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Abstract. Intelligent tutoring systems achieve much of their success by 
adapting to individual students. One potential avenue for personalization is 
feedback generality. This paper presents two evaluation studies that measure 
the effects of modifying feedback generality in a web-based Intelligent 
Tutoring System (ITS) based on the analysis of student models. The object of 
the experiments was to measure the effectiveness of varying feedback 
generality, and to determine whether this could be performed en masse or if 
personalization is needed. In an initial trial with a web-based ITS it appeared 
that it is feasible to use a mass approach to select appropriate concepts for 
generalizing feedback. A second study gave conflicting results and showed a 
relationship between generality and ability, highlighting the need for feedback 
to be personalized to individual students’ needs. 

 
 

1 Introduction 

Intelligent tutoring systems (ITS) achieve much of their success by adapting to 
individual students. One potential avenue for personalization is feedback 
generality. Feedback in ITS is usually very specific. However, in some domains 
there may be low-level generalizations that can be made where the generalized 
concept is more likely to be what the student is learning. For example, Koedinger 
and Mathan [2] suggest that for their Excel Tutor (one of the cognitive tutors [1]), 
the concept of relative versus fixed indexing is independent of the direction the 
information is copied; this is a generalization of two concepts, namely horizontal 
versus vertical indexing. We hypothesized that this might be the case for our web-
based tutor (SQL-Tutor). For example, an analysis of the feedback messages found 
that often they are nearly the same for some groups of concepts. Other concepts 
may differ only by the clause of the SQL query in which they occur (for example, 
the WHERE and HAVING clauses of an SQL query have substantially similar 
concepts). 

Some systems use Bayesian student models to represent students' knowledge 
at various levels (e.g. [8]) and so theoretically they can dynamically determine the 
best level to provide feedback, but this is difficult and potentially error-prone: 
building Bayesian belief networks requires the large task of specifying the prior 
and conditional probabilities. We were interested in whether it was possible to 
infer a set of high-level concepts that generally represent those being learned while 
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avoiding the difficulty of building a belief network, by analyzing past student 
model data to determine significant subgroups of knowledge units that represent 
such general concepts. Feedback can then also be attached to these more general 
concepts and selected according to students’ needs. 

One method of analyzing knowledge units is to plot learning curves: if the 
objects being measured relate to the actual concepts being learned, we expect to 
see a “power law” between the number of times the object is relevant and the 
proportion of times it is used incorrectly [6]. Learning curves can be plotted for all 
knowledge units of a system to measure its overall performance. They can also be 
used to analyze groups of objects within a system, or to “mine” the student models 
for further information. We used this latter approach to try to determine which 
groups of domain knowledge units appear to perform well when treated as a single 
concept. To decide which ones to group, we used a (man-made) taxonomy of the 
learning domain [3], and grouped knowledge units according to each node of the 
taxonomy. This enabled us to measure how well these units, when combined into 
more general ones of increasing generality, still exhibited power laws and hence 
represented a single concept that the students were learning. We then used this 
information as the basis for building a new version of the domain model that gave 
more general feedback.  

In the next section we describe the system we used in the study. In Section 3 
we present our hypotheses and discuss how we used the student models to predict 
the performance of groups of knowledge units. We then give the results for an 
initial experiment that tested a new feedback scheme based on these general 
concepts. Section 4 describes a second study, in which we modified the delivery of 
the generalized feedback, with some surprising results.  Section 5 then discusses 
differences between the results of the two studies, while the conclusions are given 
in Section 6. 

2 SQL-Tutor 

The initial goal of this research was to investigate whether we can predict the 
effectiveness of different levels of feedback by observing how well the underlying 
group of knowledge units appears to measure a single concept being learned. We 
performed an experiment in the context of SQL-Tutor, a web-based intelligent 
tutoring system that teaches the SQL database language to university-level 
students. For a detailed discussion of the system, see [4, 5]; here we present only 
some of its features. SQL-Tutor consists of an interface, a pedagogical module—
which determines the timing and content of pedagogical actions—and a student 
modeler, which analyses student answers. The system contains definitions of 
several databases and a set of problems and their ideal solutions. SQL-Tutor 
contains no problem solver: to check the correctness of the student’s solution, 
SQL-Tutor compares it to an example of a correct solution using domain 
knowledge represented in the form of more than 650 constraints. It uses 
Constraint-Based Modeling (CBM) [7] for both domain and student models.  

Feedback in SQL-Tutor is attached directly to the knowledge units, or 
“constraints”, which make up the domain model. An example of a constraint is: 



 
(147 
; feedback message 
"You have used some names in the WHERE clause that are not 
from this database." 
 
