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Introduction 
 
There are many examples of closed loop lumped parameter cardiovascular system (CVS) 
models in the literature generally designed to simulate certain types of CVS function to 
aid understanding and diagnosis. However, methods to make these models directly useful 
to medical staff have not been investigated in much detail. For diagnostic purposes, a 
model must simulate a given person’s CVS function as accurately as possible using as 
much patient specific information as available. Once a patient specific model is identified 
it can be used to assist medical staff in diagnosis and treatment selection. 
  
Closed loop CVS models found in the literature include those of Santamore (1991) as 
well as Beyar et.al. (1987) that focus primarily on modelling ventricular interaction. 
Ursino (1999) investigates modelling carotid baroregulation, and Olansen et.al. (2000) 
contains an extensive model that mentions the use of parameter estimation techniques to 
estimate the value of key parameters. 
 
This research employs mathematical optimisation to identify model parameters required 
to produce target performance characteristics. Where a patient specific model is required, 
the target performance characteristics will be parameters measured from a patient, such as 
heart rate (HR), blood pressure (BP), ventricle chamber pressures and CVS flow rates 
(Q).  
 
Method 
 
A six chamber closed loop CVS model, developed by Smith et.al. (2003), is used in all 
simulations. Figure 1 shows a diagram of the CVS model where resistors (R) simulate 
resistance effect on the flow, inductors (L) simulate inertial effects on flow around 
valves, and elastances (E) define the elastic properties of chambers. Inductors are not 
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added in the systemic (sys) and pulmonary (pul) circulations, as there is minimal change 
in flow rate in peripheral arteries. Lines between the left (lv) and right (rv) ventricles 
indicate ventricular interaction, which includes the effects of the active septum and the 
passive pericardium. Elastic chambers labelled vc and ao represent the vena-cava and the 
aorta respectively and approximate the systemic circulation system, while the pulmonary 
system chambers labelled pa and pu describe the pulmonary artery and the pulmonary 
vein. 
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Figure 1, Diagram of CVS model. 

The governing equation for pressure in the left and right ventricles is given by: 
 

(1) 

where Ees, Vd, A, λ and V0 are constant parameters, and e(t) is the driver function that 
varies in value between 1 and 0. Depending on whether inertia (inductors) is included in 
the flow between chambers, flow rate is governed by either of: 
 

(2) 

 
where Pin and Pout are the upstream and downstream pressures. The flow rates are then 
used to calculate the rate of change of volume in the chambers. 
 

(3) 

 
These primary governing equations are solved with flow rates and volumes as state 
variables. Initial conditions for the state variables are either obtained by distributing the 
volume so that the pressure in each chamber is the same, or by using the state vector from 
the most previously run model.  
 
Unconstrained non-linear optimisation is used to identify model parameters for specified 
target performance. The variables include the resistances, elastances, and parameters used 
to calculate pressure (Ees, A, λ, Vd and V0). At each optimisation step convergence is 
assumed when both the left and right ventricle stroke volumes are equal, and the 
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pulmonary and systemic circulations are equal. The target outputs are normal human 
CVS properties from Guyton (1991), as displayed in Table 1. CVS function is measured 
both from the average and the magnitude of the oscillation of pressure and volume waves. 
For example, a normal human aortic pressure is 120 over 80mmHg, which means the 
aortic pressure average is 100mmHg and the magnitude is 40mmHg. 
 
The function to be minimised is set as the sum of the squares of the difference between 
all target and model outputs. Limits on the range of specific variables are included in 
exponential terms as penalty functions. Initial values for the parameters were 
approximated manually by trial and error. 
 

Table 1, Target outputs compared to model outputs from optimisation. 

 
Results and Discussion 
 
The optimisation results are shown in Table 1, where the volumes are within 0.1ml of 
target values, and the pressures are within 2.5mmHg. The resulting simulation using the 
optimised parameters is shown in Figure 2. These results show the potential of this 
technique for accurately modelling patient specific CVS function. Medical staff will be 
able to take measured patient data and obtain a patient specific model to assist in 
diagnosing irregularities. For example, if a particularly high ventricular elastance is 
required to model a patient, it would imply that the patient has stiff heart walls. 
Alternatively, a high aortic resistance in the model could alert medical staff to the 
possibility of occluded arteries. The known effects of certain drugs could also be tested to 
determine their impact on CVS function and assist in choosing suitable treatments. 
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Output

Model 
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lv 80 80.1 0.1
rv 80 79.9 0.1
ao 100 99.9 0.1
pa 16.5 14.0 2.5
pu 3 4.9 1.9
vc 0 -1.3 1.3
lv 70 70.0 0.0
rv 70 70.0 0.0
ao 40 39.8 0.2
pa 17 18.4 1.4
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Figure 2, Plot of model outputs using optimised parameters. 

 
Conclusion 
 
While there are many examples in the literature of CVS models, there is little discussion 
on how to implement these models to assist medical staff in the diagnosis and treatment 
of patients with CVS dysfunction. Using optimisation techniques, it is shown that patient 
specific CVS models can be identified. Once identified, the patient specific model can 
assist in diagnosing cardiac dysfunction. This result offers the potential to bridge the gap 
between engineering models, and medical practice, combining the two to create software 
for practical patient diagnosis and treatment. 
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