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Abstract.  Traditional knowledge representations were developed to 
encode complete, explicit and executable programs, a goal that makes 
them less than ideal for representing the incomplete and partial 
knowledge of a student. In this paper, we discuss state constraints, a 
type of knowledge unit originally invented to explain how people can 
detect and correct their own errors. Constraint-based student modeling 
has been implemented in several intelligent tutoring systems (ITS) so 
far, and the empirical data verifies that students learn while interacting 
with these systems. Furthermore, learning curves are smooth when 
plotted in terms of individual constraints, supporting the psychological 
appropriateness of the representation. We discuss the differences 
between constraints and other representational formats, the advantages 
of constraint-based models and the types of domains in which they are 
likely to be useful. 

 

1. Introduction 

The promise of Artificial Intelligence (AI) is to make artifacts responsive to 
human needs and to varying conditions. Thirty years ago, Allen Newell [31] 
envisioned an enchanted world in which brakes know how to stop a car on 
wet pavement, bridges watch out for the safety of those who cross them, 
instruments converse with their users and street lights help people find their 
way. The ability of AI-enhanced artifacts to behave conditionally is a source of 
magic, if we can only learn to harness it to our purposes. 

In the context of education, the purpose of putting AI inside instructional 
materials--electronic books, intelligent tutoring systems, training simulations, 
etc.--is to make those materials responsive to the individual learner. Learners 
vary in amount and kind of prior knowledge, cognitive ability, learning style, 
natural pace, working memory capacity and other aspects. Consequently, one 
and the same instructional sequence cannot provide optimal learning for all 
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learners. Educational theorists recognized the value of individualized 
instruction decades ago [11], but they had no technology for delivering such 
instruction on a massive scale. Today, we do. 

In the absence of AI, the only alternative to fixed and predefined 
instructional sequences are experiences that are shaped by the learner: 
exploratory activities, group discussions, self-directed inquiry and so on. 
There is little doubt that open-ended instruction of this sort can engage 
students, increase their motivation and support mastery of many subject 
matter topics. 

However, open-ended instruction also has drawbacks and limits. An 
instructional activity that is under the control of the learner might veer away 
from the targeted subject matter. The students are likely to learn something, 
but the instructor might not be able to steer them towards a particular topic, 
making this type of instruction difficult to use in public schools and other 
instructional institutions that assume a prespecified curriculum. Also, open-
ended instruction is not appropriate for all types of subject matter. It is most 
appropriate in domains where there are no right or wrong answers; less so in, 
for example, physics and programming.  Furthermore, open-ended instruction 
tends to be time consuming, sometimes requiring hours of instruction to teach 
a small fraction of a crowded instructional agenda. By asking each learner to 
re-discover well-known facts and principles on their own, open-ended 
instruction negates the advantages of cultural transmission of knowledge. 
Finally, the educational research literature does not contain a wealth of hard 
data that confirm the pedagogical efficiency that advocates often claim for 
discovery, exploration, free inquiry and related forms of instruction. 

Artificial intelligence offers an escape from the dilemma of choosing 
between teacher-specified instruction and student-controlled learning. AI 
techniques can be used to construct interactive instructional materials that 
respond flexibly to the student. The instruction provided by such materials 
need not consist of a predefined instructional sequence, nor need it be 
entirely under the student’s control. Instead, it provides individualized 
guidance on the path to mastery of a specified subject matter. 

To date, this potential has primarily been realized with respect to cognitive 
skills in well-defined domains. The set of such domains includes many school 
topics such as algebra, arithmetic, calculus, geometry, physics and the theory 
of electricity [14; 49], but also topics such as formal logic and computer 
programming [46]. This is a wide class of worthwhile instructional targets. 

The key step in the AI approach to individualized instruction is to equip the 
instructional system with formal representations of both the target subject 
matter and the learner. The response of the system at each moment in time is 
computed on the basis of those representations. This feature differentiates AI-
based systems from other types of computer-based instructional systems. 

