
The role of domain ontology in knowledge acquisition for
ITSs

Pramuditha Suraweera, Antonija Mitrovic and Brent Martin

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
{psu16, tanja, brent}@cosc.canterbury.ac.nz

Abstract. There have been several attempts to automate knowledge acquisi-
tion for ITSs that teach procedural tasks. The goal of our project is to automate
the acquisition of domain models for constraint-based tutors for both proce-
dural and non-procedural tasks. We propose a three-phase approach: building
a domain ontology, acquiring syntactic constraints directly from the ontology,
and engaging the author in a dialog, in order to induce semantic constraints us-
ing machine learning techniques. An ontology is arguably easier to create than
the domain model. Our hypothesis is that the domain ontology is also useful
for reflecting on the domain, so would be of great importance for building con-
straints manually. This paper reports on an experiment performed in order to
test this hypothesis. The results show that constraints sets built using a domain
ontology are superior, and the authors who developed the ontology before con-
straints acknowledge the usefulness of an ontology in the knowledge acquisi-
tion process.

1 Introduction

Intelligent Tutoring Systems (ITS) are educational programs that assist students in
their learning by adaptively providing pedagogical support. Although highly re-
garded in the research community as effective teaching tools, developing an ITS is a
labour intensive and time consuming process. The main cause behind the extreme
time and effort requirements is the knowledge acquisition bottleneck [9].

Constraint based modelling (CBM) [10] is a student modelling approach that
somewhat eases the knowledge acquisition bottleneck by using a more abstract repre-
sentation of the domain compared to other common approaches [7]. However, build-
ing constraint sets still remains a major challenge. In this paper, we propose an ap-
proach to automatic acquisition of domain models for constraint-based tutors. We
believe that the domain ontology can be used as a starting point for automatic acqui-
sition of constraints. Furthermore, building an ontology is a reflective task that fo-
cuses the author on the important concepts of the domain. Therefore, our hypothesis
is that ontologies are also important for developing constraints manually.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UC Research Repository

https://core.ac.uk/display/35457573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To test this hypothesis we conducted an experiment with graduate students en-
rolled in an ITS course. They were given the task of composing the knowledge base
for an ITS for adjectives in the English language. We present an overview of our
goals and the results of our evaluation in this paper.

The remainder of the paper is arranged into five sections. The next section pre-
sents related work on automatic knowledge acquisition for ITSs, while Section 3
gives an overview of the proposed project. Details of enhancing the authoring shell
WETAS are given in Section 4. Section 5 presents the experiment and its results.
Conclusions and future work are presented in the final section.

2 Related Work

Research attempts at automatically acquiring knowledge for ITSs have met with
limited success. Several authoring systems have been developed so far, such as
KnoMic (Knowledge Mimic)[15], Disciple [13, 14] and Demonstr8 [1]. These have
focussed on acquiring procedural knowledge only.

KnoMic is a learning-by-observation system for acquiring procedural knowledge
in a simulated environment. The system represents domain knowledge as a generic
hierarchy, which can be formatted into a number of specific representations, includ-
ing production rules and decision trees. KnoMic observes the domain expert carrying
out tasks within the simulated environment, resulting in a set of observation traces.
The expert annotates the points where he/she changed a goal because it was either
achieved or abandoned. The system then uses a generalization algorithm to learn the
conditions of actions, goals and operators. An evaluation conducted to test the accu-
racy of the procedural knowledge learnt by KnoMic in an air combat simulator re-
vealed that out of the 140 productions that were created, 101 were fully correct and
29 of the remainder were functionally correct [15]. Although the results are encour-
aging, KnoMic’s applicability is restricted to simulated environments.

Disciple is a shell for developing personal agents. It relies on a semantic network
that describes the domain, which can be created by the author or imported from a
repository. Initially the shell has to be customised by building a domain-specific
interface, which gives the domain expert a natural way of solving problems. Disciple
also requires a problem solver to be developed. The knowledge elicitation process is
initiated by a proble-solving example provided by the expert. The agent generalises
the given example with the assistance of the expert and refines it by learning from
experimentation and examples. The learned rules are added to the knowledge base.

Disciple falls short of providing the ability for teachers to build ITSs. The cus-
tomisation of Disciple requires multiple facets of expertise including knowledge
engineering and programming that cannot be expected from a typical domain expert.
Furthermore, as Disciple depends on the problem solving instances provided by the
domain expert, they should be selected carefully to reflect significant problem states.

