevan and J. F. Briggs, *Chemiker-Zeitung*, 1907, **3**1, 725.

- 217 H. S. Kang, H. Y. Chung, J. H. Jung, B. W. Son and J. S. Choi, *Chem. Pharm. Bull.*, 2003, **51**, 1012.
- 218 Y. Fukuyama, M. Kodama, I. Miura, Z. Kinzyo, H. Mori, Y. Nakayama and M. Takahashi, *Chem. Pharm. Bull.*, 1990, **38**, 133.
- 219 H. S. Kang, H. R. Kim, D. S. Byun, B. W. Son, T. J. Nam and J. S. Choi, Arch. Pharm. Res., 2004, 27, 1226.
- 220 G. Navarro, J. J. Fernández and M. Norte, J. Nat. Prod., 2004, 67, 495.
- G. Culioli, A. Ortalo-Magné, M. Daoudi, H. Thomas-Guyon, R. Valls and L.
 Piovetti, *Phytochemistry*, 2004, 65, 2063.
- 222 K. Mori, T. Ooi, M. Hiraoka, N. Oka, H. Hamada, M. Tamura and T. Kusumi, *Marine Drugs*, 2004, 2, 63.
- P. Siamopoulou, A. Bimplakis, D. Iliopoulou, C. Vagias, P. Cos, D. Vanden Berghe and V. Roussis, *Phytochemistry*, 2004, 65, 2025.
- 224 M. S. Ali, M. K. Pervez, F. Ahmed and M. Saleem, Nat. Prod. Res., 2004, 18, 543.
- 225 C. Ireland and D. J. Faulkner, J. Org. Chem., 1977, 42, 3157.
- J. P. Barbosa, R. C. Pereira, J. L. Abrantes, C. C. C. dos Santos, M. A. Rebello, I.
 C. P. P. Frugulhetti and V. L. Teixeira, *Planta Med.*, 2004, **70**, 856.
- 227 J. P. Barbosa, V. L. Teixeira and R. C. Pereira, Bot. Mar, 2004, 47, 147.
- H. S. Pereira, L. R. Leão-Ferreira, N. Moussatché, V. L. Teixeira, D. N. Cavalcanti,
 L. J. Costa, R. Diaz and I. C. P. P. Frugulhetti, *Antiviral Res.*, 2004, 64, 69.
- J. F. Blount, R. W. Dunlop, K. L. Erickson and R. J. Wells, *Aust. J. Chem.*, 1982, 35, 145.
- S.-H. Qi, S. Zhang, J.-S. Huang, Z.-H. Xiao, J. Wu and L.-J. Long, *Chem. Pharm. Bull.*, 2004, **52**, 986.
- 231 F. H. Song, X. Fan, X. L. Xu, J. L. Zhao, L. J. Han and J. G. Shi, *Chin. Chem. Lett.*, 2004, 15, 316.
- 232 F. Song, X. Fan, X. Xu, J. Zhao, Y. Yang and J. Shi, J. Nat. Prod., 2004, 67, 1644.
- X. Xu, F. Song, S. Wang, S. Li, F. Xiao, J. Zhao, Y. Yang, S. Shang, L. Yang and J. Shi, *J. Nat. Prod.*, 2004, 67, 1661.
- 234 X.-L. Xu, X. Fan, F.-H. Song, J.-L. Zhao, L.-J. Han, Y.-C. Yang and J.-G. Shi, J. Asian Nat. Prod. Res., 2004, 6, 217.
- X. L. Xu, X. Fan, F. H. Song, J. L. Zhao, L. J. Han and J. G. Shi, *Chin. Chem. Lett.*, 2004, 15, 661.
- K. Toume, M. Miyata, K. Egawa, K. Nose, M. Hayashi, K. Komiyama and M. Ishibashi, *Nat. Med.*, 2004, 58, 79.
- 237 S.-M. Li and K.-W. Glombitza, *Phytochemistry*, 1991, **30**, 3417.
- J. G. Urones, P. Basabe, I. S. Marcos, J. Pineda, A. M. Lithgow, R. F. Moro, F. M.
 S. Palma, A. M. E. M. Brito and M. D. G. Gravalos, *Phytochemistry*, 1992, **31**, 179.
- 239 M. Danet, M. Normand-Bayle, J. Mahuteau, J. d'Angelo, G. Morgant and D. Desmaële, *Eur. J. Org. Chem.*, 2004, 1911.
- Y. Fukuyama, M. Kodama, I. Miura, Z. Kinzyo, H. Mori, Y. Nakayama and M. Takahashi, *Chem. Pharm. Bull.*, 1989, **37**, 2438.
- 241 K.-W. Glombitza and G. Gerstberger, *Phytochemistry*, 1985, 24, 543.
- M.-J. Ahn, K.-D. Yoon, S.-Y. Min, J. S. Lee, J. H. Kim, T. G. Kim, S. H. Kim, N.-G. Kim, H. Huh and J. Kim, *Biol. Pharm. Bull.*, 2004, 27, 544.

- 243 I. Heilbron, R. F. Phipers and H. R. Wright, J. Chem. Soc. Abstr., 1934, 1572.
- 244 H. B. MacPhillamy, J. Am. Chem. Soc., 1942, 64, 1732.
- Y. S. Lee, K. H. Shin, B.-K. Kim and S. Lee, *Arch. Pharmacal. Res.*, 2004, 27, 1120.
- 246 E. Dorta, A. R. Díaz-Marrero, M. Cueto, L. D'Croz, J. L. Maté and J. Darias, *Tetrahedron Lett.*, 2004, 45, 7065.
- 247 M. Suzuki, Y. Mizano, Y. Matsuo and M. Masuda, *Phytochemistry*, 1996, 43, 121.
- 248 Z. Aydogmus, S. Imre, L. Ersoy and V. Wray, Nat. Prod. Res., 2004, 18, 43.
- E. G. Lyakhova, A. I. Kalinovsky, S. A. Kolesnikova, V. E. Vaskovsky and V. A. Stonik, *Phytochemistry*, 2004, 65, 2527.
- 250 K. A. Mohammed, C. F. Hossain, L. Zhang, R. K. Bruick, Y.-D. Zhou and D. G. Nagle, *J. Nat. Prod.*, 2004, 67, 2002.
- 251 Y. S. Roh, B. W. Son, K. S. Im and H. D. Choi, *Saengyak Hakhoechi*, 1994, 25, 117.
- 252 T. Ishii, T. Okino, M. Suzuki and Y. Machiguchi, J. Nat. Prod., 2004, 67, 1764.
- 253 S. V. Khotimchenko and V. E. Vas'kovsky, Russ. J. Bioorg. Chem., 2004, 30, 168.
- 254 K. L. McPhail, D. France, S. Cornell-Kennon and W. H. Gerwick, *J. Nat. Prod.*, 2004, 67, 1010.
- 255 D. D. Weller, E. P. Stirchak and A. Yokoyama, J. Org. Chem., 1984, 49, 2061.
- 256 R. T. Borchardt, J. H. Huber and M. Houston, J. Med. Chem., 1982, 25, 258
- 257 J. Zhao, X. Fan, S. Wang, S. Li, S. Shang, Y. Yang, N. Xu, Y. Lü and J. Shi, J. Nat. Prod., 2004, 67, 1032.
- 258 N. E. Awad, Phytother. Res., 2004, 18, 275.

- 259 F. Cafieri, P. Ciminiello, C. Santacroce and E. Fattorusso, *Phytochemistry*, 1983,
 22, 1824.
- 260 J. Lee and J. Hong, J. Org. Chem., 2004, 69, 6433.
- 261 F. Cafieri, L. De Napoli, E. Fattorusso, M. Piattelli and S. Sciuto, *Tetrahedron Lett.*, 1979, 963.
- 262 F. Cafieri, E. Fattorusso, B. Di Blasio and C. Pedone, *Tetrahedron Lett.*, 1981, 22, 4123.
- 263 F. Cafieri, L. De Napoli, E. Fattorusso and C. Santacroce, *Phytochemistry*, 1987,
 26, 471.
- R. B. Kinnel, R. K. Dieter, J. Meinwald, D. Van Engen, J. Clardy, T. Eisner, M. O. Stallard and W. Fenical, *Proc. Natl. Acad. Sci. U. S. A.*, 1979, 76, 3576.
- 265 W. Fenical, H. L. Sleeper, V. J. Paul, M. O. Stallard and H. H. Sun, *Pure Appl. Chem.*, 1979, **51**, 1865.
- 266 S. E. Denmark and S.-M. Yang, J. Am. Chem. Soc., 2004, 126, 12432.
- 267 V. J. Paul and W. Fenical, *Tetrahedron Lett.*, 1980, 21, 2787.
- 268 E. A. Couladouros and V. P. Vidali, Chem. Eur. J., 2004, 10, 3822.
- V. H. Argandoña, J. Rovirosa, A. San-Martín, A. Riquelme, A. R. Díaz-Marrero,
 M. Cueto, J. Darias, O. Santana, A. Guadaño and A. González-Coloma, *J. Agric. Food Chem.*, 2002, 50, 7029.
- C. de Inés, V. H. Argandoña, J. Rovirosa, A. San-Martín, A. R. Díaz-Marrero, M. Cueto and A. González-Coloma, Z. Naturforsch. C Biosci., 2004, 59, 339.
- 271 T. Irie, M. Suzuki, E. Kurosawa and T. Masamune, *Tetrahedron Lett.*, 1966, 1837.
- 272 T. Irie, M. Suzuki, E. Kurosawa and T. Masamune, *Tetrahedron*, 1970, 26, 3271.