Although explicit knowledge representation is the source of AI power, it is 
also the main bottleneck in system development. Representing the target 
subject matter might pose difficult or unsolvable research problems. How to 
represent time and space are examples. In general, instructional domains 
which blend seamlessly into common sense and which require unrestricted 



Constraint-Based Knowledge Representation for Individualized Instruction      3 

 
natural language capabilities are currently beyond the reach of the AI 
approach. However, within the large universe of well-defined problem solving 
domains, the representational problems can usually be solved. 

The harder question is how to represent the student. There are three main 
difficulties. First, the student’s knowledge is partially incorrect and partially 
correct. Knowledge representation formalisms were developed to represent 
correct or expert knowledge. Adapting them to represent incorrect knowledge 
is not trivial. Second, the universe of incorrect knowledge is vast, and to 
diagnose exactly which incorrect representation of the target domain is 
controlling the learner’s behavior is a difficult problem [33, 35, 43]. Finally, the 
student’s knowledge, unlike the target subject matter, is a dynamical entity. It 
changes in the course of an instructional session -- or so one would hope -- 
so an AI-based system needs a systematic technique for updating its 
representation of the student on line. 

Artificial intelligence researchers have invented several knowledge 
representations that are by now well understood in a formal sense and 
embodied in languages and tools for system development. However, those 
knowledge representations were not developed specifically for use in 
instructional systems and consequently there is no reason to expect them to 
be optimal for that purpose. 

But there is no reason to limit educational systems to the traditional 
knowledge representations. In past work [35], we proposed a new format for 
representing knowledge, based on the notion of a state constraint. In this 
paper, we first set the stage for Constraint-Based student Modeling (CBM) by 
identifying the central weaknesses in the classical knowledge representations. 
Second, we develop the basic ideas behind constraint-based knowledge 
representation, and then discuss how constraint-based modeling can be used 
in educational systems. Third, we discuss the appropriateness of constraints 
as knowledge representation with respect to empirical evaluations performed 
on some constraint-based tutors. We end with a general discussion of the 
characteristics of the instructional domains in which constraint-based 
modeling is likely to be useful. 

2. Traditional Knowledge Representations 

It is convenient to distinguish between three traditional knowledge 
representations: propositions, procedures and rules. Propositional 
representations are descendants of formal logic and linguistics. Logic-based 
programming languages represent attempts to embed all knowledge within 
the concept of propositional knowledge, an approach which has devoted 
followers but which has not come to dominate AI work. However, propositions 
are fundamental in the sense that they are used to encode declarative 
knowledge even in systems that use other means than propositions to 
represent procedural knowledge. The system developed by Sleeman, Kelly, 
Martinak, Ward and Moore [45] and Sleeman, Hirsch, Ellery and Kim [44] for 
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high-school algebra illustrates the use of logic programming in student 
modeling. 

For brevity, we lump functional languages like Lisp--the classical AI 
language--together with Pascal and other procedural languages that 
represent functions (procedures) as combinations of, or calls on, other 
functions (subprocedures). Such procedural representations are particularly 
suitable for encoding hierarchical plans or strategies when the ordering of 
problem solving steps is crucial for correct performance. Instructional 
examples include Buggy and Debuggy, the paradigm-creating systems in the 
context of which the question of student modeling was first posed [6, 7]. 

Other instructional systems are based on rule-based representations. 
Such representations consist of a declarative (propositional) knowledge base, 
a rule set and an interpreter that executes the rules vis-à-vis the knowledge 
base. This approach provides flexibility in execution and is thus particularly 
suitable for domains in which the ordering of problem solving steps can vary. 
The series of instructional systems built by John R. Anderson, Kenneth 
Koedinger, Albert Corbett and their co-workers at Carnegie-Mellon University 
illustrate the power of rule-based knowledge representations for delivering 
individualized instruction [2, 3, 14]. 