Demonstr8 is an authoring tool for building model-tracing tutors for arithmetic.
It uses programming by demonstration to reduce the authoring effort. The system
provides a drawing tool like interface for building the student interface of the ITS.

The system automatically defines each GUI element as a working memory element
(WME), while WMEs involving more than a single GUI element must be defined
manually. The system generates production rules by observing problems being solved
by an expert. Demonstr8 performs an exhaustive search in order to determine the
problem-solving procedure used to obtain the solution. If more than one such proce-
dure exists, then the user would have to select the correct one. Domain experts must
have significant knowledge of cognitive science and production systems in order to
be able to specify higher order WMEs and validate production rules.

3 Automatic constraint acquisition

Existing approaches to knowledge acquisition for ITSs acquire procedural knowl-
edge by recording the expert’s actions and generalising recorded traces using ma-
chine learning algorithms. Even though these systems are well suited to simulated
environments where goals are achieved by performing a set of steps in a specific
order, they fail to acquire knowledge for non-procedural domains. Our goal is to
develop an authoring system that can acquire procedural as well as declarative
knowledge.

The authoring system will be an extension of WETAS [4], a web-based tutoring
shell. WETAS provides all the domain-independent components for a text-based
ITS, including the user interface, pedagogical module and student modeller. The
pedagogical module makes decisions based on the student model regarding prob-
lem/feedback generation, whereas the student modeller evaluates student solutions by
comparing them to the domain model and updates the student model. The main
limitation of WETAS is its lack of support for authoring the domain model.

WETAS is based on Constraint based modelling (CBM), proposed by Ohlsson
[10] which is a student modelling approach based on his theory of learning from
performance errors [11]. CBM uses constraints to represent the knowledge of the
tutoring system [6, 12], which are used to identify errors in the student solution.
CBM focuses on correct knowledge rather than describing the student’s problem
solving procedure as in model tracing [7]. As the space of false knowledge is much
grater than correct knowledge, in CBM knowledge is modelled by a set of constraints
that identify the set of correct solutions from the set of all possible student inputs.
CBM represents knowledge as a set of ordered pairs of relevance and satisfaction
conditions. The relevance condition identifies the states in which the constraint is
relevant, while the satisfaction condition identifies the subset of the relevant states in
which the constraint is satisfied.

Manually composing a constraint set is a labour intensive and time-consuming
task. For example, SQL-Tutor contains over 600 constraints, each taking over an
hour to produce [5]. Therefore, the task of composing the knowledge base of SQL-
Tutor would have taken over 4 months to complete. Since WETAS does not provide
any assistance for developing the knowledge base, typically a knowledge base is
composed using a text editor. Although the flexibility of a text editor may be power-
ful for knowledge engineers, novices tend to be overwhelmed by the task.

Our goal is to significantly reduce the time and effort required to generate a set of
constraints. We see the process of authoring a knowledge base as consisting of three
phases. In the first phase, the author composes the domain ontology. This is an in-
teractive process where the system evaluates certain aspects of the ontology. The
expert may choose to update the ontology according to the feedback given by the
system. Once the ontology is complete, the system extracts certain constraints
directly from it, such as cardinality restrictions for relationships or domains for
attributes. The second stage involves learning from examples. The system learns
constraints by generalising the examples provided by the domain expert. If the
system finds an anomaly between the ontology and the examples, it alerts the user,
who corrects the problem. The final stage involves validating the generated
constraints. The system generates examples to be labelled as correct or incorrect by
the domain expert. It may also present the constraints in a human readable form, for
the domain expert to validate.

4 Enhancing WETAS: Knowledge Base Generation via Ontologies

We propose that the initial authoring step be the development of a domain ontology,
which will later be used to generate constraints automatically. An ontology describes
the domain, by identifying all domain concepts and relationships between them. We
believe that it is highly beneficial for the author to develop a domain ontology even
when the constraint sets is developed manually, because this helps the author to
reflect on the domain. Such an activity would enhance the author’s understanding of
the domain and therefore be a helpful tool when identifying constraints. We also
believe that categorising constraints according to the ontology would assist the au-
thoring process.

