

Enhancement of Moment Based Painterly Rendering Using Connected
Components

M. Obaid, R. Mukundan, T. Bell
Department of Computer Science and Software Engineering

University Of Canterbury
Christchurch, New Zealand.

{ mho33@student.canterbury.ac.nz}

Abstract
Moment functions have been used recently to

compute stroke parameters for painterly rendering
applications. The technique is based on the estimation of
geometric features of the intensity distribution in small
windowed images to obtain the brush size, colour and
direction. This paper proposes an improvement of this
method, by additionally extracting the connected
components so that adjacent regions of similar colour
are grouped for generating large and noticeable brush
stroke images. An iterative coarse-to-fine rendering
algorithm is used for painting regions of varying colour
frequencies. Performance improvements over the
existing technique are discussed with several examples.

Keywords--- Painterly rendering, non-photorealistic

rendering, geometric moments, connected component
image.

1. Introduction

Artistic rendering has become an important research
area in Computer Graphics because of the many
challenges posed by the general problem of stylized
approximation of an image. This field is inspired by
various artistic styles such as paintings [1, 2], drawings
[3, 4], animated cartoons [5, 6] and technical illustrations
[7, 8]. These artistic styles can be grouped into two
categories according to their input data: 3D object-based
[9], which takes 3D model of a scene as their input; and
2D image-based [10], which takes 2D images as their
input.

Interactive artistic rendering techniques are
commonly used in digital painting systems and provide
the user with a wide range of options and tools. Haeberli
[11] introduced such a system that allows the user to
place brush strokes manually on a canvas. Each brush
stroke is described by its location, colour, size, direction
and shape. Haeberli also proposed an automatic way of
controlling the brush stroke orientation by using the
gradient data of the source image. Non-Interactive
methods are a lot more complex to design and

implement, as the system needs to extract shape features
automatically from input data, and then map these
features to the most appropriate brush-stroke parameters
for stylized rendering. Hertzmann [1] proposed a method
for automatically painting brush strokes using spline
curves. Painting is done on several layers, where larger
stokes are used in lower layers and thinner strokes in
upper layers. The intensity gradient of the image controls
the orientation of the spline curves.

Geometric moments [12] are popular shape
descriptors for image analysis. They have been employed
in non-interactive painterly rendering applications for
estimating stroke parameters based on local intensity
distributions. In this paper, we present a method that
aims to improve upon the previous work using this
approach by Shiraishi and Yamaguchi [10]. Shiraishi’s
method first computes the brush stroke locations from
the source image, and then the stroke parameters such as
the location, length, width, and angle are calculated using
image moment functions. Strokes are then painted using
alpha blending in the order of largest to smallest. Our
method extracts the connected components from the
image to identify the shape of larger brush strokes. This
greatly enhances the painterly appearance of the image.
Nehab and Velho [13, 18] extended the work of Shiraishi
and Yamagushi by using a multi-resolution technique
and introducing parametrized stroke positions image.
They also proposed a stroke placement method with the
addition of a stroke normalization and a dithering
method for stroke positioning using a variance filter and
blue-noise dithering.

This paper is organised as follows. Section 2
describes the use of geometric moment functions as
shape descriptors. Section 3 gives an overview of the
moment based painterly rendering algorithm. Section 4
describes how connected colour components could be
easily computed. Section 5 explains how the proposed
method uses connected components for generating more
expressive strokes for artistic rendering. Section 6
presents some of the results obtained. Finally, section 7
concludes the paper and outlines some future directions
in this area.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35457435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Geometric Moments

Several pattern recognition applications use
geometric moments as shape descriptors. The low-order
geometric moments can be easily computed from an
image segment, and used to identify that segment’s
essential shape features. Given an image intensity
function f(i, j), i=0,1,…M−1, j=0,1,…N−1, the (p+q)th
order geometric moments mpq are computed as

mpq = ��
−

=

−

=

1

0

1

0

),(
M

i

N

j

qp jifji (1)

The principal shape features are computed as
follows:

00

01

00

10 ,
m

m
y

m

m
x cc == (2)

2

00

20
cx

m

m
a −=

2

00

02
cy

m

m
b −=

��
�

�
��
�

�
−= cc yx

m

m
c

00

112 (3)

In the above equations, xc, yc denote the image
centroid, and the zeroth order moment m00 gives the sum
of intensity values. Using the values of a, b and c, the
parameters of the equivalent rectangle of the shape can
be computed (Figure 1).

