
Constraint-Based Knowledge Representation for
Individualized Instruction

Stellan Ohlsson and Antonija Mitrovic

1Department of Psychology, University of Illinois at Chicago
1007 West Harrison Street, Chicago, IL 60607

stellan@uic.edu
2Intelligent Computer Tutoring Group, Computer Science Department

University of Canterbury, Private Bag 4800, Christchurch, New Zealand
tanja@cosc.canterbury.ac.nz

Abstract. Traditional knowledge representations were developed to
encode complete, explicit and executable programs, a goal that makes
them less than ideal for representing the incomplete and partial
knowledge of a student. In this paper, we discuss state constraints, a
type of knowledge unit originally invented to explain how people can
detect and correct their own errors. Constraint-based student modeling
has been implemented in several intelligent tutoring systems (ITS) so
far, and the empirical data verifies that students learn while interacting
with these systems. Furthermore, learning curves are smooth when
plotted in terms of individual constraints, supporting the psychological
appropriateness of the representation. We discuss the differences
between constraints and other representational formats, the advantages
of constraint-based models and the types of domains in which they are
likely to be useful.

1. Introduction

The promise of Artificial Intelligence (AI) is to make artifacts responsive to
human needs and to varying conditions. Thirty years ago, Allen Newell [31]
envisioned an enchanted world in which brakes know how to stop a car on
wet pavement, bridges watch out for the safety of those who cross them,
instruments converse with their users and street lights help people find their
way. The ability of AI-enhanced artifacts to behave conditionally is a source of
magic, if we can only learn to harness it to our purposes.

In the context of education, the purpose of putting AI inside instructional
materials--electronic books, intelligent tutoring systems, training simulations,
etc.--is to make those materials responsive to the individual learner. Learners
vary in amount and kind of prior knowledge, cognitive ability, learning style,
natural pace, working memory capacity and other aspects. Consequently, one
and the same instructional sequence cannot provide optimal learning for all

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35457325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Stellan Ohlsson and Antonija Mitrovic

learners. Educational theorists recognized the value of individualized
instruction decades ago [11], but they had no technology for delivering such
instruction on a massive scale. Today, we do.

In the absence of AI, the only alternative to fixed and predefined
instructional sequences are experiences that are shaped by the learner:
exploratory activities, group discussions, self-directed inquiry and so on.
There is little doubt that open-ended instruction of this sort can engage
students, increase their motivation and support mastery of many subject
matter topics.

However, open-ended instruction also has drawbacks and limits. An
instructional activity that is under the control of the learner might veer away
from the targeted subject matter. The students are likely to learn something,
but the instructor might not be able to steer them towards a particular topic,
making this type of instruction difficult to use in public schools and other
instructional institutions that assume a prespecified curriculum. Also, open-
ended instruction is not appropriate for all types of subject matter. It is most
appropriate in domains where there are no right or wrong answers; less so in,
for example, physics and programming. Furthermore, open-ended instruction
tends to be time consuming, sometimes requiring hours of instruction to teach
a small fraction of a crowded instructional agenda. By asking each learner to
re-discover well-known facts and principles on their own, open-ended
instruction negates the advantages of cultural transmission of knowledge.
Finally, the educational research literature does not contain a wealth of hard
data that confirm the pedagogical efficiency that advocates often claim for
discovery, exploration, free inquiry and related forms of instruction.

Artificial intelligence offers an escape from the dilemma of choosing
between teacher-specified instruction and student-controlled learning. AI
techniques can be used to construct interactive instructional materials that
respond flexibly to the student. The instruction provided by such materials
need not consist of a predefined instructional sequence, nor need it be
entirely under the student’s control. Instead, it provides individualized
guidance on the path to mastery of a specified subject matter.

To date, this potential has primarily been realized with respect to cognitive
skills in well-defined domains. The set of such domains includes many school
topics such as algebra, arithmetic, calculus, geometry, physics and the theory
of electricity [14; 49], but also topics such as formal logic and computer
programming [46]. This is a wide class of worthwhile instructional targets.

The key step in the AI approach to individualized instruction is to equip the
instructional system with formal representations of both the target subject
matter and the learner. The response of the system at each moment in time is
computed on the basis of those representations. This feature differentiates AI-
based systems from other types of computer-based instructional systems.

Although explicit knowledge representation is the source of AI power, it is
also the main bottleneck in system development. Representing the target
subject matter might pose difficult or unsolvable research problems. How to
represent time and space are examples. In general, instructional domains
which blend seamlessly into common sense and which require unrestricted

Constraint-Based Knowledge Representation for Individualized Instruction 3

natural language capabilities are currently beyond the reach of the AI
approach. However, within the large universe of well-defined problem solving
domains, the representational problems can usually be solved.

The harder question is how to represent the student. There are three main
difficulties. First, the student’s knowledge is partially incorrect and partially
correct. Knowledge representation formalisms were developed to represent
correct or expert knowledge. Adapting them to represent incorrect knowledge
is not trivial. Second, the universe of incorrect knowledge is vast, and to
diagnose exactly which incorrect representation of the target domain is
controlling the learner’s behavior is a difficult problem [33, 35, 43]. Finally, the
student’s knowledge, unlike the target subject matter, is a dynamical entity. It
changes in the course of an instructional session -- or so one would hope --
so an AI-based system needs a systematic technique for updating its
representation of the student on line.

Artificial intelligence researchers have invented several knowledge
representations that are by now well understood in a formal sense and
embodied in languages and tools for system development. However, those
knowledge representations were not developed specifically for use in
instructional systems and consequently there is no reason to expect them to
be optimal for that purpose.

But there is no reason to limit educational systems to the traditional
knowledge representations. In past work [35], we proposed a new format for
representing knowledge, based on the notion of a state constraint. In this
paper, we first set the stage for Constraint-Based student Modeling (CBM) by
identifying the central weaknesses in the classical knowledge representations.
Second, we develop the basic ideas behind constraint-based knowledge
representation, and then discuss how constraint-based modeling can be used
in educational systems. Third, we discuss the appropriateness of constraints
as knowledge representation with respect to empirical evaluations performed
on some constraint-based tutors. We end with a general discussion of the
characteristics of the instructional domains in which constraint-based
modeling is likely to be useful.

2. Traditional Knowledge Representations

It is convenient to distinguish between three traditional knowledge
representations: propositions, procedures and rules. Propositional
representations are descendants of formal logic and linguistics. Logic-based
programming languages represent attempts to embed all knowledge within
the concept of propositional knowledge, an approach which has devoted
followers but which has not come to dominate AI work. However, propositions
are fundamental in the sense that they are used to encode declarative
knowledge even in systems that use other means than propositions to
represent procedural knowledge. The system developed by Sleeman, Kelly,
Martinak, Ward and Moore [45] and Sleeman, Hirsch, Ellery and Kim [44] for

4 Stellan Ohlsson and Antonija Mitrovic

high-school algebra illustrates the use of logic programming in student
modeling.

