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Abstract. Intelligent tutoring systems achieve much of thsirccess by
adapting to individual students. One potential aeeffior personalization is
feedback generality. This paper presents two etiatuatudies that measure
the effects of modifying feedback generality in abvibased Intelligent
Tutoring System (ITS) based on the analysis ofettidhodels. The object of
the experiments was to measure the effectiveneswvaofing feedback
generality, and to determine whether this couldobdormeden masseor if
personalization is needed. In an initial trial withwveb-based ITS it appeared
that it is feasible to use a mass approach to tsefggropriate concepts for
generalizing feedback. A second study gave comftictesults and showed a
relationship between generality and ability, highting the need for feedback
to be personalized to individual students’ needs.

1 Introduction

Intelligent tutoring systems (ITS) achieve muchtloéir success by adapting to
individual students. One potential avenue for peatipation is feedback
generality. Feedback in ITS is usually very speciflowever, in some domains
there may be low-level generalizations that canmaele where the generalized
concept is more likely to be what the student &nang. For example, Koedinger
and Mathan [2] suggest that for their Excel Tutang of the cognitive tutors [1]),
the concept of relative versus fixed indexing ideipendent of the direction the
information is copied; this is a generalizationtwb concepts, namely horizontal
versus vertical indexing. We hypothesized that thight be the case for our web-
based tutor (SQL-Tutor). For example, an analykte®feedback messages found
that often they are nearly the same for some grofig®ncepts. Other concepts
may differ only by the clause of the SQL query inieh they occur (for example,
the WHERE and HAVING clauses of an SQL query hamastantially similar
concepts).

Some systems use Bayesian student models to rapstsdents' knowledge
at various levels (e.g. [8]) and so theoreticdilgyt can dynamically determine the
best level to provide feedback, but this is difficand potentially error-prone:
building Bayesian belief networks requires the ¢atgsk of specifying the prior
and conditional probabilities. We were interestedwihether it was possible to
infer a set of high-level concepts that generajyresent those being learned while
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avoiding the difficulty of building a belief netwr by analyzing past student
model data to determine significant subgroups awkedge units that represent
such general concepts. Feedback can then alsdduhed to these more general
concepts and selected according to students’ needs.

One method of analyzing knowledge units is to patrning curves: if the
objects being measured relate to the actual condeging learned, we expect to
see a “power law” between the number of times thea is relevant and the
proportion of times it is used incorrectly [6]. aang curves can be plotted for all
knowledge units of a system to measure its oveeaformance. They can also be
used to analyze groups of objects within a systammn “mine” the student models
for further information. We used this latter appiioao try to determine which
groups of domain knowledge units appear to perfoeth when treated as a single
concept. To decide which ones to group, we usadam-{nade) taxonomy of the
learning domain [3], and grouped knowledge unitoeting to each node of the
taxonomy. This enabled us to measure how well thegs, when combined into
more general ones of increasing generality, stiflileited power laws and hence
represented a single concept that the students Maming. We then used this
information as the basis for building a new versibrthe domain model that gave
more general feedback.

In the next section we describe the system we irséte study. In Section 3
we present our hypotheses and discuss how we hsestuitdent models to predict
the performance of groups of knowledge units. Wentlgive the results for an
initial experiment that tested a new feedback sehdrased on these general
concepts. Section 4 describes a second study,ichwe modified the delivery of
the generalized feedback, with some surprisinglt®suSection 5 then discusses
differences between the results of the two studidrde the conclusions are given
in Section 6.

2 SQL-Tutor

The initial goal of this research was to invesegathether we can predict the
effectiveness of different levels of feedback bgenving how well the underlying
group of knowledge units appears to measure aestwhcept being learned. We
performed an experiment in the context of SQL-Tutorweb-based intelligent
tutoring system that teaches the SQL database dgeguo university-level
students. For a detailed discussion of the syssem,[4, 5]; here we present only
some of its features. SQL-Tutor consists of anriate, a pedagogical module—
which determines the timing and content of pedamdgactions—and a student
modeler, which analyses student answers. The systtains definitions of
several databases and a set of problems and thesat solutions. SQL-Tutor
contains no problem solver: to check the correstrafsthe student’s solution,
SQL-Tutor compares it to an example of a corredutsm using domain
knowledge represented in the form of more than @®@straints. It uses
Constraint-Based Modeling (CBM) [7] for both domaind student models.
Feedback in SQL-Tutor is attached directly to theowdedge units, or
“constraints”, which make up the domain model. Aaraple of a constraint is:
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; feedback message

"You have used sone nanmes in the WHERE cl ause that are not
fromthis database."

