
View metadata, citation and similar papers at core.ac.uk

brought to you by TCORE

Graphical Abstract

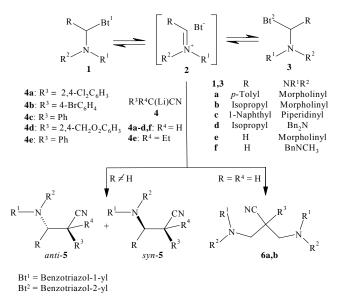
To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Aminoalkylation of nitriles by iminium ions generated in situ

Alan R. Katritzky,^{a*} Ashraf A. A. Abdel-Fattah^a and Peter J. Steel^b

^a Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200.

^b Department of Chemistry, University of Canterbury, Christchurch, New Zealand


Abstract— Aminoalkylation of a series of primary and secondary nitriles with *N*-(α -aminoalkyl)benzotriazoles **1** (derived from a variety of secondary amines and aldehydes) proceeds smoothly providing the corresponding β -aminoalkyl nitriles **5a**–**j** in 66–97% yields. © 2007 Elsevier Science. All rights reserved

N-(α -Aminoalkyl)benzotriazoles **1** are highly versatile synthetic intermediates used extensively in organic synthesis.¹ The methine carbon in these intermediates 1 possesses a high degree of electrophilicity, due to the existence of a mobile equilibrium with the benzotriazolideiminium ion pair $2^{2^{-}}$ Studies from our group have successfully applied this concept in their reactions with Grignard reagents and Reformatsky reagents to provide easy access to secondary and tertiary amines.³ N-(α -Aminoalkyl)benzotriazoles are also valuable intermediates for the preparation of functionalized amines.⁴ In the frame of our continuing efforts to develop benzotriazole methodology, we now report a new general and efficient synthesis of β -aminoalkyl nitriles based on the ability of **1** to react with metalated nitriles to produce the title compounds in good to excellent yields (Scheme 1 and Table 1).

The aminoalkylating reagents employed, *N*-(α -aminoalkyl)benzotriazoles **1a–f** are easily available by the wellestablished condensation of benzotriazole, an aldehyde, and a secondary amine.⁵ Quenching metalated nitriles with various electrophilic substrates is a common procedure for introducing a cyano group into a molecular framework,⁶ and we now report that the reaction of benzotriazole aminals **1** with metalated nitriles **4** provides a new access to β -aminoalkyl cyanides **5** and **6**.

We examined the reaction of adduct **1a** and the metalated nitrile **4a** under different conditions. When **1a** (1.0 equiv.) was reacted with **4a** (1.0 equiv.), prepared *in situ* by treatment of the corresponding nitrile with *n*-butyllithium (2 equiv.) in THF at -78 °C, β -amino cyanide **5a** was afforded in a yield of 89%. However, the yield of **5a** fell to

36% when the reaction was carried out in the presence of *t*-BuOK (2 equiv.) in DMSO at room temperature. Therefore, the lithiated nitriles **4a–e** were treated at –78 °C in THF with a series of **1** in THF at –78 °C.⁷ In every case, the reaction proceeded smoothly giving the corresponding β -aminoalkyl cyanides, either as the mono-aminoalkylated products **5a–i** in 66–97% yields or doubly aminoalkylated products **6b** in 43% yield. Exceptionally, the reaction of **1e** with **4a** under the same reaction conditions provided **5j** in the yield of 72%, in addition to **6a** in 10% yield. The structures of **5** and **6** were assigned on the basis of their spectral data and elemental analyses.⁸

Scheme 1. For designation of R, R¹R²N, R³ and R⁴ in **5** and R¹R²N and R³ in **6** see Table 1.

^{*} Keywords: Aminoalkylation; N-(a-aminoalkyl)benzotriazoles; B-aminoalkyl nitriles

^{*} Corresponding author. Tel.:+ (352)392-0554; fax: + (352) 392-9199; e-mail: katritzky@chem.ufl.edu.