For brevity, we lump functional languages like Lisp--the classical AI
language--together with Pascal and other procedural languages that
represent functions (procedures) as combinations of, or calls on, other
functions (subprocedures). Such procedural representations are particularly
suitable for encoding hierarchical plans or strategies when the ordering of
problem solving steps is crucial for correct performance. Instructional
examples include Buggy and Debuggy, the paradigm-creating systems in the
context of which the question of student modeling was first posed [6, 7].

Other instructional systems are based on rule-based representations.
Such representations consist of a declarative (propositional) knowledge base,
a rule set and an interpreter that executes the rules vis-à-vis the knowledge
base. This approach provides flexibility in execution and is thus particularly
suitable for domains in which the ordering of problem solving steps can vary.
The series of instructional systems built by John R. Anderson, Kenneth
Koedinger, Albert Corbett and their co-workers at Carnegie-Mellon University
illustrate the power of rule-based knowledge representations for delivering
individualized instruction [2, 3, 14].

Although these three types of knowledge representation offer varying
advantages and strengths, they share a common weakness that we refer to
as overspecificity. A knowledge base consisting of Horn clauses, Lisp
functions or production rules is a highly articulate and detailed model of what
a student knows. For example, if a rule-based student model consists of a
hundred rules (a conservative estimate) and each rule consists of ten atomic
expressions (also a conservative estimate), then such a model makes no less
than 1,000 micro-claims about what is in the student’s head.

This level of specificity in the student model cannot be supported by the
empirical data available to an instructional system. Observable problem
solving behavior unfolds at a time scale that is one or two orders of magnitude
larger than the time it takes to execute a primitive procedure or a rule. The
main obstacle to building an instructional system that can infer students’
knowledge on-line is that the behavioral data available to the system cannot
discriminate between the multiple possible models at the level of specificity
required by the traditional AI knowledge representations. This is the main
problem that has limited the application and usefulness of AI to instructional
systems to date.

The second problem associated with traditional knowledge representations
is that they were designed to encode executable programs. However,
executability forces a level of consistency and completeness onto a student
model that is unrealistic, both in the sense that the learner is unlikely to exhibit
that level of consistency and completeness, and in the sense that inferring a
consistent and complete model from student responses to practice problems
is a computationally intractable task. Overspecificity and executability are
closely related. Traditional knowledge representations demand specificity
because they are meant to be executable, and a program cannot be executed
unless it is complete, as novice programmers quickly discover.

Constraint-Based Knowledge Representation for Individualized Instruction 5

The upshot is that instructional AI systems that operate with traditional

knowledge representations create models of students that are
underdetermined by the empirical data and yet fully specified. Techniques for
student modeling can be conceptualized as attempts to deal with this
dilemma. For example, model tracing, the highly successful technique used in
the array of CMU tutors [2, 14], makes only local inferences from a single step
to a single underlying rule and thus side steps the need for executability of the
rule set as a whole. (This move also negates the main reason to be interested
in rule-based representations, namely the potential for flexible execution.)
Alternative approaches to the overspecificity problem include Bayesian
networks which assign and update probabilities to the individual knowledge
units [10, 20, 22] and fuzzy logic [13].

The problem of empirically underdetermined specificity is unproductive
because the level of specificity demanded by the traditional knowledge
representations is not pedagogically motivated. The task of an instructional
system is to map pedagogical situations onto instructional actions. But no
intelligent tutoring system has an infinitely fine grained repertoire of
instructional actions. In the basic case, the ITS has a fixed number of
instructional messages and an instructional action consists of presenting one
of those messages, perhaps with more or fewer details included. In some
cases, the system can also choose which practice problem or exercise to
present next. A few systems can choose to quiz the student instead of
presenting more instruction.

To support pedagogical choices of this sort, the level of specificity
presumed by the traditional knowledge formats is not needed. To decide that
instructional message X is appropriate, the system does not need to know
exactly what knowledge (correct or incorrect) the student has. There is a large
set of cognitive states in which hearing or reading X might be beneficial. To
decide to present message X, an instructional system only needs to know that
the student is in one of those states. To discriminate between knowledge
states at a finer grain of detail does not enhance the pedagogical power of the
system.

In summary, the classical AI knowledge representations are unsuitable for
student modeling because they require specificity and are designed for
executability. These two related features are the main causes of the
intractability of the student modeling problem. Instructional applications of AI
might benefit from a representation that allows pedagogically relevant forms
of abstraction. We next introduce such a representation.

3. Constraint-Based Knowledge Representation

A constraint-based model represents knowledge about a domain as a set of
constraints on correct solutions in that domain. The constraints select, out of
the universe of all possible solutions, the set of correct solutions. More

6 Stellan Ohlsson and Antonija Mitrovic

precisely, they partition the universe of possible solutions into the correct and
the incorrect ones.

We need not assume a formal criterion or definition of correctness.
Constraint-based modeling can be applied to any type of behavior.
Constraints can represent aesthetic or moral judgments as well as, for
example, arithmetic correctness. Indeed, the notion of correctness used in a
given application can be seen as operationally defined by the set of
constraints.

One consequence of partial mastery of a domain is that the learner is
incapable of recognizing some incorrect solutions as incorrect. That is, the
learner makes errors. We can represent such partial mastery of a domain with
an incomplete set of constraints. An incomplete set will not strictly
circumscribe the set of correct solutions, but a larger universe of solutions. A
set of constraints that identifies precisely those solutions that the learner
recognizes or believes to be correct is a model of what the learner knows
about the domain.

Constraint-based knowledge representations have unfamiliar but useful
features. They were invented in response to a deep puzzle in the theory of
skill acquisition. We summarize the theoretical rationale before describing a
formal notation for constraints and its instructional applications.

3.1. Theoretical Rationale

Human beings can catch themselves making errors. For example, in making a
speech error such as saying “left” instead of “right”, the speaker often corrects
his or her error in the next sentence or phrase (“No, wait, I meant ‘right’ “).
See Norman [32], Ohlsson [37] and Reason [42] for further development of
this observation.