; relevance condition
(match SS WHERE (?* (“name ?n) ?*))

; satisfaction condition
(or (test SS (~valid-table (?n ?t))
(test SS (Mattribute-p (?n ?a ?t))))

"WHERE")

Constraints are used to critique the studentstieak by checking that the
concept they represent is being correctly appli¢s relevance condition first tests
whether or not this concept is relevant to the lerband current solution attempt.
If so, the satisfaction condition is checked toeasin whether or not the student
has applied this concept correctly. If the satisfeccondition is met, no action is
taken; if it fails, the feedback message is presknod the student. The student
model consists of the set of constraints, alondp wiformation about whether or
not it has been successfully applied, for eachrgdtevhere it is relevant. Thus the
student model is a trace of the performance of @atikidual constraint over time.
Constraints may be grouped together, giving theramee performance of the
constraint set as a whole over time, for whichaarigng curve can then be plotted.
Figure 2 shows the learning curves for the two gsoaf the first study, for all
students and all constraints. This is achieveddnsidering every constraint, for
every student, and calculating the proportion afist@int/student instances for
which the constraint was violated for the first lgeam in which it was relevant,
giving the first data point. This process is thepeated for the second problem
each constraint was used for, and so on. Both sunv&igure 2 (Section 3) show
an excellent power law fit @ 0.92). Note that learning curves tend to detaté
asn becomes large, because the number of participatingtraints reduces.

3 Study 1: Does Feedback Generality Have an Effect?

We hypothesized that some groupings of constraiotdd represent the concepts
the student was learning better than the (hightgigpized) constraints themselves.
We then further hypothesized that for such a grogipiearning might be more
effective if students were given feedback aboutdareral concept, rather than
more specialized feedback about the specific conbexwhich the concept
appeared (represented by the original constraliat)evaluate the first hypothesis,
we analyzed data from a previous study of SQL-Twtora similar population,
namely second year students from a database cairghe University of
Canterbury, New Zealand. To decide which constsdimtgroup together, we used
a taxonomy of the SQL-Tutor domain model that wd peeviously defined [3].
This taxonomy is very fine-grained, consisting &05nodes to cover the 650
constraints, although many nodes only cover a singhstraint. The deepest path



in the tree is eight nodes, with most paths beiwg ér six nodes deep. Figure 1
shows the sub tree for the concept “Correct tamesent”.

We grouped constraints according to each nodedrtakonomy, and rebuilt
the student models as though these were real aantstthat the system had been
tracking. For example, if a node N1 in the taxonaroyers constraints 1 and 2,
and the student has applied constraint 1 incogretiien 2 incorrectly, then 1
incorrectly again, then 2 correctly, the originaddel would be:

(1 FAIL FAIL)
(2 FAIL SUCCEED)

while the entry for the new constraint is:
(N1 FAIL FAIL FAIL SUCCEED)

Note that several constraints from N1 might be igpplor the same problem.
In this case we calculated the proportion of sumhstraints that were violated. We
performed this operation for all non-trivial nodas the hierarchy (i.e. those
covering more than one constraint) and plottedniegr curves foreach of the
resulting 304 generalized constraints. We then emetb each curve to a curve
obtained by averaging the results for the parttoigaconstraints, based on their
individual models. Note that these curves wereaHerfirst four problems only: the
volume of data in each case is low, so the curessridrate relatively quickly after
that. Overall the results showed that the more igettiee grouping is, the worse the
learning curve (either a poorer fit or a lower gppwhich is what we might
expect. However, there were eight cases for whiehgeneralized constraint had
superior power law fit and slope compared to theraye for the individual
constraints, and thus appeared to better représeroncept being learned, and a

Tables Present
[ All present] [ None extra ] All referenced

(=) (=) (=) (5]

Nesting in No nesting in Nesting in No nesting in
Ideal solution Ideal solution Ideal solution Ideal solution

Fig. 1. Example sub tree from the SQL —Tutor domairtaxonomy



further eight that were comparable. From this itesel tentatively concluded that

some of our constraints might be at a lower lefiahtthe concept that is actually
being learned, because it appears that there dssaver” between constraints in a
group. In the example above, this means that expdsuconstraint 1 appears to
lead to some learning of constraint 2, and vicesaefThis supports our first

hypothesis.

We then tested our second hypothesis: that prayit#edback at the more
general level would improve learning for those Higiel constraints that exhibited
superior learning curves. Based on the originalysisawe produced a set of 63
new constraints that were one or two levels uptaxenomy from the individual
constraints. This new constraint set covered 46gheforiginal 650 constraints,
with membership of each generalized constraintingrigetween 2 and 32, and an
average of 7 members (SD=6). For each new constiénproduced a tuple that
described its membership, and included the feedlvaeksage that would be
substituted in the experimental system for thatttef original constraint. An
example of such an entry is:

(N5 "Check that you are using the right operators in
numeri c conparisons." (462 463 426 46 461 427 444 517 445
518 446 519 447 520 404 521 405 522))

This generalized constraint covers all individuathstraints that perform some
kind of check for the presence of a particular ntcneperator. Students for the
experimental group thus received this feedback)enthiose in the control group
were presented with the more specific feedback femanh original constraint
concerning the particular operator.