- 273 R. Kazlauskas, P. T. Murphy, R. J. Quinn and R. J. Wells, *Aust. J. Chem.*, 1976, 29, 2533.
- 274 T. Ichiba and T. Higa, J. Org. Chem., 1986, 51, 3364.
- 275 G. T. Carter, K. L. Rinehart, L. H. Li, S. L. Kuentzel and J. L. Connor, *Tetrahedron Lett.*, 1978, 4479.
- 276 C. S. Vairappan, T. Kawamoto, H. Miwa and M. Suzuki, *Planta Med.*, 2004, 70, 1087.
- 277 J. N. Carter-Franklin and A. Butler, J. Am. Chem. Soc., 2004, 126, 15060.
- N. M. Carballeira, H. Cruz, C. D. Kwong, B. Wan and S. Franzblau, *Lipids*, 2004, 39, 675.
- 279 A. B. Imbs and S. A. Rodkina, Chem. Phys. Lipids, 2004, 129, 173.
- 280 W.-J. Lan, J.-H. Yao, J.-Y. Su and L.-M. Zeng, *Zhongshan Daxue Xuebao*, *Ziran Kexueban*, 2004, **43**, 115.
- V. Costantino, E. Fattorusso, C. Imperatore and A. Mangoni, *J. Org. Chem.*, 2004, 69, 1174.
- 282 R. G. Linington, M. Robertson, A. Gauthier, B. B. Finlay, R. van Soest and R. J. Andersen, Org. Lett., 2002, 4, 4089.
- 283 J. B. MacMillan, R. G. Linington, R. J. Andersen and T. F. Molinski, Angew. Chem. Int. Ed., 2004, 43, 5946.
- 284 K. Warabi, W. T. Zimmerman, J. Shen, A. Gauthier, M. Robertson, B. B. Finlay, R. van Soest and R. J. Andersen, *Can. J. Chem.*, 2004, 82, 102.
- 285 Y. Nakao, T. Maki, S. Matsunaga, R. W. M. van Soest and N. Fusetani, J. Nat. Prod., 2004, 67, 1346.

- 286 M. J. Ortega, E. Zubía, M. C. Sánchez, J. Salvá and J. L. Carballo, *Tetrahedron*, 2004, 60, 2517.
- 287 T. A. Mansoor, J. Hong, C.-O. Lee, C. J. Sim, K. S. Im, D. S. Lee and J. H. Jung, J. Nat. Prod., 2004, 67, 721.
- 288 R. J. Capon, C. Skene, E. H.-T. Liu, E. Lacey, J. H. Gill, K. Heiland and T. Friedel, *J. Nat. Prod.*, 2004, **67**, 1277.
- 289 L.-Y. Li, Z.-W. Deng, J. Li, H.-Z. Fu and W.-H. Lin, *Beijing Daxue Xuebao*, *Yixueban*, 2004, **36**, 12.
- S. P. Gunasekera, R. A. Isbrucker, R. E. Longley, A. E. Wright, S. A. Pomponi and J. K. Reed, *J. Nat. Prod.*, 2004, 67, 110.
- 291 G. R. Pettit, T. Nogawa, J. C. Knight, D. L. Doubek and J. N. A. Hooper, J. Nat. Prod., 2004, 67, 1611.
- 292 X.-H. Huang, R. van Soest, M. Roberge and R. J. Andersen, Org. Lett., 2004, 6, 75.
- 293 Z. Szilágyi, G. Pócsfalvi, V. Costantino, A. Mangoni, A. Malorni and E. Fattorusso, *Rapid Commun. Mass Spectrom.*, 2004, 18, 2989.
- 294 J. S. Kim, K. S. Im, J. H. Jung, Y.-L. Kim, J. Kim, C. J. Shim and C.-O. Lee, *Tetrahedron*, 1998, 54, 3151.
- 295 H. J. Choi, S.-J. Bae, N. D. Kim, J. H. Jung and Y. H. Choi, *Int. J. Mol. Med.*, 2004, 14, 1091.
- S. Tsukamoto, S. Takeuchi, M. Ishibashi and J. Kobayashi, *J. Org. Chem.*, 1994, 57, 5255.
- M. Perpelescu, M. Tsuda, M. Suzuki, S. Yoshida and J. Kobayashi, *Nat. Med.*, 2004, 58, 86.

- 298 N. Alam, B. H. Bae, J. Hong, C.-O. Lee, B. A. Shin, K. S. Im and J. H. Jung, J. Nat. Prod., 2001, 64, 533.
- 299 E.-H. Lee, M.-R. Yun, W.-H. Wang, J. H. Jung and D.-S. Im, *Acta Pharm. Sinica*, 2004, 25, 1521.
- 300 M. J. Ortega, E. Zubia, J. L. Carbalo and J. Salvá, Tetrahedron, 1997, 53, 331.
- 301 T. V. Hansen and L. Skattebøl, Tetrahedron Lett., 2004, 45, 2809.
- 302 N. M. Carballeira, V. Negrón and E. D. Reyes, *Tetrahedron*, 1992, 48, 1053
- B. A. Kulkarni, A. Sharma, S. Gamre and S. Chattopadhyay, *Synthesis*, 2004, 4, 595.
- 304 F. Cafieri, E. Fattorusso, O. Taglialatela-Scafati, M. Di Rosa and A. Ianaro, *Tetrahedron*, 1999, 55, 13831.
- 305 P. Y. Hayes and W. Kitching, *Heterocycles*, 2004, **62**, 173.
- 306 D. J. Gochfeld and M. T. Hamann, J. Nat. Prod., 2001, 64, 1477.
- 307 S. Kowashi, T. Ogamino, J. Kamei, Y. Ishikawa and S. Nishiyama, *Tetrahedron Lett.*, 2004, 45, 4393.
- 308 Y. C. Shen, C. V. S. Prakash and J.-H. Guh, *Tetrahedron Lett.*, 2004, 45, 2463.
- 309 R. H. Cichewicz, F. A. Valeriote and P. Crews, Org. Lett., 2004, 6, 1951.
- G. R. Pettit, J.-P. Xu, J.-C. Chapuis, R. K. Pettit, L. P. Tackett, D. L. Doubek, J. N.A. Hooper and J. M. Schmidt, *J. Med. Chem.*, 2004, 47, 1149.
- 311 E. J. Dumdei, J. W. Blunt, M. H. G. Munro and L. K. Pannell, *J. Org. Chem.*, 1997,
 62, 2636.
- 312 S. Matsunaga and N. Fusetani, Dev. Food Sci., 2004, 42, 131.

- 313 J. Piel, D. Hui, G. Wen, D. Butzke, M. Platzer, N. Fusetani and S. Matsunaga, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 16222.
- S. J. Mickel, D. Niederer, R. Daeffler, A. Osmani, E. Kuesters, E. Scmid, K. Schaer, R. Gamboni, W. Chen, E. Loeser, F. R. Kinder, K. Konigsberger, K. Prasad, T. M. Ramsey, O. Repic, R.-M. Wang, G. Florence, I. Lyothier and I. Paterson, *Org. Process Res. Dev.*, 2004, 8, 122.
- 315 S. P. Gunasekera, M. Gunasekera, R. E. Longley and G. K. Schulte, *J. Org. Chem.*, 1990, **55**, 4912.
- 316 A. R. Carroll, M. S. Buchanan, A. Edser, E. Hyde, M. Simpson and R. J. Quinn, J. Nat. Prod., 2004, 67, 1291.
- 317 R. N. Sonnenschein, J. J. Farias, K. Tenney, S. L. Mooberry, E. Lobkovsky, J. Clardy and P. Crews, *Org. Lett.*, 2004, 6, 779.
- 318 C. Chevallier, A. D. Richardson, M. C. Edler, E. Hamel, M. K. Harper and C. M. Ireland, Org. Lett., 2003, 5, 3737.
- 319 P. Crews, J. J. Farias, R. Emrich and P. A. Keifer, J. Org. Chem., 1994, 59, 2932.
- 320 C. Liu, M. N. Masuno, J. B. MacMillan and T. F. Molinski, *Angew. Chem. Int. Ed.*, 2004, 43, 5951.
- 321 E. W. Schmidt, C. Raventos-Suarez, M. Bifano, A. T. Menendez, C. R. Fairchild and D. J. Faulkner, *J. Nat. Prod.*, 2004, 67, 475.
- R. A. Davis, G. C. Mangalindan, Z. P. Bojo, R. R. Antemano, N. O. Rodriguez, G.
 P. Concepcion, S. C. Samson, D. de Guzman, L. J. Cruz, D. Tasdemir, M. K.
 Harper, X. Feng, G. T. Carter and C. M. Ireland, *J. Org. Chem.*, 2004, 69, 4170.

- N. Berer, A. Rudi, I. Goldberg, Y. Benayahu and Y. Kashman, *Org. Lett.*, 2004, 6, 2543.
- 324 D. J. Milanowski, M. A. Rashid, K. R. Gustafson, B. R. O'Keefe, J. P. Nawrocki, L. K. Pannell and M. R. Boyd, *J. Nat. Prod.*, 2004, 67, 441.
- 325 S. Aoki, L. Cao, K. Matsui, R. Rachmat, S.-I. Akiyama and M. Kobayashi, *Tetrahedron*, 2004, **60**, 7053.
- N. Oku, K. R. Gustafson, L. K. Cartner, J. A. Wilson, N. Shigematsu, S. Hess, L.
 K. Pannell, M. R. Boyd and J. B. McMahon, *J. Nat. Prod.*, 2004, 67, 1407.
- 327 W.-L. Li, Y.-H. Yi, H.-M. Wu, Q.-Z. Xu, H.-F. Tang, D.-Z. Zhou, H.-W. Lin and Z.-H. Wang, J. Nat. Prod., 2003, 66, 146.
- 328 K. L. Greenman, D. M. Hach and D. L. Van Vranken, Org. Lett., 2004, 6, 1713.
- 329 G. R. Petit, R. Tan, D. L. Herald, R. L. Cerny and M. D. Williams, *J. Org. Chem.*, 1994, **59**, 1593.
- 330 Y. Nakao, M. Fujita, K. Warabi, S. Matsunaga and N. Fusetani, *J. Am. Chem. Soc.*, 2000, **122**, 10462.
- 331 N. Schaschke, Bioorg. Med. Chem. Lett., 2004, 14, 855.
- A. Zampella, M. V. D'Auria, L. Gomez Paloma, A. Casapullo, L. Minale, C. Debitus and Y. Henin, J. Am. Chem. Soc., 1996, 118, 6202.
- 333 L. Trevisi, G. Cargnelli, G. Ceolotto, I. Papparella, A. Semplicini, A. Zampella, M.
 V. D'Auria and S. Luciani, *Biochem. Pharmacol.*, 2004, 68, 1331.
- J. Shin, H.-S. Lee, J.-Y. Kim, H. J. Shin, J.-W. Ahn and V. J. Paul, *J. Nat. Prod.*, 2004, 67, 1889.