; relevance condition 
 (match SS WHERE (?* (^name ?n) ?*))       
 
; satisfaction condition 
 (or  (test SS (^valid-table (?n ?t)) 

(test SS (^attribute-p (?n ?a ?t)))) 
 
"WHERE")  
 

Constraints are used to critique the students' solutions by checking that the 
concept they represent is being correctly applied. The relevance condition first tests 
whether or not this concept is relevant to the problem and current solution attempt. 
If so, the satisfaction condition is checked to ascertain whether or not the student 
has applied this concept correctly. If the satisfaction condition is met, no action is 
taken; if it fails, the feedback message is presented to the student. The student 
model consists of the set of constraints, along with information about whether or 
not it has been successfully applied, for each attempt where it is relevant. Thus the 
student model is a trace of the performance of each individual constraint over time. 
Constraints may be grouped together, giving the average performance of the 
constraint set as a whole over time, for which a learning curve can then be plotted. 
Figure 2 shows the learning curves for the two groups of the first study, for all 
students and all constraints. This is achieved by considering every constraint, for 
every student, and calculating the proportion of constraint/student instances for 
which the constraint was violated for the first problem in which it was relevant, 
giving the first data point. This process is then repeated for the second problem 
each constraint was used for, and so on. Both curves in Figure 2 (Section 3) show 
an excellent power law fit (R2 > 0.92). Note that learning curves tend to deteriorate 
as n becomes large, because the number of participating constraints reduces. 

3 Study 1: Does Feedback Generality Have an Effect? 

We hypothesized that some groupings of constraints would represent the concepts 
the student was learning better than the (highly specialized) constraints themselves. 
We then further hypothesized that for such a grouping, learning might be more 
effective if students were given feedback about the general concept, rather than 
more specialized feedback about the specific context in which the concept 
appeared (represented by the original constraint). To evaluate the first hypothesis, 
we analyzed data from a previous study of SQL-Tutor on a similar population, 
namely second year students from a database course at the University of 
Canterbury, New Zealand. To decide which constraints to group together, we used 
a taxonomy of the SQL-Tutor domain model that we had previously defined [3]. 
This taxonomy is very fine-grained, consisting of 530 nodes to cover the 650 
constraints, although many nodes only cover a single constraint. The deepest path 



in the tree is eight nodes, with most paths being five or six nodes deep. Figure 1 
shows the sub tree for the concept “Correct tables present”. 

We grouped constraints according to each node in the taxonomy, and rebuilt 
the student models as though these were real constraints that the system had been 
tracking. For example, if a node N1 in the taxonomy covers constraints 1 and 2, 
and the student has applied constraint 1 incorrectly, then 2 incorrectly, then 1 
incorrectly again, then 2 correctly, the original model would be: 

 
(1 FAIL FAIL) 
(2 FAIL SUCCEED) 
 

while the entry for the new constraint is: 
 
(N1 FAIL FAIL FAIL SUCCEED) 
 
Note that several constraints from N1 might be applied for the same problem. 

In this case we calculated the proportion of such constraints that were violated. We 
performed this operation for all non-trivial nodes in the hierarchy (i.e. those 
covering more than one constraint) and plotted learning curves for each of the 
resulting 304 generalized constraints. We then compared each curve to a curve 
obtained by averaging the results for the participating constraints, based on their 
individual models. Note that these curves were for the first four problems only: the 
volume of data in each case is low, so the curves deteriorate relatively quickly after 
that. Overall the results showed that the more general the grouping is, the worse the 
learning curve (either a poorer fit or a lower slope), which is what we might 
expect. However, there were eight cases for which the generalized constraint had 
superior power law fit and slope compared to the average for the individual 
constraints, and thus appeared to better represent the concept being learned, and a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Example sub tree from the SQL –Tutor domain taxonomy 
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further eight that were comparable. From this result we tentatively concluded that 
some of our constraints might be at a lower level than the concept that is actually 
being learned, because it appears that there is “crossover” between constraints in a 
group. In the example above, this means that exposure to constraint 1 appears to 
lead to some learning of constraint 2, and vice versa. This supports our first 
hypothesis. 

We then tested our second hypothesis: that providing feedback at the more 
general level would improve learning for those high-level constraints that exhibited 
superior learning curves. Based on the original analysis we produced a set of 63 
new constraints that were one or two levels up the taxonomy from the individual 
constraints. This new constraint set covered 468 of the original 650 constraints, 
with membership of each generalized constraint varying between 2 and 32, and an 
average of 7 members (SD=6). For each new constraint, we produced a tuple that 
described its membership, and included the feedback message that would be 
substituted in the experimental system for that of the original constraint. An 
example of such an entry is: 

 
(N5 "Check that you are using the right operators in 
numeric comparisons." (462 463 426 46 461 427 444 517 445 
518 446 519 447 520 404 521 405 522)) 

 
This generalized constraint covers all individual constraints that perform some 

kind of check for the presence of a particular numeric operator. Students for the 
experimental group thus received this feedback, while those in the control group 
were presented with the more specific feedback from each original constraint 
concerning the particular operator. 

