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A simplified meshfree method for shear bands with cohesive
surfaces

T.Rabczuk†, P.M.A.Areias+, T.Belytschko∗,‖

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-311, U.S.A

SUMMARY

A simple methodology to model shear bands as strong displacement discontinuities in a meshfree
particle method is presented. The shear band is represented as a set of sheared particles. A
sheared particle is developed through enrichment by tangential displacement discontinuities. The
representation of the shear band as set of cohesive segments provides a simple and versatile
model of shear bands. The loss of material stability is used as the criterion for switching from a
classical continuum description of the constitutive behavior to a traction-separation law acting on
the discontinuity surface. The method is implemented for two and three dimensions. Examples of
shear band progression in rate-dependent and rate-independent materials are presented, including the
Kalthoff problem, where the transition from brittle fracture to shear banding is studied. Copyright
c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of problems with complex patterns of shear bands in full-scale engineering models
still poses a significant challenge since the scale of the local deformation is much smaller than
the scale of the complete structure. Furthermore, shear bands are associated with very large
strains that are often beyond the capabilities of standard Lagrangian continuum finite element
methods. Here, we propose a meshfree method for the evolution of shear bands that can
treat complex patterns of shear bands. It will be shown through numerical examples that the
proposed method can reproduce the paths of the shear bands and aspects of initiation and
arrest as observed experimentally.

Rate independent material models undergoing strain softening manifest bands of infinite
strain when hyperbolicity of the linearized Initial Boundary Value Problem (IBVP) is lost.
In Bazant and Belytschko [1], a closed form solution was obtained for a wave propagation
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problem in a one-dimensional bar with strain softening. It was shown that despite the loss
of positivity of the tangent modulus, a solution could be obtained if the region undergoing
strain softening was restricted to a set of (Lebesgue) measure zero. This solution is clearly
meaningless from a physical point of view, because it implies no dissipation in softening. One
way to overcome this pathological behavior is to include a dissipative mechanism in the region
in which hyperbolicity has been lost. The results of Bazant and Belytschko [1] also indicated
that the region undergoing localized strain can be modelled as a surface through which the
displacement field is discontinuous.

Although numerous studies have been pursued to limit the localization by regularization
procedures or localization limiters (as in Lasry and Belytschko [2], Needleman and Tvergaard
[3]; see Jirasek [4] for a review), regularization does not overcome the basic difficulty that
the scale of a shear band is much smaller than the scale of structure. For example, in a 1m
structure the width of a shear band may be 10−5m, and its structure is quite rich, so 10 to
20 low order elements are needed to adequately resolve its morphology and evolution. Thus a
brute force approach to this problem is not viable. An alternative approach employed here is
to model shear bands as discontinuities.

The simulation of discontinuities, such as cracks and shear bands, by finite elements or
meshfree methods has been pursued by various approaches. One of the most popular classes
of methods are the interelement separation models, see Xu and Needleman [5], Camacho and
Ortiz [6], Ortiz et al. [7], Zhou and Molinari [8]. These methods were originally developed for
cracks and later extended to shear bands, Yang et al. [9]. In these methods, cracks or shear
bands are only allowed to develop along existing interelement edges. This provides the method
with comparative simplicity, but can result in an overestimate of the dissipated energy when
the actual discontinuity paths are not coincident with element edges. Mesh sensitivity has been
reported, see Falk et al. [10]; this sensitivity can be mollified by adding randomness to the
strength, as in Zhou and Molinari [8].

The extended finite element method is a method that allows the crack or shear band
to propagate arbitrarily. Methods for static crack problems in two and three dimensions
were developed by Moes et al. [11], Moes and Belytschko [12] and Gravouil et al. [13],
respectively. The method was applied to dynamic crack problems in Belytschko et al. [14]
and to dislocations in Ventura et al. [15]. A recent paper applies the extended finite element
method to discontinuous modelling of shear bands, Samaniego and Belytschko [16]. However,
these methods require an explicit representation of the crack or shear band surface, which
usually has been provided by level sets. This makes the treatment of phenomena such as
branching and fragmentation more difficult, since additional level sets need to be introduced
whenever a branch occurs. Another method that does not need a surface representation of the
crack or shear band is the embedded discontinuity model (Belytschko et al. [17], Armero and
Garikipati [18], Oliver et al. [19]).

Shear bands in meshfree methods have usually been modelled without special treatment
other than refinement around the expected paths, see e.g. Li et al. [20, 21], Hao et al. [22].
Cracks in meshfree methods have been treated by Krysl and Belytschko [23] and Organ et al.
[24].

In a recent paper, Rabczuk and Belytschko [25] introduced a ’cracking particle’ method
for modelling arbitrary crack propagation in two dimension; which motivated the proposed
method for shear bands. It is implemented in the element free Galerkin-particle (EFG-P)
method, Rabczuk and Belytschko [25, 26]. In the proposed method, the shear band is modelled

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



A DEMONSTRATION OF THE INT. J. NUMER. METH. ENGNG CLASS FILE 3

by a set of sheared particles. The representation of the shear band by a discrete set of sheared
particles dramatically simplifies the method, albeit at some cost in accuracy. The method can
be viewed as a local particle partition of unity. The method is of about the same complexity
as the interelement separation models of Xu and Needleman [5], less of complex than the
interelement method of Ortiz et al. [7] and significantly less complex than the extended finite
element method (XFEM).