The ability to catch one’s own errors is paradoxical. If a person does not
have enough knowledge to recognize an action or discourse as erroneous,
then how can he or she catch the error? But if the person does have enough
knowledge to recognize it as erroneous, then why is that action or discourse
issued in the first place? The ability to catch one’s errors forces a distinction
between generative and evaluative knowledge [32, 37]. On the one hand,
there must be a system (e.g., a rule set) for generating actions that have
some probability of being appropriate, correct or useful in the current context.
When this knowledge base is incomplete or incorrect, errors result. On the
other hand, there must be a separate knowledge base for evaluating the
(outcome of) an action and judging it as correct or incorrect, as the case might
be. These two knowledge bases are independent in the sense that a piece of
knowledge that appears in one does not necessarily also appear in the other.
The interaction between these two knowledge systems is what we
subjectively experience as catching ourselves making an error.

The distinction between generative and evaluative knowledge suggests a
particular hypothesis about how cognitive skills are learned [36, 37, 38, 39,

Constraint-Based Knowledge Representation for Individualized Instruction 7

40]. A learner approaches an unfamiliar task with some set of dispositions,
heuristics, orienting attitudes and strategies acquired in past experience.
These suffice to generate task relevant actions but they do not guarantee that
those actions are correct (or else the task is not unfamiliar after all). The result
is exploratory, tentative behavior (heuristic search; trial and error). Evaluative
knowledge is used to judge the outcomes and consequences of such
behavior.

When the outcomes are found to be inappropriate, useless or incorrect (in
some sense that depends on the task domain), then the response on the part
of the learner is to revise the generative knowledge so as to avoid repeating
that same error in the future. Over time, the information in the evaluative
knowledge is gradually incorporated into the generative knowledge and the
capability of the latter to generate correct actions gradually increases. The
central process in skill acquisition is the migration of structure from the
evaluator to the generator.

This hypothesis only applies in scenarios in which the learner has some
declarative knowledge of what the correct solutions looks like, even before he
or she is able to reliably generate them. This is in accord with intuition as well
as instructional practice. Consider the task of recovering from being lost in
unfamiliar surroundings. If the surroundings are truly unfamiliar, then one
cannot tell, after walking for a while, whether one is closer or further from
one’s goal. Without ability to recognize the correct path, the walker cannot
make an informed judgment about the path he or she is taking. Descriptive
knowledge of what the desired solution looks like is crucial for catching
oneself making errors and correcting wrong choices.

Instructional practice implicitly recognizes this fact. In most instructional
scenarios learners are given verbal descriptions of the desired performance
before working on practice problems, usually in the form of a lecture or review
of a solved practice problem. This is peculiar, because it is well known that a
verbal description of a skill does not confer proficiency in that skill; why then
provide such a description? According to the theory of learning from error the
function of such descriptions is to provide the learner with evaluative
knowledge, i. e., a set of constraints by which he or she can catch his or her
own errors and thereby propel himself or herself down the learning curve.

A detailed statement of the theory of learning from error is available in [37]
and its instructional implications are developed in [38]. Computer simulations
that model learning from error in arithmetic and college chemistry have been
reported in Ohlsson [36], Ohlsson, Ernst and Rees [39] and Ohlsson and
Rees [40].

3.2. A Formalism for State Constraints

Ohlsson and Rees [40] introduced a formal notation for constraints. The unit
of knowledge is called a state constraint. Each state constraint is an ordered
pair

8 Stellan Ohlsson and Antonija Mitrovic

 <C r , C s>,

where Cr, the relevance condition, identifies the class of problem states for

which the constraint is relevant, and Cs, the satisfaction condition, identifies

the class of (relevant) states in which the constraint is satisfied. Each member
of the pair can be thought of as a set of features or properties of a problem
state. Thus, the semantics of a constraint is: if the properties Cr hold, then the
properties Cs have to hold also (or else something is wrong).

The following example is taken from a well-known puzzle problem, the

Tower of Hanoi1:

If disc X is on peg Z and disc Y is on peg Z and X is
on top of Y,

then X is smaller than Y (or else there is an error).

In this example, Cr, the relevance criterion, is the complex predicate disc X
is on peg Z and disc Y is on peg Z and X is on top of Y, and Cs, the
satisfaction criterion, is the predicate X is smaller than Y.

A simple example from the domain of Lisp programming is the following
constraint:

If the code for a Lisp function has N left parenthe ses,

there has to be N right parentheses as well (or els e
there is an error).

In this example, the code has N left parentheses is the relevance criterion
and the code has N right parentheses is the satisfaction criterion. This
example has the unusual feature that the relevance criterion is always
satisfied, so the constraint is always relevant. In practice, this is not typical.
For example, in SQL-Tutor, the system discussed in [30], approximately 10%
of the constraints turn out to be relevant in every problem state.

A state constraint can be implemented in a variety of ways. The most
obvious way is to code each constraint as a pair of patterns, where each
pattern is a list (conjunction or disjunction) of elementary propositions which
may or may not contain variables. In this implementation, each half of a
constraint is analogous to the condition side of a production rule. Alternatively,
state constraints can be implemented as pairs of Lisp predicates. The
important point is that each state constraint is a pair of (possibly complex)
tests on problem states.

Constraints are modular. Unlike procedures, constraints do not interact
directly with each other--a constraint does not pass results to other

1 In the Tower of Hanoi problem, a stack of discs with holes in the center are to be

moved from one peg to another in accordance with a set of rules: Only one disc is to
be moved at a time, a larger disc cannot be on top of a smaller one, and at the end,
the stack of discs should be on a specified peg.

Constraint-Based Knowledge Representation for Individualized Instruction 9

constraints--so they are comparatively easy to implement and debug.
Constraints are also general. They express criteria of correctness that hold
throughout the target domain rather than being specific to a particular
problem. All constraints are conceptualized as being at the same level of
abstraction and they are applied in parallel. No hierarchy or other types of
organization is imposed on the constraint base. However, such a structure
may be beneficial when the instructional system supports metacognitive skills
[12].

We distinguish between two types of constraints. Constraints of the first
type represent syntactic properties of the domain, and are typically simple and
easy to formulate. They refer only to the student’s solution. Constraints of the
second type represent semantic properties of the domain. They operate on
the relation between the student’s solution and the ideal solution. Semantic
constraints are typically more complex than syntactic constraints. Of course,
the distinction between the two kinds of constraints is not strict and some
constraints inspect both the syntax and the semantics of the student’s
solution.

The Tower of Hanoi constraint and the Lisp constraint discussed previously
are examples of syntactic constraints they apply to every problem state in
their corresponding domains. The following constraint from SQL-Tutor is an
example of syntax constraints:

If the student’s query contains a nested SELECT,

Then it must be preceded with a comparison operator or
a predicate (IN, ANY, ALL or EXISTS).