Although these three types of knowledge representation offer varying 
advantages and strengths, they share a common weakness that we refer to 
as overspecificity. A knowledge base consisting of Horn clauses, Lisp 
functions or production rules is a highly articulate and detailed model of what 
a student knows. For example, if a rule-based student model consists of a 
hundred rules (a conservative estimate) and each rule consists of ten atomic 
expressions (also a conservative estimate), then such a model makes no less 
than 1,000 micro-claims about what is in the student’s head. 

This level of specificity in the student model cannot be supported by the 
empirical data available to an instructional system. Observable problem 
solving behavior unfolds at a time scale that is one or two orders of magnitude 
larger than the time it takes to execute a primitive procedure or a rule. The 
main obstacle to building an instructional system that can infer students’ 
knowledge on-line is that the behavioral data available to the system cannot 
discriminate between the multiple possible models at the level of specificity 
required by the traditional AI knowledge representations. This is the main 
problem that has limited the application and usefulness of AI to instructional 
systems to date. 

The second problem associated with traditional knowledge representations 
is that they were designed to encode executable programs. However, 
executability forces a level of consistency and completeness onto a student 
model that is unrealistic, both in the sense that the learner is unlikely to exhibit 
that level of consistency and completeness, and in the sense that inferring a 
consistent and complete model from student responses to practice problems 
is a computationally intractable task. Overspecificity and executability are 
closely related. Traditional knowledge representations demand specificity 
because they are meant to be executable, and a program cannot be executed 
unless it is complete, as novice programmers quickly discover. 
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The upshot is that instructional AI systems that operate with traditional 

knowledge representations create models of students that are 
underdetermined by the empirical data and yet fully specified. Techniques for 
student modeling can be conceptualized as attempts to deal with this 
dilemma. For example, model tracing, the highly successful technique used in 
the array of CMU tutors [2, 14], makes only local inferences from a single step 
to a single underlying rule and thus side steps the need for executability of the 
rule set as a whole. (This move also negates the main reason to be interested 
in rule-based representations, namely the potential for flexible execution.) 
Alternative approaches to the overspecificity problem include Bayesian 
networks which assign and update probabilities to the individual knowledge 
units [10, 20, 22] and fuzzy logic [13]. 

The problem of empirically underdetermined specificity is unproductive 
because the level of specificity demanded by the traditional knowledge 
representations is not pedagogically motivated. The task of an instructional 
system is to map pedagogical situations onto instructional actions. But no 
intelligent tutoring system has an infinitely fine grained repertoire of 
instructional actions. In the basic case, the ITS has a fixed number of 
instructional messages and an instructional action consists of presenting one 
of those messages, perhaps with more or fewer details included. In some 
cases, the system can also choose which practice problem or exercise to 
present next. A few systems can choose to quiz the student instead of 
presenting more instruction.  

To support pedagogical choices of this sort, the level of specificity 
presumed by the traditional knowledge formats is not needed. To decide that 
instructional message X is appropriate, the system does not need to know 
exactly what knowledge (correct or incorrect) the student has. There is a large 
set of cognitive states in which hearing or reading X might be beneficial. To 
decide to present message X, an instructional system only needs to know that 
the student is in one of those states. To discriminate between knowledge 
states at a finer grain of detail does not enhance the pedagogical power of the 
system.  

In summary, the classical AI knowledge representations are unsuitable for 
student modeling because they require specificity and are designed for 
executability. These two related features are the main causes of the 
intractability of the student modeling problem. Instructional applications of AI 
might benefit from a representation that allows pedagogically relevant forms 
of abstraction. We next introduce such a representation. 

3. Constraint-Based Knowledge Representation 

A constraint-based model represents knowledge about a domain as a set of 
constraints on correct solutions in that domain. The constraints select, out of 
the universe of all possible solutions, the set of correct solutions. More 
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precisely, they partition the universe of possible solutions into the correct and 
the incorrect ones. 

We need not assume a formal criterion or definition of correctness. 
Constraint-based modeling can be applied to any type of behavior. 
Constraints can represent aesthetic or moral judgments as well as, for 
example, arithmetic correctness. Indeed, the notion of correctness used in a 
given application can be seen as operationally defined by the set of 
constraints. 