The transition to sheared particles is governed by a material stability criterion, which in
the case of a rate-dependent material is equivalent to loss of hyperbolicity. In this method,
a tangential discontinuity in the displacement field is introduced after the loss of material
stability. In contrast to crack problems, only displacement jumps parallel to the shear band
are allowed.

The paper is organized as follows. First, the approximation of the displacement field is
described. The use of the local material stability of the momentum equations is used as a
shear band initiation indicator. Then, the formulation of a dissipative interface is described in
section 3, along with a B-bar approach with selective reduced integration (to remove volumetric
locking) of the EFG-P method in section 4. Results for a variety of problems compared to
experimental results are given in section 5.

2. DISPLACEMENT FIELD AND WEAK FORM

The shear band is modelled by a set of discrete shear bands as shown in figure 1, i.e. by
a set of sheared particles. A standard meshfree methodology based on moving least square
approximations (Belytschko et al. [27], Rabczuk et al. [28]) with a Lagrangian kernel is used; the
latter is essential for avoiding artificial discretization instabilities known as tensile instabilities
which often result in spurious, numerically induced fracture in SPH methods.

The velocity field is additively partitioned into a continuous part and a discontinuous part
by

u̇(X, t) = u̇cont(X, t) + u̇disc(X, t) (1)

where u ∈ <nSD is the displacement, X ∈ <nSD are the material coordinates, t is the time and
nSD the number of space dimensions and the superimposed dots denote time derivatives.

Let the set of sheared particles be denoted by Ns and the total set of particles by N . The
sheared particles are determined by a stability criterion described later. For each sheared
particle we assume that the normal to the shearing plane n is provided by a material stability
analysis or some other material failure criterion. This enables us to construct a set of tangent
vectors eαT , α = 1 to nSD − 1, such that eαT · n = 0. The continuous and discontinuous
displacement fields are then given by

u̇cont(X, t) =
∑

I∈N

ΦI(X) u̇I(t)

u̇disc(X, t) =
∑

I∈Ns

nSD−1∑

α=1

ΦI(X) S(fI(x)) q̇αI(t) eαT (2)

where ΦI(X) are the moving least squares (MLS) shape functions, Belytschko et al. [29], uI(t)
are the nodal displacements (only approximately; MLS shape functions are not interpolants),
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Figure 1. A set of sheared particles; the radius of the domain of influence is reduced compared to the
actual size for clarity.

S(fI(x)) is the sign function defined by

S(ξ) =

{
1 if ξ > 0
−1 if ξ < 0

(3)

and fI(x) is given by

fI(x) = n · (x − xI) (4)

where x = X+u and xI is the current position of the node I. The nomenclature is illustrated
in figure 1.

The role of the sheared particles is to mimic a displacement field with a jump in the tangential
displacements. To represent a linear tangential jump, there must be a sufficient number of
sheared particles so that the linear completeness of the shape function is inherited by the
jump field. In this work, in contrast to Rabczuk and Belytschko [25], a linear basis was chosen
for the EFG-P shape functions employed for the discontinuous field.

Consider a solid Ω with material points X, see figure 2. Its boundary Γ is partitioned into
two subsets, Γt and Γu, upon which tractions and displacements are applied, the corresponding
entities in the reference configuration are denoted by Ω0, Γt

0 and Γu
0 . The internal surface of

discontinuity Γs is approximated by local discontinuities Γs
I ; in the following Γs =

⋃

I Γs
I .

We will consider for a given time t the space St of suitably smooth functions, i.e. C0 functions.
Let us also define the corresponding space of trial and test functions as

St := {ut| ut ∈ C
0 except on Γs, ut = ū on Γu}

Vt := {δu| δu ∈ St, ū = 0 on Γu} (5)
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Figure 2. Body with a shear band Γs and its representation of Γs by the cracked particle method

Now, we state the following weak form of an IBVP for a solid with an internal dissipative
interface Γs:

GIVEN the initial displacement, u0, and the initial stress, σ0,

FIND ut ∈ St for every time t in the time interval of analysis

SUCH THAT, for all δu ∈ Vt,

∫

Ω

ρδu · üdΩ =

∫

Ω0\Γs

∇0 ⊗ δuS : σdΩ −

∫

Ω

δu · bdΩ −

∫

Γt

δu · tdΓ +

∫

Γs

δ[[u]] · ts}dΓ (6)

in the time interval of the analysis where ρ is the mass density, the superimposed S denotes
the symmetric part of the tensor and σ is the Cauchy stress.

3. SHEAR BAND MODEL

3.1. Shear band initiation

Once the material loses stability, the standard governing equations are no longer applicable
because they do not model the physical energy dissipation process. Several remedies to re-
introduce the dissipated energy in the model have been proposed. One of them is to include a
surface dissipative mechanism once the material looses stability, see Belytschko et al. [14], Wang
et al. [30].