To evaluate this second hypothesis we performedgeriment with the
students enrolled in an introductory database eowat the University of
Canterbury. Participation in the experiment wasumtdry. Prior to the study,
students attended six lectures on SQL and had &boratories on the Oracle
RDBMS. SQL-Tutor was demonstrated to students lecture on September 20,
2004. The experiment was performed in scheduledrdatries during the same
week. The experiment required the students to siprextest, which was
administered online the first time students acaksSE@L-Tutor. The pre-test
consisted of four multi-choice questions, whichuieed the student to identify
correct definitions of concepts in the domain, mispecify whether a given SQL
statement is appropriate for the given context.

The students were randomly allocated to one ofitloeversions of the system.
The course involved a test on SQL on October 184 2@hich provided additional
motivation for students to practice with SQL-Tutérpost-test was administered
at the conclusion of a two-hour session with th®riuand consisted of four
guestions of similar nature and complexity as thestjons in the pre-test. The
maximum mark for the pre/post tests was 4.

Of the 124 students enrolled in the course, 100estis logged on to SQL-
Tutor at least once. However, some students loakelde system only briefly. We
therefore excluded the logs of students who dicattempt any problems. The logs
of the remaining 78 students (41 in the contro 8@ in the experimental group)
were then analyzed. The mean score for the prdatesat! students was 2.17 out of
4 (SD=1.01). The students were randomly allocatedne of the two versions of



Fig. 2. Learning curves for the two groups

the system. A t-test showed no significant diffeesbetween the pre-test scores
for the two groups (mean=2.10 and 2.24 for therobrand experimental groups
respectively, standard deviation for both=1.01,.p3D

Figure 2 plots the learning curves for the conint experimental groups.
Note that the unit measured for both groups isotiginal constraints, because this
ensures there are no differences in the unit b@iegsured, which might alter the
curves and prevent their being directly comparedly@hose constraints that
belong to one or more generalized concepts wetedad. The curves in Figure 2
are comparable over the range of ten problems,gared similar power curves,
with the experimental group being slightly worser(irol slope = -0.86, R= .94;
experiment slope = -0.57?R 0.93).

Although the generalized constraints used wereslgdsased on the results of
the initial analysis, they also contained genea#ilins that appeared feasible, but
for which we had no evidence that they would neadgsbe superior to their
individual counterparts. The experimental systenghmitherefore contain a
mixture of good and bad generalizations. We mealsthis by plotting, for the
control group, individual learning curves for thengralized constraints and
comparing them to the average performance of th@bee constraints, the same
as was performed for thee priori analysis. The cut-off point for these graphs was
at n=4, because the volume of data is low andeauhves rapidly degenerate, and
because the analysis already performed suggestedifferences were only likely
to appear early in the constraint histories. Of @8egeneralized constraints, six
appeared to clearly be superior to the individuahstraints, a further three
appeared to be equivalent, and eight appeared s@b#icantly worse. There was
insufficient data about the remaining 46 to drawatesions. We then plotted
curves for two subsets of the constraints: thos# there members of the
generalized constraints classified as better, sarimo data' (labeled “acceptable”),
and those classed as worse or 'no data' (labete™)p Figure 3 shows the curves
for these two groups.



Fig. 3. Power curves based on predictions of goodse

For the “acceptable” generalized constraints, tkgegmental group appears
to perform considerably better for the first thgeblems, but then plateaus; for
the “poor” generalized constraints the experimegtalp performs better for the
first two problems only. In other words, for thectaptable” generalizations the
feedback is more helpful than the standard feedbadkg the solving of the first
two problems in which it is encountered (and saletts do better on the second
and third one) but is less helpful after that;tfee “poor” group this is true for the
first problem only. We tested the significancehogtresult by computing the error
reduction between n=1 and n=3 for each studentcantparing the means. The
experimental group had a mean error reduction @& (SD=0.027), compared to
0.035 (SD=0.030) for the control group. The diffede was significant at p=0.01.
In contrast, there was no significant differencehi@ means of error reduction for
the “poor” group (experimental mean=0.050 (SD=0)03%®ntrol mean=0.041
(SD=0.028), p>0.3). This result again suggests tteatindividual learning curves
do indeed predict to some extent whether genedafeedback at this level will be
effective. It also suggested that personalizaticgy mot be necessary; simply
applying the same feedback to all students appdaréditially at least) improve
learning performance.