To evaluate this second hypothesis we performed an experiment with the 
students enrolled in an introductory database course at the University of 
Canterbury. Participation in the experiment was voluntary. Prior to the study, 
students attended six lectures on SQL and had two laboratories on the Oracle 
RDBMS. SQL-Tutor was demonstrated to students in a lecture on September 20, 
2004. The experiment was performed in scheduled laboratories during the same 
week. The experiment required the students to sit a pre-test, which was 
administered online the first time students accessed SQL-Tutor. The pre-test 
consisted of four multi-choice questions, which required the student to identify 
correct definitions of concepts in the domain, or to specify whether a given SQL 
statement is appropriate for the given context. 

The students were randomly allocated to one of the two versions of the system. 
The course involved a test on SQL on October 14, 2004, which provided additional 
motivation for students to practice with SQL-Tutor. A post-test was administered 
at the conclusion of a two-hour session with the tutor, and consisted of four 
questions of similar nature and complexity as the questions in the pre-test. The 
maximum mark for the pre/post tests was 4. 

Of the 124 students enrolled in the course, 100 students logged on to SQL-
Tutor at least once. However, some students looked at the system only briefly. We 
therefore excluded the logs of students who did not attempt any problems. The logs 
of the remaining 78 students (41 in the control, and 37 in the experimental group) 
were then analyzed. The mean score for the pre-test for all students was 2.17 out of 
4 (SD=1.01). The students were randomly allocated to one of the two versions of 



the system. A t-test showed no significant differences between the pre-test scores 
for the two groups (mean=2.10 and 2.24 for the control and experimental groups 
respectively, standard deviation for both=1.01, p=0.53). 

Figure 2 plots the learning curves for the control and experimental groups. 
Note that the unit measured for both groups is the original constraints, because this 
ensures there are no differences in the unit being measured, which might alter the 
curves and prevent their being directly compared. Only those constraints that 
belong to one or more generalized concepts were included.  The curves in Figure 2 
are comparable over the range of ten problems, and give similar power curves, 
with the experimental group being slightly worse (control slope = -0.86, R2 = .94; 
experiment slope = -0.57, R2 = 0.93). 

Although the generalized constraints used were loosely based on the results of 
the initial analysis, they also contained generalizations that appeared feasible, but 
for which we had no evidence that they would necessarily be superior to their 
individual counterparts. The experimental system might therefore contain a 
mixture of good and bad generalizations. We measured this by plotting, for the 
control group, individual learning curves for the generalized constraints and 
comparing them to the average performance of the member constraints, the same 
as was performed for the a priori analysis. The cut-off point for these graphs was 
at n=4, because the volume of data is low and so the curves rapidly degenerate, and 
because the analysis already performed suggested that differences were only likely 
to appear early in the constraint histories. Of the 63 generalized constraints, six 
appeared to clearly be superior to the individual constraints, a further three 
appeared to be equivalent, and eight appeared to be significantly worse. There was 
insufficient data about the remaining 46 to draw conclusions. We then plotted 
curves for two subsets of the constraints: those that were members of the 
generalized constraints classified as better, same or 'no data' (labeled “acceptable”), 
and those classed as worse or 'no data' (labeled “poor”). Figure 3 shows the curves 
for these two groups. 

 
Fig. 2. Learning curves for the two groups 



For the “acceptable” generalized constraints, the experimental group appears 
to perform considerably better for the first three problems, but then plateaus; for 
the “poor” generalized constraints the experimental group performs better for the 
first two problems only. In other words, for the “acceptable” generalizations the 
feedback is more helpful than the standard feedback during the solving of the first 
two problems in which it is encountered (and so students do better on the second 
and third one) but is less helpful after that; for the “poor” group this is true for the 
first problem only. We tested the significance of this result by computing the error 
reduction between n=1 and n=3 for each student and comparing the means. The 
experimental group had a mean error reduction of 0.058 (SD=0.027), compared to 
0.035 (SD=0.030) for the control group. The difference was significant at p=0.01. 
In contrast, there was no significant difference in the means of error reduction for 
the “poor” group (experimental mean=0.050 (SD=0.035), control mean=0.041 
(SD=0.028), p>0.3). This result again suggests that the individual learning curves 
do indeed predict to some extent whether generalized feedback at this level will be 
effective. It also suggested that personalization may not be necessary; simply 
applying the same feedback to all students appeared to (initially at least) improve 
learning performance. 

 

4 Study 2: Does Generalization Help? 

Based on the results of the 2004 study, we concluded that generalized feedback 
seemed to work well initially but if feedback is needed too many times there 
reaches a point where it no longer helps the student. We hypothesized therefore 
that starting with more general feedback and later switching to specific feedback 
might yield the best results. We modified the experimental system to behave in this 
way: students in the experiment group received general feedback the first two 
times a constraint was violated, then the same feedback as the control group (i.e. 