One consequence of partial mastery of a domain is that the learner is 
incapable of recognizing some incorrect solutions as incorrect. That is, the 
learner makes errors. We can represent such partial mastery of a domain with 
an incomplete set of constraints. An incomplete set will not strictly 
circumscribe the set of correct solutions, but a larger universe of solutions. A 
set of constraints that identifies precisely those solutions that the learner 
recognizes or believes to be correct is a model of what the learner knows 
about the domain.  

Constraint-based knowledge representations have unfamiliar but useful 
features. They were invented in response to a deep puzzle in the theory of 
skill acquisition. We summarize the theoretical rationale before describing a 
formal notation for constraints and its instructional applications. 

3.1. Theoretical Rationale 

Human beings can catch themselves making errors. For example, in making a 
speech error such as saying “left” instead of “right”, the speaker often corrects 
his or her error in the next sentence or phrase (“No, wait, I meant ‘right’ “). 
See Norman [32], Ohlsson [37] and Reason [42] for further development of 
this observation. 

The ability to catch one’s own errors is paradoxical. If a person does not 
have enough knowledge to recognize an action or discourse as erroneous, 
then how can he or she catch the error? But if the person does have enough 
knowledge to recognize it as erroneous, then why is that action or discourse 
issued in the first place? The ability to catch one’s errors forces a distinction 
between generative and evaluative knowledge [32, 37]. On the one hand, 
there must be a system (e.g., a rule set) for generating actions that have 
some probability of being appropriate, correct or useful in the current context. 
When this knowledge base is incomplete or incorrect, errors result. On the 
other hand, there must be a separate knowledge base for evaluating the 
(outcome of) an action and judging it as correct or incorrect, as the case might 
be. These two knowledge bases are independent in the sense that a piece of 
knowledge that appears in one does not necessarily also appear in the other. 
The interaction between these two knowledge systems is what we 
subjectively experience as catching ourselves making an error. 

The distinction between generative and evaluative knowledge suggests a 
particular hypothesis about how cognitive skills are learned [36, 37, 38, 39, 
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40]. A learner approaches an unfamiliar task with some set of dispositions, 
heuristics, orienting attitudes and strategies acquired in past experience. 
These suffice to generate task relevant actions but they do not guarantee that 
those actions are correct (or else the task is not unfamiliar after all). The result 
is exploratory, tentative behavior (heuristic search; trial and error). Evaluative 
knowledge is used to judge the outcomes and consequences of such 
behavior. 

When the outcomes are found to be inappropriate, useless or incorrect (in 
some sense that depends on the task domain), then the response on the part 
of the learner is to revise the generative knowledge so as to avoid repeating 
that same error in the future. Over time, the information in the evaluative 
knowledge is gradually incorporated into the generative knowledge and the 
capability of the latter to generate correct actions gradually increases. The 
central process in skill acquisition is the migration of structure from the 
evaluator to the generator. 

This hypothesis only applies in scenarios in which the learner has some 
declarative knowledge of what the correct solutions looks like, even before he 
or she is able to reliably generate them. This is in accord with intuition as well 
as instructional practice. Consider the task of recovering from being lost in 
unfamiliar surroundings. If the surroundings are truly unfamiliar, then one 
cannot tell, after walking for a while, whether one is closer or further from 
one’s goal. Without ability to recognize the correct path, the walker cannot 
make an informed judgment about the path he or she is taking. Descriptive 
knowledge of what the desired solution looks like is crucial for catching 
oneself making errors and correcting wrong choices. 

Instructional practice implicitly recognizes this fact. In most instructional 
scenarios learners are given verbal descriptions of the desired performance 
before working on practice problems, usually in the form of a lecture or review 
of a solved practice problem. This is peculiar, because it is well known that a 
verbal description of a skill does not confer proficiency in that skill; why then 
provide such a description? According to the theory of learning from error the 
function of such descriptions is to provide the learner with evaluative 
knowledge, i. e., a set of constraints by which he or she can catch his or her 
own errors and thereby propel himself or herself down the learning curve.  