Within the context of nonlinear fracture mechanics, this dissipative mechanism has been
introduced by means of the so-called cohesive surfaces. We adopt a similar methodology here
for modelling shear bands.

Shear bands have been shown to be a consequence of softening by Clifton et al. [31]
and Wright and Walter [32]. In a rate-dependent material, the PDE does not change type
and only undergoes a material instability, whereas in a rate independent material, it loses
hyperbolicity. A classical definition of material stability is the Legendre-Hadamard condition,
which establishes that for any nonzero vectors n and h the following point-wise inequality
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must hold for material stability:

(n ⊗ h) : A : (n ⊗ h) > 0 ∀n and ∀h (7)

where A is related to the constitutive tangent operator for the Truesdell rate, see Belytschko
et al. [33]:

A = C + σ ⊗ I (8)

The vector n defines the direction of propagation and h is the polarization of the wave. This
condition ensures that the velocity of propagating waves in a solid remains real. Equality
in expression (7) is the necessary condition for stationary waves. The Legendre-Hadamard
condition is sometimes called the strong ellipticity condition, since it ensures the ellipticity of
the equilibrium equation for rate-independent materials. In the dynamical case, the satisfaction
of the Legendre-Hadamard condition implies the hyperbolicity of the IBVP. The reader is
referred to Silhavy [34] for details about the concepts mentioned above.

Based on (7), let us define for a given material point of a solid at a given time the acoustic
tensor

Q = n · A · n (9)

Equation (7) is equivalent to the condition that the minimum eigenvalue of Q is strictly
positive, so we say a material point is stable whenever the minimum eigenvalue of Q is strictly
positive and unstable otherwise.

There are certain difficulties in finding the direction of the shear band with this approach.
First of all, since n = (cos α cos β, cos α sin β, sin α) depends on two angles in three dimensions,
the computation of the minimum eigenvalues of Q as a function of the angles becomes
computationally expensive. We have checked the minimum eigenvalue of Q for every 4 degrees
in both angular variables and used parallelization to keep the computational cost low. A typical
picture of the minimum eigenvalues as a function of the two angles at one material point is
shown in figure 3. As can be seen, the eigenvalue landscape is very complex with many local
minima and exactly four absolute minima.

The second difficulty is that four angles are obtained (only two of them are relevant, since
the other two are in the same direction but of opposite sense). We choose the direction of the
maximum displacement gradient by maximizing

g = max
︸︷︷︸

l

(
nT

l · (∇u · eTαI)
)

(10)

where the normals nl correspond to minima of Q, eq. (9). The normal in the initial
configuration is obtained by Nanson’s law:

n0 = J−1n(tcr) · F(XI , tcr) (11)

where tcr is the time of loss-of-stability, and the normal at any time t is computed by the
inverse of eq. (11).

Difficulties sometimes occur at shear band intersections. In this case, the shear band
orientation is rotated into a new orientation to allow the new band to propagate. This is
accomplished by switching the angles of the sheared particles to the angle of the crossing or
reflecting shear band.
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Figure 3. Minimum eigenvalue of the acoustic tensor as a function of the two angles for one material
point

3.2. Interface model

The interface law is a cohesive model which relates the tangential components of the interface
force tT to the jump; i.e. the magnitude of the discontinuity, in the interface tangent
displacement or velocity, [[uT ]] or [[u̇T ]], respectively. These are called the slip and slip rate,
respectively. The magnitude of the slip is given by

| [[u]]T | =
(
[[u]]21T + [[u]]22T

)1/2
(12)

whereas the magnitude of the slip rate is given by

| [[u̇]]T | =
(
[[u̇]]21T + [[u̇]]22T

)1/2
(13)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



8 T. RABCZUK, P.M.A. AREIAS, T. BELYTSCHKO

Interface behavior can reflect a large variety of physical phenomena. In rock and granular
materials, it is probably largely frictional in character. On the other hand, in metals, the
interface law is an idealization of a complex process that involves coupled heat conduction and
elastic-plastic behavior that often is highly temperature dependent. It is not clear that this
complexity can be embodied in an interface law. However, we have found that the patterns
and onset of shear bands can be captured by relatively simple laws.

The form of the law we have used is illustrated in figure 4. As can be seen, the value of
the cohesive force at the nucleation of the shear discontinuity corresponds to the shear stress
across the plane normal to n at that time of nucleation σTmax. Subsequently, it decreases
linearly to zero, although other decay functions can easily be implemented.

The dissipation by the shear band is Ds as shown in figure 4. Several authors have made
estimates of this dissipated energy. For example, Grady [35] and Minnaar and Zhou [36] give
the dissipation energy as

Ds =
%cv

α

(
9%3c2

vχ3

σ3
yα2γ̇

)1/4

(14)

where % is the density, χ is the thermal diffusion coefficient, σy is the flow stress at strain γ̇y,
α is a thermal softening coefficient and cv is the specific heat.

The conditions for loading/unloading/reloading are

| [[u]]T |
n+1 > | [[u]]T |

n > | [[u]]T |
max loading

| [[u]]T |
n+1 > | [[u]]T |

n ≤ | [[u]]T |
max reloading

| [[u]]T |
n+1 ≤ | [[u]]T |

n unloading (15)

where the superscript denotes the time step. In unloading, an elastic slope based on the shear
band width is used.