This constraint specifies a particular syntax rule from SQL. An example
semantic constraint from the same domain is:

If the ideal solution contains a condition using th e
BETWEEN predicate, and the student’s query tests
whether the same attribute is less than or equal to a
constant,

There should be another search condition in the
student’s query, checking whether the attribute’s v alue
is greater or equal to another constant, and the tw o
constants should be the same ones used in the BETWE EN
condition in the ideal solution.

This semantic constraint allows the student to use an alternative solution,
different from the ideal solution, by checking that all the necessary conditions
have been specified by the student correctly.

3.3. Using constraints to diagnose students’ soluti ons

As discussed earlier, constraints are used to develop the model of the
domain, and are used to evaluate the student’s solutions. Hence, a system

10 Stellan Ohlsson and Antonija Mitrovic

using this representation has to have an internal representation of the current
problem state. If the state constraints are implemented as patterns, then it is
convenient to represent the problem state as a list (conjunction) of elementary
propositions. (Such a list is analogous to the working memory of a production
system architecture.) Furthermore, the system must update that
representation when the state of the problem changes. The actions or
processes producing the changes need not necessarily be represented but
their effects on the problem state have to be.

Once the problem state and the set of constraints have been encoded, the
computations required to test whether a given problem state is consistent with
a set of constraints are straightforward: compare the state against all
constraints and notice any constraint violations. This is a two step process. In
the first step, all the relevance patterns are tested against the problem state to
identify those constraints that are relevant in that state. In the second step,
the satisfaction patterns of the relevant constraints are tested against the
problem state. If the satisfaction pattern of a relevant constraint matches the
current state, then that constraint is satisfied. If the satisfaction pattern of a
relevant constraint is not satisfied, then that state violates the constraint.

The algorithm needed to test the constraints against the current state
depends on the type of encoding used. If the constraints are pairs of patterns,
then the comparison can be carried out with a standard pattern matching
algorithm, e. g., a RETE network [8]. If the constraints are pairs of Lisp
predicates, no special algorithm is, in principle, needed, although our
experience indicates that the evaluation of a large constraint base might be
too slow to be practical without a pattern-matching component.

The short-term model of the student consists of the list of satisfied and the
list of violated constraints, which enables a constraint-based tutor to generate
feedback to the student. It is also necessary to model long-term knowledge of
the student as well, to support other types of pedagogical decisions (such as
instructional planning). The simplest way of modeling long-term knowledge of
the student is to use overlay models. Such a student model contains the
summary information about the student’s usage of each individual constraint.
Early versions of SQL-Tutor [23, 30] were based on such models. It is also
possible to develop probabilistic student models on the basis of constraint-
based diagnosis of student’s answers [22].

3.4. Using Constraints for Other Pedagogical Tasks

We have emphasized the diagnostic use of a constraint-base because the
constraint idea was originally developed in response to the intractability of the
student modeling problem. However, a constraints can also be used to
support other tasks and functions in an intelligent tutoring system.

WETAS [19] is constraint-based authoring shell that supports the
development of constraint-based tutors by supporting user interface, student
modeling, problem selection and feedback generation. In order to develop a

Constraint-Based Knowledge Representation for Individualized Instruction 11

new tutor, the author needs to provide a description of the domain, the set of
constraints, and the set of problems with their solution. Furthermore, WETAS
extends CBM to provide novel functions, such as correcting the student’s
answer, generating problems and problem solving. Starting from an incorrect
student answer, WETAS uses violated constraints to find out the correct
fragments to be used in the solution [17]. This allows for better feedback to be
given to the student, especially in cases when the student’s problem solving
strategy differs substantially from the one used in the ideal solution. Problem
generation is based on the same idea, but it starts from an empty solution,
rather than from an incorrect solution [18]. Finally, WETAS can generate
problems starting from constraints. The role of the author is just to make sure
that the generated problems (and their solutions) are meaningful, and write
the textual description of the problems.

Besides supporting the acquisition of declarative and procedural
knowledge (i.e. problem-solving skills), CBM may be also used to support
metacognitive skills. Several studies performed on SQL-Tutor [24, 28] and
KERMIT [12] extended CBM to support reflection by opening the student
model. Furthermore, two studies performed on KERMIT [50, 51] and NORMIT
[26, 27] show the CBM may also be used successfully to support students
while explaining their actions, thus relating the problem-solving activities to
their declarative knowledge.

3.5. Overcoming the Overspecificity Problem

How does the state constraint knowledge representation circumvent the
overspecification problem that we have identified as the main weakness in the
traditional knowledge representations?

If the constraints are formulated in a psychologically appropriate way, the
system will evaluate a student’s solutions as correct or incorrect in the same
way as the student would, if he or she knew more knowledge about the
domain. In effect, by containing the constraints that the student would have,
had he or she already attained mastery, the system plays the role of an
amplified evaluative knowledge base. The hope is that access to such a
knowledge base will speed up and augment the transfer of information to the
generative component. This approach is quite different from attempting to
model (rather than amplify) the student’s generative (rather than evaluative)
knowledge, the typical aim of other student modeling techniques.

The state constraint approach circumvents the overspecificity problem by
providing two pedagogically relevant forms of abstraction. First, a constraint
base enables selective evaluation of problem solving steps. Not all problem
solving steps are equally informative or important in diagnosing a student’s
knowledge. For example, in solving a problem in elementary arithmetic or
algebra, the student will almost certainly type an equal sign somewhere in his
or her answer. This step might in and of itself contain minimal information
about the student’s thoughts about the problem. Rather than trying to predict

12 Stellan Ohlsson and Antonija Mitrovic

such a step (i.e., to model the generative knowledge that produced the step),
an instructional system might be better off to wait to see what the student
does next.

No additional mechanism needs to be implemented to allow a constraint-
based system to ignore pedagogically uninformative steps. If the step does
not evoke any constraint (i.e., does not cause any relevance condition to
match that did not match in the previous state), then the step is de facto
ignored. Constraints can be written so as to react only to problem states that
do contain pedagogically significant information about the learner [35].

Second, a constraint base circumvents the overspecificity problem by
allowing an instructional system to operate with classes of pedagogically
equivalent solution paths. The basic purpose of an instructional system is to
map student performances onto instructional actions (e.g., typing out a
particular instructional message). Hence, the system needs to group student
solutions into classes of solutions that require the same instructional response
from the system.

For example, consider the following SQL constraint:

Every SQL query must contain relation names in the FROM
clause.

It does not matter by which sequence of steps the learner arrived at a
query that violates this constraint. All sequences of steps that lead to such a
violation require the same instructional response: Talk to the learner about the
purpose of the FROM clause. A constraint C implicitly defines a bundle of
solution paths, namely all paths that pass through some problem state that
violates C. If C is a pedagogically motivated constraint, all those paths should
require the same instructional response.

