CORE

THIONATION OF *N*-METHYL- AND *N*-UNSUBSTITUTED THIAZOLIDINE ENAMINONES^{*}

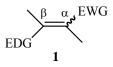
Rade Markovi}, ^{a,b,*} Aleksandar Ra{ovi},^b Marija Baranac,^{a,b} Milovan Stojanovi},^b P. Steel^c and Stanka Joveti}^d

^aFaculty of Chemistry, University of Belgrade, Studentski trg 16, P. O. Box 158, 11001 Belgrade, Serbia and Montenegro

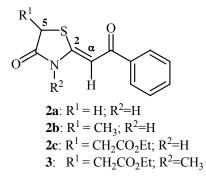
^bCenter for Chemistry ICTM, P. O. Box 815, 11000 Belgrade, Serbia and Montenegro ^cDepartment of Chemistry, University of Canterbury, P.O. Box 4800, Christchurch, New Zealand

^dDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg D. Obradovi }a 3, Novi Sad, Serbia and Montenegro

*Corresponding author. Tel.: +38-11-3282-111 (ext. 741); fax: +38-11-636-061; e-mail: markovic@helix.chem.bg.ac.yu


Abstract: The potential of the directional non-bonded 1,5-type S···O interactions to initiate an incipient stage of an *in situ* rearrangement of *N*-unsubstituted thiazolidine enaminones to the functionalized 1,2-dithioles has been demonstrated. Spectral characteristics, as well as an X-ray structural analysis of the selected rearranged product, indicate that a dynamic interconversion occurs in a solution between the 1,2-dithiole and $3,3a\lambda^4,4$ trithia-1-azapentalene bicylic form. The lack of the rearrangement in the case of the *N*-methyl substituted enaminone precursor is attributed to an unfavorable methyl migration in the last reaction step.

Keywords: thiazolidine, enaminone, Lawesson's reagent, 1,2-dithiole, $3,3a\lambda^4$,4-trithia-1-azapentalene

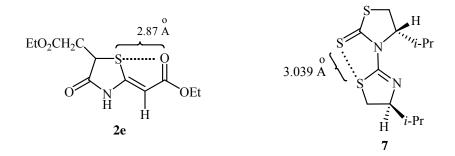

INTRODUCTION

Investigation of the physicochemical properties and chemical reactivity of pushpull alkenes **1**, carrying electron-donating group(s) (EDG) on C(β) and strongly resonatively electron-withdrawing group(s) (EWG) on C(α), is an on-going topic in organic chemistry.¹⁻²

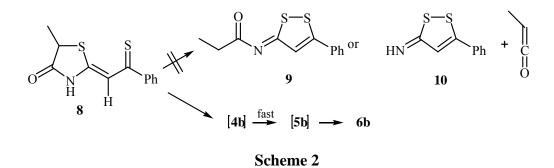

*Dedicated to Professor @ivorad ^ekovi} on the occasion of his 70th birthday.

4-Oxothiazolidines 2-3, containing an exocyclic C=C bond at the position C(2), belong to push-pull enaminones which are widely used in organic synthesis.³⁻⁴ In addition, numerous thiazolidine derivatives have attracted considerable attention because they exhibit diverse biological effects.⁵⁻⁶

During the course of our studies on polarized thiazolidines, we have shown that an enaminone moiety, HN–C_β=C_α–C=O, can be protected under the alkaline conditions, thus permitting the regioselective reduction of a series of thiazolidine esters, such as **2c**, to alcohols.⁷ Similar concept, based on a prior protection of **2c** *via N*-alkylation, was successfully exploited, at present in a single case, for a reductive heteroannulation of *N*methyl derivative **3** to fused bicyclic 2-alkylidenethiazolidine. On the other hand, we have experimentally demonstrated a higher electrophilic reactivity of the enaminone electron-rich centre C_{α} toward various brominating reagents, as compared to the electrophilic position C(5).⁸ Furthermore, recently reported rearrangement of 4oxothiazolidines **2a-c** to 1,2-dithioles **6a-c** (Scheme 1) induced by Lawesson's reagent [LR: (2,4-bis(4-methoxyphenyl)-1,2,3,4-dithiadiphosphetane 2,4-disulfide], is dictated by the intermolecular 1,5-interactions of nonbonded S and O in the *cis*–S–C=C–C=O enaminone fragment of the corresponding precursor **2**.⁹

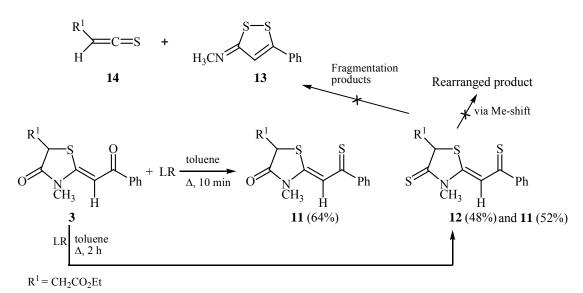

Scheme 1

As a continuation of our studies on the thiazolidine chemistry we present experimental evidence regarding the postulated mechanistic pathway of the $2\rightarrow\rightarrow6$ rearrangement, including the controlled formation of intermediate(s) *en route* to product **6**. The effect of the structural change, that is, the introduction of the methyl group at the *N*-position of the thiazolidine ring in the selected parent substrate, on the reaction course of the ring transformation, and the overall reactivity of different carbonyl groups in the substrates **2-3** toward LR, has also been investigated.