Figure 1: A shape and its equivalent rectangle

The length l, width w, and the angle of orientation θ
of the equivalent rectangle are given by the following
equations:

w =)(6 ∆−+ ca

l =)(6 ∆++ ca

θ = �
�

�
�
�

�

−
−

ca

b1tan
2

1

22)(cab −+=∆ (4)

In the context of painterly rendering, the above
values can be used to map a brush stroke image onto the
equivalent rectangle computed for an image segment.

3. Moment Based Painterly Rendering

This section reviews the moment based painterly
rendering algorithm proposed by Shiraishi and

Yamaguchi [10]. Figure 2 shows an image used as an
input for this algorithm in our study. The process
contains two phases: a preparation phase and a
composition phase. In the preparation phase, the stroke
attributes are calculated and a list of strokes from largest
to smallest is computed. In the composition phase, the
strokes are painted over a canvas.

Figure 2: Sample image used for painterly

rendering.

Three steps are involved in the preparation phase.
The first step is to define a stroke distribution over the
canvas. The stroke distribution depends on the level of
detail (variations in intensity values) in a region. A
measure of variations of intensity values surrounding a
pixel can be obtained by taking the sum of squared
differences of intensity values between the pixel and its
neighbouring pixels in a small window. If k denotes half
the window size, we can obtain this measure as the value
of g(i, j) at pixel (i, j) using the following equation:

g(i, j) = ()� �
+

−=

+

−=

−
ki

kiu

kj

kjv

jifvuf 2),(),((5)

If g(i, j) is inverted and normalised to a valid
intensity range, then a low value of g(i, j) indicates a
large variation of intensity in the neighbourhood of (i, j).
The image obtained by assigning this value of g(i, j) to
pixel (i, j) is called the stroke area image (Figure 3(A).)

Figure 3: (A) A stroke area image. (B) A stroke

locations Image

l

w

θ

In the second step of the preparation phase, the
stroke area image is used to generate the stroke locations
image by applying a dithering algorithm without
clustering (see Figure 3(B)). In the dithered image,
regions of high detail will correspond to dark regions
with a high density of dots. Each dot in the dithered
image represents a stroke location. In [10], a modified
version of a space filling curve dithering algorithm
giving in [14] was used to generate the stroke locations
image. The brush stroke parameters are computed from
geometric moments (equations (4)) at each point in the
stroke locations image.

The final step of the preparation phase is to sort the
strokes to be painted into a list in the order of largest to
smallest.

Figure 4: The painterly rendered version of the

image in Figure 2.

In the composition phase, strokes are painted on a
blank canvas using alpha blending one after the other.
This process requires scaling, rotating and applying the
appropriate colour to the brush stroke template image.
Figure 4 shows the painterly rendered version of the
image in Figure 2.

4. Connected Components

The primary limitation of the method described
above is that large regions of nearly constant colour are
not painted by correspondingly large brush strokes. The
dither function imposes a constraint on the maximum
distance between two stroke locations, which in turn
limits the size of the brush strokes used. It may also be
noted that a large region of nearly white colour in the
stroke area image represents only a collection of regions
of similar colours, and not necessarily a single region of
constant colour.

For a more stylised rendering of images, it is
imperative to have large brush strokes visible in regions
of constant colour. This requirement has motivated us to
consider the use of connected components as an
important image feature for painterly rendering. In other
words, the painterly appearance of an image can be

further enhanced, if regions of similar colour can be
identified and grouped as a single component and then
used for mapping brush stroke images.

Even though a recursive 8-point connected
component algorithm is the simplest to implement, it
may require a large stack space for images of size larger
than 100x100 pixels. As pixels are scanned from top to
bottom and left to right, the algorithm needs to be
initiated for every unlabelled pixel. Due to the systematic
way in which pixels are scanned, it is necessary to check
only four neighbours (instead of eight) for similar
colours (Figure 5).

Figure 5: 8-point and 4-point connectivity

Since connected components are used only for
mapping brush stroke images, we can also use a simple
one-pass iterative connected component algorithm with
4-point connectivity as shown in Figure 5. With this
process, connected components of certain shapes as
shown in Figure 6 will get split into two components, but
this is acceptable since such an image would require
brush strokes in more than one direction anyway.