In short, the state constraint representation provides two types of
abstraction: selection of informative steps while ignoring others and the ability
to bundle incorrect solution paths into pedagogical equivalence classes. Both
forms of abstraction help circumvent the overspecificity problem. There is no
need to predict or model every problem solving step. The student’s behavior
is understood in terms of which constraints he or she does and does not
violate. The existing constraint-based tutors demonstrate that this type of
model suffices to select instructionally appropriate responses in a variety of
domains such as database querying [23, 29, 30], database design [48],
database normalization [25, 27], software analysis and design [5] and
language instruction [22].

3.6. Discussion

Constraint-based student modeling differs in significant respects from other
approaches. The constraint-base is not a bug library. Each constraint encodes
a piece of correct domain knowledge. To build a constraint base, it is not

Constraint-Based Knowledge Representation for Individualized Instruction 13

necessary to conduct extensive research to identify and explicitly codify
student’s bugs.

Although the constraint base represents correct domain knowledge, it is
nevertheless not an expert or ideal student model. These differences are due
to the fact that the constraints encode the domain knowledge in evaluative
rather than generative form and that the purpose of the constraint-base is to
amplify, rather than simulate, the student’s knowledge.

Unlike intelligent tutoring systems that use the so-called model tracing
technique [2], constraint-based tutors do not follow the student step by step
and do not give feedback after individual problem solving steps. For example,
SQL-Tutor [30] postpones evaluation and feedback until the student submits
his or her solution. This is appropriate, because the order of the steps taken
while formulating an SQL query is not constitutive of a correct or successful
query.

One advantage of constraint-based student modeling over the bug library
technique is that bug libraries do not transfer well between different
populations of students [41]. A constraint-base, on the other hand, encodes
correct domain knowledge, which of course is the same across student
populations.

A second strength of the constraint-based approach is that it can
recognize a correct solution submitted by the student, even if that solution is
different from the ideal solution. If no constraint is violated, then the student’s
solution is correct with respect to the notion of correctness embodied in the
constraint base. Exclusive reliance on this technique has the disadvantage
that if the constraint base is incomplete, some incorrect solutions might
mistakenly be classified as correct. This is pedagogically undesirable. Hence,
some constraint-based tutors use a stronger recognition technique. For
example, in SQL-Tutor there are constraints that compare the student’s
solution to the ideal solution and check the equivalence of the constructs used
to formulate the queries. If there are no constraint violations and the
constructs used to formulate the query are equivalent to those in the ideal
solution, then the student’s solution is accepted as correct. Hence, SQL-Tutor
is not thrown off track by correct but creative or unusual solutions, a common
problem with other student modeling techniques.

4. Empirical Evaluation: The Smooth Curve Criterion

The ultimate proof of an intelligent tutoring system is that the students learn
more effectively while interacting with the system than they do in the context
of other types of instruction. The goals of the empirical study reported here
were to document that students learn while interacting with the system and to
evaluate the appropriateness of the knowledge representation. We begin with
a general discussion of how one determines that a knowledge representation
is appropriate.

14 Stellan Ohlsson and Antonija Mitrovic

A knowledge representation for an intelligent tutoring system is

psychologically appropriate if the units in which the subject matter knowledge
have been encoded are also the units in which that knowledge are encoded in
the student’s head. How does one decide whether this is the case? An
interesting answer has been proposed by the research team led by John R.
Anderson at Carnegie-Mellon University: Appropriate knowledge
representations are indicated by smooth learning curves.

If a performance measure that refers to phenomenological units--e.g., time
to complete a practice problems or correctness of a solution--is plotted as a

function of the amount of practice, also measured in phenomenological2 units
(e.g., number of practice problems), then the result is often a highly irregular
learning curve. This is particularly true for individual learning curves, but large
amounts of variability remains even when the data are averaged across
individuals.

This should not be surprising. In real instructional settings, as opposed to
laboratory experiments, practice problems differ radically in difficulty and in
exactly which knowledge units they require for successful solution. Also, the
students typically have some control over which practice problems they
attempt, so two students who both have solved N practice problems will not
have had the same training history. Hence, there is no reason to expect them
to have acquired the same knowledge.

In the course of the ACT project, it was discovered that if learning data are
plotted in terms of the relevant knowledge units, i.e., the individual production
rules hypothesized to be acquired during practice, then learning curves tend
to be smooth and regular. The relevant measure of learning is not total
solution time or quality of final solution, but the speed or correctness by which
a particular knowledge unit (production rule) is applied. If this measure is
plotted as a function of the amount of practice on that particular knowledge
unit (rule), then learning is a smooth, negatively accelerated curve that closely
approximates a so-called power law ([1] Figs. 2.2, 2.3; [4] Figs. 2.1, 2.2). It is
not the amount of practice on the target skill as a whole but the amount of
practice per knowledge unit that determines the level of mastery (of that unit).
This fact is consistent with the idea that knowledge units are learned one by
one, independently of each other, and that the acquisition of any one unit is a
regular process.

This conclusion implies that we can use the character of a learning curve
as an indicator of the psychological appropriateness of the knowledge
representation in terms of which the curve is plotted. An irregular learning
curve indicates an inappropriate representation, while a regular curve
indicates an appropriate representation. From this point of view, the irregular
learning curves typically obtained when learning data are plotted in terms of

2 The term “phenomenological” is used here in the sense used by physicists, i.e.,

as referring to categories that are directly given in experience, rather than in the sense
used by philosophers, i. e., as referring to a particular epistemology.

Constraint-Based Knowledge Representation for Individualized Instruction 15

practice problems imply that students are not acquiring problem solutions as
indivisible wholes.

To apply the smooth curve criterion, one must have a way of measuring
the acquisition of individual knowledge units and the amount of practice per
knowledge unit. In a tutoring system that uses the model tracing technique,
such measures are readily available because each observed problem solving
step corresponds to one rule in the knowledge representation. Hence,
response latencies and the correctness of the individual steps measures the
mastery of the individual rule, and the number of opportunities to apply a rule
measures the amount of practice of that rule. If model tracing is not used, or if
knowledge is encoded in some other way than in rules, other techniques must
be used.

In SQL-Tutor, knowledge is represented in terms of constraints. If those
constraints represent psychologically appropriate units of knowledge, then
learning should follow a smooth curve when plotted in terms of those
constraints. Because SQL-Tutor does not model generative knowledge, we
cannot use speed of application as the relevant measure of learning.
However, the probability of a constraint violation can be estimated from
records of students’ interactions with the system.