To test our hypothesis, we built a tool as a front-end for WETAS. Its main pur-
pose is to encourage the use of domain ontology as a means of visualising the do-
main and organising the knowledge base. The tool supports drawing the ontology,
and composing constraints and problems. The ontology front end for WETAS was
developed as a Java applet. The interface (Fig. 1a) consists of a workspace for devel-
oping a domain ontology (ontology view) and editors for syntax constraints, semantic
constraints, macros and problems. As shown in Fig. 1a, concepts are represented as
rectangles, and sub-concepts are related to concepts by arrows. The concept details
such as attributes and relationships can be specified in the bottom section of the
ontology view. The interface also allows the user to view the constraints related to a
concept.

The ontology shown in Fig. 1a conceptualises the Entity Relationship (ER) data
model. Construct is the most general concept, which includes Relationship, Entity,
Attribute and Connector as sub-concepts. Relationship is specialized into Regular
and Identifying ones. Entity is also specialized, according to its types, into Regular
and Weak entities. Attribute is divided in to two sub-concepts of Simple and Compos-
ite attributes. The details of the Binary Identifying relationship concept are depicted
in Fig. 1. It has several attributes (such as Name and Identified-participation), and

three relationships (Fig. 1b): Attributes (which is inherited from Relationship),
Owner, and Identified-entity. The interface allows the specification of restrictions of
these relationships in the form of cardinalities. The relationship between Identifying
relationship and Regular entity named Owner has a minimum cardinality of 1. The
interface also allows the author to display the constraints for each concept (Fig. 1c).
The constraints can be either directly entered in the ontology view interface or in the
syntax/semantic constraints editor.

a

b

c

Fig. 1. Ontology for ER data model
The constraint editors allow authors to view and edit the entire list of constraints

and problems. As shown in Fig. 2, the constraints are categorised according to the
concepts that they are related to by the use of comments. The Ontology view extracts
constraints from the constraint editors and displays them under the categorised con-
cept. Fig. 2 shows two constraints (Constraint 22 and 23) that belong to Identifying
relationship concept.

Fig. 2. Syntax constraints editor

All domain related information is saved on the server as required by WETAS.
The applet monitors all significant events in the ontology view and logs them with
their time stamps. The logged events include log in/out, adding/deleting concepts
etc.

5 Experiment

We hypothesized that composing the ontology and organising the constraints accord-
ing to its concepts would assist in the task of building a constraint set manually. To
evaluate our hypothesis, we set 18 students enrolled in the 2003 graduate course on
Intelligent Tutoring Systems at the University of Canterbury the task of building a
tutor using WETAS for adjectives in the English language.

The students had attended 13 lectures on ITS, including five on CBM, before the
experiment. They also had a 50 minute presentation on WETAS, and were given a
description of the task, instructions on how to write constraints, and the section on
adjectives from a text book for English vocabulary [2]. The students had three weeks
to implement the tutor. A typical problem is to complete a sentence by providing the
correct form of a given adjective. An example sentence the students were given was:
“My sister is much ________ than me (wise).”

The students were also free to explore LBITS [3], a tutor developed in WETAS
that teaches simple vocabulary skills. The students were allowed to access the “last
two letters” puzzles, where the task involved determining a set of words that satisfied
the clues, with the first two letters of each word being the same as the last two letters
of the previous one. All domain specific components, including its ontology, the
constraints and problems, were available.

Seventeen students completed the task satisfactorily. One student lost his entire
work due to a system bug, and this student’s data was not included in the analysis.
The same bug did not affect other students, since it was eliminated before others
experienced it. Table 1 gives some statistics about the remaining students, including
their interaction times, numbers of constraints and the marks for constraints and
ontology.

The participants took 37 hours to complete the task, spending 12% of the time in
the ontology view. The time in the ontology view varied widely, with a minimum of
1.2 and maximum of 7.2 hours. This can be attributed to different styles of develop-
ing the ontology. Some students may have developed the ontology on paper before
using the system, whereas others developed the whole ontology online. Furthermore,
some students also used the ontology view to add constraints. However, the logs
showed that this was not a popular option, as most students composed constraints in
the constraint editors. One factor that contributed to this behaviour may be the re-
strictiveness of the constraint interface, which displays only a single constraint at a
time.