A detailed statement of the theory of learning from error is available in [37] 
and its instructional implications are developed in [38]. Computer simulations 
that model learning from error in arithmetic and college chemistry have been 
reported in Ohlsson [36], Ohlsson, Ernst and Rees [39] and Ohlsson and 
Rees [40]. 

3.2. A Formalism for State Constraints 

Ohlsson and Rees [40] introduced a formal notation for constraints. The unit 
of knowledge is called a state constraint. Each state constraint is an ordered 
pair 
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  <C r , C s>, 

where Cr, the relevance condition, identifies the class of problem states for 

which the constraint is relevant, and Cs, the satisfaction condition, identifies 

the class of (relevant) states in which the constraint is satisfied. Each member 
of the pair can be thought of as a set of features or properties of a problem 
state. Thus, the semantics of a constraint is: if the properties Cr hold, then the 
properties Cs have to hold also (or else something is wrong). 

The following example is taken from a well-known puzzle problem, the 

Tower of Hanoi1: 

If disc X is on peg Z and disc Y is on peg Z and X is 
on top of Y,  

then X is smaller than Y (or else there is an error ). 

In this example, Cr, the relevance criterion, is the complex predicate disc X 
is on peg Z and disc Y is on peg Z and X is on top of Y, and Cs, the 
satisfaction criterion, is the predicate X is smaller than Y. 

A simple example from the domain of Lisp programming is the following 
constraint: 

If the code for a Lisp function has N left parenthe ses, 

there has to be N right parentheses as well (or els e 
there is an error). 

In this example, the code has N left parentheses is the relevance criterion 
and the code has N right parentheses is the satisfaction criterion. This 
example has the unusual feature that the relevance criterion is always 
satisfied, so the constraint is always relevant. In practice, this is not typical. 
For example, in SQL-Tutor, the system discussed in [30], approximately 10% 
of the constraints turn out to be relevant in every problem state. 

A state constraint can be implemented in a variety of ways. The most 
obvious way is to code each constraint as a pair of patterns, where each 
pattern is a list (conjunction or disjunction) of elementary propositions which 
may or may not contain variables. In this implementation, each half of a 
constraint is analogous to the condition side of a production rule. Alternatively, 
state constraints can be implemented as pairs of Lisp predicates. The 
important point is that each state constraint is a pair of (possibly complex) 
tests on problem states. 

Constraints are modular. Unlike procedures, constraints do not interact 
directly with each other--a constraint does not pass results to other 

                                                        
 
1 In the Tower of Hanoi problem, a stack of discs with holes in the center are to be 

moved from one peg to another in accordance with a set of rules: Only one disc is to 
be moved at a time, a larger disc cannot be on top of a smaller one, and at the end, 
the stack of discs should be on a specified peg. 
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constraints--so they are comparatively easy to implement and debug. 
Constraints are also general. They express criteria of correctness that hold 
throughout the target domain rather than being specific to a particular 
problem. All constraints are conceptualized as being at the same level of 
abstraction and they are applied in parallel. No hierarchy or other types of 
organization is imposed on the constraint base. However, such a structure 
may be beneficial when the instructional system supports metacognitive skills 
[12]. 

We distinguish between two types of constraints. Constraints of the first 
type represent syntactic properties of the domain, and are typically simple and 
easy to formulate. They refer only to the student’s solution. Constraints of the 
second type represent semantic properties of the domain. They operate on 
the relation between the student’s solution and the ideal solution. Semantic 
constraints are typically more complex than syntactic constraints. Of course, 
the distinction between the two kinds of constraints is not strict and some 
constraints inspect both the syntax and the semantics of the student’s 
solution. 