Figure 6: Splitting of connected components

5. Improved Algorithm

The ideas outlined in the previous section can be
implemented in a moment-based painterly rendering
algorithm for further enhancing the expressiveness of the
rendering style. Regions where large brush strokes are to
be used are first identified by extracting the connected
components. This process is illustrated in Figure 7.

Figure 7: Brush image mapped to connected

components

The painterly rendered image is composed by
painting brush strokes on a blank canvas. This process
requires identifying connected colour regions iteratively
from the input image, computing the stroke attributes for
connected regions and painting the brush strokes on

Scan

1 2

canvas. Figure 8 illustrates the process of producing the
painterly rendered output image.

Figure 8: Flow chart for the modified painterly

rendering algorithm

The process is further explained below.

5.1 The Painting Process

An artist usually produces paintings by applying
large brush strokes for constant colour areas, and finer
strokes for detailed areas in an image. The connected
component colour regions use different sizes of brush
strokes depending on each colour region’s size.

The algorithm starts with a blank canvas and a bit
array B(P) of the same size as the input image. The
array, which is initialised to zero, is used to check if a
pixel P has already been painted or not. Connected
regions of similar colour are then identified as explained
in Section 4. Regions whose size is smaller than a given
threshold are ignored (leaving gaps as shown in Figure
10), and later merged into the surrounding regions by
increasing the threshold. This will cause regions of large
colour variations to appear smudged, giving them a
painterly appearance.

 Brush stroke parameters are computed from
geometric moments (equations (4)) for each connected
component. Each stroke is painted on the canvas by
applying an inverse transformation (equations (6)) to the
brush stroke template image with the appropriate colour
of the stroke. Figure 9 shows a brush image with length
L, and width W.

Figure 9: Inverse transformation parameters

The inverse transformation that maps a point (x, y)
in an equivalent rectangle with parameters xc, yc, l, w, θ
(equations 2, 4) to an axis-aligned brush image
coordinates (s, t) is given below:

θθ sin)(cos)(cc yyxxx −+−=′

θθ cos)(sin)(cc yyxxy −+−−=′

L
l

x
s �

�

�
�
�

� +
′

=
2

1

W
w

y
t �

�

�
�
�

� +
′

=
2

1
 (6)

After obtaining the coordinates (s, t), the colour
value at an image pixel (x, y) is set to that of the brush
image at (s, t) and the buffer value for pixel P=(x, y) is
set to one, i.e., B(P)=1. Figure 10 shows the brush
images applied to equivalent rectangles of connected
components obtained from Figure 2.

Figure 10: The initial connected component

brush strokes for the image in Figure 2.

As seen in Figure 10, the initial painting of large
brush strokes partially covers the painting canvas.
Running the process iteratively for the unpainted regions
with B(P)=0, and simultaneously increasing the colour
similarity threshold for each iteration, leads to painting
the whole image with different sizes of brush strokes.
The progressive rendering algorithm uses a coarse-to-
fine approach for selecting stroke regions. The final
painterly rendered image is shown in Figure 11 below.

 (s0 t0

)

0 L

W

s

t

(s ,t)

Input image

Output image

Identify connected colour
regions

Compute stroke attributes

Paint strokes on canvas

Is B(P)=1
for all P?

Yes

For each painted pixel P , set
B(P)=1

No

Use pixels
from input
image for

which B(P)=0

Increase
threshold for

colour
change

Figure 11: The painterly rendered version of the

image in Figure 2.

6. Results

This section shows some of the results obtained
using the connected component explained in previous
section.

Figure 12: An image of an African safari tree

Figure 12 shows a test image used in our
experimental analysis. It contains both regions of
constant colour requiring large brush strokes (applied by
first extracting connected components), and regions with
large colour variations requiring finer brush strokes. The
processed image is shown in Figure 13.1

1 Images can be viewed at
www.cosc.canterbury.ac.nz\research\PG\mho33

Figure 13: The painterly rendered version of the

image in Figure 12.

Another image which demonstrates painterly
rendering using different sizes of brush strokes
depending on the connected component’s size is shown
below in Figure 14.

Figure 14: An image of a Siberian Tiger

The result obtained by applying the method
presented in this paper is shown in Figure 15.

Figure 15: The painterly rendered version of the

image in Figure 14.