RESULTS AND DISCUSSION

Based on the complete understanding of the structures and physicochemical properties of parent thiazolidines **2**, (*Z*)-thioxothiazolidine-4-thione species **4** (Scheme 1) is proposed as the key intermediate responsible for the formation of the sole product **6** from the (*Z*)-**2** substrate and LR. In particular, the exact molecular structure of the prototype compound **2e** (R^1 : CH₂CO₂Et and CO₂Et instead of COPh) was determined by an X-ray crystallography.¹⁰ The distance between the sulfur and oxygen atoms being 2.873(2) Å, which corresponds to 89% of the sum of the van der Waals radii (3.22 Å),¹¹ implies the strong non-bonded interactions. We assume that upon direct replacement of the carbonyl oxygen in **2e** by sulfur atom the non-bonded S…S distance in the intermediate **4e**, as well as in **4a-c**, has to be very similar to the original value of 2.873(2) Å determined for the S…O distance. The distance is approximately 0.75 Å shorter than the corresponding van der Waals distance between the two sulfur atoms.¹² The significant shortening of the non-bonded distance promotes close 1,5-contact. Subsequently,

through-bond S-S interaction initiates an intramolecular rearrangement by concerted thioxothiazolidine ring opening-closing process, followed by the H-transfer (steps $4 \rightarrow 5 \rightarrow 6$). Amongst the recent examples, similar close contact between the sulfur atoms has been recently recognized in the crystallographic structure of another thiazolidine derivative depicted by structure 7.¹³



In general, starting from a colorless solution of equimolar quantities of **2** and LR in dry toluene, the corresponding orange crystalline 1,2-dithiole **6** was formed in a high yield (90-98%) upon heating the reaction mixture (3-4 h) in an oil bath at 90-95 °C. In order to test the mechanistic pathway (Scheme 1), **2b** was subjected to a controlled thionation carefully monitored by TLC. The green crystalline thione derivative **8** was isolated in a moderate yield (44%) after ten minutes, along with the low amount of 1,2-dithiole **6b** (10%). In terms of the rearrangement observed for **2a-c** (Scheme 1), similar ring transformation and/or fragmentation of the initial thionation intermediate **8** to *N*-(5-phenyl-3H-1,2-dithiol-3-ylidene)propionamide **9**, or 1,2-dithiole **10**, respectively, might be yet another processes (Scheme 2).

However, these side products were not formed under the conditions employed. In addition, the intermediacy of the dithione **4b**, arising from the subsequent thionation of the intermediate **8**, was not detected, as the facile ring opening, occurring with the

concomitant ring-closing step to give 5b, immediately follows. The close proximity of the sulfur atoms, combined with the push-pull effect of the enaminone unit are the two main factors acting in the same direction. The thionation of the lactam carbonyl is probably the rate-determining step $(8\rightarrow 4b)$ of the whole process. Alternative formation of the final product 6b by the thionation of 1,2-dithiole 9, generated via the $8 \rightarrow 9$ sequence, should not be completely ruled out. However, regardless of the strongly directing interaction between the two sulfur atoms in the intermediate 8, the strong electron-attracting ring carbonyl will make this ring opening-closing process less feasible. The related process in the case of the dithione 4b is enhanced as the oxygen/sulfur exchange at C(4) leads to less electron-attracting thioxo group. It is worth mentioning that the green substrate 8 in a preliminary solvent-free reaction was converted under relatively drastic conditions (30 min, ~175 °C) into an orange-red 1,2dithiole-type product, whose structure, not presently characterized, should be either 9 or **10**. In an anticipation of obtaining the key intermediate **4**, we then prepared *N*-methyl thiazolidine precursor 3. We reasoned that in this instance the required methyl shift, analogous to the hydride shift $5\rightarrow 6$, as a final step ultimately leading to a rearranged product, will be disfavored. This proved to be the case, as treatment of 3 with LR under the similar conditions as for the generation of 1,2-dithioles 6a-c, afforded the expected dithione intermediate 12 and an initial thionation product 11 (Scheme 3).

Scheme 3

The preferential formation of the intermediate **12** was not necessarily the only outcome, since potential fragmentation process may give rise to 1,2-dithiole **13** and thioketene **14**. In fact, Vialle et. al.,¹⁴ reported the fragmentation of this type for *N*-phenyl-5,5-disubstituted 4-thiazolidinones under the harsh experimental conditions. However, compounds **13** and **14** were not observed under the experimental reaction conditions employed. As observed in the reaction scheme, a rearranged product was not obtained from **12**, most likely due to the unfavorable methyl migration as a necessary step, analogous to the hydrogen shift in the case of precursors **2a-c** (see Scheme 1, step **4**→**5**). Upon the reduced reaction time (10 min) the reaction of **3** with LR proceeded in the stepwise manner to give exclusively an initial thionation derivative **11** in 64% yield. In the light of these results the reactivity of the carbonyl groups of thiazolidines **2** and **3** toward LR reflects a established trend of the thionation rates as follows: ketone > lactam >> > ester.^{15,16} Actually, the ester functionality at C(5) stayed intact even after the prolonged reaction time (5-7 h).

