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ABSTRACT: This paper presents preliminary work on three-dimensional numerical 
modelling of seismic strengthening measures for poorly detailed reinforced concrete 
frames, primarily designed for gravity loads, as was typical in seismic-prone countries 
before the introduction of more advanced seismic codes in the early 1970s. These 
buildings are at risk due to inadequate structural detailing, deficiencies in reinforcement 
anchorage and the absence of measures to prevent brittle failure modes. Representative 
beam-column joints tested experimentally at the University of Pavia are analyzed using a 
continuum finite element program specially developed for detailed modelling of fracture 
in quasi-brittle materials. The microplane material model with relaxed kinematic 
constraint is used for the concrete. In the first stage of this work, which is presented in 
this paper, the proper modelling of the behaviour of smooth reinforcement with hooked 
ends, as well as the accurate representation of brittle shear failure modes in joints, are of 
particular interest. In the second stage of the project, strengthening measures that 
incorporate post-installed anchors for connection to the existing structure will be 
assessed. 

Keywords: Beam-column joints, Existing RC frames, Plain round bars, Hook anchorage, 

Finite elements, Microplane model. 

1 INTRODUCTION 

The goal of the present work is to model strengthening measures for reinforced concrete (RC) frames 
designed for gravity loads only in order to improve their performance under seismic load. The origin 
of the problem stems from design rules in use prior to the early-mid 1970s, thus before the 
introduction of adequate seismic code provisions along with capacity design principles/ 

Most buildings designed and constructed before the 1970s lack ductility in joint regions due to 
inadequate reinforcement detailing (lack of transverse reinforcement), poor bond properties of the 
reinforcement (plain round or smooth bars) and deficiencies in the anchorage details (hooked end bars, 
insufficient lap splices). These factors can cause brittle failure. A particular “concrete wedge” brittle 
failure mechanism due to the interaction of shear cracking and stress concentration at the hook 
anchorage location was observed by Pampanin et al. (2002) in cyclic tests on exterior beam-column T-
joint subassemblies carried out at the University of Pavia.  

In this paper these experimental results are reviewed and compared with numerical analyses 
performed using the finite element code MASA, developed at the University of Stuttgart and capable 
of three-dimensional (3D) nonlinear analysis of concrete, concrete-like materials and reinforced 
concrete structures. The program is based on the microplane model with relaxed kinematic constraint 
(Ožbolt et al. 2001). It has been shown that the code is able to realistically predict the behaviour of 
reinforced concrete structures (Ožbolt et al. 1998).  

In future research, strengthening measures that incorporate post-installed anchors for connection to the 
existing structure will be investigated using the numerical models developed in this paper.  
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Following a brief description of the investigated test specimens, the microplane constitutive law for 
concrete and the employed finite element model are described. The results of the numerical analysis 
are then compared with the experimental results. Additionally, a parameter study was carried out to 
investigate the influence of several parameters including the stiffness of the reinforcement hook, the 
constitutive bond law, the strength of the bond and the local bending stiffness of reinforcement bars on 
the response of the beam-column subassembly under monotonic lateral loading. Finally, the influence 
of the relevant parameters on the reversed cyclic behaviour of the connection is discussed. 

2 TEST SPECIMEN 

The specimen that was modelled was selected from a series of experimental tests on two-thirds scale, 
beam-column subassemblies performed at the University of Pavia (Pampanin et al. 2002). The 
complete test series was comprised of two exterior knee-joints, two exterior T joints and two interior 
(cruciform) joints. Exterior T-joint T1 was selected for modelling. The details of the T-joint are shown 
in Figure 1. 

           
Figure 1. Exterior beam-column joint specimen T1 and test set-up (Pampanin et al. 2002). 