The Tower of Hanoi constraint and the Lisp constraint discussed previously 
are examples of syntactic constraints they apply to every problem state in 
their corresponding domains. The following constraint from SQL-Tutor is an 
example of syntax constraints: 

If the student’s query contains a nested SELECT, 

Then it must be preceded with a comparison operator  or 
a predicate (IN, ANY, ALL or EXISTS). 

This constraint specifies a particular syntax rule from SQL. An example 
semantic constraint from the same domain is: 

If the ideal solution contains a condition using th e 
BETWEEN predicate, and the student’s query tests 
whether the same attribute is less than or equal to  a 
constant, 

There should be another search condition in the 
student’s query, checking whether the attribute’s v alue 
is greater or equal to another constant, and the tw o 
constants should be the same ones used in the BETWE EN 
condition in the ideal solution. 

This semantic constraint allows the student to use an alternative solution, 
different from the ideal solution, by checking that all the necessary conditions 
have been specified by the student correctly. 

3.3. Using constraints to diagnose students’ soluti ons 

As discussed earlier, constraints are used to develop the model of the 
domain, and are used to evaluate the student’s solutions. Hence, a system 
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using this representation has to have an internal representation of the current 
problem state. If the state constraints are implemented as patterns, then it is 
convenient to represent the problem state as a list (conjunction) of elementary 
propositions. (Such a list is analogous to the working memory of a production 
system architecture.) Furthermore, the system must update that 
representation when the state of the problem changes. The actions or 
processes producing the changes need not necessarily be represented but 
their effects on the problem state have to be. 

Once the problem state and the set of constraints have been encoded, the 
computations required to test whether a given problem state is consistent with 
a set of constraints are straightforward: compare the state against all 
constraints and notice any constraint violations. This is a two step process. In 
the first step, all the relevance patterns are tested against the problem state to 
identify those constraints that are relevant in that state. In the second step, 
the satisfaction patterns of the relevant constraints are tested against the 
problem state. If the satisfaction pattern of a relevant constraint matches the 
current state, then that constraint is satisfied. If the satisfaction pattern of a 
relevant constraint is not satisfied, then that state violates the constraint.  

The algorithm needed to test the constraints against the current state 
depends on the type of encoding used. If the constraints are pairs of patterns, 
then the comparison can be carried out with a standard pattern matching 
algorithm, e. g., a RETE network [8]. If the constraints are pairs of Lisp 
predicates, no special algorithm is, in principle, needed, although our 
experience indicates that the evaluation of a large constraint base might be 
too slow to be practical without a pattern-matching component. 

The short-term model of the student consists of the list of satisfied and the 
list of violated constraints, which enables a constraint-based tutor to generate 
feedback to the student. It is also necessary to model long-term knowledge of 
the student as well, to support other types of pedagogical decisions (such as 
instructional planning). The simplest way of modeling long-term knowledge of 
the student is to use overlay models. Such a student model contains the 
summary information about the student’s usage of each individual constraint. 
Early versions of SQL-Tutor [23, 30] were based on such models. It is also 
possible to develop probabilistic student models on the basis of constraint-
based diagnosis of student’s answers [22].  

3.4. Using Constraints for Other Pedagogical Tasks 

We have emphasized the diagnostic use of a constraint-base because the 
constraint idea was originally developed in response to the intractability of the 
student modeling problem. However, a constraints can also be used to 
support other tasks and functions in an intelligent tutoring system. 

WETAS [19] is constraint-based authoring shell that supports the 
development of constraint-based tutors by supporting user interface, student 
modeling, problem selection and feedback generation. In order to develop a 
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new tutor, the author needs to provide a description of the domain, the set of 
constraints, and the set of problems with their solution. Furthermore, WETAS 
extends CBM to provide novel functions, such as correcting the student’s 
answer, generating problems and problem solving. Starting from an incorrect 
student answer, WETAS uses violated constraints to find out the correct 
fragments to be used in the solution [17]. This allows for better feedback to be 
given to the student, especially in cases when the student’s problem solving 
strategy differs substantially from the one used in the ideal solution. Problem 
generation is based on the same idea, but it starts from an empty solution, 
rather than from an incorrect solution [18]. Finally, WETAS can generate 
problems starting from constraints. The role of the author is just to make sure 
that the generated problems (and their solutions) are meaningful, and write 
the textual description of the problems. 