WETAS distinguishes between semantic and syntactic constraints. In the domain
of adjectives, it is not clear as to which category the constraints belong. For example,
in order to determine whether a solution is correct, it is necessary to check whether
the correct rule has been applied (semantics) and whether the resulting word is spelt
correctly (syntax). This is evident in the results for the total number of constraints for
each category. The averages of both categories are similar (9 semantic constraints
and 11 syntax constraints). Some participants have included most of their constraints
as semantic and others vice versa. Students on average composed 20 constraints in
total.

We compared the participants’ solution to the “ideal” solution. The marks for
these two aspects are given under Coverage (the last two columns in Table 1). The
ideal knowledge base consists of 20 constraints. The Constraints column gives the
number of the ideal constraints that are accounted for in the participants’ constraint
sets. Note that the mapping between the ideal and participants’ constraints is not
necessarily 1:1. Two participants accounted for all 20 constraints. On average, the
participants covered 15 constraints. The quality of constraints was high generally.

The ontologies produced by the participants were given a mark out of five (the
Ontology column in Table 1). All students scored high, as expected because the
ontology was straightforward. Almost every participant specified a separate concept
for each group of adjectives according to the given rules [2]. However, some students
constructed a flat ontology, which contained only the six groupings corresponding to
the rules (see Fig. 3a). Five students scored full marks for the ontology by including
the degree (comparative or superlative) and syntax such as spelling (see Fig. 3b).

Even though the participants were only given a brief description of ontologies
and the example ontology of LBITS, they created ontologies of a reasonable stan-
dard. However, we cannot make any general assumptions on the difficulty of con-
structing ontologies since the domain of adjectives is very simple. Furthermore, the
six rules for determining the comparative and superlative degree of an adjective gave
strong hints on what concepts should be modelled.

Time (hours) Number of constraints Coverage

 Total

Ontology
view

Se-
mantic Syntax Total

Con-
straints Ontology

S1 38.16 4.57 27 3 30 20 5

S2 51.55 7.01 3 10 13 19 4

S3 10.22 1.20 14 1 15 17 4

S4 45.25 2.54 30 4 34 18 5

S5 48.96 4.91 11 5 16 20 4

S6 44.89 4.66 24 1 25 18 5

S7 18.97 2.87 1 15 16 17 4

S8 22.94 4.99 3 18 21 15 3

S9 34.29 4.30 11 4 15 18 5

S10 33.90 7.23 0 14 14 18 3

S11 55.76 3.28 16 1 17 17 5

S12 30.46 2.84 0 16 16 10 3

S13 60.94 3.47 1 15 16 13 3

S14 32.42 1.96 1 17 18 12 3

S15 33.35 4.04 1 14 15 11 3

S16 29.60 6.24 0 30 30 4 5

Mean 36.98 4.13 8.94 10.50 19.44 15.44 4.00

S.D. 13.66 1.72 10.47 8.23 6.60 4.37 0.89

Table 1. Results

Fourteen participants categorised their constraints according to the concepts of
the ontology as shown in Fig. 2. For these participants, there was a significant corre-
lation between the ontology score and the constraints score (0.679, p<0.01). How-
ever, there was no significant correlation between the ontology score and the con-
straints score when all participants were considered. This strongly suggests that the
participants used the ontology to write constraints developed better constraints.

An obvious reason for this finding may be that more able students produced bet-
ter ontologies and also produced a complete set of constraints. To test this hypothe-
sis, we determined the correlation between the participant’s final grade for the course
(which included other assignments) and the ontology/constraint scores. There was
indeed a strong correlation (0.840, p<0.01) between the grade and the constraint
score. However, there was no significant correlation between the grade and the on-
tology score. This lack of a relationship can be due to a number of factors. Since the
task of building ontologies was novel for the participants, they may have found it
interesting and performed well regardless of their ability. Another factor is that the
participants had more practise at writing constraints (in other assignments for the
same course) than on ontologies. Finally, the simplicity of the domain could also be a
contributing factor.

Fig. 3. Ontologies constructed by students

The participants spent 2 hours per constraint (sd=1 hour). This is twice the time
reported in [8], but the participants are neither knowledge engineers nor domain
experts, so the difference is understandable. The participants felt that building an
ontology made constraint identification easier. The following comments were ex-
tracted from their reports: “Ontology helped me organise my thinking;” “ The ontol-
ogy made me easily define the basic structure of this tutor;” “ The constraints were

b.

a.

constructed based on the ontology design;” “ Ontology was designed first so that it
provides a guideline for the tasks ahead.”