If the constraint base of a tutor is psychologically appropriate--i.e., if the
constraints correspond to units of knowledge that tend to be learned
independently of each other--then we would expect the data to be regular
when plotted in terms of constraints rather than practice problems or solution
attempts. In previous work [30] we evaluated this expectation by randomly
selecting 100 constraints from SQL-Tutor among those constraints that were

relevant at least once during the study3. For each of the selected constraints,
the problem states in which that constraint was relevant were identified in
each student’s record and rank ordered from 1 through R. We refer to these
as occasions of application. For each occasion, it was recorded whether the
relevant constraint was violated or satisfied. This analysis was repeated for
each subject. The probability of violating a constraint decreased in a
negatively accelerated fashion with increasing number of opportunities to
acquire the knowledge embedded in that constraint. The fact that the relation
looks smooth when plotted in terms of the individual constraints, but not when
plotted in terms of practice problems, provides a measure of support for the
appropriateness of the constraint representation and, indirectly, for the theory
of learning from error. Furthermore, the proportion of subjects who do not
violate any constraints increases smoothly and rapidly across occasions of
applicability. Both analyses verify that the students learned something from
their interactions with SQL-Tutor. We have obtained smooth learning curves
in all constraint-based tutors we developed [5, 27, 29, 30, 48, 51, 52].

3 Because different constraints are relevant for different problems, a small group of

constraints were never relevant for the particular practice problems the students
attempted. We excluded those from the analysis.

16 Stellan Ohlsson and Antonija Mitrovic

5. General Discussion

Formal representation of knowledge is the constituting idea of AI. The
ambition to explore the technological potential of such representations makes
AI a bridge between technology and the symbolic traditions in philosophy,
psychology and other cognitive sciences.

In the context of education, this ambition merges easily with the old [11]
but as yet largely unexploited idea of individualized instruction. By embedding
AI in instructional artifacts and materials, we can make those artifacts and
materials responsive to the individual learner.

This agenda, originally posed by John Seely Brown and co-workers at
Xerox PARC in the 1970s, requires solutions to three difficult problems. First,
how is the subject matter to be represented? The short answer is that
someone who understands the domain has to sit down and lay out the
appropriate representation. AI researchers have gathered considerable
experience with this so-called knowledge acquisition problem. For
instructional domains of low to intermediate complexity, this problem is not an
obstacle to progress.

Second, how is the student’s knowledge of the domain-- partially correct
and partially incorrect--to be represented? Third, how is that representation to
be updated on line, in response to student behavior? These two problems are
of a different magnitude and workable solutions have been slow to emerge.

We claim that the intractability of these problems is caused, in part, by the
particular knowledge representations that have been used in intelligent
tutoring systems to date. Horn clauses, Lisp functions and production rules
require complete specificity because they were designed for the
implementation of executable programs. But the information about a student
available to an instructional system cannot support inferences at that level of
specificity. Instead, an instructional system needs to represent a student in
terms of pedagogically motivated equivalence classes of knowledge states.

A knowledge representation for instruction should not be designed with
only technological demands in mind. It is highly likely that an AI-based
instructional system will be the more effective, the higher the psychological
realism of its knowledge representation [34].

The state constraint representation fulfills both the technological and the
psychological requirements. Although each individual state constraint has to
be fully specified to be applied, dealing with student behavior in terms of
constraint violations provides two useful forms of abstraction. First, problem
solving steps that do not trigger constraints are effectively ignored. Second, all
solutions that violate a particular constraint indicate a need to teach the
knowledge embedded in that constraint. The student’s knowledge can be
described in terms of the constraints that he or she does and does not violate
in the course of an instructional session.

This type of description is appropriate, because research on skill
acquisition--particularly people’s ability to detect and correct their own errors--
indicate that learners have two separate knowledge bases, one for generative

Constraint-Based Knowledge Representation for Individualized Instruction 17

knowledge and one for evaluative knowledge. Skill acquisition can be
conceptualized as a process of moving information from the latter to the
former [37]. A constraint-based instructional system functions as an amplified
evaluative knowledge base that feeds additional information into the student’s
natural learning process.

How does one assess the validity of a claim to psychological realism? The
smooth learning curve criterion proposed by John Anderson, Albert Corbett
and Kenneth Koedinger and their co-workers is the only criterion suggested to
date. Irregular learning curves indicate an inappropriate representation, while
regular curves signal an appropriate representation.

The empirical data reported in [5, 16, 18, 21, 22, 26, 27, 29, 30, 47, 48, 51]
show that the constraint-based representation is doing well on this criterion.
When learning is measured in terms of the number of errors per practice
problem, then the data are highly irregular, as one would expect from the fact
that the students had considerable control over which practice problems they
attempted and in which order. However, when learning is measured in terms
of probability of violating a particular constraint, the learning process is
revealed to be highly regular. The number of opportunities to violate a
constraint, and hence to acquire the knowledge encoded in that constraint, is
a strong determinant of the probability of further violations of that constraint.

The state constraint representation contrasts with traditional knowledge
representations. It is not designed to encode executable programs. A set of
state constraints normally cannot accomplish tasks or carry out computations.
Although we use the “if-then” construct in English transcriptions of state
constraint formulas, the state constraint idea cannot be absorbed either into
the material implication of logic-based programming or the rule construct of
production system architectures. A state constraint is a piece of evaluative
knowledge. It is a tool for passing judgment, not for computing new results or
inferring new conclusions.

Although sets of state constraints encode correct domain knowledge, they
have some of the same functions as bug libraries. A constraint violation
provides the same information as a positive match between a theoretical bug
description and a student solution. The set of all possible violations of a
constraint base represents the same universe of behaviors as the set of all
positive matches to a bug library, but the representation is implicit rather than
explicit. Consequently, constraint-based modeling does not require extensive
research to identify and represent the common bugs in a given student
population.

Although conditional branching and pattern matching are familiar ideas in
AI, the bipartite structure of state constraints provide a new twist. The
matching of the satisfaction pattern is conditional on a successful prior match
of the relevance pattern. Nothing like this double conditionality occurs in the
execution of Horn clauses and production rules, but it is the source of the
power of the state constraint representation. A state constraint cannot be
replaced by an unstructured pattern.

The idea of a constraint and the associated processes like constraint
relaxation are, of course, familiar in AI research [9]. However, in the standard

18 Stellan Ohlsson and Antonija Mitrovic

formulation, a constraint is a relation between two variables, such that
specifying the value of one variable restricts the possible values of the other.
In the typical case, the variables refer to quantities and the constraint itself is
an equation linking those quantities [15].