The primary curve for the linear decay law shown in figure 4a is given by

tT = σT max −
σT max

δT max

[[u]]T (16)

The rates of the tangential tractions are obtained by an adaptation of strain space plasticity,
see for example Nemat-Nasser [37]. The strain-based yield function in the plane of the shear
band is given by

[[u]]21T + [[u]]22T − j2 = 0 (17)

where j measures the total slip. The above is related to J2 plasticity: in the shear band, the
slip components are related to the shear strain components, and a strain-based yield function
would take the above form. We adopt a rigid plastic formalism for the loading law, so

ṫαT = c [[u̇]]αT (18)

where

c =

{
slope of cohesive law in loading

slope of unloading/reloading curve
(19)

For the linear cohesive law at loading conditions

c = −
σT max

δT max

(20)

In most cases, we used a linear cohesive curve as in figure 4a and for metals we set δT max by
equating the energy (14) to the area under the cohesive curve.
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Figure 4. Cohesive laws used in computations: a) linear; b) bilinear.

4. DISCRETIZATION

4.1. Approximation of the pressure field

Locking in meshfree methods has been considered by Dolbow and Belytschko [38] and Chen
et al. [39]. To avoid locking, we will use a variant of the B-bar formulation [40]. The deformation
gradient is decomposed into a deviatoric and volumetric part, see Flory [41]:

F = Fdev Fvol (21)

The approximations for F and F̄ are given by

F =
∑

I∈N

∇ΦI(X) uI(t) +
∑

I∈Nc

∇ΦI(X) S(fI(X)) qαI(t) eαT (X) + I

F̄ =
∑

I∈N

∇Φ̄I(X) uI(t) +
∑

I∈Nc

∇Φ̄I(X) S(fI(X)) qαI(t) eαT (X) + I (22)

where ΦI(X) are shape functions based on a bilinear basis and the shape functions Φ̄I(X) use
a constant basis. The facts that ∇S(fI(X)) and ∇eαT vanish are already incorporated into
eq. (22). The former term vanishes since the shear band is considered as an open set and the
latter since the discontinuity is piecewise constant. The volumetric part of the deformation
gradient can then be computed in terms of the constant-basis deformation gradient F̄ by

F̄vol =
1

3
tr(F̄) I (23)

The pressure p̄ is computed using the following constitutive law

p̄ = K(θ − 1) (24)

with
θ = det(F̄) (25)
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The deviatoric deformation gradient is computed by

Fdev = F
(
Fvol

)−1
(26)

Since meshfree shape functions with a bilinear basis are used for ΦI(X) and shape functions
with constant basis for Φ̄I(X), this can lead to instabilities. They can be eliminated by a
stabilization procedure such as GLS or SUPG, Brooks and Hughes [42], Hughes et al. [43].
The instabilities can be also prevented by using higher order shape functions. However, we
won’t address the issue of pressure instabilities within this paper.

4.2. B-Bar formulation

Substituting the approximations of the test and trial functions developed in section 2 and
invoking the arbitrariness of δuI and δqαI into eq. (6) we obtain

∑

I∈N

δuI ·
(
f int
I + Muu

IK · üK + M
uq1

IK q̈1K + M
uq2

IK q̈2K − fext
I

)
+

∑

I∈Nc

δq1I

(
Qint

1I + M
uq1

IK · üK + M
q1q1

IK q̈1K + M
q1q2

IK q̈2K − Qext
1I

)
+

∑

I∈Nc

δq2I

(
Qint

2I + M
uq2

IK · üK + M
q1q2

IK q̈1K + M
q2q2

IK q̈2K − Qext
2I

)
= 0 (27)

where

f int
I =

∫

Ω\Γs

∇ΦI(X) · dev(σ(X)) dΩ +

∫

Ω\Γs

∇Φ̄I(X) · I p̄(X) dΩ (28)

fext
I =

∫

Ω\Γs

%b ΦI(X) dΩ+

∫

Γt

t̄ ΦI(X) dΓ (29)

Qint
αI =

∫

Ω\Γs

S(fI(X)) (∇ΦI(X) ⊗ eαT )
S

: dev(σ(X)) dΩ +

∫

Ω\Γs

S(fI(X))ΦI(X) (∇⊗ eαT )
S

: dev(σ(X)) dΩ

︸ ︷︷ ︸

=0

+

∫

Ω\Γs

S(fI(X))
(
∇Φ̄I(X) ⊗ eαT

)S
: I p̄(X) dΩ +

∫

Ω\Γs

S(fI(X))Φ̄I(X) (∇⊗ eαT )
S

: I p̄(X) dΩ

︸ ︷︷ ︸

=0

(30)

Qext
αI =

∫

Ω\Γs

% (b · eαT ) S(fI(X)) ΦI(X) dΩ+

∫

Γt

(t̄ · eαT ) S(fI(X)) ΦI(X) dΓ −

∫

Γs

tcΦI(X) [[S(fI(X))]] dΓ(31)

where the spatial derivatives with respect to eαT , α = 1, 2 vanish as indicated above since the
discontinuity is piecewise constant. Each of the parenthesis in eq. (27) gives a discrete equation
of motion.