The test specimen was loaded under reversed cyclic loading. The imposed loading history consisted of 
a series of three cycles at increasing top drift levels of ±0.2, ±0.6, ±1.0, ±1.5, ±2.0, ±3.0 and ±3.5 
percent (Figure 2a). To reproduce the asymmetric effects during an actual cyclic push-pull test on the 
prototype frame system, the axial load in the column was varied during the experiments as a function 
of the lateral load (N = 100 kN – 2.44F where F = lateral force; Figure 2b).  

  
a) b) 

Figure 2. Load history: a) subassembly drift; b) axial vs. lateral load relation (Pampanin et al. 2002) 

3 FINITE ELEMENT MODEL 

The goal of the first part of the present numerical study was to investigate the influence of various 
parameters on the response of the beam-column connection. In the used finite element (FE) code, a 
microplane material model for concrete and a trilinear steel constitutive law for reinforcement were 
used. The bond between steel and concrete was simulated using discrete bond elements. 
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3.1 Microplane model 

The microplane model is a three-dimensional, macroscopic model in which the material is 
characterized by uniaxial relations between the stress and strain components on planes of various 
orientations called “microplanes”. At each finite element integration point the microplanes can be 
imagined to represent damage planes or weak planes of the microstructure of the material. The 
macroscopic response is obtained by integrating contributions of all microplanes. More details can be 
found in Ožbolt et al. (2001). 

3.2 Bond model 

The correct simulation of the bond between concrete and reinforcement bars plays a central role in the 
proper modelling of beam-column connections. When the bond forces tend to zero it is evident that the 
majority of the shear force will be transferred across the joint core by a diagonal compression strut 
mechanism and hence severe diagonal tension cracking is less likely if bond deterioration occurs at an 
early stage of loading (Park 2002). A complex interaction between flexural response of the adjacent 
beam element and the joint shear transfer mechanism occurs also due to the stress penetration into the 
panel zone from the beam bars, combined with a fixed-end rotation in the beam due to progressive 
bond degradation and pull out mechanism. 

The discrete bond model implemented in MASA consists of a one-dimensional (1D) finite element 
(Figure 3) with a realistic bond-slip relationship (Figure 4). Additional information on the discrete 
bond model can be found in Ožbolt et al. (2002) or Lettow (2006). 

 
Figure 3.  Basic assumptions of the bond model implemented in MASA (Lettow 2006). 

 
Figure 4. Bond-slip relationship for deformed bars (Lettow 2006). 

It has been demonstrated that the model is able to correctly predict bond behaviour of deformed steel 
bars for monotonic and cyclic loading (Eligehausen et al. 1983; Ožbolt et al. 2002). 

The calibration of the parameters defining the bond elements has been carried out referring to the 
results of beam tests on straight plain round bars performed by Fabbrocino et al. (2002). For bars with 
a diameter of 12 mm the total bond strength was approximately τm +τf = 1 MPa (τm = mechanical 
bond; τf = frictional bond) for a slip of s1 = 0.03 mm. During cycling, the bond degradation valid for 
deformed bars is principally due to the shear failure of concrete between the ribs of the bar. In the case 
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of smooth bars, as adopted in the test specimens, it is reasonable to assume that friction is the only 
source of bond mechanism at the steel-concrete interface and that it is scarcely influenced by the 
cycling. Figure 5 shows the stress-slip behaviour of the discrete bond model for monotonic and cyclic 
loading, including the general assumption for deformed bars (Figure 5a) and the calibrated parameters 
for smooth bars (Figure 5b).  
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a) b) 

Figure 5.  Bond-slip cyclic relationship: a) for deformed bars (Eligehausen et al. 1983); b) for smooth 
bars. 

3.3 Modelling of the 180° hooks 

Preliminary numerical studies carried out as part of this investigation, highlighted the difficulty to 
model the hook ended bars using 1D finite elements. The possibility to model these hooks with 3D 
solid elements was discarded due to the excessive computation effort required. Therefore, the discrete 
bond model implemented in MASA was calibrated to reproduce the stress-displacement behaviour of 
the hook as measured from the experiments. The calibration was performed using the test results of 
Fabbrocino et al. (2002). They used hooked bars with diameter d = 12 mm. In Figure 6a the concept 
for modelling of the smooth reinforcement with hooked ends is shown schematically. The discrete 
bond-slip of the hook was assumed to be linear elastic (τm +τf → ∞). The stiffness of the hook was 
calibrated by detailed 3D FE analysis (Figure 6b). 
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a) b) 

Figure 6  Modelling of the hooked reinforcement: a) basic concept; b) calibration using the beam tests 
of Fabbrocino et al. (2002). 