- B. Vilozny, T. Amagata, S. L. Mooberry and P. Crews, *J. Nat. Prod.*, 2004, 67, 1055.
- 336 Y. Kashman, A. Groweiss and U. Shmueli, *Tetrahedron Lett.*, 1980, 21, 3629.
- A. Grassia, I. Bruno, C. Debitus, S. Marzocco, A. Pinto, L. Gomez-Paloma and R. Riccio, *Tetrahedron*, 2001, 57, 6257.
- 338 J. Chen and C. J. Forsyth, Angew. Chem. Int. Ed., 2004, 43, 2148.
- 339 A. K. Ghosh and X. Xu, Org. Lett., 2004, 6, 2055.
- 340 G. R. Petit, Z. A. Cichacz, F. Gao, M. R. Boyd and J. M. Schmidt, J. Chem. Soc. Chem. Commun., 1994, 1111.
- 341 I. Paterson, R. Britton, O. Delgado and A. E. Wright, Chem. Commun, 2004, 632.
- I. Paterson, R. Britton, O. Delgado, A. Meyer and K. G. Poullennec, *Angew. Chem.Int. Ed.*, 2004, 43, 4629.
- 343 Y. Shin, J.-H. Fournier, Y. Fukui, A. M. Brückner and D. P. Curran, Angew. Chem. Int. Ed., 2004, 43, 4634.
- A. E. Wright, Y. Chen, P. L. Winder, T. P. Pitts, S. A. Pomponi and R. E. Longley,
 J. Nat. Prod., 2004, 67, 1351.
- 345 D. E. Williams, M. Roberge, R. Van Soest and R. J Andersen, *J. Am. Chem. Soc.*, 2003, **125**, 5296.
- 346 D. E. Williams, M. Lapawa, X. Feng, T. Tarling, M. Roberge and R. J. Andersen, Org. Lett., 2004, 6, 2607.
- M. V. D'Auria, L. Gomez Paloma, L. Minale, A. Zampella, J.-F. Verbist, C.
 Roussakis, C. Debitus and J. Patissou, *Tetrahedron*, 1994, 50, 4829.

- 348 I. Paterson, R. Britton, K. Ashton, H. Knust and J. Stafford, *Proc. Natl. Acad. Sci.* U. S. A., 2004, **101**, 11986.
- 349 N. Fusetani, T. Sugawara, S. Matsunaga and H. Hirota, *J. Org. Chem.*, 1991, 56, 4971.
- 350 S. Nishimura, S. Matsunaga, M. Yoshida, H. Hirota, S. Yokoyama and N. Fusetani, *Bioorg. Med. Chem.*, 2004, 13, 449.
- 351 H. Liu, M. Namikoshi, S. Meguro, H. Nagai, H. Kobayashi and X. Yao, J. Nat. Prod., 2004, 67, 472.
- 352 R. Sakai, K. Suzuki, K. Shimamoto and H. Kamiya, J. Org. Chem., 2004, 69, 1180.
- 353 K. Kobayashi, H. Shimogawa, A. Sakakura, T. Teruya, K. Suenaga and H. Kigoshi, *Chem. Lett.*, 2004, **33**, 1262.
- W. Hassan, R. Edrada, R. Ebel, V. Wray and P. Proksch, *Marine Drugs*, 2004, 2, 88.
- 355 R. J. Capon, C. Skene, E. H. Liu, E. Lacey, J. H. Gill, K. Heiland and T. Friedel, *Nat. Prod. Res.*, 2004, 18, 305.
- 356 I. Mancini, G. Guella, M. Sauvain, C. Debitus, A.-G. Duigou, F. Ausseil, J. L. Menou and F. Pietra, Org. Biomol. Chem., 2004, 2, 783.
- 357 C. A. Volk and M. Köck, Org. Biomol. Chem., 2004, 2, 1827.
- 358 C. A. Volk, H. Lippert, E. Lichte and M. Köck, Eur. J. Org. Chem., 2004, 3154.
- 359 N. Oku, K. Nagai, N. Shindoh, Y. Terada, R. W. M. van Soest, S. Matsunaga and N. Fusetani, *Bioorg. Med. Chem. Lett.*, 2004, 14, 2617.
- 360 J. H. H. L. de Oliveira, A. Grube, M. Köck, R. G. S. Berlinck, M. L. Macedo, A. G. Ferreira and E. Hajdu, J. Nat. Prod., 2004, 67, 1685.

- 361 S. Matsunaga, Y. Miyata, R. W. M. van Soest and N. Fusetani, *J. Nat. Prod.*, 2004,
 67, 1758.
- 362 H. Liu, Y. Mishima, T. Fujiwara, H. Nagai, A. Kitazawa, Y. Mine, H. Kobayashi,
 X. Yao, J. Yamada, T. Oda and M. Namikoshi, *Marine Drugs*, 2004, 2, 154.
- 363 S. Tsukamoto, M. Takahashi, M. Matsunaga, N. Fusetani and R. W. M. Van Soest, J. Nat. Prod., 2000, 63, 682.
- 364 A. R. Carroll and P. J. Scheuer, *Tetrahedron*, 1990, 46, 6637.
- 365 S. P. Romeril, V. Lee and J. E. Baldwin, Tetrahedron Lett., 2004, 45, 3273.
- M. Yousaf, N. L. Hammond, J. Peng, S. Wahyuono, K. A. McIntosh, W. N.Charman, A. M. S. Mayer and M. T. Hamann, *J. Med. Chem.*, 2004, 47, 3512.
- 367 F. Borrelli, C. Campagnuolo, R. Capasso, E. Fattorusso and O. Taglialatela-Scafati, *Eur. J. Org. Chem.*, 2004, 3227.
- 368 J. Cohen, G. K. Paul, S. P. Gunasekera, R. E. Longley and S. A. Pomponi, *Pharm. Biology*, 2004, **42**, 59.
- M. Sjöegren, U. Göeransson, A.-L. Johnson, M. Dahlström, R. Andersson, J.
 Bergman, P. R. Jonsson and L. Bohlin, *J. Nat. Prod.*, 2004, 67, 368.
- 370 S. Sölter, R. Dieckmann, M. Blumenburg and W. Francke, *Tetrahedron Lett.*, 2002,
 43, 3385.
- 371 G. Lidgren, L. Bohlin and J. Bergman, Tetrahedron Lett., 1986, 27, 3283.
- 372 A.-L. Johnson, J. Bergman, M. Sjögren and L. Bohlin, Tetrahedron, 2004, 60, 961.
- 373 N. K. Garg, D. D. Caspi and B. M. Stoltz, J. Am. Chem. Soc., 2004, 126, 9552.
- 374 S. Pedpradab, R. Edrada, R. Ebel, V. Wray and P. Proksch, *J. Nat. Prod.*, 2004, 67, 2113.

- 375 R. D. Charan, T. C. McKee and M. R. Boyd, Nat. Prod. Res., 2004, 18, 225.
- N. L. Segraves, S. J. Robinson, D. Garcia, S. A. Said, X. Fu, F. J. Schmitz, H.
 Pietraszkiewicz, F. A. Valeriote and P. Crews, *J. Nat. Prod.*, 2004, 67, 783.
- 377 N. K. Utkina, A. E. Makarchenko, V. A. Denisenko and P. S. Dmitrenok, *Tetrahedron Lett.*, 2004, 45, 7491.
- 378 R. A. Keyzers, T. Samaai and M. T. Davies-Coleman, *Tetrahedron Lett.*, 2004, 45, 9415.
- E. M. Antunes, D. R. Beukes, M. Kelly, T. Samaai, L. R. Barrows, K. M. Marshall,
 C. Sincich and M. T. Davies-Coleman, *J. Nat. Prod.*, 2004, 67, 1268.
- 380 F. Reyes, R. Martín, A. Rueda, R. Fernández, D. Montalvo, C. Gómez and J. M. Sánchez-Puelles, J. Nat. Prod., 2004, 67, 463.
- 381 E. M. Antunes, B. R. Copp, M. T. Davies-Coleman and T. Samaai, *Nat. Prod. Rep.*, 2005, 22, 62.
- 382 I. T. Sandoval, R. A. Davis, T. S. Bugni, G. P. Conception, M. K. Harper, and C. M. Ireland, *Nat. Prod. Res.*, 2004, 18, 89.
- A. Herlt, L. Mander, W. Rombang, R. Rumampuk, S. Soemitro, W. Steglich, P. Tarigan and F. von Nussbaum, *Tetrahedron*, 2004, 60, 6101.
- 384 B. F. Bowden, B. J. McCool and R. H. Willis, J. Org. Chem., 2004, 69, 7791.
- 385 N. Kuwabara, H. Hayashi, N. Hiramatsu, T. Choshi, T. Kumemura, J. Nobuhiro and S. Hibino, *Tetrahedron*, 2004, 60, 2943.
- 386 R. A. Edrada, P. Proksch, V. Wray, R. Christ, L. Witte, R. W. M. Van Soest, J. Nat. Prod., 1996, 59, 973.