The mass matrix is given by

MIJ =





muu
IJ m

uq1

IJ m
uq2

IJ

m
uq1

IJ m
q1q1

IJ m
q1q2

IJ

m
uq2

IJ m
q1q2

IJ m
q2q2

IJ



 (32)
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with

muu
IJ =

∫

Ω\Γs

%0 ΦI(X) Φ̂J (X) I dΩ

m
uqα

IJ =

∫

Ω\Γs

%0 ΦI(X) ΦJ (X) S(fJ(X)) eαT dΩ

m
qαqα

IJ =

∫

Ω\Γs

%0 ΦI(X) S(fI(X)) ΦJ (X) S(fJ(X)) dΩ (33)

A selective reduced integration is chosen. For the part of the nodal internal forces that
depends on the pressure, the second term in eqs. (28) and (30), we employed a nodal
integration: ∫

Ω0

ΦI(X)g(X)dΩ0 =
∑

J∈NI

ΦI(XJ )g(XJ )V 0
J (34)

where V 0
J is the Voronoi volume of node J and NI is the set of nodes in the support of ΦI(X).

Stress point integration is used for the deviatoric terms. A stress point is arranged in the
middle of each cell (in 2D) or cuboid (in 3D) spanned by four and eight particles, respectively;
see Rabczuk and Belytschko [25], Rabczuk et al. [28] for our construction of stress points. One
point quadrature was used for the surface integrals Γs

I

5. EXAMPLES

5.1. Plate under tension

Consider a plate under uniaxial tension with notches as shown in figure 5. We use J2 plasticity
and a bilinear cohesive model. Young’s modulus for this problem is E = 210, 000MPa,
Poisson’s ratio ν = 0.3, yield strength fy = 200MPa and softening modulus H =
−10, 000MPa. The load is applied as a displacement boundary condition on a layer of finite
elements.

We tested different refinements and will present the results for 1,350,000 particles and
180,000 particles though good results were obtained also with coarser models. First, we will
consider the plate where the notch is 5mm above the bottom. A constant velocity of 5m/s was
applied at the top surface. The shear band at different time steps is shown in figures 6a,b,c,d
and 6e,f,g,h for the 180,000 and 1,350,000 particle discretizations, respectively. It can be seen
that the pattern is almost completely independent of the degree of refinement.

At first, the shear band propagates downward at a 45 degree angle. As can be seen from
figure 7, the shear band velocity is quite small at this time due to the short distance to the
lower boundary which may reduce the driving force for the shear band. At approximately 0.25
ms, the shear band is reflected at the lower boundary and starts to propagate upward at
45 degrees. At approximately 0.5 ms the shear band reaches the right vertical boundary; as
can be seen from figure 7, the shear band tip then accelerates. A large rise in the shear band
velocity followed by a sudden drop is observed. Evidently the shear band tip is accelerated as
it nears the right boundary.

The shear band speed is obtained by recording the coordinates of the sheared particles and
computing the distance between the shear band tip (as indicated by the farthest enriched
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50 mm

5mm

95 mm

50 mm

50 mm

50 mm

5mm

5mm

thickness=4 mma) b)

Figure 5. Plate under tension with notches at different locations

particle) every 5µs. Hence, these are only approximate values. The shear band velocity is
below the Rayleigh wave speed.

The effective plastic strain at different time steps for the 180,000 particle discretization is
shown in figure 8; the results for the finer discretization look similar. Moderate plastic strains
appear to occur at a substantial distance from the shear band.

Next, we will consider the plate with an initial crack in the middle of the specimen, see figure
5b. We prescribed the same velocity at the top. We will present the results for the 180,000
particle discretization. The shear band at different time steps is shown in figure 9. The shear
band propagates downward from the notch at 45 degrees and reaches the right side of the
specimen at about 0.06 ms. A second shear band then starts to propagate upward from the
notch a short time before the other shear band reaches the right wall. Finally, a third shear
band initiates at the right wall of the specimen and starts to propagate towards the second
shear band; it can just barely be seen in figure 9c. At the end of the computation, 1 ms, the
specimen is sheared almost into three pieces.

5.2. The Kalthoff experiment

Kalthoff and Winkler [44] and Kalthoff [45] performed a series of experiments where a steel
plate is subjected to impact loading with different impact velocities as shown in figure 10. They
discovered that the failure mode depends on the impact velocity. Up to a certain velocity of
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a) 0.35 ms b) 0.42 ms c) 0.46 ms d) 0.5 ms

e) 0.35 ms f) 0.42 ms g) 0.46 ms h) 0.5 ms

Figure 6. Deformation of a specimen subjected to tensile loading at different time steps for a) to d)
180,000 particles and e) to h) 1,350,000 particles
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Figure 7. Shear band tip velocity for the plate with the notch close to the support

the impactor vc, the steel plate undergoes brittle fracture: a crack develops at a 70 degree
angle to the horizontal axis. When exceeding vc, they found a shear band developed from the
notch. We will focus on experiments done with steel and sharp notches with small radius, so
that we expect failure mode transition with vc = 30m/s.