The structures of all thionation and rearranged products were elucidated on the basis of their spectroscopic and analytical data (see Experimental). Comparison of the selected ¹H and ¹³C NMR chemical shifts for the pairs of parent thiazolidine and corresponding thionation product **2b/8**, **3/11** and **3/12** revealed a complete regularity based on the enhanced anisotropic effect of the thiocarbonyl group relative to the carbonyl anisotropic effect (Table 1).¹⁷⁻²⁰

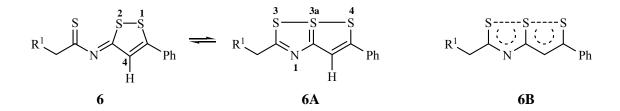
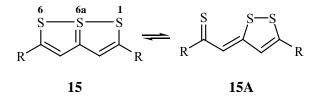
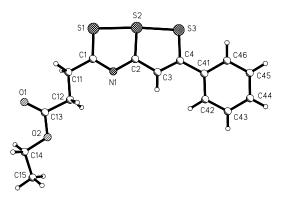

Entry	Compound	C(2')H	NCH ₃	C=O _{exo}	C=S _{exo}	C=O _{lactam}	C=S _{lactam}
1	(Z)- 2b (DMSO- <i>d</i> ₆)	6.78		187.4			
2	(Z) -8 (DMSO- d_6)	7.58			213.6		
3	(Z)-3 (CDCl ₃)	6.95	3.28	187.8		174.5	
4	(Z)-11 (CDCl ₃)	7.43	3.40		217.5		
5	(Z)-12 (CDCl ₃)	7.61	3.83		217.6		205.0

 Table 1. Selected ¹³C and ¹H chemical shifts (ppm) for the parent thiazolidines 2b and 3 and thionation derivatives 8, 11 and 12


The signals for the olefinic protons of thiazolidines (entries 1 and 3) are at higher field than those of the corresponding sulfur analogues (entries 2, 4 and 5). The same feature is illustrated for the pair 3/12, where the downfield shift of *ca*. 0.5 ppm is observed for the methyl protons in **12** (δ 3.83 ppm) relative to **3** (δ 3.28 ppm).

The ¹³C NMR data are also consistent with the increased anisotropic effect of a thiocarbonyl moiety. The signals at δ 174.5 and 187.8 ppm for the compound (*Z*)-3 (entry 3) are ascribed to lactam carbonyl and C=O ketone, respectively. As discussed above, the chemical shifts of thiocarbonyl groups of dithione **12** (entry 5) resulting from the oxygen-sulfur exchange, are in the 205-218 ppm range i.e., at a lower field than those of the parent thiazolidine **3**.


The MS, UV, ¹H and ¹³C NMR spectroscopic data for the rearranged products are in good agreement with the 1,2-dithiole structure **6** and the fused bicyclic aromatic $3,3a\lambda^4,4$ -trithia-1-azapentalene system **6A** in a continuous equilibrium.¹² In the ¹H NMR spectra (in CDCl₃) the proton at C(4) of derivatives **6a**, **6b** and **6c** absorbs at very low field, *i.e.*, at 8.37, 8.42 and 8.37 and ppm, respectively, which is indicative of the aromatic nature of these compounds. The interconversion of the **6** \leftrightarrow **6A** type has been a subject of numerous investigations.²¹⁻²⁵

Formula **6B**, depicting a partial bonding between the sulfur atoms, is another acceptable bonding pattern for this trisulfur bicyclic ring system, whereas the structure **6A** implies the σ bond connecting an internal hypervalent sulfur atom with the terminal S(6) and S(1) atoms. As discussed in a comprehensive review by N. Lozac'H,¹² related 1,6,6a λ^4 trithiapentalenes **15**, as typical 10 π -electron with C_{2v} symmetry, are best represented as being in a rapid interconversion with the 1,2-dithiol-3-ylidene thiones **15A**.

Finally, as indicated in Scheme 1 the scope of this rearrangement reaction is demonstrated by employing the thiazolidine-type enaminones **2a-c**. A single-crystal X-ray analysis of **6c**, shown in Figure 1, confirmed the trithiaazapentalene structure (formulae **6A** or **6B**; $R^1 = CH_2CO_2Et$).

Figure 1. Solid-state structure for compound **6c** as established by X-ray diffraction with atom numbering-scheme for non-hydrogen atoms.

In addition to the nearly linear S(1)-S(2)-S(3) array (175°), the two S-S bonds, being 2.36 and 2.29 Å, respectively, are not of exactly same length as the structures of the two fused rings differ. The computed sulfur-sulfur single bond length in a *cis* planar disulphide group is 2.08 Å and accordingly, the order of this bond is 1. Based on a correlation between the bond order and bond length, the assumed bond order in the solid state structure **6A** and in analogous trithiapentalenes^{26,27} is lower than 1 supporting the partial covalent bonding of the trisulfur-sequence.