- 387 N. Saito, C. Tanaka, T. Satomi, C. Oyama and A. Kubo, *Chem. Pharm. Bull.*, 2004, 52, 282.
- 388 M. A. Rashid, K. R. Gustafson and M. R. Boyd, J. Nat. Prod., 2001, 64, 1249
- 389 S. Nakahara and A. Kubo, *Heterocycles*, 2004, 63, 2355.
- 390 G. R. Petit, J. C. Collins, J. C. Knight, D. L. Herald, R. A. Nieman, M. D. Williams and R. K. Pettit, J. Nat. Prod., 2003, 66, 544.
- 391 J. M. Frincke and D. J. Faulkner, J. Am. Chem. Soc., 1982, 104, 265.
- 392 Y. Nakao, T. Shiroiwa, S. Murayama, S. Matsunaga, Y. Goto, Y. Matsumoto and N. Fusetani, *Marine Drugs*, 2004, 2, 55.
- 393 P. Ralifo and P. Crews, J. Org. Chem., 2004, 69, 9025.
- 394 W. Hassan, R. Edrada, R. Ebel, V. Wray, A. Berg, R. van Soest, S. Wiryowidagdo and P. Proksch, J. Nat. Prod., 2004, 67, 817.
- 395 H.-M. Hua, J. Peng, F. R. Fronczek, M. Kelly and M. T. Hamann, *Bioorg. Med. Chem.*, 2004, **12**, 6461.
- 396 J. C. Braekman, D. Daloze, R. Tavares, E. Hajdu and R. W. M. Van Soest, J. Nat. Prod., 2000, 63, 193.
- 397 K. M. Meragelman, T. C. McKee and J. B. McMahon, *J. Nat. Prod.*, 2004, 67, 1165.
- J. T. Gautschi, S. Whitman, T. R. Holman and P. Crews, *J. Nat. Prod.*, 2004, 67, 1256.
- 399 T. Endo, M. Tsuda, T. Okada, S. Mitsuhashi, H. Shima, K. Kikuchi, Y. Mikami, J. Fromont and J. Kobayashi, J. Nat. Prod., 2004, 67, 1262.

- F. Cafieri, E. Fattorusso, A. Mangoni, O. Taglialatela-Scafati, *Tetrahedron Lett.*, 1995, 36, 7893.
- 401 D. E. N. Jacquot, P. Mayer and T. Lindel, Chem. Eur. J., 2004, 10, 1141.
- 402 P. S. Baran, A. L. Zografos and D. P. O'Malley, *J. Am. Chem. Soc.*, 2004, **126**, 3726.
- 403 V. B. Birman and X.-T. Jiang, Org. Lett., 2004, 6, 2369.
- 404 R. P. Walker, D. J. Faulkner, D. Van Engen and J. Clardy, *J. Am. Chem. Soc.*, 1981, 103, 6772.
- 405 P. A. Keifer, R. E. Schwartz, M. E. S. Koker, R. G. Hughes, D. Rittschof and K. L. Rinehart, *J. Org. Chem.*, 1991, **56**, 2965.
- 406 P. S. Baran, D. P. O'Malley and A. L. Zografos, *Angew. Chem. Int. Ed.*, 2004, 43, 2674.
- 407 S. K. Collins, A. I. McDonald, L. E. Overman and Y. H. Rhee, *Org. Lett.*, 2004, 6, 1253.
- 408 M. D'Ambrosio, A. Guerriero, C. Debitus, O. Ribes, J. Pusset, S. Leroy and F. Pietra, J. Chem. Soc. Chem. Commun., 1993, 1305.
- 409 M. M. Domostoj, E. Irving, F. Scheinmann and K. J. Hale, *Org. Lett.*, 2004, 6, 2615.
- A. D. Patil, N. V. Kumar, W. C. Kokke, M. F. Bean, A. J. Freyer, C. De Brosse, S. Mai, A. Truneh, D. J. Faulkner, B. Carte, A. L. Breen, R. P. Hertzberg, R. K. Johnson, J. W. Westley and B. C. M. Potts, *J. Org. Chem.*, 1995, 60, 1182.
- 411 J. Shimokawa, K. Shirai, A. Tanatani, Y. Hashimoto and K. Nagasawa, Angew. Chem. Int. Ed., 2004, 43, 1559.

- 412 E. A. Jares-Erijman, R. Sakai and K. L. Rinehart, J. Org. Chem., 1991, 56, 5712.
- 413 S. Aoki, D. Kong, K. Matsui and M. Kobayashi, Anticancer Res., 2004, 24, 2325.
- K. Takada, T. Uehara, Y. Nakao, S. Matsunaga, R. W. M. van Soest and N. Fusetani, J. Am. Chem. Soc., 2004, 126, 187.
- 415 S. Tilvi, C. Rodrigues, C. G. Naik, P. S. Parameswaran and S. Wahidhulla, *Tetrahedron*, 2004, **60**, 10207.
- 416 M. N. Masuno, A. C. Hoepker, I. N. Pessah and T. F. Molinski, *Marine Drugs*, 2004, **2**, 176.
- 417 G. M. Nicholas, G. L. Newton, R. C. Fahey and C. A. Bewley, *Org. Lett.*, 2001, 3, 1543.
- 418 A. S. Kende, J. Lan and J. Fan, *Tetrahedron Lett.*, 2004, 45, 133.
- 419 B. Fetterolf and C. A. Bewley, Bioorg. Med. Chem. Lett., 2004, 14, 3785.
- 420 M. V. R. Reddy, M. K. Harper and D. J. Faulkner, *Tetrahedron*, 1998, 54, 10649.
- 421 M. Ito, M. Yamanaka, N. Kutsumura and S. Nishiyama, *Tetrahedron*, 2004, **60**, 5623.
- 422 A. Rudi, Y. Benayahu and Y. Kashman, Org. Lett., 2004, 6, 4013.
- 423 S. Cao, Z. Gao, S. J. Thomas, S. M. Hecht, J. S. Lazo and D. G. I. Kingston, *J. Nat. Prod.*, 2004, **67**, 1716.
- 424 S. Aoki, D. Kong, K. Matsui, R. Rachmat and M. Kobayashi, *Chem. Pharm. Bull.*, 2004, **52**, 935.
- 425 R. H. Cichewicz, V. A. Kenyon, S. Whitman, N. M. Morales, J. F. Arguello, T. R. Holman and P. Crews, *J. Am. Chem. Soc.*, 2004, **126**, 14910.

- 426 D. E. Williams, J.-B. Telliez, J. Liu, A. Tahir, R. van Soest and R. J. Andersen, J. Nat. Prod., 2004, 67, 2127.
- K. Warabi, L. M. McHardy, L. Matainaho, R. Van Soest, C. D. Roskelley, M. Roberge and R. J. Andersen, *J. Nat. Prod.*, 2004, 67, 1387.
- N. G. Prokof'eva, N. K. Utkina, E. L. Chaikina and A. E. Makarchenko, *Comp. Biochem. Physiol. B (Biochem. Mol.)*, 2004, **139**, 169.
- 429 N. K. Utkina, A. E. Makarchenko, O. V. Shchelokova and M. V. Virovaya, *Chem. Nat. Compd.*, 2004, 40, 373.
- 430 M.-L. Kondracki and M. Guyot, Tetrahedron Lett., 1987, 28, 5815.
- 431 S. Aoki, D. Kong, K. Matsui and M. Kobayashi, Anti Cancer Drugs, 2004, 15, 363.
- I. Erdogan-Orhan, B. Sener, S. de Rosa, J. Perez-Baz, O. Lozach, M. Leost, S. Rakhilin and L. Meijer, *Nat. Prod. Res.*, 2004, 18, 1.
- 433 B. N. Ravi, H. P. Perzanowski, R. A. Ross, T. R. Erdman, P. J. Scheuer, J. Finer and J. Clardy, *Pure Appl. Chem.*, 1979, **51**, 1893.
- M. E. Castro, M. González-Iriarte, A. F. Barrero, N. Salvador-Tormo, R. Muñoz-Chápuli, M. A. Medina and A. R. Quesada, *Int. J. Cancer*, 2004, 110, 31.
- D. H. Hua, X. Huang, Y. Chen, S. K. Battina, M. Tamura, S. K. Noh, S. I. Koo, I. Namatame, H. Tomoda, E. M. Perchellet and J.-P. Perchellet, *J. Org. Chem.*, 2004, 69, 6065.
- 436 T. H. Hoang, P. C. Nguyen, Q. H. Tran and M. H. Le, *Tap Chi Duoc Hoc*, 2004,
 44, 20.
- 437 A. Brust and M. J. Garson, ACGC Chem. Res. Commun., 2004, 17, 33.

- 438 D. T. A. Youssef, A. N. B. Singab, R. W. M. van Soest and N. Fusetani, J. Nat. Prod., 2004, 67, 1736.
- D. E. Williams, B. O. Patrick, A. Tahir, R. Van Soest, M. Roberge and R. J. Andersen, *J. Nat. Prod.*, 2004, 67, 1752.
- 440 V. Satitpatipan and K. Suwanborirux, J. Nat. Prod., 2004, 67, 503.
- H. Mitome, N. Shirato, H. Miyaoka, Y. Yamada and R. W. M. van Soest, *J. Nat. Prod.*, 2004, 67, 833.
- 442 J. S. Simpson, A. Brust and M. J. Garson, Org. Biomol. Chem., 2004, 2, 949.
- K. D. Wellington, R. C. Cambie, P. S. Rutledge and P. R. Bergquist, *J. Nat. Prod.*, 2000, 63, 79.
- 444 K. C. Nicolaou, D. L. F. Gray and J. Tae, J. Am. Chem. Soc., 2004, 126, 613.
- B. W. Sullivan, D. J. Faulkner, K. T. Okamoto, M. H. M. Chen and J. Clardy, J.
 Org. Chem., 1986, 51, 5134.
- 446 T. Kochi and J. A. Ellman, J. Am. Chem. Soc., 2004, 126, 15652.
- 447 B. Harrison and P. Crews, J. Org. Chem., 1997, 62, 2646
- 448 S. K. Sabui and R. V. Venkateswaran, Tetrahedron Lett., 2004, 45, 9653.
- A. Rudi, H. Shalom, M. Schleyer, Y. Benayahu and Y. Kashman, J. Nat. Prod., 2004, 67, 106.
- 450 A. Rudi, M. Aknin, E. Gaydou and Y. Kashman, J. Nat. Prod., 2004, 67, 1932.
- 451 V. S. P. Chaturvedula, Z. Gao, S. H. Thomas, S. A. Hecht and D. G. I. Kingston, *Tetrahedron*, 2004, **60**, 9991.
- 452 W. Rungprom, W. Chavasiri, U. Kokpol, A. Kotze and M. J. Garson, *Marine Drugs*, 2004, **2**, 101.