3.4 Spatial discretization and material properties 

The loading configuration is shown schematically in Figure 7a. In the analysis, two different finite 
element models were used. For monotonic loading, a relatively fine discretization was employed 
(Figure 7b). On the other hand, in order to save computation time for this phase of the project, cyclic 
analyses were carried out using a relatively coarse discretization (Figure 7c). In the actual analysis, the 
vertical symmetry of the specimens required that only one-half of the specimen be modelled. The 
concrete was discretised by eight-node solid finite elements. Reinforcement was represented by 1D 
truss elements. The connection between all longitudinal reinforcement and the concrete was modelled 
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by discrete bond. For the transverse reinforcement, a rigid connection between reinforcement and 
concrete was assumed. The basic material properties used in the FE analysis are summarized in Table 
1 and Table 2. 

The concrete elements in the vicinity of the supports were taken to be linear elastic to prevent local 
failure of concrete. 
 

 

  
 

a) b) c) 

Figure 7.  Model of test specimen: a) static system; b) fine 3D FE mesh used for monotonic loading; c) 
coarse 3D FE mesh used for cyclic loading 

 
Table 1  Material parameters used in the numerical simulation. 

Basic material properties 

Concrete Cylinder compression strength Tensile strength 
 23.9 MPa  1.80 MPa  
 Young’s modulus Poisson’s ratio Fracture energy  
 28800 N/mm2 0.18 0.062 N/mm  
Steel Yielding strength Ultimate strength Young’s modulus Hardening modulus 
Ø 4 375 MPa 403 MPa 210000 MPa 2000 MPa 
Ø 8 385 MPa 451 MPa 210000 MPa 2000 MPa 
Ø 12 345 MPa 458 MPa 210000 MPa 2000 MPa 

 
Table 2 Bond parameters used in the numerical simulation (parameters described in Figure 4). 

Basic discrete bond properties for straight bars 

Monotonic ksecant = 80 N/m s2 =  0.1 mm 
and cyclic k1 = 100 N/m s3 =  1.0 mm 
loading k2 = 10 N/m τm =  0.5 MPa 
 kunload = 100 N/m τf =  0.5 MPa 

Basic discrete bond properties for 180° hook 
Monotonic ksecant = 50 N/m s2 =  10 mm 
loading k1 = 80 N/m s3 =  20 mm 
 k2 = 10 N/m τm =  500 MPa 
 kunload = 80 N/m τf =  1 MPa 
Cyclic ksec = 80 N/m s2 =  10 mm 
loading k1 = 100 N/m s3 =  20 mm 
 k2 = 10 N/m τm =  500 MPa 
 kunload = 100 N/m τf =  1 MPa 

4 RESULTS AND COMPARISON WITH EXPERIMENTAL DATA 

4.1 Monotonic loading 

Figure 8 compares the lateral force versus top drift (L-D) curves for monotonic loading of the fine and 
coarse models with the envelope curve from the cyclic experiments. It can be seen that the numerical 
results agree reasonably well with the experimental results. The coarse model, however, slightly 
overestimated the peak resistance and exhibited slightly more brittle response. For both models the 
failure mode was diagonal shear failure of the joint. 
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Figure 8.  Comparison of the model response for the coarse and fine meshes with experimental results 

Figure 9 shows the predicted failure mode for the fine finite element mesh. The system was 
characterized by flexural behaviour up to approximately 1,1% top drift (Figure 9a), at which point 
shear cracking in the joint became evident and the flexural cracks stopped growing. The joint shear 
crack, which ultimately caused the model to fail, was similar to the shear cracks observed in the 
experiments (Figure 9d). Unfortunately, a direct comparison of the sequence of cracking (flexural to 
shear) was not possible since monotonic loading of the test specimens was not performed. 