EXPERIMENTAL

Melting points were determined on a Micro-Heiztisch Boetius PHMK apparatus or Bŋchi apparatus and are uncorrected. The IR spectra were recorded on a Perkin-Elmer FT-IR 1725X spectrophotometer and are reported as wave numbers (cm⁻¹). Samples for IR spectral measurements were prepared as KBr disks. The NMR spectra were obtained using a Varian Gemini 2000 instrument (¹H at 200 MHz, ¹³C at 50.3 MHz). ¹³C NMR resonance assignments were aided by the use of the DEPT technique to determine numbers of attached hydrogens. Chemical shifts are reported in parts per million (ppm) on the δ scale from TMS as an internal standard in the solvents specified. Low-

resolution mass spectra were recorded using a Finnigan MAT 8230 BE spectrometer at 70 eV (EI). Isobutane was used as the ionizing gas for the chemical ionization (CI) mass spectra. The UV spectra were measured on a Beckman DU-50 spectrophotometer. Analytical thin-layer chromatography (TLC) was carried out on Kieselgel G nach Stahl, and the spots were visualized by iodine. Column chromatography was carried out on SiO₂ (silica gel 60Å, 12-26, ICN Biomedicals). Elemental analyses were performed at the microanalysis laboratory at the Department of Chemistry, University of Belgrade.

General procedure for the preparation of rearranged derivatives 6a-c

A colorless solution of (*Z*)-2-alkylidene-4-oxothiazolidine **2a-c** (0.164 mmol) and LR (0.164 mmol) in dry toluene (3 mL) was heated in an oil bath at 90-95 °C (initially heterogeneous solution at room temperature becomes homogenous upon heating at around 75 °C). After a few minutes, the color of the reaction mixture turned dark reddish brown. **CAUTION:** *All reactions involving Lawesson's reagent, due to the unpleasant odor, should be carried out in a well-ventilated hood.* The mixture was stirred at this temperature for additional hour when TLC indicated the complete consumption of substrate **2a-c**. After cooling to room temperature, the solvent was evaporated *in vacuo*. The residue was chromatographed (toluene/ethyl acetate, $10:0\rightarrow8:2$, v/v) affording the dark orange crystalline 1,2-dithiole **6a-c** in high yields (90-98 %). The structural assignments of all isolated products were made on the basis of spectroscopic data (IR, ¹H and ¹³C NMR, MS, UV) and elemental analysis. Compound **6a** was previously described.²⁸ Note: It should be emphasized that the assignments are based on 1,2-dithiole structures **6** which are in continuous equilibrium with the 3,3a λ^4 ,4-trithia-1-azapentalene forms **6A**.

N-(5-Phenyl)-[1,2]dithiol-3-ylidene)-thioacetamide (6a)

From **2a** (50 mg, 0.228 mmol) in toluene (4 mL) and LR (87 mg, 0.228 mmol) after column chromatography (toluene/EtOAc 10:0 to 8:2) the 1,2-dithiole **6a** was isolated; yield 57 mg (99 %); mp 98 °C. IR (KBr): v_{max} 3004, 2908, 1638, 1514, 1485, 1447, 1404, 1226, 1205, 989, 846, 757, 690, 642 cm⁻¹; ¹H NMR (CDCl₃): δ 2.86 (3H, s, CH₃), 7,42-7.53 (3H, m, *m*- and *p*-Ph), δ 7.75-7.84 (2H, m, *o*- Ph), 8.37 (1H, s, =CH); ¹³C NMR (CDCl₃): δ 29.1 (CH₃), 125.8 (=CH), 127.4 (*o*- Ph), 129.0 (*m*-Ph), 131.0 (*p*-Ph),

136.2 (C_{ipso}- Ph), 178.5 (C=C-S), 187.3 (N=C-S), 198.6 (C=S); MS (EI): m/z (rel.intensity): 251 (M⁺, 35), 236 (15), 210 (5), 193 (7), 174 (3), 145 (13), 121 (18), 102 (20), 89 (3), 77 (13), 59 (100), 39 (3); UV (DMSO): λ_{max} (ε) 333 nm (15,250) and 446 nm (11,300). Anal. calcd for C₁₁H₉NS₃: C, 52.56; H, 3.61; N, 5.57; S, 38.26; Found: C, 52.68; H, 3.71; N, 5.63; S, 37.88.

N-(5-Phenyl)-[1,2]dithiol-3-ylidene)-thiopropanamide (6b)

From **2b** (40 mg, 0.17 mmol) in toluene (4 mL) and LR (70 mg, 0.17 mmol) after column chromatography (petrolether/EtOAc 10:0 to 10:0.4) the 1,2-dithiole **6b** was isolated; yield 39 mg (85 %); mp 54-56 °C. IR (KBr): v_{max} 3142, 3013, 2965, 2927, 2891 1518, 1481, 1448, 1396, 1290, 1227, 1195, 1065, 1000, 944, 841, 761, 693 cm⁻¹; ¹H NMR (CDCl₃): δ 1.44 (3H, t, *J*=7.4 Hz, CH₃), 3.12 (2H, q, *J*=7.4 Hz, CH₂), 7,47-7.50 (3H, m, *m*- and *p*-Ph), δ 7.83-7.88 (2H, m, *o*- Ph), 8.42 (1H, s, =CH); ¹³C NMR (CDCl₃): δ 13.8 (CH₃), 35.8 (CH₂), 126.0 (=CH), 127.5 (*o*- Ph), 129.1 (*m*-Ph), 131.0 (*p*-Ph), 136.7 (C_{ipso}- Ph), 178.7 (C=*C*-S), 187.8 (N=C-S), 204.9 (C=S); UV (DMSO): λ_{max} (ϵ) 332 nm (15,250) and 446 nm (11,300). Anal. calcd for C₁₂H₁₁NS₃: C, 54.32; H, 4.15; N, 5.28. Found: C, 54.14; H, 4.18; N, 5.26.