The results indicate that ontologies do assist constraint acquisition: there is a
strong correlation between the ontology score and the constraints score for the par-
ticipants who organised the constraints according to the ontology. Subjective reports
confirmed that the ontology was used as a starting point when writing constraints.
As expected, more able students produced better constraints. In contrast, most par-
ticipants composed good ontologies, regardless of their ability.

6 Conclusions

We performed an experiment to determine whether the use of domain ontologies
would assist manual composition of constraints for constraint-based ITSs. The
WETAS authoring shell was enhanced with a tool that allowed users to define a
domain ontology and use it as the basis for organizing constraints. We showed that
constructing a domain ontology indeed assisted the creation of constraints. Ontolo-
gies enable authors to visualise the constraint set and to reflect on the domain, assist-
ing them to create more complete constraint bases.

We intend to enhance WETAS further by automating constraint acquisition. Pre-
liminary results show that many constraints can be induced directly from the domain
ontology. We will also be exploring ways of using machine learning algorithms to
automate constraint acquisition from dialogs with domain experts.

Acknowledgements The work reported here has been supported by the University of Canter-
bury Grant U6532.

References
1. Blessing, S.B.: A Programming by Demonstration Authoring Tool for Model-Tracing

Tutors. Artificial Intelligence in Education, 8 (1997) 233-261
2. Clutterbuck, P.M.: The art of teaching spelling: a ready reference and classroom active

resource for Australian primary schools. Longman Australia Pty Ltd, Melbourne, 1990.
3. Martin, B., Mitrovic, A.: Authoring Web-Based Tutoring Systems with WETAS. In: Kin-

shuk, Lewis, R., Akahori, K., Kemp, R., Okamoto, T., Henderson, L. and Lee, C.-H.
(eds.) Proc. ICCE 2002 (2002) 183-187

4. Martin, B., Mitrovic, A.: WETAS: a Web-Based Authoring System for Constraint-Based
ITS. Proc. 2nd Int. Conf on Adaptive Hypermedia and Adaptive Web-based Systems AH
2002, Springer-Verlag, Berlin Heidelberg New York, pp. 543-546, 2002.

5. Mitrovic, A.: Experiences in Implementing Constraint-Based Modelling in SQL-Tutor. In:
Goettl, B.P., Halff, H.M., Redfield, C.L. and Shute, V.J. (eds.) Proc. 4th Int. Conf. on In-
telligent Tutoring Systems, San Antonio, (1998) 414-423

6. Mitrovic, A.: An intelligent SQL tutor on the Web. Artificial Intelligence in Education,
13, (2003) 171-195

7. Mitrovic, A., Koedinger, K. Martin, B.: A comparative analysis of cognitive tutoring and
constraint-based modeling. In: Brusilovsky, P., Corbett, A. and Rosis, F.d. (eds.) Proc.

UM2003, Pittsburgh, USA, Springer-Verlag, Berlin Heidelberg New York (2003) 313-
322

8. Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-based Tutor for a Database Lan-
guage. Artificial Intelligence in Education , 10(3-4) (1999) 238-256

9. Murray, T.: Expanding the Knowledge Acquisition Bottleneck for Intelligent Tutoring
Systems. Artificial Intelligence in Education, 8 (1997) 222-232

10. Ohlsson, S.: Constraint-based Student Modelling. Proc. Student Modelling: the Key to
Individualized Knowledge-based Instruction, Springer-Verlag (1994) 167-189

11. Ohlsson, S.: Learning from Performance Errors. Psychological Review, 103 (1996) 241-
262

12. Suraweera, P., Mitrovic, A.: KERMIT: a Constraint-based Tutor for Database Modeling.
In: Cerri, S., Gouarderes, G. and Paraguacu, F. (eds.) Proc. 6th Int. Conf on Intelligent Tu-
toring Systems ITS 2002, Biarritz, France, LCNS 2363 (2002) 377-387

13. Tecuci, G.: Building Intelligent Agents: An Apprenticeship Multistrategy Learning The-
ory, Methodology, Tool and Case Studies. Academic press, 1998.

14. Tecuci, G., Keeling, H.: Developing an Intelligent Educational Agent with Disciple. Arti-
ficial Intelligence in Education, 10 (1999) 221-237

15. van Lent, M., Laird, J.E.: Learning Procedural Knowledge through Observation. Proc. Int.
Conf. on Knowledge Capture, (2001) 179-186