- T. S. Bugni, M. P. Singh, L. Chen, D. A. Arias, M. K. Harper, M. Greenstein, W. M. Maiese, G. P.Conceptión, G. C. Mangalindan and C. M. Ireland, *Tetrahedron*, 2004, 60, 6981.
- 454 A. R. Díaz-Marrero, E. Dorta, M. Cueto, A. San-Martín and J. Darias, *Tetrahedron*, 2004, 60, 1073.
- 455 R. A. Keyzers, P. T. Northcote and O. A. Zubkov, Eur. J. Org. Chem., 2004, 419.
- 456 S. Ankisetty, C. D. Amsler, J. B. McClintock and B. J. Baker, *J. Nat. Prod.*, 2004,
 67, 1172.
- 457 J. S. Simpson and M. J. Garson, Org. Biomol. Chem., 2004, 2, 939.
- A. Patra, C. W. J. Chang, P. J. Scheuer, G. D. Van Duyne, G. K. Matsumoto and J. Clardy, *J. Am. Chem. Soc.*, 1984, **106**, 7981.
- 459 R. D. White, G. F. Keaney, C. D. Slown and J. L. Wood, Org. Lett., 2004, 6, 1123.
- 460 D. T. A. Youssef, J. Nat. Prod., 2004, 67, 112.
- 461 E. Elkhayat, R. Edrada, R. Ebel, V. Wray, R. van Soest, S. Wiryowidagdo, M. H.Mohamed, W. E. G. Müller and P. Proksch, *J. Nat. Prod.*, 2004, 67, 1809.
- 462 K. Choi, J. Hong, C.-O. Lee, D.-K. Kim, C. J. Sim, K. S. Im and J. H. Jung, J. Nat. Prod., 2004, 67, 1186.
- M. Namikoshi, S. Suzuki, S. Meguro, H. Nagai, Y. Koike, A. Kitazawa, H. Kobayashi, T. Oda and J. Yamada, *Fish Sci.*, 2004, 70, 152.
- 464 S.-N. Wonganuchitmeta, S. Yuenyongsawad, N. Keawpradub and A. Plubrukarn, J. Nat. Prod., 2004, 67, 1767.
- 465 J.-R. Rho, H.-S. Lee, H. J. Shin, J.-W. Ahn, J.-Y. Kim, C. J. Sim and J. Shin, J. Nat. Prod., 2004, 67, 1748.

- 466 Y. Qiu, Z. Deng, Y. Pei, H. Fu, J. Li, P. Proksch and W. Lin, *J. Nat. Prod.*, 2004,
 67, 921.
- 467 P. Phuwapraisirisan, S. Matsunaga, R. W. M. van Soest and N. Fusetani, *Tetrahedron Lett.*, 2004, 45, 2125.
- 468 X. Fu, M. L. G. Ferreira, F. J. Schmitz and M. Kelly, J. Nat. Prod., 1999, 62, 1190.
- 469 L. P. Ponomarenko, A. I. Kalinovsky and V. A. Stonik, *J. Nat. Prod.*, 2004, 67, 1507.
- 470 L. Chill, A. Rudi, M. Aknin, S. Loya, A. Hizi and Y. Kashman, *Tetrahedron*, 2004, 60, 10619.
- 471 A. R. Díaz-Marrero, I. Brito, M. Cueto, A. San-Martín and J. Darias, *Tetrahedron Lett.*, 2004, **45**, 4707.
- 472 H.-S. Lee, J.-W. Ahn, Y.-H. Lee, J.-R. Rho and J. Shin, *J. Nat. Prod.*, 2004, 67, 672.
- 473 A. Umeyama, N. Shoji, S. Arihara, Y. Ohizumi and J. Kobayashi, *Aust. J. Chem.*, 1989, 42, 459.
- 474 S. Rifai, A. Fassouane, A. Kijjoa and R. Van Soest, Marine Drugs, 2004, 2, 147.
- 475 A. Randazzo, C. Debitus, L. Minale, P. García-Pastor, M. J. Alcazar, M. Payá andL. Gomez-Paloma, *J. Nat. Prod.*, 1998, 61, 571.
- 476 M. C. Monti, A. Casapullo, R. Riccio and L. Gomez-Paloma, *Bioorg. Med. Chem.*, 2004, 12, 1467.
- 477 R. Kazlauskas, P. T. Murphy, R. J. Quinn and R. J. Wells, *Tetrahedron Lett.*, 1976, 2631.

- V. Ledroit, C. Debitus, F. Ausseil, R. Raux, J.-L. Menou and B. T. Hill, *Pharm. Biology*, 2004, 42, 454.
- 479 S. De Rosa, A. Crispino, A. De Giulio, C. Iodice, R. Benrezzouk, M. C. Terenicio,
 M. L. Ferrándiz, M. J. Alcaraz and M. Payá, *J. Nat. Prod.*, 1998, 61, 931.
- 480 A. K. Cheung, R. Murelli and M. L. Snapper, J. Org. Chem., 2004, 69, 5712.
- 481 D. J. Faulkner, Tetrahedron Lett., 1973, 3821.
- 482 K. Takabe, H. Hashimoto, H. Sugimoto, M. Nomoto and H. Yoda, *Tetrahedron: Asymmetry*, 2004, **15**, 909.
- 483 C. Funel, F. Berrué, C. Roussakis, R. F. Rodriguez and P. Amade, *J. Nat. Prod.*, 2004, 67, 491.
- 484 M. N. Masuno, J. R. Pawlik and T. F. Molinski, J. Nat. Prod., 2004, 67, 731.
- 485 T. Teruya, S. Nakagawa, T. Koyama, H. Arimoto, M. Kita and D. Uemura, *Tetrahedron*, 2004, **60**, 6989.
- E. Fattorusso, O. Taglialatela-Scafati, F. Petrucci, G. Bavestrello, B. Calcinai, C.
 Cerrano, P. Di Meglio and A. Ianaro, *Org. Lett.*, 2004, 6, 1633.
- 487 G. J. Calderón, L. Castellanos, C. Duque, S. Echigo, N. Hara and Y. Fujimoto, *Steroids*, 2004, **69**, 93.
- 488 M. Fouad, K. Al-Trabeen, M. Badran, V. Wray, R. Edrada, P. Proksch and R. Ebel, *Arkivoc*, 2004, 13, 17.
- 489 S. Carmely, M. Roll, Y. Loya and Y. Kashman, J. Nat. Prod., 1989, 52, 167.
- F. Lv, Z. Deng, J. Li, H. Fu, R. W. M. van Soest, P. Proksch and W. Lin, *J. Nat. Prod.*, 2004, 67, 2033.

- 491 S.-H. Qi, S. Zhang, Z.-H. Xiao, J.-S. Huang, J. Wu and Q.-X. Li, *Chem. Pharm. Bull.*, 2004, **52**, 1476.
- 492 P. Radhika, V. L. Rao and H. Laatsch, Chem. Pharm. Bull., 2004, 52, 1345.
- 493 N. Krishna, P. Muralidhar, M. M. Kumar, D. V. Rao and C. B. Rao, *J. Nat. Prod.*, 2004, 67, 1423.
- 494 N. Krishna, P. Muralidhar, M. M. K. Kumar, D. V. Rao and C. B. Rao, *Nat. Prod. Res.*, 2004, 18, 551.
- H. Liu, J.-Y. Su and L.-M. Zeng, *Zhongshan Daxue Xuebao*, *Ziran Kexueban*, 2004, 43, 124.
- 496 M. S. Diop and A. Samb, C. R. Chim., 2004, 7, 965.
- 497 T. ezanka, L. O. Hanuš and V. M. Dembitsky, Tetrahedron, 2004, 60, 12191.
- 498 D. J. Milanowski, K. R. Gustafson, M. A. Rashid, L. K. Pannell, J. B. McMahon and M. R. Boyd, J. Org. Chem., 2004, 69, 3036.
- Y.-C. Shen, L.-T. Wang, Y.-B. Cheng, A. T. Khalil, M.-H. Chen and Y.-C. Lin, J.
 Chin. Chem. Soc., 2004, **51**, 1421.
- 500 A. F. Ahmed, J.-H. Su, R.-T. Shiue, X.-J. Pan, C.-F. Dai, Y.-H. Kuo and J.-H. Sheu, J. Nat. Prod., 2004, 67, 592.
- 501 Y.-C. Shen, Y.-B. Cheng, Y.-C. Lin, J.-H. Guh, C.-M. Teng and C.-L. Ko, J. Nat. Prod., 2004, 67, 542.
- 502 B. J. Baker, R. K. Okuda, P. T. K. Yu and P. J. Scheuer, *J. Am. Chem. Soc.*, 1985, 107, 2976.
- 503 B. J. Baker and P. J. Scheuer, J. Nat. Prod., 1994, 57, 1346.

- 504 S. M. Verbitski, J. E. Mullally, F. A. Fitzpatrick and C. M. Ireland, J. Med. Chem., 2004, 47, 2062.
- 505 C. Kuhn, E. Roulland, J.-C. Madelmont, C. Monneret and J.-C. Florent, Org. Biomol. Chem., 2004, 2, 2028.
- 506 E. Dorta, A.-R. Díaz-Marrero, M. Cueto, L. D'Croz, J. L. Maté and J. Darias, Org. Lett., 2004, 6, 2229.
- 507 M. Iwashima, I. Terada, K. Okamoto and K. Iguchi, J. Org. Chem., 2002, 67, 2977.
- 508 H. Ito, M. Hasegawa, Y. Takenaka, T. Kobayashi and K. Iguchi, *J. Am. Chem. Soc.*, 2004, **126**, 4520.
- 509 W. Zhang, Y.-W. Guo, E. Mollo and G. Cimino, Helv. Chim. Acta, 2004, 87, 2919.
- 510 C.-Y. Duh, A. A. H. El-Gamal, P.-Y. Song, S.-K. Wang and C.-F. Dai, J. Nat. Prod., 2004, 67, 1650.
- 511 Y. Uchio, A. Matsuo, S. Eguchi, M. Nakayama and S. Hayashi, *Tetrahedron Lett.*, 1977, 1191.
- 512 M. Feller, A. Rudi, N. Berer, I. Goldberg, Z. Stein, Y. Benayahu, M. Schleyer andY. Kashman, J. Nat. Prod., 2004, 67, 1303.
- 513 A. A. H. El-Gamal, S.-K. Wang, C.-F. Dai and C.-Y. Duh, J. Nat. Prod., 2004, 67, 1455.
- J.-H. Sheu, C.-H. Chao, G.-H. Wang, K.-C. Hung, C.-Y. Duh, M. Y. Chiang, Y.-C.
 Wu and C.-C. Wu, *Tetrahedron Lett.*, 2004, 45, 6413.
- 515 A. Ata, J. Ackerman, A. Bayoud and P. Radhika, *Helv. Chim. Acta*, 2004, 87, 592.
- 516 K. Iguchi, T. Fukaya, A. Yasumoto and K. Watanabe, *J. Nat. Prod.*, 2004, **67**, 577; and references cited therein.