After Kalthoff and Winkler [44] published their results, a series of similar impact experiments
were carried out that in general confirm their observations. However, in similar experiments
performed by Zhou et al. [46], no failure was observed at low impact speed. For high impact
speeds, a shear band starts to propagate nearly parallel to the notch, is arrested later and
becomes a crack. Experiments on polycarbonite by Ravi-Chandar et al. [47] revealed a failure
mode transition from ductile to brittle at an impact speed of 29m/s and another transition
from brittle to ductile at impact speeds higher than 55m/s.

Numerical studies of the Kalthoff and related experiments include Needleman and Tvergaard
[3], Li et al. [20], Batra and Gummalla [48], Zhou et al. [49]. Mostly two-dimensional
computations under the assumption of plane strain conditions were performed. The impact
was usually modelled by a velocity boundary condition. Three-dimensional simulations have
been made, e.g. by Batra and Ravisankar [50].

In our computations we used the Johnson-Cook model [51] with J2 plasticity because strain
rate and temperature effects play an important role. The effective yield stress of the Johnson-
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a) 0.07 ms b) 0.25 ms c) 0.35 ms d) 0.5 ms

Figure 8. Effective plastic strain of a specimen subjected to tensile loading at different time steps for
the 180,000 particle discretization

a) 0.1 ms b) 0.16 ms c) 0.18 ms d) 1.0 ms

Figure 9. Deformation of a specimen subjected to tensile loading at different time steps
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75 mm
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diameter =50 mm

thickness=6.35mm

v0

Figure 10. The Kalthoff problem: test setup

Cook model is given by

σY = (A + Bγn) (1 + Clnε̇∗) (1 − T ∗m) (35)

with ε̇∗ = γ̇/γ̇0 where γ is the effective plastic strain and γ̇0 is the reference strain rate taken
to be 1.0/s and

T ∗ =
T − Tr

Tm − Tr
(36)

where Tr is the reference temperature and Tm is the melting temperature. The material
parameters are A = 792MPa, B = 509MPa, C = 0.014, n = 0.26, m = 0.55. The density is
% = 7800kg/m3, bulk modulus K = 157GPa, shear modulus G = 76GPa and the specific heat
is cv = 477J/kgC, reference temperature Tr = 296K and melting temperature Tm = 1033K.
We used a Quinney factor β = 0.9 for the temperature update:

∆T =

∫ γ

0

β

%cv
σY dγ (37)

The behavior at each material point is governed by both a Rankine criterion (with ft = 2A)
and the material stability criterion. The onset of a material instability is then determined
by whichever criterion indicates loss of material stability first. When the Rankine criterion is
met, a cracked particle is introduced as in Rabczuk and Belytschko [25, 26]. If the J2 stability
criterion is triggered, a sheared particle is introduced (it appears to be a natural consequence
of the acoustic tensor for J2 pasticity that h is approximately perpendicular to n). We used two
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different particle arrangements, with approximately 140,000 particles and 1,035,000 particles,
respectively. The impactor is also discretized.

First, we present the results with an impact velocity of 60m/s. The shear band pattern for
the 140,000 particle computation at different time steps is shown in figure 11. We are able
to capture the principal shear band pattern observed in the experiment. The results for the
1,035,000 particle simulation are very similar to the results obtained by the coarse model.

a) b) c)

Figure 11. Shear band for the 140,000 particle discretization for the Kalthoff problems at different
time steps and an impact velocity of 60 m/s; ductile failure occurs

Results for an impact velocity of 40m/s are shown in figure 12; failure is still predicted
by a ductile mode. Figure 12d shows the effective plastic strains while figures 12a-c show the
shear band, i.e. the failed particles. As can be seen from figures 12, the shear band is arrested
midway to the left edge. This behavior and the curvature of the shear bands correspond well
to that observed by Kalthoff and Winkler [44] and Kalthoff [45].

The simulation at an impact velocity of 20m/s correctly predicts the transition to brittle
failure, see figure 13. The crack propagates with an angle of approximately 70 degrees. In figure
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a) b) c) d)

Figure 12. a)-c)Shear band evolution for the 1,035,000 particle discretization for the Kalthoff problems
at different time steps and an impact velocity of 40 m/s; a ductile failure occurs,d) corresponding

effective plastic strain distribution

13; we show only the results for the 1,035,000 particle discretization. The results for the coarse
discretization look almost identical. The crack pattern is similar to the one of the experiment.
Some oscillations in the crack paths can be observed. The crack speed is shown in figure 14.
The Rayleigh wave speed of approximately 2800m/s is not exceeded.

5.3. Plate with two holes

Consider a plate with two holes under compression as shown in figure 15. This example was
studied by Diez et al. [52] using a viscoplastic constitutive model. They modified the location
of the holes and discovered that it altered the shear band patterns. Here a structured model
was used. The two holes are generated by a technique described in Rabczuk and Belytschko
[53]. The compression load is applied as a velocity boundary condition, with a constant velocity
of 1m/s applied on the top.