 

    
a) b) c) d) 

Figure 9.   Cracking under monotonic load at different top drift levels: a) 1.09%; b) 1.16%; c) 1.50%; 
d) cracking in the test specimen after cyclic loading 

The finite element model for monotonic loading (fine mesh) was also used to investigate: 1) the 
influence of the bond strength (Figure 10) and 2) the influence of the normal column force (Figure 
10b). All parametric studies for monotonic loading were conducted using the basic material and bond 
properties (see Table 1 and Table 2). 

Figure 10 shows the influence of the ultimate bond strength (τm +τf) on the response of the joint. It can 
be seen that with higher bond strength the resistance is higher and the failure more brittle. Figure 10 b) 
shows the influence of the axial column force on the lateral force versus top drift curve. It can be seen 
that with higher compressive force the joint shear (thus overall subassembly) resistance increases.  
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a) b) 

Figure 10. Comparison of numerical and experimental results for monotonic loading: a) effect of 
variation of the bond strength (τm +τf); b) effect of variation of axial force on the column 



7 

4.2 Cyclic loading 

In the cyclic analyses the joint was loaded as explained in Section 2 (refer to Figure 2). Figure 11 
shows the lateral force-lateral displacement (L-D) curve obtained from the experiment for the exterior 
joint T1. It is interesting to observe that although the diagonal shear cracking was initiated after a top 
drift of 0.86% the resistance of the system in the following loading cycles was not significantly 
decreased. The reason is probably due to the fact that the shear crack was not fully developed before 
reversed loading was applied. Moreover, due to the damage introduced through cyclic loading, the 
bending stiffness of the beam is significantly reduced and the force in the upper and lower 
reinforcement bars decreases with an increased number of loading cycles, thus limiting the nominal 
shear demand in the joint. 

 
Figure 11.  Experimental hysteresis loops for specimen T1 (Pampanin et al. 2002) 

Figure 12 shows cracking in the joint under cyclic loading. The results in Figure 12a) were obtained 
using the basic material and bond properties in Table 1 and Table 2. In the model, bending cracks first 
formed in the beam (crack no. 1). Subsequently, cracks formed in the column (cracks no. 2 & 3). 
Finally, shear cracks formed in the joint (crack no. 4), which led to degradation of the resistance 
during subsequent cycles. The same cracking sequence was observed in comparable experimental tests 
performed by Braga et al. (2001) (Figure 12b). Note that crack no. 1 is not at the same location as in 
the case of monotonic loading (compare Figure 12a) with Figure 9a), i.e. it has moved away from the 
column. A possible reason for the move could be that the cyclic loading damaged the bond between 
the concrete and the reinforcement and consequently more bond length for transfer of force was 
needed. This must be confirmed, however, using a finer mesh under cyclic loading.  

  
a) b) 

Figure 12.  Comparison of cracking during cycling: a) numerical model; b) experimental results from 
Braga et al. (2001) 

The calculated L-D curve for the basic model is plotted in Figure 13. The degradation of the force in 
the model is stronger than that in the experiment (compare Figure 13 with Figure 11). This is probably 
due to the local bending resistance of reinforcement bars, which was not accounted for in the basic FE 
analysis. Recall that in the analysis of the basic model, the reinforcement was modelled by truss 
elements with no bending stiffness. Another possible cause of the severe degradation of force in the 
FE model could be that the finite element discretization was too coarse in the cyclic analysis.  
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Figure 13.  Numerical hysteresis loops for model calculated with basic material and bond properties 

To better understand the behaviour of joints under cyclic loading, additional parametric numerical 
studies were carried out with particular attention on the influence of: 1) the degradation of bond 
properties due to cyclic loading, 2) the stiffness of the hooks, 3) the bending stiffness of reinforcement 
bars and 4) the bond strength of the longitudinal bars. In these calculations, one parameter was varied 
at a time, while maintaining the same configuration adopted in the  basic cyclic analysis.  