Besides supporting the acquisition of declarative and procedural 
knowledge (i.e. problem-solving skills), CBM may be also used to support 
metacognitive skills. Several studies performed on SQL-Tutor [24, 28] and 
KERMIT [12] extended CBM to support reflection by opening the student 
model. Furthermore, two studies performed on KERMIT [50, 51] and NORMIT 
[26, 27] show the CBM may also be used successfully to support students 
while explaining their actions, thus relating the problem-solving activities to 
their declarative knowledge. 

3.5. Overcoming the Overspecificity Problem 

How does the state constraint knowledge representation circumvent the 
overspecification problem that we have identified as the main weakness in the 
traditional knowledge representations? 

If the constraints are formulated in a psychologically appropriate way, the 
system will evaluate a student’s solutions as correct or incorrect in the same 
way as the student would, if he or she knew more knowledge about the 
domain. In effect, by containing the constraints that the student would have, 
had he or she already attained mastery, the system plays the role of an 
amplified evaluative knowledge base. The hope is that access to such a 
knowledge base will speed up and augment the transfer of information to the 
generative component. This approach is quite different from attempting to 
model (rather than amplify) the student’s generative (rather than evaluative) 
knowledge, the typical aim of other student modeling techniques. 

The state constraint approach circumvents the overspecificity problem by 
providing two pedagogically relevant forms of abstraction. First, a constraint 
base enables selective evaluation of problem solving steps. Not all problem 
solving steps are equally informative or important in diagnosing a student’s 
knowledge. For example, in solving a problem in elementary arithmetic or 
algebra, the student will almost certainly type an equal sign somewhere in his 
or her answer. This step might in and of itself contain minimal information 
about the student’s thoughts about the problem. Rather than trying to predict 
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such a step (i.e., to model the generative knowledge that produced the step), 
an instructional system might be better off to wait to see what the student 
does next.  

No additional mechanism needs to be implemented to allow a constraint-
based system to ignore pedagogically uninformative steps.  If the step does 
not evoke any constraint (i.e., does not cause any relevance condition to 
match that did not match in the previous state), then the step is de facto 
ignored. Constraints can be written so as to react only to problem states that 
do contain pedagogically significant information about the learner [35]. 

Second, a constraint base circumvents the overspecificity problem by 
allowing an instructional system to operate with classes of pedagogically 
equivalent solution paths. The basic purpose of an instructional system is to 
map student performances onto instructional actions (e.g., typing out a 
particular instructional message). Hence, the system needs to group student 
solutions into classes of solutions that require the same instructional response 
from the system. 

For example, consider the following SQL constraint: 

Every SQL query must contain relation names in the FROM 
clause. 

It does not matter by which sequence of steps the learner arrived at a 
query that violates this constraint. All sequences of steps that lead to such a 
violation require the same instructional response: Talk to the learner about the 
purpose of the FROM clause. A constraint C implicitly defines a bundle of 
solution paths, namely all paths that pass through some problem state that 
violates C. If C is a pedagogically motivated constraint, all those paths should 
require the same instructional response. 

In short, the state constraint representation provides two types of 
abstraction: selection of informative steps while ignoring others and the ability 
to bundle incorrect solution paths into pedagogical equivalence classes. Both 
forms of abstraction help circumvent the overspecificity problem. There is no 
need to predict or model every problem solving step. The student’s behavior 
is understood in terms of which constraints he or she does and does not 
violate. The existing constraint-based tutors demonstrate that this type of 
model suffices to select instructionally appropriate responses in a variety of 
domains such as database querying [23, 29, 30], database design [48], 
database normalization [25, 27], software analysis and design [5] and 
language instruction [22]. 