In contrast to Diez et al. [52], we use an elasto-plastic model from Areias [54]. The model
is similar to the viscoplastic model in [52] and as we will see, we are able to capture
the principal failure mechanisms as in [52]. The material parameters are Young’s modulus
E = 200GPa, Poisson’s ratio ν = 0.3, initial yield strength σ0 = 200MPa and softening
modulus H = −20GPa. We consider a coarse model and a fine model discretized with
approximately 20,000 and 80,000 particles, respectively. We first discuss the results where
the holes are separated by 10mm in the horizontal direction, see LHS of figure 15.
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a) b) c) c)

Figure 13. Crack evolution for the 1,035,000 particle discretization for the Kalthoff problems at
different time steps for an impact velocity of 20 m/s; a brittle failure occurs

The shear band pattern at different time steps and the effective plastic strains at the end of
the computation are shown in figures 16 and 17 for the two models. The holes almost closed
during the course of the computation. The holes appear as black circles. The progression of the
shear band from the two holes at the beginning of the computation can clearly be seen. The
two holes are completed connected at 1.4 ms. At 1.7 ms the specimen is sheared completely
into two pieces. Due to the relatively large distance in x-direction between the two holes, only
a single shear band develops.

The load displacement curves for the two discretizations is shown in figure 18 and don’t
show mesh dependence. Though the constitutive model is different from the one in [52], the
load deflection curve looks very similar to the one in [52].

Next, we consider the example as shown on the RHS of figure 15. Diez et al. [52] reported
that a very fine mesh was necessary to capture the correct shear band paths. Their mesh
was adaptively refined across the crack path. We use the fine structured models as mentioned
above. The final shear band pattern with the corresponding effecitve plastic strain distribution
is shown in figure 19. As in [52], two parallel shear bands occur. The main difference between
our results and the results in [52] is that in [52], a shear band connected the two holes. In our
simulation, two shear band connect the lower shear band with the upper shear band close to
the notch.
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Figure 14. Crack speed for the Kalthoff problem for a brittle failure mode

5.4. Plane strain indentation

This example shows the performance of our method for curved shear bands with intersections.
Consider the plane strain indentation problem as illustrated in figure 20. The specimen is held
in the horizontal and vertical directions at the bottom and in the horizontal direction at the
sides. The vertical displacement under the punch is prescribed to increase linearly with time.
The loading plate is modelled by finite elements. This example was also studied by Miehe and
Lambrecht [55].

The material parameters are: bulk modulus K = 160, 000MPa; shear modulus G =
80, 000MPa; yield stress σY = 500MPa and softening modulus H = −131MPa. As in [55],
we used a J2 plasticity model. We studied 3 different discretizations, 12,000 particles, 30,000
particles and 120,000 particles.

The deformed specimen at different times for the 30,000 particle discretization is shown in
figure 21. The shear band pattern looks very similar to the shear band pattern in [55]. In
contrast to [55] who performed his computation up to a maximum vertical top displacement
of 1.8mm; we carried out the simulation to a later stage to 4mm vertical top displacement. At
that time, another shear band pattern appears as shown in figure 21e. Four larger fragments
are formed that start to separate from the specimen. The load deflection curve is shown in
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R=2mm R=2mm

50mm 50mm

100mm

44.5mm

44.5mm

11mm

10mm20mm 20mm 22.5mm 5mm 22.5mm

u(t)=v t

Figure 15. Model description for the plate with two holes under compression

figure 22. It is similar to [55] and also does not show mesh dependence.

5.5. The Nesterenko experiment

Nesterenko et al. [56], Xue et al. [57], Meyers et al. [58], Shih et al. [59] performed a series of
multiple shear banding experiments in cylinders for different type of materials and different
dimensions. The test-set up is shown in figure 23. In all experiments, the cylindrical test
specimen is surrounded by a copper stopper tube and a copper driver tube, that is itself
surrounded by an explosive. We will consider here the titanium test specimen and the stainless
steel specimen. We carried out two dimensional computations and modelled also the explosive.
The density of the explosive is 0.9g/cm3 and the detonation velocity is according to Xue et al.
[57] 4000 m/s. They also measured the initial velocity of the inner wall of the tube (200 m/s)
that can be used for the numerical simulation. We will show results for a discretization with
60,000 particles under the assumption of plain strain conditions.

As for the Kalthoff problem, we use the Johnson-Cook model for copper. We assume that
the plastic work is completely transformed into heat. The material data for copper are: density
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a) 1.0 ms b) 1.4 ms c) 1.7 ms d) 1.7 ms

Figure 16. a)-c) Sheared particles and d) effective plastic strain of the plate with two holes at different
time steps for 20,000 particles

a) 1.0 ms b) 1.4 ms c) 1.7 ms d) 1.7 ms

Figure 17. a)-c) Sheared particles and d) effective plastic strain of the plate with two holes at different
time steps for 80,000 particles
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Figure 18. Load deflection curve for the plate under compression with 2 holes

% = 8.92g/cm3, bulk modulus K = 115GPa, shear modulus G = 44GPa, melting temperature
Tm = 1058K, A = 90MPa, B = 292MPa, n = 0.31, C = 0.025, m = 1.09; specific heat
cv = 385J/kg K. For stainless steel, the material parameters are density % = 7.9g/cm3, bulk
modulus K = 200GPa, shear modulus G = 77.5GPa, melting temperature Tm = 1396K,
A = 110MPa, B = 1500MPa, n = 0.36, C = 0.014, m = 1 and specific heat cv = 500J/kg K.
In some computations we have randomly varied the material yield strength spatially within the
specimen. For this purpose, we multiplied the material strength with a factor 0.75 < α < 1.25,
obtained from a log-normal distribution around the mean value of 1 with a standard deviation
of 5 %. The intent is to model defects or imperfections of the material. The shear band pattern
will also depend on the spatial correlation of these imperfections. For the examples we tested,
we obtained similar shear band patterns, although the number of shear bands decreased with
increase in the scatter of the material properties.