Ethyl 3-(5-phenyl-[1,2]dithiol-3-ylidenethiocarbamoyl)propanoate (6c)

From **2c** (50 mg, 0.16 mmol) in toluene (4 mL) and LR (66 mg, 0.16 mmol) after column chromatography (toluene/EtOAc 3:1 to 1:1) the 1,2-dithiole **6c** was isolated; yield 51 mg (92 %); mp 65 °C. IR (KBr): v_{max} 3067, 3006, 2978, 2925, 2855, 1730, 1512, 1483, 1450, 1426, 1401, 1375, 1305, 1177, 1157, 1107, 1049, 1015, 945, 867, 830, 760, 687 cm⁻¹; ¹H NMR (CDCl₃): δ 1.26 (3H, t, *J*=7.2 Hz, CH₃), 2.92 (2H, t, *J*=7.3 Hz, CH₂-CO), 3.40 (2H, t, *J*=7.3 Hz, CH₂-CS), 4.17 (2H, q, *J*=7.0 Hz, CH₂-O), 7,41-7.53 (3H, m, *m*- and *p*-Ph), δ 7.78-7.87 (2H, m, *o*- Ph), 8.37 (1H, s, =CH); ¹³C NMR (CDCl₃): δ 14.7 (CH₃), 32.9 (CH₂-CO), 37.5 (CH₂-CS), 60.6 (CH₂-O), 126.4 (=CH), 127.4 (*o*- Ph), 129.1 (*m*-Ph), 131.1 (*p*-Ph), 136.0 (C_{ipso}- Ph), 172.2 (CO_{ester}), 177.5 (C=*C*-S), 187.4 (N=C-S), 201.9 (C=S); MS (EI): *m*/*z* (rel.intensity): 337 (M⁺, 38), 304 (65), 277 (7), 264 (8), 236 (100), 211 (15), 194 (10), 178 (20), 145 (38), 117 (73), 102 (33), 71 (45), 55 (65); UV (DMSO): λ_{max} (ε) 332.6 nm (15,990) and 446.1 nm (12,720).

Anal. calcd for C₁₅H₁₅N O₂S₃: C, 53.39; H, 4.48; N, 4.15; S, 28.50; Found: C, 53.15; H, 4.45; N, 4.24; S, 27.97.

(Z)-5-methyl-4-oxothiazolidin-2-ylidene)-1-phenylethanethione (8)

From **2b** (54 mg, 0.23 mmol) in toluene (5 mL) and LR (94 mg, 0.23 mmol), at 90-95 °C, 10 min, after column chromatography (toluene/EtOAc 10:0 to 10:0.3) the (*Z*)-5- methyl-4-oxothiazolidin-2-ylidene)-1-phenylethanethione (**8**)

was isolated; yield 25 mg (44 %); mp 184-186 °C. IR (KBr): v_{max} 3405, 3094, 3022, 2935, 2896, 1691, 1535, 1476, 1447, 1367, 1308, 1219, 1073, 1000, 840, 768, 743, 692 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.52 (3H, d, *J*=7.4 Hz, CH₃), 4.10 (1H, q, *J*=7.4 Hz, SCH), 7,43-7.48 (3H, m, *m*- and *p*-Ph), 7.58 (1H, s, =CH), 7.70-7.74 (2H, m, *o*- Ph), 12.30 (1H, s, NH); ¹³C NMR (DMSO-*d*₆): δ 17.3 (CH₃), 41.6 (SCH), 111.6 (=CH), 126.6 (*o*- Ph), 128.6 (*m*-Ph), 130.9 (*p*-Ph), 146.8 (C_{ipso}- Ph), 166.0 (C=*C*H), 178.0 (CO), 213.6 (C=S); UV (CHCl₃): λ_{max} (ε) 330 nm (17,300) and 416.0 nm (23,300). Anal. calcd for C₁₂H₁₁NOS₂: C, 57.81; H, 4.41; N, 5.62; S, 25.72; Found: C, 57.32; H, 4.60; N, 5.60; S, 25.15.