The state constraint idea and the standard notion of a constraint appear
different at first glance, but a closer look reveals that they are related. The
state constraint concept generalizes the common notion of a constraint to
variables that refer to truth values. If certain propositions (namely, those in the
relevance condition) turn out to be true, then that restricts the possible truth
values of some other propositions (namely, those in the satisfaction
condition). Although they are similar at this high level of description,
implementations of the state constraint idea and of the standard constraint
notion have such different flavors that they are better considered distinct
representations in the context of system implementation.

Although we have emphasized the strengths of the state constraint idea
throughout this article, we do not claim that it provides the final solution to the
problem of student modeling and hence to AI-based instruction. On the
contrary, we regard constraint-based modeling as one technique among
others, with its own unique profile of strengths and weaknesses that is likely to
work well in some task domains but not in others. First, constraint-based
modeling is likely to be useful in domains with problem states with complex
internal structures that accumulate detail as problem solving proceeds. In
such domains, student errors typically result in inconsistencies between parts
of problem states and those inconsistencies can be detected by state
constraints.

Second, constraint-based modeling is likely to be advantageous in
domains in which the order of problem solving steps is not crucial for the
correctness of the final solution. In such domains, the sequential information
in a behavioral record is not diagnostic and all diagnosis has to be done on
the basis of the final outcome, a situation that provides a good fit to the state
constraint technique. Formulating database queries and database design are
domains of this sort. Of course, when the sequential information is diagnostic,
then the constraint-based technique can make use of it, as its success in
arithmetic [39, 40] and data normalization [25, 27] shows, but it is not
essential. The articles in this issue provide additional information about the
application of constraint-based tutoring to a diverse set of task domains.

The general lesson of constraint-based modeling is that progress in
embedding AI in instructional artifacts requires the invention of novel
knowledge representations especially designed for this purpose. There is no
reason to limit knowledge representation to the traditional representations, nor
is there any reason to believe that the state constraint representation will
remain the last word. The universe of possible knowledge representations is
large and we have only explored a small fraction of it. Innovative exploration,
rather than ever more rigorous analysis and application of entrenched
techniques is likely to open doors into the enchanted world of adaptive and
helpful artifacts that Allen Newell envisioned two decades ago.

Constraint-Based Knowledge Representation for Individualized Instruction 19

Acknowledgments

The preparation of this article was supported, in part, by Grant No. N00014-97-1-0826
from the Cognitive Science Program of the Office of Naval Research, US Navy, to the
first author, and by research grants U6430 and U6532 from the University of
Canterbury to the second author.

References

1. Anderson, J. R.: Rules of the mind. Hillsdale, NJ: Erlbaum (1993)
2. Anderson, J. R., Boyle, C. F., Corbett, A. T., Lewis, M. W.: Cognitive modeling

and intelligent tutoring. Artificial Intelligence, Vol. 42, 7-49 (1990)
3. Anderson, J. R, Corbett, A. T., Koedinger, K. R., Pelletier, R.: Cognitive tutors:

Lessons learned. Learning Sciences, Vol. 4, No. 2, 167-207 (1995)
4. Anderson, J. R., Lebiere, C.: The atomic components of thought. Mahwah, NJ:

Erlbaum (1998)
5. Baghaei, N., Mitrovic, A., Irwin, W.: A Constraint-Based Tutor for Learning

Object-Oriented Analysis and Design using UML. In: C.K. Looi, D. Jonassen, M.
Ikeda (eds), Proc. Int. Conf. Computers in Education, 11-18 (2005)

6. Brown, J. S., Burton, R. R.: Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, Vol. 2, 155-192 (1978)

7. Burton, R.: Diagnosing bugs in a simple procedural skill. In D. Sleeman & J. S.
Brown (eds.) Intelligent tutoring systems. New York, NY: Academic Press, 17-
183 (1982)

8. Forgy, C. L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, Vol. 19, 17-37 (1982)

9. Freuder, E., Mackworth, A. (eds.): Constraint-based reasoning. Cambridge, MA:
MIT Press (1994)

10. Gentner A., Conati C., VanLehn, K.: Procedural help in Andes: Generating hints
using a Bayesian network student model. In Proc. 15th National Conf. Artificial
Intelligence (AAAI-98), MIT Press, 106-111 (1998)

11. Glaser, R.: Some implications of previous work on learning and individual
differences. In R. Gagne (Ed.), Learning and individual differences. Columbus,
OH: Merrill , 1-18 (1967)

12. Hartley, D., Mitrovic, A.: Supporting learning by opening the student model. In: S.
Cerri, G. Gouarderes and F. Paraguacu (eds.) Proc. 6th Int. Conf on Intelligent
Tutoring Systems, Biarritz, France, LCNS 2363, 2002: 453-462 (2002)

13. Hawkes, L. W., Derry, S. J.: Error diagnosis and fuzzy reasoning techniques for
intelligent tutoring systems. Artificial Intelligence in Education, Vol. 1, 43-56
(1989/90).

14. Koedinger, K. R., Anderson, J. R., Hadley, W. H., Mark, M. A.: Intelligent Tutoring
Goes to School in the Big City. Artificial Intelligence in Education, Vol. 8, 30-43
(1997)

15. Leler, W.: Constraint programming languages. Reading, MA: Addison-Wesley
(1988)

16. Martin, B.: Intelligent Tutoring Systems: The practical implementation of
constraint-based modelling. PhD Thesis, University of Canterbury (2002)

20 Stellan Ohlsson and Antonija Mitrovic

17. Martin, B., Mitrovic, A.: Tailoring Feedback by Correcting Student Answers. In:

G. Gauthier, C. Frasson and K. VanLehn (eds), Proc. ITS’2000, Springer, 383-
392 (2000)

18. Martin, B., Mitrovic, A.: Automatic Problem Generation in Constraint-Based
Tutors. In: S. Cerri, G. Gouarderes and F. Paraguacu (eds.) Proc. 6th Int. Conf on
Intelligent Tutoring Systems ITS 2002, Biarritz, France, LCNS 2363, 388-398
(2002)

19. Martin, B., Mitrovic, A.: Domain Modeling: Art or Science? In: U. Hoppe, F.
Verdejo & J. Kay (ed) Proc. 11th Int. Conference on Artificial Intelligence in
Education, IOS Press, 183-190 (2003)

20. Martin, J., VanLehn, K.: OLAE: Progress toward a multi-activity, Baysian student
modeler. In S. Brna, S. Ohlsson & H. Pain (Eds.), Artificial intelligence in
education: Proceedings of AIED93, Charlottesville, VA: AACE, 410-417 (1993)

21. Mayo, M.: Bayesian Student Modelling and Decision-Theoretic Selection of
Tutorial Actions in Intelligent Tutoring Systems, PhD Thesis, University of
Canterbury (2001)