- 517 C. B. Rao, V. C. Sekhar, B. Sarvani and D. V. Rao, *Indian J. Chem. Sect. B*, 2004,
 43, 1329.
- 518 J. A. Palermo, M. F. Rodríguez Brasco, C. Spagnuolo and A. M. Seldes, J. Org. Chem., 2000, 65, 4482.
- 519 Y. Nakao, Y. Hirata, S. Ishihara, S. Oda, T. Yukawa, E. Shirakawa and T. Hiyama, J. Am. Chem. Soc., 2004, 126, 15650.
- 520 J.-H. Sheu, J.-H. Su, P.-J. Sung, G.-H. Wang and C.-F. Dai, *J. Nat. Prod.*, 2004, 67, 2048.
- 521 A. G. Gonzalez, J. D. Martin and M. L. Rodriguez, *Anales de Quimica* (1968-1979)
 1976, 72, 1004.
- 522 X.-H. Yan, Y.-W. Guo, X.-Z. Zhu, E. Mollo and G. Cimino, *Youji Huaxue*, 2004, 24, 1233.
- 523 A. Ata, H. Y. Win, D. Holt, P. Holloway, E. P. Segstro and G. S. Jayatilake, *Helv. Chim. Acta*, 2004, **87**, 1090.
- 524 C. Duque, M. Puyana, G. Narváez, O. Osorno, N. Hara and Y. Fujimoto, *Tetrahedron*, 2004, **60**, 10627.
- 525 A. Ata, R. G. Kerr, C. E. Moya and R. S. Jacobs, *Tetrahedron*, 2003, **59**, 4215.
- 526 I. I. Rodríguez, Y.-P. Shi, O. J. Garciá, A. D. Rodríguez, A. M. S. Mayer, J. A. Sánchez, E. Ortega-Barria and J. González, *J. Nat. Prod.*, 2004, 67, 1672.
- 527 K. I. Marville, W. F. Reynolds, R. L. Sealy and W. F. Tinto, *Heterocycles*, 2004, 63, 107.
- 528 F. Reyes, A. Ardá, R. Martín, R. Fernández, A. Rueda, D. Montalvo, C. Gómez, C. Jiménez, J. Rodríguez and J. M. Sánchez-Puelles, *J. Nat. Prod.*, 2004, 67, 1190.

- A. Fontana, M. L. Ciavatta, P. Amodeo and G. Cimino, *Tetrahedron*, 1999, 55, 1143.
- 530 X.-Q. Ma, S.-J. Yan, J.-Y. Su and L.-M. Zeng, *Gaodeng Xuexiao Huaxue Xuebao*, 2004, **25**, 479.
- 531 X. Wei, A. D. Rodríguez, P. Baran, R. G. Raptis, J. A. Sánchez, E. Ortega-Barria and J. González, *Tetrahedron*, 2004, 60, 11813.
- 532 A. F. Ahmed, J.-H. Su, Y.-H. Kuo and J.-H. Sheu, J. Nat. Prod., 2004, 67, 2079.
- 533 H. Gross, A. D. Wright, W. Beil and G. M. König, Org. Biomol. Chem., 2004, 2, 1133.
- H. Gross, S. Kehraus, M. Nett, G. M. König, W. Beil and A. D. Wright, Org. Biomol. Chem., 2003, 1, 944.
- J. Bernstein, U. Shmeuli, E. Zadock, Y. Kashman and I. Néeman, *Tetrahedron*, 1974, 30, 2817
- 536 S. S. Sawant, P. W. Sylvester, M. A. Avery, P. Desai, D. T. A. Youssef and K. A. El Sayed, *J. Nat. Prod.*, 2004, 67, 2017.
- 537 H. Fahmy, S. I. Khalifa, T. Konoshima and J. K. Zjawiony, *Marine Drugs*, 2004, 2,
 1.
- J. Marrero, A. D. Rodríguez, P. Baran and R. G. Raptis, *Eur. J. Org. Chem.*, 2004, 3909.
- 539 J. Marrero, A. D. Rodríguez, P. Baran, R. G. Raptis, J. A. Sánchez, E. Ortega-Barria and T. L. Capson, *Org. Lett.*, 2004, 6, 1661.
- 540 P.-J. Sung, M.-R. Lin, W.-C. Chen, L.-S. Fang, C.-K. Lu and J.-H. Sheu, Bull. Chem. Soc. Japan, 2004, 77, 1229.

- 541 P.-J. Sung, M.-R. Lin and L.-S. Fang, Chem. Pharm. Bull., 2004, 52, 1504.
- 542 W. Zhang, Y.-W. Guo, E. Mollo and G. Cimino, Helv. Chim. Acta, 2004, 87, 2341.
- 543 S.-H. Qi, S. Zhang, H. Huang, Z.-H. Xiao, J.-S. Huang and Q.-X. Li, J. Nat. Prod., 2004, 67, 1907.
- 544 S.-L. Wu, P.-J. Sung, J.-H. Su, G.-H. Wang and J.-H. Sheu, *Heterocycles*, 2004, 63, 895.
- 545 P.-J. Sung, W.-P. Hu, S.-L. Wu, J.-H. Su, L.-S. Fang, J.-J. Wang and J.-H. Sheu, *Tetrahedron*, 2004, **60**, 8975.
- 546 C. Tanaka, Y. Yamamoto, M. Otsuka, J. Tanaka, T. Ichiba, G. Marriott, R. Rachmat and T. Higa, *J. Nat. Prod.*, 2004, 67, 1368.
- 547 A. Clastres, A. Ahond, C. Poupat, P. Potier and S. K. Kan, *J. Nat. Prod.*, 1984, 47, 155.
- 548 S. C. Lievens, H. Hope and T. F. Molinski, J. Nat. Prod., 2004, 67, 2130.
- 549 M. T. Hamann, K. N. Harrison, A. R. Carroll and P. J. Scheuer, *Heterocycles*, 1996,
 42, 325.
- L. Chill, A. Rudi, Y. Benayahu, M. Schleyer and Y. Kashman, Org. Lett., 2004, 6, 755.
- 551 M. D. Higgs and D. J. Faulkner, *Steroids*, 1977, **30**, 379.
- 552 P. M. Weintraub, J. Heterocycl. Chem., 1993, 30, 1635.
- 553 M. L. Ciavatta, M. P. L. Gresa, E. Manzo, M. Gavagnin, S. Wahidulla and G. Cimino, *Tetrahedron Lett.*, 2004, 45, 7745.
- E. Dorta, A. R. Díaz-Marrero, M. Cueto, L. D'Croz, J. L. Maté, A. San-Martín and J. Darias, *Tetrahedron Lett.*, 2004, 45, 915.

- 555 P. L. Julian, E. W. Meyer and H. C. Printy, J. Am. Chem. Soc., 1948, 70, 887.
- 556 S.-L. Wu, G.-H. Wang, C.-F. Dai and J.-H. Sheu, J. Chin. Chem. Soc., 2004, 51, 205.
- 557 M. Gutiérrez, T. Capson, H. M. Guzmán, E. Quiñoá and R. Riguera, *Tetrahedron Lett.*, 2004, **45**, 7833.
- 558 P. Radhika, R. N. Asolkar and H. Laatsch, Nat. Prod. Res., 2004, 18, 575.
- 559 W. Zhang, Y.-W. Guo, E. Mollo, A. Fontana and G. Cimino, *J. Nat. Prod.*, 2004,
 67, 2083.
- 560 G.-H. Wang, J.-H. Su, C.-T. Chen, C.-Y. Duh, C.-F. Dai and J.-H. Sheu, J. Chin. Chem. Soc., 2004, 51, 217.
- 561 G. G. Mellado, E. Zubía, M. J. Ortega and P. J. López-González, *Steroids*, 2004,
 69, 291.
- 562 G. Wang, F. Li, L. Zenf, L. Ma and G. Tu, Chem. J. Chin. Univ., 1992, 13, 623.
- 563 W. Lu, L. Zeng and J. Su, *Steroids*, 2004, **69**, 445.
- 564 P. Radhika, M. Cabeza, E. Bratoeff and G. García, Steroids, 2004, 69, 439.
- 565 L.-M. Zeng, W.-J. Lan, J.-Y. Su, G.-W. Zhang, X.-L. Feng, Y.-J. Liang and X.-P. Yang, J. Nat. Prod., 2004, 67, 1915.
- J. Y. Su, K. H. Long, T. S. Peng and L. M. Zeng, *Sci. China, Ser. B*, 1988, **31**, 1172.
- 567 K. Iguchi, T. Fukaya, H. Takahashi and K. Watanabe, *J. Org. Chem.*, 2004, 69, 4351.
- 568 H. N. Kamel, F. R. Fronczek, N. H. Fischer and M. Slattery, *Tetrahedron Lett.*, 2004, 45, 1995.