(Z)-(5-Ethoxycarbonylmethyl-N-methyl-4-oxothiazolidin-2-ylidene)-1phenylethanone (3)

To a vigorously stirred mixture of (*Z*)-(5-ethoxycarbonylmethyl-4-oxothiazolidin-2-ylidene)-1-phenylethanone (**2c**) (100 mg , 0.33 mmole) in dry acetone (1.5 mL) and K₂CO₃ (45 mg, 0.33 mmol) a solution of MeI (0.022 mL, 51 mg, 0.36 mmol) (10% molar excess) was added in one portion. The reaction mixture was refluxed for 2 h until the disappearance of the starting material. After column chromatography (toluene/EtOAc, 100/0 \rightarrow 80/20, v/v) pure *N*-methylthiazolidine derivative **3** was isolated; yield 90 mg (86%); mp 114-115 °C. IR (KBr): v_{max} 3245, 3069, 2986, 2926, 1731, 1706, 1627, 1598, 1575, 1515, 1465, 1419, 1350, 1224, 1196, 1128, 1051 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.17 (3H, t, *J*=7.0 Hz, CH₃CH₂), 2.94-3.18 (2H, m, CH_AH_B; chemical shifts and coupling constants can't be precisely determined as the signals are of the higher order); 3.28 (3H, s, NCH₃), 4.09 (2H, q, *J*= 7.0 Hz, CH₂O), 4.22 (1H, dd, *J*₁=7.0 Hz, *J*₂=4.6 Hz, CH_AH_BCH_X), 6.95 (1H, s, =CH), 7.48-7.64 (3H, m, *p*-Ph and *m*-Ph), 8.04 (1H, dd, *J*₁=8.0 Hz, *J*₂=1.6 Hz, *o*-Ph); ¹³C NMR (DMSO-*d*₆): δ 14.2 (CH₃CH₂), 30.5 (NCH₃),

36.3 (CH_AH_B), 41.1 (CH_X), 60.8 (CH₃<u>C</u>H₂), 95.5 (=CH), 127.8 (*m*-Ph), 128.8 (*o*-Ph), 132.4 (*p*-Ph), 138.3 (C₁-Ph), 161.2 (=CH), 170.3 (CO_{ester}) 174.5 (CO_{lactam}), 187.8 (CO_{exo}); MS (EI, 70eV): *m/z* (rel. intensity): 319 (M⁺, 100), 302(3), 274(13), 245(100), 228(45), 168(63), 131(10), 105(67), 82(64), 77(56), 55(31); UV (DMSO): λ_{max} (ϵ) 336.0 nm (25,600); Anal. Calcd for C₁₃H₁₃NO₃S: C, 60.17; H, 5.36; N, 4.39; S, 10.04; Found: C, 59.88; H, 5.32; N, 4.39; S, 10.13.

(Z)-N-Methyl-5-ethoxycarbonylmethyl-4-oxothiazolidin-2-ylidene)-1phenylethanethione (11)

From **3** (50 mg, 0.156 mmol) in toluene (3 mL) and LR (63 mg, 0.156 mmol) (10 min, reflux) after column chromatography (toluene/EtOAc 3:1 to 1:1) the yellowish thiazolidine derivative **11** was isolated; yield 33.5 mg (64 %); mp °C. IR (KBr): v_{max} 3080, 2978, 2927, 1723, 1587, 1521, 1452, 1422, 1379, 1336, 1302, 1258, 1224, 1191, 1107, 1070, 1027, 1001, 945, 872, 840, 809, 763, 688, 616 cm⁻¹; ¹H NMR (CDCl₃): δ 1.27 (3H, t, *J*=7.2 Hz, CH₃CH₂), 2.97 (1H, dd, *J*_{AX} =8.3 Hz, *J*_{AB}=17.7 Hz, OCCH_AH_B), 3.19 (1H, dd, *J*_{BX} =4.1 Hz, *J*_{AB}=17.7 Hz, OCCH_AH_B), 3.40 (3H, s, N-CH₃), 4.12 (1H, dd, *J*_{AX} =8.3 Hz, *J*_{BX} =4.1 Hz, CH_AH_BCH_X), 4.19 (2H, q, *J*=7.1 Hz, CH₂-O), 7.34-7.49 (3H, m, *m*- and *p*-Ph), 7.43 (1H, s, =CH), 7.75-7.80 (2H, m, *o*- Ph); ¹³C NMR (CDCl₃): δ 14.1 (CH₃), 30.9 (N-CH₃), 36.5 (CH_AH_B), 41.6 (CH_X), 61.5 (CH₂-O), 112.0 (=CH), 126.7 (*o*- Ph), 128.3 (*m*-Ph), 130.8 (*p*-Ph), 147.8 (C_{ipso}- Ph), 162.8 (NC=), 169.8 (CO_{ester}), 174.8 (CO_{lactam}), 217.5 (C=S); MS (CI): *m*/z 336 (M + 1); Anal. calcd for C₁₆H₁₇NO₃S₂: C,57.29; H, 5.11; N, 4.18; S, 19.11; Found: C, 56.92; H, 5.01; N, 4.20; S, 19.08.