For titanium, Nesterenko et al. [56] used the following for the yield surface:

σ = σ0 (1 − a(T − T0))

(
ε̇

ε̇0

)m

(38)

where σ0 is the flow stress, T0 is the reference temperature, ε̇0 is a reference strain rate, a is
a softening parameter and m is the so-called strain rate sensivity. The material parameters
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a) b)

Figure 19. a) Shear band pattern and b) effective plastic strain of the 2-hole-problem

are m = 0.052, σ0 = 280MPa, cv = 528J/kg K, a = 10−3K−1, ε̇0 = 10−3s−1, Tm = 1933K,
density % = 4.5g/cm3, Young’s modulus E = 10.85GPa and Poisson ratio ν = 0.34; we used
the same parameters.

Figure 24 shows the shear band pattern near the beginning and at the end of the computation
for titanium. As can be seen from figure 24, initially, a large number of shear bands are
nucleated. However, a few of the shear bands become dominant in the later stages of the
evolution. One of the experimental results from Nesterenko et al. [56] is depicted in figure 24c.
Comparison with our computations shows many noteworthy similarities in the patterns and
also some descrepancies. As in the experiment, a few shear bands become dominant in the
later stages growth. However, in the experiment, some shear bands grow at an opposite angle
with the radial direction, whereas this did not occur in the computation. Moreover, the final
tangential direction of the shear bands is smaller in the experiment than in the computation.
This may be due to inadequancies in our material model or due to the assumption of perfect
cylindrical symmetry in the computational load; the senior author (T. Belytschko) notes that
it is very difficult to achieve cylindrical symmetry in explosive loadings.

We repeated the computations with smaller scatter in the material properties. The results
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1632 32

24

Figure 20. Set-up of the plane strain indentation problem

are not shown here; we found that as the scatter decreases, the number of dominant shear
bands increase, but their length decreases. Thus the interplay of material imperfections and
material instability plays a critical role in the final pattern.

The shear band pattern of the steel specimen is shown in figure 25. Much less shear banding
occurs here because the onset of softening requires larger strains. The shear band pattern also
agrees well with the experimental results of Nesterenko et al. [56].

6. CONCLUSIONS

We have presented a nonlinear meshfree method applicable to material and geometric
nonlinearities for modelling shear bands with cohesive surfaces. The shear band is modelled by
a set of sheared particles. In each sheared particle, a discontinuity in the tangential component
of the displacement is added to the displacement field. The method is a variation of the theme
”cracking particles” [25]. It is very easy, as shown in the computation of the Kalthoff example,
to include cracking and sheared particles in a single computation to model complex failure
processes.

The method was applied to several problems for which experiments or previous computations
were available. It is noteworthy that:

1. The method reproduced the brittle/ductile transition observed in the Kalthoff
experiments.

2. The method is able to provide reasonably good reproductions of the complex shear band
patterns found in the Nesterenko et al. [56] experiments.

The methodology as described occasionally encounters difficulties when shear bands
intersect. This requires the addition of an enrichment for intersecting discontinuities, as
described in Belytschko et al. [60]. In addition, the propagation of a shear band through
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a) 0.24mm

b) 0.56mm

c) 1.04mm

d) 1.64mm

d) 4mm
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Figure 22. Load deflection curve for the indentation problems
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Figure 23. Typical test-setup of the Nesterenko et al. [56] experiment, dimensions in mm

an existing shear band poses problems because hyperbolicity has already been lost at the
intersection.

The methodology is not guaranteed to achieve completeness in the tangential displacement,
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(a) early stage (b) final stage

(c) experiment

Figure 24. Shear band formation at different load steps for the Nesterenko et al. [56] experiment;
titanium specimen
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a) b)

Figure 25. Shear band formation at different load steps for the Nesterenko et al. [56] experiment;
stainless steel specimen

i.e. the capability to represent constant and linearly varying jumps in the tangential direction.
Lack of completeness may arise from an insufficient number of sheared particles in the shear
band path. This could be corrected by an adaptive procedure such as in [26] by adding particles
in the subdomain around where material instability is incipient.

The method is based on a Lagrangian kernel, so spurious tensile instabilities often found in
particle methods do not arise. The attractive feature of the method is the simplicity of treating
complicated patterns of shear bands. It is only necessary to identify the nodes at which the
material has lost stability. The kinematics of the shear band are then completely treated by
adding an additional displacement mode at each node. This feature is easily added to particle
methods and provides a method of attractive simplicity.
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