 
 

Fig. 3. Power curves based on predictions of goodness 



specific) thereafter. We included only those generalizations deemed “acceptable” 
in the previous study. If our hypothesis were correct we would expect the curve for 
the experimental group to be steeper at the beginning than the control, and then the 
same once the feedback has reverted to the same feedback as the control. Overall 
the experimental group should learn faster. 

The experiment was run in October 2005, again using students from a year 2 
database course at the University of Canterbury, New Zealand. The number of 
students participating in the experiment was lower this time; after we excluded 
those students who did not attempt any problems there were 21 students in the 
control group and 25 in the experimental group. The mean score for the pre-test for 
all students was slightly lower than in 2004: 2.02 out of 4 (SD=0.98) compared to 
2.14 (SD=1.01) in 2004. The students were randomly allocated to one of the two 
versions of the system. The experimental group had a higher average than the 
control group (2.22, SD=1.04 Compared to 1.81, SD=0.87), although in an 
independent-samples T-test the result was not statistically significant (p=0.2). 

Figure 4 again plots the learning curves for the control and experimental 
groups, for the first 10 problems that each knowledge unit was relevant. This time 
the experimental group performed much more poorly than the control; the control 
group reduced their error by 64% on average after receiving (specific) feedback for 
two problems, whereas the experimental group only reduced their error by 8% after 
receiving the more general messages. Further, on average they increased their error 
by 16% between the first and second problem. This result directly contradicts the 
previous experiment. 

 
 

Fig. 4. Learning curves for the two groups 



5 Discussion 

At first glance the second study suggests that the method used to determine which 
concepts to make more general is not robust. However, another possibility is that 
feedback generality is not something that can be applied en masse to all students. 
Figure 5 plots error reduction over the first two problems versus pre-test score for 
the experimental group. Error reduction for this group is quite strongly correlated 
with pre-test score (slope = 23, R2 = 0.67), indicating that poorer students may 
have difficulty understanding more general feedback. This trend was also observed 
for the 2004 study, although the effect was much weaker (slope = 3, R2= 0.016). In 
contrast, for the control groups in both years error reduction is slightly negatively 
correlated: poorer students reduce their error more. The results for the control 
group for both years were nearly identical (slope = -4, R2 = 0.015). This suggests 
that the system may need to adapt generality to the ability level of the student, 
perhaps varying the level over time as the student gains proficiency. 

A difference in the experimental groups’ experiences is that in 2004 the 
students received general feedback for the same subset of concepts all of the time, 
whereas in 2005 feedback switched back to specific messages after the general 
message had been shown twice. Perhaps this led to confusion; the student might 
have thought they had corrected an error because the feedback changed, and were 
now looking for a different error to fix; the error messages did not reference each 
other, so the student might quite reasonably infer that they referred to two different 
problems. For example, “Check whether you have specified all the correct 
comparisons with integer constants” might change to “Check the constants you 
specified in WHERE!” In particular, the second feedback message does not specify 
the type of constant (integer) whereas the first message does, so might equally 
apply to string constants for example. Less able students may have suffered this 
misconception, whereas the better students did not. 
 

 
 

Fig. 5. Error reduction versus pre-test score for the experimental group, study 2 



6 Conclusions 

In this experiment we researched the effect of feedback generality on learning 
performance. We initially used past student model data for predicting the behavior 
of generalized feedback. We developed a more general feedback set that mapped to 
groups of underlying knowledge units, and found in an initial experiment that for 
some of these concepts learning performance appeared to improve, although only 
for the first two problems, after which it deteriorated. For other generalizations 
performance was worse. We also showed that we could predict to some extent 
which generalized constraints would produce better performance by analyzing their 
apparent performance in the control group. A second study contradicted the first; 
students given more general feedback initially exhibited worse performance. 
However, the experimental system differed between the two studies: in the first 
study generalized feedback was given all the time for selected concepts, while in 
the second it was only given initially and then the system reverted to giving 
specialized feedback. 

In the second study the effect of the generalized feedback differed between 
students, with a strong trend indicating that less able students failed to cope with 
the feedback given. Since this trend was not observed in the first study, it also 
suggests that the less able students may have been confused when the feedback 
level changed. The problems observed with the second study might possibly have 
been obviated if it was made clear to the student that the feedback was still 
referring to the same error, e.g. if the later feedback included both messages, rather 
than switching from one to another.  

The two studies show that feedback generality has a measurable effect on 
learning ability. Between them they also give hope that the general concepts can be 
inferred from past student model data, and indicate that the level of generality 
needs to be tailored to individual students. This motivates us to continue to explore 
how we can best personalize feedback to maximize student performance. 
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