$(Z) \text{-} N \text{-} Methyl-5 \text{-} ethoxy carbonyl methyl-4-thioxothia zolidin-2-ylidene)-1-} \\$

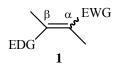
phenylethanethione (12)

From **3** (50 mg, 0.156 mmol) in toluene (mL) and LR (63 mg, 0.156 mmol) (2 hours, reflux) after column chromatography (toluene/EtOAc 3:1 to 1:1) the thioxothiazolidine derivative **12** was isolated in addition to **11** (52%); yield mg (48 %); mp 84-86 °C. IR (KBr): v_{max} 3026, 2967, 2928, 1730, 1597, 1485, 1377, 1253, 1100, 1025, 925, 855, 813, 759, 693, 587 cm⁻¹; ¹H NMR (CDCl₃): δ 1.28 (3H, t, *J*=7.1 Hz, C<u>H</u>₃CH₂), 2.98 (1H, dd, J_{AX} =9.5 Hz, J_{AB} =17.7 Hz, OCC<u>H</u>_AH_B), 3.51 (1H, dd, J_{BX} =3.8 Hz, J_{AB} =17.6

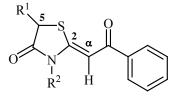
Hz, OCCH_A<u>H</u>_B), 3.83 (3H, s, N-CH₃), 4.18 (2H, q, *J*=7.1 Hz, CH₂-O), 4.49 (1H, dd, J_{AX} =9.5 Hz, J_{BX} =3.8 Hz, CH_AH_BC<u>H</u>_X), 7.35-7.48 (3H, m, *m*- and *p*-Ph), 7.61 (1H, s, =CH), 7.75-7.80 (2H, m, *o*- Ph); ¹³C NMR (CDCl₃): δ 14.1 (CH₃), 36.4 (N-CH₃), 41.4 (CH_AH_B), 54.1 (CH_X), 61.4 (CH₂-O), 113.8 (=CH), 126.7 (*o*- Ph), 128.3 (*m*-Ph), 130.8 (*p*-Ph), 147.8 (C_{ipso}- Ph), 164.9 (NC=), 170.1 (CO_{ester}), 205.0 (CS_{thiolactam}), 217.6 (C=S); CIMS: *m/z* 352 (M + 1).

Acknowledgment: Partial financial support from the Ministry of Science, Technology and Development of the Republic of Serbia (grant No. 1709 to R. M.) is acknowledged.

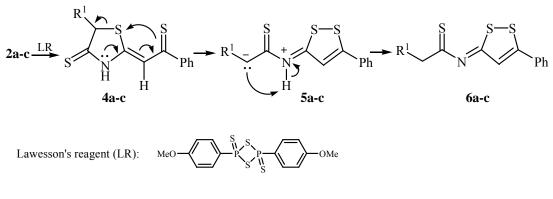
I Z V O D

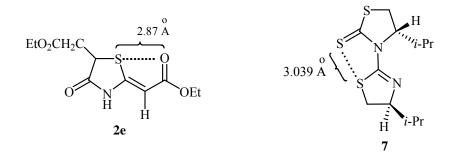

TIONOVANJE N-METIL- I N-NESUPSTITUISANIH TIAZOLIDINONSKIH ENAMINONA

RADE MARKOVI],^{*a,b} ALEKSANDAR RA[OVI], ^b MARIJA BARANAC,^{a,b} MILOVAN STOJANOVI], ^b PETER STEEL ^c I STANKA JOVETI]^d ^aHemijski fakultet, Univerzitet u Beogradu, Studentski trg 16, p. pr. 158, 11001 Beograd, Srbija i Crna Gora ^bCentar za hemiju IHTM, p. pr. 815, 11000 Beograd, Srbija i Crna Gora ^cUniverzitet u Kenterberiju, p. pr. 4800, Krist~er~, Novi Zeland i ^dHemijski odsek, Fakultet nauka, Univerzitet u Novom Sadu, Trg D. Obradovi}a 3, Novi Sad, Srbija i Crna Gora

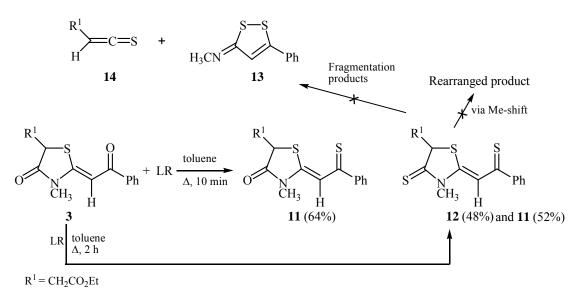

Pokazan je potencijal usmerenih nevezivnih S…O interakcija 1,5-tipa da iniciraju po~etnu fazu in situ preme{tanja *N*-nesupstituisanih tiazolidinonskih enaminona u funkcionalizovane 1,2-ditiole. Spektralne karakteristike, kao i kristalografska strukturna analiza izabranog preme{tenog proizvoda, ukazuju na brzu interkonverziju izme|u| 1,2-ditiola i 3,3a λ^4 ,4-tritia-1azapentalenskog bicikli~nog oblika. Odsustvo preme{tanja u *N*-metil-supstituisanog enaminonskog slu~aju prekursora pripisano je nefavorizovanom preme{tanju metil-grupe u zavr{noj fazi reakcije.