7. Conclusion

This paper has presented a moment-based algorithm
for artistic rendering of images, where brush stroke
parameters are computed using geometric moments of
local intensity distributions. Instead of using small
windowed regions on locations identified by a dither
function, our algorithm uses connected components for
stroke placement. Connected components also allow the
rendering of large brush stroke images in regions of
nearly constant colour. With this modification, the
quality of stylized rendering of the painted images could
be significantly improved. Some performance
improvements over existing techniques could also be
achieved by eliminating the need for the computation of
the stroke area image and the dither image.

Further research in this area is directed towards
enhancing the edges between two features of different
colours in an image.

Acknowledgment

Some of the test images used in our research are
taken from [15, 16, 17, 19].

References

[1] Aaron Hertzmann. Painterly Rendering with Curved
Brush Strokes of Multiple Sizes. SIGGRAPH 98
Conference Proceedings, pages 453-460, July 1998.

[2] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims,
Kurt W. Fleischer, and David H. Salesin. Computer-

Generated Watercolor. SIGGRAPH 97 Conference
Proceedings, pages 421-430, August 1997.

[3] Mario Costa Sousa and John W. Buchanan.
Observational models of graphite pencil materials.
Computer Forum, 19(1), pages 27-49, March 2000.

[4] Teresa W. Bleser, John L. Sibert, and J. Patrick McGee.
Charcoal sketching: Returning control to the artist. ACM
Transactions on Graphics, 7(1), January 1988.

[5] Adam Lake, Carl Marshall, Mark Harris, and Marc
Blackstein. Stylized rendering techniques for scalable
real-time 3d animation. NPAR 2000: First International
Symposium on Non Photorealistic Animation and
Rendering.

[6] Barbara Meier. Painterly Rendering for Animation. In
Proceedings of SIGGRAPH 96, pages 477-484, 1996.

[7] M. PAGES Salisbury, M. T. Wong, J. F. Hughes, and D.
Salesin. Orientable Textures For Image-Based Pen-And-
Ink Illustration. SIGGRAPH 1997 Conference
Proceedings, pages 401-406, 1997.

[8] Victor Ostromoukhov. Digital facial engraving.
SIGGRAPH 99 Conference Proceedings, pages 417-424,
August 1999.

[9] A. Hertzmann, D. Zorin. Illustrating smooth surfaces.
SIGGRAPH 2000 Conference Proceedings. New
Orleans, Louisiana. Pages 183-.192, July 2000.

[10] Michio Shiraishi and Yasushi Yamaguchi. An algorithm
for automatic painterly rendering based on local source
image approximation. NPAR 2000 : First International
Symposium on Non Photorealistic Animation and
Rendering,

[11] Paul E. Haeberli. Paint By Numbers: Abstract Image
Representation. SIGGRAPH 90 Conference Proceedings,
24(4), pages 207-214, August 1990

[12] R. Mukundan and K.R. Ramakrishnan. Moment
Functions in Image Analysis - Theory and Applications.
World Scientific Publishing Co. Pte Ltd, Singapore,
September 1998.

[13] Diego Nehab and Luiz Velho. Multiscale Moment-Based
Painterly Rendering. SIBGRAPI'02 Conference
Proceedings, pages 244-251, IEEE, 2002.

[14] Luiz Velho and Jonas de Miranda Gomes. Digital
halftoning with space filling curves. Computer Graphics,
25(4), pages 81-90, July 1991.

[15] Waltman, Jason. Implementation of: An Algorithm for
Automatic Painterly Rendering Based on Local Source
Image Approximation. 10 December 2001. 5 May 2005
http://www.jasonwaltman.com/graphics/paint-local-
source.html

[16] Oliveira, Danilo. Nehab, Diego. Diogo, Andrade.
Automatic painterly rendering of digital pictures. 12
December 2000. 6 April 2005
http://www.visgraf.impa.br/Courses/ip00/Projects.html

[17] Wasilewski, Michael. Painterly Rendering. 1 November
2005
http://www.cgl.uwaterloo.ca/~mmwasile/cs798/as1/

[18] Diego Nehab. Moment Based Painterly Rendering. 24
January 2003. 6 April 2005.
http://www.cs.princeton.edu/~diego/academic/phd/526/fi
nal.pdf

[19] We For Animals. 22 February 2006.
http://www.weforanimals.com/free-pictures/wild-
animals/tigers/1/tiger-1.htm