- 569 D. J. Milanowski, K. R. Gustafson, J. A. Kelley and J. B. McMahon, *J. Nat. Prod.*, 2004, **67**, 70.
- 570 P. Wipf, B. Joo, T. Nguyen and J. S. Lazo, Org. Biomol. Chem., 2004, 2, 2173.
- 571 D. Alagille, R. M. Baldwin and G. D. Tamagnan, *Tetrahedron Lett.*, 2004, 45, 6179.
- 572 G. R. Pettit, Y. Kamano and C. L. Herald, J. Org. Chem., 1987, 52, 2848.
- 573 N. Lopanik, K. R. Gustafson and N. Lindquist, J. Nat. Prod., 2004, 67, 1412.
- 574 N. B. Lopanik, N. Lindquist and N. Targett, Oecologia, 2004, 139, 131.
- 575 L. Peters, G. M. König, H. Terlau and A. D. Wright, J. Nat. Prod., 2002, 65, 1633.
- 576 L. Peters, A. D. Wright, S. Kehraus, D. Gündisch, M. C. Tilotta and G. M. König, *Planta Med.*, 2004, 70, 883.
- 577 K. L. Rinehart and K. Tachibana, J. Nat. Prod., 1995, 58, 344.
- 578 K. L. Rinehart, J.-F. Cheng and J.-S. Lee, U. S. Patent 5514708, (1996).
- 579 M. Pérez, C. del Pozo, F. Reyes, A. Rodríguez, A. Francesch, A. M. Echavarren and C. Cuevas, *Angew. Chem. Int. Ed.*, 2004, **43**, 1724.
- 580 K. N. Fleming and R. E. Taylor, Angew. Chem. Int. Ed., 2004, 43, 1728.
- 581 J. S. Carlé and C. Christophersen, J. Am. Chem. Soc., 1979, 101, 4012.
- 582 J. F. Austin, S.-G. Kim, C. J. Sinz, W.-J. Xiao and D. W. C. MacMillan, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5482.
- 583 P. Ciminiello, C. Dell'Aversano, E. Fattorusso, M. Forino, S. Magno, P. Di Meglio,A. Ianaro and R. Poletti, *Tetrahedron*, 2004, 60, 7093.

- C. O. Miles, A. L. Wilkins, I. A. Samdal, M. Sandvik, D. Petersen, M. A. Quilliam,
 L. J. Naustvoll, T. Rundberget, T. Torgersen, P. Hovgaard, D. J. Jensen and J. M.
 Cooney, *Chem. Res. Toxicol.*, 2004, 17, 1423.
- 585 H. Ishida, A. Nozawa, H. Hamano, H. Naoki, T. Fujita, H. F. Kaspar and K. Tsuji, *Tetrahedron Lett.*, 2004, **45**, 29.
- 586 K. Suenaga, T. Mutou, T. Shibata, T. Itoh, T. Fujita, N. Takada, K. Hayamizu, M. Takagi, T. Irifune, H. Kigoshi and K. Yamada, *Tetrahedron*, 2004, 60, 8509.
- 587 G. R. Pettit, J.-P. Xu, D. L. Doubek, J.-C. Chapuis and J. M. Schmidt, *J. Nat. Prod.*, 2004, 67, 1252.
- 588 S. F. Cummins, A. E. Nichols, K. Rajarathnam and G. T. Nagle, *Peptides*, 2004, 25, 185.
- 589 X. Fu, A. J. Palomar, E. P. Hong, F. J. Schmitz and F. A. Valeriote, *J. Nat. Prod.*, 2004, 67, 1415.
- 590 Md. J. Uddin, S. Kokubo, K. Suenaga, K. Ueda and D. Uemura, *Heterocycles*, 2001, 54, 1039.
- 591 Md. J. Uddin, S. Kokubo, K. Ueda, K. Suenaga and D. Uemura, *J. Nat. Prod.*, 2001, 64, 1169.
- 592 M. Gavagnin, E. Mollo, T. Docimo, Y.-W. Guo and G. Cimino, *J. Nat. Prod.*, 2004, 67, 2104.
- 593 K. Benkendorff, R. Pillai and J. B. Bremner, Nat. Prod. Res., 2004, 18, 427.
- 594 E. Manzo, M. L. Ciavatta, M. Gavagnin, E. Mollo, Y.-W. Guo and G. Cimino, J. Nat. Prod., 2004, 67, 1701.

- 595 P. Ciminiello, C. Dell'Aversano, E. Fattorusso, M. Forino, S. Magno, A. Ianora and M. Di Rosa, *Eur. J. Org. Chem.*, 2001, 49.
- 596 E. A. Couladouros, V. I. Moutsos and E. N. Pitsinos, *Tetrahedron Lett.*, 2004, 45, 7779.
- 597 M. Satake, K. Ofuji, H. Naoki, K. J. James, A. Furey, T. McMahon, J. Silke and T. Yasumoto, J. Am. Chem. Soc., 1998, 120, 9967.
- 598 K. C. Nicolaou, S. Vyskocil, T. V. Koftis, Y. M. A. Yamada, T. Ling, D. Y.-K. Chen, W. Tang, G. Petrovic, M. O. Frederick, Y. Li and M. Satake, *Angew. Chem. Int. Ed.*, 2004, 43, 4312.
- K. C. Nicolaou, T. V. Koftis, S. Vyskocil, G. Petrovic, T. Ling, Y. M. A. Yamada,
 W. Tang and M. O. Frederick, *Angew. Chem. Int. Ed.*, 2004, 43, 4318.
- R. R. Vardaro, V. Di Marzo, A. Crispino and G. Cimino, *Tetrahedron*, 1991, 47, 5569.
- 601 J. E. Moses, J. E. Baldwin and R. M. Adlington, Tetrahedron Lett., 2004, 45, 6447.
- M. Gavagnin, M. Carbone, E. Mollo and G. Cimino, *Tetrahedron Lett.*, 2003, 44, 1495.
- 603 V. Kulcitki, N. Ungur, M. Gavagnin, M. Carbone and G. Cimino, *Tetrahedron: Asymmetry*, 2004, **15**, 423.
- 604 J. Rodríguez, R. Fernández, E. Quiñoá, R. Riguera, C. Debitus and P. Bouchet, *Tetrahedron Lett.*, 1994, **35**, 9239.
- 605 Y. Peng, H. W. Pang and T. Ye, Org. Lett., 2004, 6, 3781.
- 606 S. Acherar, G. Audran, F. Cecchin and H. Monti, Tetrahedron, 2004, 60, 5907.
- 607 D. E. Williams and R. J. Andersen, Can. J. Chem., 1987, 65, 2244.

- 608 G. R. Petit, J.-P. Xu, M. D. Williams, F. Hogan, J. M. Schmidt and R. L. Cerny, *Bioorg. Med. Chem. Lett.*, 1997, 7, 827.
- 609 G. R. Pettit, F. Hogan and D. L. Herald, J. Org. Chem., 2004, 69, 4019.
- 610 J. A. Roesener and P. J. Scheuer, J. Am. Chem. Soc., 1986, 108, 846.
- 611 J. S. Allingham, J. Tanaka, G. Marriott and I. Rayment, Org. Lett., 2004, 6, 597.
- N. Saito, C. Tanaka, Y.-I. Koizumi, K. Suwanborirux, S. Amnuoypol, S.Pummangura and A. Kubo, *Tetrahedron*, 2004, **60**, 3873.
- A. Fontana, P. Cavaliere, S. Wahidulla, C. G. Naik and G. Cimino, *Tetrahedron*, 2000, 56, 7305.
- 614 J. E. Hochlowski, D. J. Faulkner, G. K. Matsumoto and J. Clardy, *J. Org. Chem.*, 1983, 48, 1141.
- 615 T. P. Brady, S. H. Kim, K. Wen and E. A. Theodorakis, *Angew. Chem. Int. Ed.*, 2004, **43**, 739.
- 616 S. W. Ayer, R. J. Andersen, C. H. He and J. Clardy, J. Org. Chem., 1984, 49, 2653.
- 617 L. Zhang and M. Koreeda, Org. Lett., 2004, 6, 537.
- 618 G. Cimino, G. Sodano, A. Spinella and E. Trivellone, *Tetrahedron Lett.*, 1985, 26, 3389.
- 619 G. Cimino, G. Sodano and A. Spinella, J. Org. Chem., 1987, 52, 5326.
- 620 A. Fontana, A. Cutignano, A. Giordano, A. D. Coll and G. Cimino, *Tetrahedron Lett.*, 2004, **45**, 6847.
- 621 V. Amico, G. Oriente, M. Piattelli, C. Tringali, E. Fattorusso, S. Magno and L. Mayol, *Tetrahedron Lett.*, 1978, 3593.

- 622 G. Cimino, A. Crispino, V. Di Marzo, M. Gavagnin and J. D. Ros, *Experientia*, 1990, 46, 767.
- 623 A. Cutignano, V. Notti, G. d'Ippolito, A. D. Coll, G. Cimino and A. Fontana, Org. Biomol. Chem., 2004, 2, 3167.
- A. Spinella, L. A. Alvarez, A. Passeggio and G. Cimino, *Tetrahedron*, 1993, 49, 1307.
- 625 A. Cutignano, G. Cimino, A. Giordano, G. d'Ippolito and A. Fontana, *Tetrahedron Lett.*, 2004, 45, 2627.
- 626 F. J. Schmitz, D. P. Michaud and P. G. Schmidt, J. Am. Chem. Soc., 1982, 104, 6415.
- 627 S. Tsukamoto, Y. Yamashita, T. Yoshida and T. Ohta, Marine Drugs, 2004, 2, 170.
- M. H. Kossuga, J. B. MacMillan, E. W. Rogers, T. F. Molinski, G. G. F.Nascimento, R. M. Rocha and R. G. S. Berlinck, *J. Nat. Prod.*, 2004, 67, 1879.
- M. Gavagnin, F. Castelluccio, A. Antonelli, J. Templado and G. Cimino, *Lipids*, 2004, 39, 681.
- T. Teruya, H. Shimogawa, K. Suenaga and H. Kigoshi, *Chem. Lett.*, 2004, 33, 1184.
- 631 N. Takada, H. Sato, K. Suenaga, H. Arimoto, K. Yamada, K. Ueda and D. Uemura, *Tetrahedron Lett.*, 1999, 40, 6309.
- 632 H. Kigoshi, M. Kita, S. Ogawa, M. Itoh and D. Uemura, Org. Lett., 2003, 5, 957.
- 633 A. V. Statsuk, D. Liu and S. A. Kozmin, J. Am. Chem. Soc., 2004, 126, 9546.