Tetrahedron Letters

For β -aminoalkyl nitriles 5 containing two asymmetric carbon atoms, the reaction provided 5a,e,f as single diastereoisomers and **5b-d**,g as diastereoisomeric mixtures. Assignment of the existing diastereoisomers of **5a,e,f** as anti has been accomplished on the basis of a partial X-ray dataset of highly twinned and unstable crystals of 5a and X-ray crystallography of 5e and 5f (Figures 1 and 2). However, the aminoalkylated products **5b-d**,g were obtained as anti and syn diastereoisomeric mixtures. Their ¹H NMR spectra display two closely overlapping sets of signals and their ¹³C NMR spectra generally show two sets of lines. Although the integrated intensities of the α -cyano proton in the ¹H NMR spectra of CDC13 solutions indicated that the percentage of anti-isomers is slightly higher (53-62%) than syn-isomers in **5b-d**, for **5g** the major isomer is syn (69%). The structures of both the anti and syn

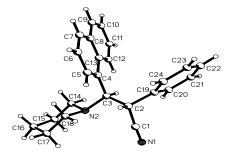


Figure 1. X-ray crystal structure of 5e.

Table	1,	Synthesis	of	β -amino	cyanides	5a-j	and	6a,b	•
-------	----	-----------	----	----------------	----------	------	-----	------	---

diastereoisomers of 5d and 5g, as well as the *syn* diastereoisomer of 5c, were definitively ascertained by their X-ray crystal structure analyses. The stereospecificity observed for **5a,e,f** suggests that aryl moieties containing an ortho substituent at the nucleophilic center (as in **5a**) or bulky groups at the electrophilic center (as in **5e,f**) control the stereoselectivity.

In summary, we have developed a new, efficient and general access to functionalized amines possessing a cyano group at the β -position via aminoalkylation of nitriles utilizing an easily accessible *N*-(α -aminoalkyl)benzo-triazoles from inexpensive starting materials. The high yields of **5** (up to 97%) demonstrate the convenience of *N*-(α -aminoalkyl)benzotriazoles as *in situ*-generated iminium ion equivalents.

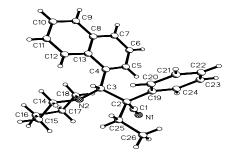


Figure 2. X-ray crystal structure of 5f.

Compd.	R	R^1R^2N	R ³	\mathbb{R}^4	anti:syn	Yield ^e
						%
5a	<i>p</i> -Tolyl	Mor ^a	2,4-Cl ₂ C ₆ H ₃	Н	100:0 ^c	89
5b	<i>p</i> -Tolyl	Mor ^a	$4-BrC_6H_4$	Н	62:38 ^d	94
5c	Isopropyl	Mor ^a	Ph	Н	53:47 ^{c,d}	97
5d	Isopropyl	Mor ^a	Ben ^b	Н	55:45 ^{c,d}	93
5e	1-Naphthyl	Piperidinyl	Ph	Н	100:0°	79
5f	1-Naphthyl	Piperidinyl	Ph	Et	100:0 ^c	66
5g	Isopropyl	Bn_2N	Ben ^a	Н	31:69 ^{c,d}	88
5h	Н	BnNCH ₃	Ph	Et	-	93
5i	Н	Mor ^a	4-BrC ₆ H ₄	Н	-	70
5j	Н	Mor ^a	$2,4-Cl_2C_6H_3$	Н	-	72
6a	Н	Mor ^a	$2,4-Cl_2C_6H_3$	-	-	10
6b	Н	BnNCH ₃	Ph	-	-	43

^a Morpholinyl. ^bBenzo[1,3]dioxol-4-yl. ^c Structure determined by X-ray crystallography. ^dDiastereomeric ratio was evaluated by ¹H NMR analysis. ^e Yields of pure isolated products

References and notes

- Katritzky, A. R.; Manju, K.; Singh, S.; Meher, N. K. Tetrahedron 2005, 61, 2555–2581.
- Katritzky, A. R.; Yannakopoulou, K.; Kuzmierkiewicz, W.; Aurrecoechea, J. M.; Palenik, G. J.; Koziol, A. E.; Szczesniak, M.; Skarjune, R. J. Chem. Soc., Perkin Trans. 1 1987, 2673–2679.
- (a) Katritzky, A. R.; Yannakopoulou, K.; Lue, P.; Rasala, D.; Urogdi, L. J. Chem. Soc., Perkin Trans. 1 1989, 225–233. (b) Katritzky, A. R.; Nair, S. K.; Qiu, G. Synthesis 2002, 199–202. (c) Katritzky, A. R.; Strah, S.; Belyakov, S. A. Tetrahedron 1998, 54, 7167–7178.
- (a) Katritzky, A. R.; Harris, P. A. *Tetrahedron* **1990**, *46*, 987–996.
 (b) Katritzky, A. R.; Shobana, N.; Harris, P. A.