22. Mayo, M., Mitrovic, A.: Optimising ITS Behaviour with Bayesian Networks and
Decision Theory’. Artificial Intelligence in Education, Vol. 12, No. 2, 124-153
(2001)

23. Mitrovic, A.: SQL-Tutor: a preliminary report. Technical Report No. TR-COSC
08.97. Christchurch, New Zealand: Computer Science Department, University of
Canterbury (1997)

24. Mitrovic, A.: Self-assessment: how good are students at it? In: J. Gilbert, R.
Hubscher, S. Puntambekar (eds) Proc. AIED 2001 Workshop on Assessment
Methods in Web-Based Learning Environments & Adaptive Hypermedia, San
Antonio, 2-8 (2001)

25. Mitrovic, A.: NORMIT, a Web-enabled tutor for database normalization. In
Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson & C.-H. Lee
(Eds.) Proceedings of the Int. Conf. on Computers in Education, ICCE 2002, Los
Alamitos, CA: IEEE Computer Society, 1276-1280 (2002)

26. Mitrovic, A.: Supporting Self-Explanation in a Data Normalization Tutor. In: V.
Aleven, U. Hoppe, J. Kay, R. Mizoguchi, H. Pain, F. Verdejo, K. Yacef (eds)
Supplementary proceedings, AIED 2003, 565-577 (2003)

27. Mitrovic, A.: The Effect of Explaining on Learning: a Case Study with a Data
Normalization Tutor. In: C-K Looi, G. McCalla, B. Bredeweg, J. Breuker (eds)
Proc. Artificial Intelligence in Education, IOS Press, 499-506 (2005)

28. Mitrovic, A., Martin, B.: Evaluating the effects of open student models on
learning. In: P. de Bra, P. Brusilovsky and R. Conejo (eds) Proc. 2nd Int. Conf on
Adaptive Hypermedia and Adaptive Web-based Systems AH 2002, Malaga
Spain, LCNS 2347, 296-305 (2002)

29. Mitrovic, A., Martin, B., Mayo, M.: Using Evaluation to Shape ITS Design: Results
and Experiences with SQL-Tutor. User Modeling and User-Adapted Interaction,
Vol. 12, No. 2-3, 243-279 (2002)

30. Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-Based Tutor for a Database
Language. Artificial Intelligence in Education, Vol. 10, No. 3-4, 238-256 (1999)

31. Newell, A.: Fairytales: Remarks at the inaugural dinner for the U. A. and Helen
Whitaker Professorships. Viewpoint (no. 3). Pittsburgh, PA: Carnegie Mellon
University (1976)

32. Norman, D.: Categorization of action slips. Psychological Review, Vol. 88, 1-15
(1981)

33. Ohlsson, S.: Some principles of intelligent tutoring. Instructional Science, Vol. 14,
293-326 (1986)

Constraint-Based Knowledge Representation for Individualized Instruction 21

34. Ohlsson, S.: System hacking meets learning theory: Reflections on the goals and

standards of research in Artificial Intelligence and education. Artificial Intelligence
in Education, Vol. 2, No. 3, 5-18 (1991)

35. Ohlsson, S.: Constraint-based student modeling. Artificial Intelligence and
Education, Vol. 3, No. 4, 429-447 (1992)

36. Ohlsson, S.: The interaction between knowledge and practice in the acquisition of
cognitive skills. In A. Meyrowitz and S. Chipman (Eds.), Foundations of
knowledge acquisition: Cognitive models of complex learning. Norwell, MA:
Kluwer, 147-208 (1993)

37. Ohlsson, S.: Learning from performance errors. Psychological Review, Vol. 103,
241-262 (1996)

38. Ohlsson, S.: Learning from error and the design of task environments’
Educational Research, Vol. 25, No. 5, 419-448 (1996)

39. Ohlsson, S., Ernst, A., Rees, E.: The cognitive complexity of doing and learning
arithmetic. Research in Mathematics Education, Vol. 23, No. 5, 441-467 (1992)

40. Ohlsson, S., Rees, E.: The function of conceptual understanding in the learning
of arithmetic procedures. Cognition & Instruction, Vol. 8, 103-179 (1991)

41. Payne, S., Squibb, H.: Algebra mal-rules and cognitive accounts of errors’
Cognitive Science, Vol. 14, 445-481 (1990)

42. Reason, J. T.: Cognitive underspecification: Its variety and consequences’ In B.
J. Baars, (Ed.), Experimental slips and human error: Exploring the architecture of
volition. New York, NY: Plenum Press, 71-91 (1992)

43. Self, J. A.: Bypassing the intractable problem of student modeling. In C. Frasson
& G. Gauthier (Eds.), Intelligent tutoring systems: At the crossroads of artificial
intelligence and education. Norwood, NJ: Ablex, 107-123 (1990)

44. Sleeman, D., Hirsch, H., Ellery, I., Kim, I-Y.: Extending domain theories: Two
case studies in student modeling. Machine Learning, Vol. 5, 11-37 (1990)

45. Sleeman, D., Kelly, A. E., Martinak, R., Ward, R. D., Moore, J. L.: Studies of
diagnosis and remediation with high school algebra students. Cognitive Science,
Vol. 13, 551-568 (1989)

46. Soloway, E., Spohrer, J.: Studying the novice programmer. Hillsdale, NJ:
Erlbaum (1989)

47. Suraweera, P.: An Intelligent Teaching System for Database Modelling’ MSc
thesis, University of Canterbury (2001)

48. Suraweera, P., Mitrovic, A.: KERMIT: a Constraint-based Tutor for Database
Modeling. In: S. Cerri, G. Gouarderes and F. Paraguacu (eds.) Proc. 6th Int. Conf
on Intelligent Tutoring Systems ITS 2002, Biarritz, France, Springer-Verlag LCNS
2363, 377-387 (2002)

49. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy,
D., Weinstein, A., Wintersgill, M.: The Andes Physics Tutoring System: Lessons
Learned. Artificial Intelligence in Education, Vol. 15, No. 3, 147-204 (2005)

50. Weerasinghe, A.: Exploring the effects of self-explanation in the context of a
database design tutor. MSc thesis, University of Canterbury (2003)

51. Weerasinghe, A., Mitrovic, A.: 2005, ‘Facilitating Deep Learning through Self-
Explanation in an Open-ended Domain. Knowledge-based and Intelligent
Engineering Systems, IOS Press, Vol. 9, (2006, in print)

52. Zakharov, K., Mitrovic, A., Ohlsson, S.: Feedback Micro-engineering in EER-
Tutor. In: C-K Looi, G. McCalla, B. Bredeweg, J. Breuker (eds) Proc. Artificial
Intelligence in Education, IOS Press, 718-725 (2005)