- M. P. Foster, C. L. Mayne, R. Dunkel, R. J. Pugmire, D. M. Grant, J.-M.
 Kornprobst, J.-F. Verbist, J.-F. Baird and C. M. Ireland, *J. Am. Chem. Soc.*, 1992, 114, 1110.
- 635 A. D. Wright, E. Goclik, G. M. König and R. Kaminsky, *J. Med. Chem.*, 2002, 45, 3067.
- 636 R. A. Davis, A. R. Carroll and R. J. Quinn, J. Nat. Prod., 2002, 65, 454.
- 637 X. Pu and D. Ma, Angew. Chem. Int. Ed., 2004, 43, 4222.
- 638 D. R. Appleton, M. J. Page, G. Lambert and B. R. Copp, *Nat. Prod. Res.*, 2004, 18, 39.
- 639 S. Kehraus, S. Gorzalka, C. Hallmen, J. Iqbal, C. E. Müller, A. D. Wright, M. Wiese and G. M. König, *J. Med. Chem.*, 2004, 47, 2243.
- 640 M. R. Rao and D. J. Faulkner, J. Nat. Prod., 2004, 67, 1064.
- L. Chill, A. Rudi, Y. Benayahu and Y. Kashman, *Tetrahedron Lett.*, 2004, 45, 7925.
- H. Liu, S. B. Pratasik, T. Nishikawa, T. Shida, K. Tachibana, T. Fujiwara, H. Nagai, H. Kobayashi and M. Namikoshi, *Tetrahedron Lett.*, 2004, 45, 7015.
- 643 M. Chbani, M. Païs, J.-M. Delauneux and C. Debitus, J. Nat. Prod., 1993, 56, 99.
- 644 L. S. Santos, R. A. Pilli and V. H. Rawal, J. Org. Chem., 2004, 69, 1283.
- F. D. Schubot, M. B. Hossain, D. van der Helm, M. Païs and C. Debitus, J. Chem. Crystallogr. 1998, 28, 23.
- P. Krishnaiah, V. L. N. Reddy, G. Venkataramana, K. Ravinder, M. Srinivasulu, T. V. Raju, K. Ravikumar, D. Chandrasekar, S. Ramakrishna and Y. Venkateswarlu, *J. Nat. Prod.*, 2004, 67, 1168.

- 647 M. Marfil, F. Albericio and M. Álvarez, *Tetrahedron*, 2004, **60**, 8659.
- 648 K. L. Rinehart and R. Sakai, US Pat. Appl. Publ, 2004/0059112.
- 649 C. A. Morales, M. E. Layton and M. D. Shair, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, 101, 12036.
- K. Fu, M. B. Hossain, D. van der Helm and F. J. Schmitz, J. Am. Chem. Soc., 1994, 116, 12125.
- K. Fu, M. B. Hossain, D. van der Helm and F. J. Schmitz, J. Am. Chem. Soc., 1995, 117, 9381.
- K. C. Nicolaou, D. Y. K. Chen, X. Huang, T. Ling, M. Bella and S. A. Snyder, J.
 Am. Chem. Soc., 2004, **126**, 12888.
- T. Oishi, H. Tsuchikawa, M. Murata, M. Yoshida and M. Morisawa, *Tetrahedron*, 2004, 60, 6971.
- 654 S.-L. You and J. W. Kelly, Chem. Eur. J., 2004, 10, 71.
- 655 C.-G. Shin, C. Abe and Y. Yonezawa, Chem. Lett., 2004, 33, 664.
- 656 L. J. Perez and D. J. Faulkner, J. Nat. Prod., 2003, 66, 247.
- S. Mahboobi, A. Sellmer, T. Burgemeister, A. Lyssenko and D. Schollmeyer, *Monatsh. Chem.*, 2004, 135, 333.
- R. Durán, E. Zubía, M. J. Ortega, S. Naranjo and J. Salvá, *Tetrahedron*, 1999, 55, 13225.
- 659 L. Bijeire, L. Legentil, J. Bastide, F. Darro, C. Rochart and E. Delfourne, *Eur. J. Org. Chem.*, 2004, 1891.
- 660 Nilar, P. J. Sidebottom, B. K. Carté and M. S. Butler, J. Nat. Prod., 2002, 65, 1198.

- 661 K. L. Rinehart, J. B. Gloer, J. C. Cook, S. A. Mizsak and T. A. Scahill, J. Am. Chem. Soc., 1981, 103, 1857.
- K. L. Rinehart, V. Kishore, S. Nagarajan, R. J. Lake, J. B. Gloer, F. A. Bozich, K.M. Li, R. E. Maleczka, W. L. Todsen, M. H. G. Munro, D. W. Sullins and R. Sakai,
 J. Am. Chem. Soc., 1987, 109, 6846.
- E. Marco, S. Martín-Santamaría, C. Cuevas and F. Gago, *J. Med. Chem.*, 2004, 47, 4439.
- W. S. Jang, K. N. Kim, Y. S. Lee, M. H. Nam and I. H. Lee, *FEBS Lett.*, 2002, 521, 81.
- 665 X. Doisy, D. Ifrah and P. R. Hansen, Org. Biomol. Chem., 2004, 2, 2757.
- 666 L. Hernández Franco, E. Bal de Kier Joffé, L. Puricelli, M. Tatian, A. M. Seldes and J. A. Palermo, *J. Nat. Prod.*, 1998, **61**, 1130.
- M. Gompel, M. Leost, E. Bal de Kier Joffe, L. Puricelli, L. Hernandez Franco, J.
 Palermo and L. Meijer, *Bioorg. Med. Chem. Lett.*, 2004, 14, 1703.
- 668 H. Kang and W. Fenical, *Tetrahedron Lett.*, 1996, **37**, 2369.
- S. N. Fedorov, A. M. Bode, V. A. Stonik, I. A. Gorshkova, P. C. Schmid, O. S. Radchenko, E. V. Berdyshev and Z. Dong, *Pharm. Res.*, 2004, 21, 2307.
- G.-Q. Li, Z.-W. Deng, J. Li, H.-Z. Fu and W.-H. Lin, *J. Chin. Pharm. Sci.*, 2004, 13, 81.
- S. Kawatake, M. Inagaki, R. Isobe, T. Miyamoto and R. Higuchi, *Chem. Pharm. Bull.*, 2004, **52**, 1002.
- K. Arao, M. Inagaki, T. Miyamoto and R. Higuchi, *Chem. Pharm. Bull.*, 2004, **52**, 1140.

- A. A. Kicha, N. V. Ivanchina, A. I. Kalinovskii, P. S. Dmitrenok, S. O. Kainara, D.
 L. Aminin, I. G. Agafonova and V. A. Stonik, *Russ. Chem. Bull.*, 2004, 53, 447.
- 674 L. Zhang, X. Fan, J.-G. Shi, R. Niu and X. Li, *Zhongguo Haiyang Yaowu*, 2004, 23,
 6.
- 675 W. Wang, H. Jang, J. Hong, C.-O. Lee, K. S. Im, S.-J. Bae and J. H. Jung, J. Nat. Prod., 2004, 67, 1654.
- W. Wang, J. Hong, C.-O. Lee, K. S. Im, J. S. Choi and J. H. Jung, *J. Nat. Prod.*, 2004, 67, 584.
- E. V. Levina, A. I. Kalinovskii, P. V. Andriyashchenko, P. S. Dmitrenok, E. V.Evtushenko and V. A. Stonik, *Russ. Chem. Bull.*, 2004, 53, 2634.
- E. V. Levina, A. I. Kalinovskii, P. S. Dmitrenok, N. G. Prokof'eva, P. V.
 Andriyashchenko and V. A. Stonik, *Doklady Biochem. Biophys.*, 2004, **396**, 171.
- A. I. Kalinovskii, E. V. Levina, V. A. Stonik, P. S. Dmitrenok and P. V.Andriyashchenko, *Russ. J. Bioorg. Chem.*, 2004, **30**, 191.
- 680 A. A. Kicha, A. I. Kalinovsky, N. V. Gorbach and V. A. Stonik, *Khim. Prirod. Soedin.*, 1993, 249.
- 681 M. Iorizzi, F. de Riccardis, L. Minale and R. Riccio, J. Nat. Prod., 1993, 56, 2149.
- 682 N. V. Ivanchina, A. A. Kicha, A. I. Kalinovsky and V. A. Stonik, *Russ. Chem. Bull.*, 2004, **53**, 2639.
- 683 J. Qi, M. Ojika and Y. Sakagami, Bioorg. Med. Chem., 2004, 12, 4259.
- 684 S.-L. Zhang, L. Li, Y.-H. Yi, Z.-R. Zou and P. Sun, *Marine Drugs*, 2004, 2, 185.
- 685 I. Bonnard and K. L. Rinehart, *Tetrahedron*, 2004, **60**, 2987.

- T. V. Ovchinnikova, G. M. Aleshina, S. V. Balandin, A. D. Krasnosdembskaya, M. L. Markelov, E. I. Frolova, Y. F. Leonova, A. A. Tagaev, E. G. Krasnodembsky and V. N. Kokryakov, *FEBS Lett.*, 2004, 577, 209.
- S. Adolph, S. Bach, M. Blondel, A. Cueff, M. Moreau, G. Pohnert, S. A. Poulet, T. Wichard and A. Zuccaro, *J. Exp. Biol.*, 2004, 207, 2935.
- 688 G. S. Caldwell, M. G. Bentley and P. J. W. Olive, *Mar. Ecol. Prog. Ser*, 2004, 273, 97.
- 689 C. E. Kicklighter, J. Kubanek and M. E. Hay, Limnol. Oceanogr., 2004, 49, 430.
- 690 E. A. John, P. Pollet, L. Gelbaum and J. Kubanek, J. Nat. Prod., 2004, 67, 1929.
- 691 S.-I. Kato, Y. Oba, M. Ojika and S. Inouye, *Tetrahedron*, 2004, 60, 11427.
- 692 Y.-Q. Sun and Y.-W. Guo, Tetrahedron Lett., 2004, 45, 5533.
- 693 Y.-Q. Sun, G. Zahn and Y.-W. Guo, New Crystal Structures, 2004, 219, 121.