4 Study 2: Does Generalization Help?

Based on the results of the 2004 study, we condlubat generalized feedback
seemed to work well initially but if feedback iseued too many times there
reaches a point where it no longer helps the stude hypothesized therefore
that starting with more general feedback and latgtching to specific feedback
might yield the best results. We modified the eipental system to behave in this
way: students in the experiment group received iggrfeedback the first two

times a constraint was violated, then the samebfsgdas the control group (i.e.



Fig. 4. Learning curves for the two groups

specific) thereafter. We included only those geliwations deemed “acceptable”
in the previous study. If our hypothesis were atriee would expect the curve for
the experimental group to be steeper at the begjthian the control, and then the
same once the feedback has reverted to the sauiafdeas the control. Overall
the experimental group should learn faster.

The experiment was run in October 2005, again usiadents from a year 2
database course at the University of Canterburyy Mealand. The number of
students participating in the experiment was lowhs time; after we excluded
those students who did not attempt any problemeethere 21 students in the
control group and 25 in the experimental group. irtean score for the pre-test for
all students was slightly lower than in 2004: 2dd2 of 4 (SD=0.98) compared to
2.14 (SD=1.01) in 2004. The students were randaiicated to one of the two
versions of the system. The experimental group &ddgher average than the
control group (2.22, SD=1.04 Compared to 1.81, SBZ) although in an
independent-samples T-test the result was nosstatly significant (p=0.2).

Figure 4 again plots the learning curves for thetrabd and experimental
groups, for the first 10 problems that each knogéednit was relevant. This time
the experimental group performed much more podrytthe control; the control
group reduced their error by 64% on average afiegiving (specific) feedback for
two problems, whereas the experimental group adyiced their error by 8% after
receiving the more general messages. Further, erage theyncreasedheir error
by 16% between the first and second problem. Téssilt directly contradicts the
previous experiment.



Fig. 5. Error reduction versus pre-test score forle experimental group, study 2

5 Discussion

At first glance the second study suggests thatrtéhod used to determine which
concepts to make more general is not robust. Howwewether possibility is that
feedback generality is not something that can lptiegben masséo all students.
Figure 5 plots error reduction over the first twolgems versus pre-test score for
the experimental group. Error reduction for thisugr is quite strongly correlated
with pre-test score (slope = 23? R 0.67), indicating that poorer students may
have difficulty understanding more general feedbatis trend was also observed
for the 2004 study, although the effect was muchkee (slope = 3, & 0.016). In
contrast, for the control groups in both yearsrereduction is slightlynegatively
correlated: poorer students reduce their error mdhe results for the control
group for both years were nearly identical (slopel=R = 0.015). This suggests
that the system may need to adapt generality tcabiéy level of the student,
perhaps varying the level over time as the studaimts proficiency.

A difference in the experimental groups’ experiendge that in 2004 the
students received general feedback for the samsesobconceptall of the time
whereas in 2005 feedback switched back to spewiissages after the general
message had been shown twice. Perhaps this leahfasion; the student might
have thought they had corrected an error becaesge#uback changed, and were
now looking for a different error to fix; the erroressages did not reference each
other, so the student might quite reasonably itifat they referred to two different
problems. For exampleiCheck whether you have specified all the correct
comparisons with integer constantgiight change tdCheck the constants you
specified in WHERE!In particular, the second feedback message doespeotfy
the type of constant (integer) whereas the first messagess,deo might equally
apply to string constants for example. Less ahldesits may have suffered this
misconception, whereas the better students did not.
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In this experiment we researched the effect of Hael generality on learning
performance. We initially used past student mo@eh dor predicting the behavior
of generalized feedback. We developed a more gefieerdback set that mapped to
groups of underlying knowledge units, and foundiminitial experiment that for
some of these concepts learning performance appéatenprove, although only
for the first two problems, after which it detedted. For other generalizations
performance was worse. We also showed that we qaddict to some extent
which generalized constraints would produce bgigeformance by analyzing their
apparent performance in the control group. A secindy contradicted the first;
students given more general feedback initially bitadd worse performance.
However, the experimental system differed betwéentivo studies: in the first
study generalized feedback was given all the tionesélected concepts, while in
the second it was only given initially and then thestem reverted to giving
specialized feedback.

In the second study the effect of the generalizstitback differed between
students, with a strong trend indicating that klsle students failed to cope with
the feedback given. Since this trend was not olesein the first study, it also
suggests that the less able students may havedoadused when the feedback
level changed The problems observed with the second study npghsibly have
been obviated if it was made clear to the studbat the feedback was still
referring to thesame erroy e.qg. if the later feedback included both messagéser
than switching from one to another.

The two studies show that feedback generality haseasurable effect on
learning ability. Between them they also give htpa the general concepts can be
inferred from past student model data, and indithée the level of generality
needs to be tailored to individual students. Thigivates us to continue to explore
how we can best personalize feedback to maximimest performance.
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