Tetrahedron Lett. **1990**, *31*, 3999–4002. (c) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Dmytro. O. T.; Belyakov, S. A.; Ghiviriga, I.; Steel, P. J. *J. Org. Chem.* **1999**, *64*, 6071–6075.

- (a) Katritzky, A. R.; Pilarski, B.; Urogdi, L. Org. Prep. Prod. Int. 1989, 21, 135–139. (b) Katritzky, A. R.; Rachwal, S.; Rachwal, B.; Steel, P. J. J. Org. Chem. 1992, 57, 4932–4939.
- Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. 1984, 31, 1-347.
- 7. Typical experimental procedure for the synthesis of 5a-j and 6a,b: To a solution of 4 (2 mmol) in dry THF (10 mL) (prepared by treating the corresponding nitrile with 2 equiv. *n*-BuLi at -78 °C), at the same temperature, benzotriazole-adduct 1 (2 mmol) in THF (10 mL) was added. The mixture was stirred for 10 h while the temperature was allowed to rise to 20 °C, quenched with water and extracted with EtOAc (3 x 25 mL). The combined organic layers were washed with water (25 mL), dried over MgSO₄ and the solvent was removed in vacuo. The resulted oil was chromatographed on a silica-gel column using hexanes/EtOAc 10:1 as eluent to give the pure product 5 and 6; the yields are presented in Table 1.
- Representative data: ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded on a Gemini 300 MHz NMR spectrometer in CDCl₃ (with TMS for ¹H and CDCl₃ for ¹³C as the internal reference).

- (a) Compound 5a: was obtained in 89% yield as colorless plates, mp 143–145 °C; ¹H NMR δ 7.39 (d, J = 2.2 Hz, 1H), 7.05-6.93 (m, 5H), 6.58 (d, J = 8.5 Hz, 1H), 5.02 (d, J = 5.4 Hz, 1H), 3.77–3.72 (m, 4H), 3.49 (d, J = 5.4 Hz, 1H), 2.58–2.55 (m, 4H), 2.31 (s, 3H); ¹³C NMR δ 138.4, 134.7, 133.0, 132.4, 131.7, 130.0, 129.1, 128.9, 128.8, 127.2, 117.9, 70.5, 66.8, 51.7, 37.5, 21.1. Anal. Calcd. For C₂₀H₂₀Cl₂O: C, 64.01; H, 4.37; N, 7.46. Found: C, 64.22; H, 4.48; N, 7.44.
- (b) Compound **6b**: was obtained in 43% yield as pale yellow plates, mp 53–55 °C; ¹H NMR δ 7.79–7.20 (m, 15H), 3.56 (AB system, J = 13.2 Hz, 2H), 3.49 (AB system, J = 13.2 Hz, 2H), 3.13 (AB system, J = 13.6 Hz, 2H), 2.87 (AB system, J = 13.6 Hz, 2H) 2.15 (s, 6H); ¹³C NMR δ 138.9, 137.3, 129.8, 129.0, 128.9, 128.5, 128.1, 128.0, 127.6, 127.0, 126.7, 125.7, 122.7, 64.2, 63.7, 50.8, 43.7. Anal. Calcd. For C₂₆H₂₉N₃: C, 81.42; H, 7.62; N, 10.96. Found: C, 81.45; H, 7.52; N, 10.71.
- (c) Complete crystallographic data for all seven X-ray structures, as CIF files, have been deposited with the Cambridge Crystallographic Data Centre (CCDC Nos 281472 - 281478). Copies can be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (e-mail: deposit@ccdc.cam.ac.uk).