REFERENCES

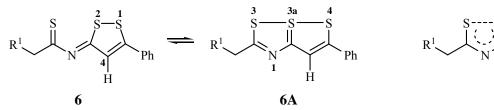

- 1. S. Rajappa, Tetrahedron 55 (1999) 7065
- 2. J. Sandström, J. Top. Stereochem. 14 (1983) 83
- 3. S. P Singh, S. S. Parmar, K. Raman and V. I. Stenberg, Chem. Rev. 81 (1981) 175
- 4. J. V. Metzger, *Comprehensive Heterocyclic Chemistry*, A. R. Katritzky and C. W. Rees, Eds.; Pergamon: Oxford 1984; Vol. 6, Chapter 19, pp 235-331
- 5. D. J. Faulkner, Nat. Prod. Rep. 15 (1998) 113
- N. Sokolenko, G. Abbenante, M. J. Scanlon, A. Jones, R. Gahan, G. R. Hanson and D. P. Fairlie, J. Am. Chem. Soc. 121 (1999) 2603
- 7. R. Markovi}, M. Baranac and M. Stojanovi}, Synlett (2004) 1034
- 8. R. Markovi }, Z. D`ambaski and M. Baranac, Tetrahedron 57 (2001) 5833
- 9. R. Markovi}, M. Baranac and S. Joveti}, *Tetrahedron* Letters, 44 (2003) 7087.
- R. Markovi}, M. Baranac, Z. D`ambaski, M. Stojanovi}, P. J. Steel, *Tetrahedron* 59, (2003) 7803
- J. G. Ángyán, R. A. Poirier, Á Kucsman and I. G. Csizmadia, J. Am. Chem. Soc., 109 (1987) 2237 and references cited therein.
- N. Lozac'H, In Comprehensive Heterocyclic Chemistry; editor K. T. Potts; Pergamon: Oxford, 1984, Vol 6, pp 1049-1070
- 13. Y. Nagao, H. Nishijima, H. Iimori, H. Ushirogochi, S. Sano, M. Shiro, J. Organometallic Chem. 611 (2000) 172
- 14. P. G. Hervieu, P. Rioult, J. Vialle, Bull. Soc. Chim. Fr. (1971) 4380
- For a review regarding the Lawesson's reagent, see: (a) M. P. Cava, I. M. Levinson, *Tetrahedron* 41, (1985) 5061; (b) R. A. Cherkasov, G. A. Kutyrev, A. N. Pudovik, *Tetrahedron* 41, (1985) 2567
- 16. M. Ori, T. Nishio, Heterocycles 54 (2001) 201
- D. M. McKinnon, In *Comprehensive Heterocyclic Chemistry*; editor K. T. Potts; Pergamon: Oxford, 1984, Vol 6, pp 783-811
- 18. H. Mastalerz, M. S. Gibson, J. Chem. Soc., Perkin Trans. 1, (1981) 2952
- 19. J. G. Dingwall, S. McKenzie, D. H. Reid, J. Chem. Soc.(C), (1968) 2543
- 20. B. S. Pedersen, S.-O. Lawesson, Tetrahedron 35 (1985) 2433
- 21. W. Zhang, Y. Henry, Synlett (2001)1129
- 22. K. T. Potts, S. A. Nye and K. A. Smith, J. Org. Chem. 57 (1992) 3895.
- 23. S. Wang, J. P. Fackler, Chem. Commun. (1988) 22
- 24. M. Yokoyama, T. Shiraishi, H. Hatanaka, K. Ogata, Chem. Commun. (1985) 1704
- 25. R. ^melik, M. ^ajan, J. Marek, P. Pazdera, Collect. Czech. Chem. Commun. 68 (2003) 1243
- 26. A. Hordvik, E. Sletten, J. Sletten, Acta Chem. Scand. 23 (1969) 1377
- 27. C. Th. Pedersen, C. Lohse, J. Chem. Soc., Perkin Trans. 1 (1977) 994
- 28. G. Ammick, J. Vialle, Bull. Soc. Chim. Fr. (1971) 4002

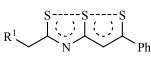

Strana 2

2a: $R^1 = H$; $R^2 = H$ **2b**: $R^1 = CH_3$; $R^2 = H$ **2c**: $R^1 = CH_2CO_2Et$; $R^2 = H$ **3**: $R^1 = CH_2CO_2Et$; $R^2 = CH_3$


Scheme 1

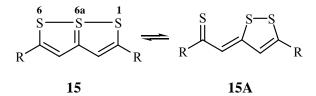
Scheme 2

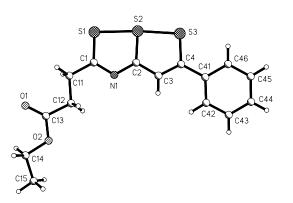




and unonation derivatives 6 , 11 and 12								
Entry	Compound	C(2')H	NCH ₃	C=O _{exo}	C=S _{exo}	C=O _{lactam}	C=S _{lactam}	
1	(Z) -2b (DMSO- d_6)	6.78		187.4				
2	(Z) -8 (DMSO- d_6)	7.58			213.6			
3	(Z)-3 (CDCl ₃)	6.95	3.28	187.8		174.5		
4	(Z)-11 (CDCl ₃)	7.43	3.40		217.5			
5	(Z)-12 (CDCl ₃)	7.61	3.83		217.6		205.0	

Table 1. Selected ¹³C and ¹H chemical shifts (ppm) for the parent thiazolidines **2b** and **3** and thionation derivatives **8**, **11** and **12**





Strana 7

Strana 8

Figure 1. Solid-state structure for compound **6c** as established by X-ray diffraction with atom numbering-scheme for non-hydrogen atoms.