Figure 14b) was generated using a model in which the degradation of the bond resistance under cyclic 
loading was based on that used for deformed bars. This led to a smaller reduction of joint resistance 
during cycling when compared to the case where degradation rules for smooth bars were used 
(compare Figure 14b) with Figure 13). Failure in this case was due to formation of plastic hinges in 
the column (Figure 14a).  
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Figure 14. a) Failure due to formation of plastic hinge in the column; b) hysteresis loops obtained with 
bond degradation model typical of deformed bars 

The same tendency was observed for the cases where the stiffness of the hooks was reduced (Figure 
15a) or the bond strength was decreased (Figure 15b). Furthermore, if bending stiffness of the 
reinforcement was taken into account, the hysteresis response was closer to the experimentally 
measured results. Figure 15c shows that by accounting for the bending stiffness of the reinforcement, 
compared to the basic model, the results show more ductile behaviour with larger displacement before 
failure.  

Figure 14b) and Figure 15a) to Figure 15c) indicate that, regardless of the varied parameter, the 
monotonic loading always led to shear failure. Furthermore, the overall resistance was usually lower 
for monotonic loading than for cyclic loading. The reason is possibly due to the redistribution of the 
stiffness, and therefore internal stresses, as a consequence of cyclic loading. More detailed studies are 
needed to understand this behaviour.  
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Figure 15. Hysteresis loops for various models: a) model without bond degradation and with lower 
hook stiffness (x0,25); b) model without bond degradation and with reduced bond strength (τm+ τf = 

0.25 + 0.25 MPa); c) model taking account of the bending stiffness of reinforcement. 

5 CONCLUSIONS 

The following conclusions can be derived based on the results of the experimental and numerical 
studies: 

1) The numerical analysis of monotonic loading shows clear diagonal shear cracks. The envelope 
of cyclic loading from experiments agrees reasonably well with the results of the monotonic 
analysis. The parametric study confirmed that rigid bond between the reinforcement and the 
concrete and an increased level of axial force in the column increase the resistance of the 
overall subassembly. 

2) The experimental results showed progressive stiffness and overall strength degradation due to 
the increasing number of cycles and level of imposed lateral displacement. It is interesting to 
observe, however, that in spite of the extensive diagonal cracks that occurred in this beam-
column specimen, the strength degradation of the T1 specimen due to subsequent cyclic 
loading was less critical than that predicted by the numerical model (and expected from a pure 
shear failure mechanism) as described in the following point. 

3) Cyclic analysis of the basic model showed diagonal shear cracking with a subsequent strong 
reduction of strength and stiffness. The crack development was similar to that observed during 
the experimental tests; however, the reduction of strength and stiffness was higher than in the 
experiments. The reason is probably due to the fact that the local bending stiffness of 
reinforcement, which was not accounted for in the basic cyclic analysis, contributes to the 
resistance and prevents sudden failure typical for shear. Another reason may be that the finite 
element mesh used for the cyclic analysis was too coarse. 

4) The parameter study showed that the bond resistance, the hook stiffness and local bending 
stiffness of reinforcement significantly influenced the cyclic response. With decreased bond 
strength and decreased hook capacity, there was less reduction of the strength and stiffness 
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with an increasing number of loading cycles. The damage and failure mode also changed from 
shear to flexural type, with the formation of a plastic hinge in the column. The same tendency 
was observed when the local bending stiffness of the reinforcement was taken into account.  

5) It is interesting to observe that for monotonic loading using the coarse mesh, i.e. the mesh 
used for cyclic loading, failure was always due to diagonal shear cracking. The relatively 
ductile response of these models under cyclic loading indicates that the distribution of forces 
in the beam-column connection was strongly influenced by the load cycling. 

Further numerical and experimental investigations are needed to clarify a number of open questions. 
Moreover, in the next phase of the project the behaviour of the connection with strengthening 
measures using post-installed fasteners on the subassemblies will be investigated. 
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