3.6. Discussion 

Constraint-based student modeling differs in significant respects from other 
approaches. The constraint-base is not a bug library. Each constraint encodes 
a piece of correct domain knowledge. To build a constraint base, it is not 
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necessary to conduct extensive research to identify and explicitly codify 
student’s bugs.  

Although the constraint base represents correct domain knowledge, it is 
nevertheless not an expert or ideal student model. These differences are due 
to the fact that the constraints encode the domain knowledge in evaluative 
rather than generative form and that the purpose of the constraint-base is to 
amplify, rather than simulate, the student’s knowledge. 

Unlike intelligent tutoring systems that use the so-called model tracing 
technique [2], constraint-based tutors do not follow the student step by step 
and do not give feedback after individual problem solving steps. For example, 
SQL-Tutor [30] postpones evaluation and feedback until the student submits 
his or her solution. This is appropriate, because the order of the steps taken 
while formulating an SQL query is not constitutive of a correct or successful 
query. 

One advantage of constraint-based student modeling over the bug library 
technique is that bug libraries do not transfer well between different 
populations of students [41]. A constraint-base, on the other hand, encodes 
correct domain knowledge, which of course is the same across student 
populations. 

A second strength of the constraint-based approach is that it can 
recognize a correct solution submitted by the student, even if that solution is 
different from the ideal solution. If no constraint is violated, then the student’s 
solution is correct with respect to the notion of correctness embodied in the 
constraint base. Exclusive reliance on this technique has the disadvantage 
that if the constraint base is incomplete, some incorrect solutions might 
mistakenly be classified as correct. This is pedagogically undesirable. Hence, 
some constraint-based tutors use a stronger recognition technique. For 
example, in SQL-Tutor there are constraints that compare the student’s 
solution to the ideal solution and check the equivalence of the constructs used 
to formulate the queries. If there are no constraint violations and the 
constructs used to formulate the query are equivalent to those in the ideal 
solution, then the student’s solution is accepted as correct. Hence, SQL-Tutor 
is not thrown off track by correct but creative or unusual solutions, a common 
problem with other student modeling techniques. 

4. Empirical Evaluation: The Smooth Curve Criterion  

The ultimate proof of an intelligent tutoring system is that the students learn 
more effectively while interacting with the system than they do in the context 
of other types of instruction. The goals of the empirical study reported here 
were to document that students learn while interacting with the system and to 
evaluate the appropriateness of the knowledge representation. We begin with 
a general discussion of how one determines that a knowledge representation 
is appropriate. 
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A knowledge representation for an intelligent tutoring system is 

psychologically appropriate if the units in which the subject matter knowledge 
have been encoded are also the units in which that knowledge are encoded in 
the student’s head. How does one decide whether this is the case? An 
interesting answer has been proposed by the research team led by John R. 
Anderson at Carnegie-Mellon University: Appropriate knowledge 
representations are indicated by smooth learning curves. 

If a performance measure that refers to phenomenological units--e.g., time 
to complete a practice problems or correctness of a solution--is plotted as a 

function of the amount of practice, also measured in phenomenological2 units 
(e.g., number of practice problems), then the result is often a highly irregular 
learning curve. This is particularly true for individual learning curves, but large 
amounts of variability remains even when the data are averaged across 
individuals.  

This should not be surprising. In real instructional settings, as opposed to 
laboratory experiments, practice problems differ radically in difficulty and in 
exactly which knowledge units they require for successful solution. Also, the 
students typically have some control over which practice problems they 
attempt, so two students who both have solved N practice problems will not 
have had the same training history. Hence, there is no reason to expect them 
to have acquired the same knowledge. 

In the course of the ACT project, it was discovered that if learning data are 
plotted in terms of the relevant knowledge units, i.e., the individual production 
rules hypothesized to be acquired during practice, then learning curves tend 
to be smooth and regular. The relevant measure of learning is not total 
solution time or quality of final solution, but the speed or correctness by which 
a particular knowledge unit (production rule) is applied. If this measure is 
plotted as a function of the amount of practice on that particular knowledge 
unit (rule), then learning is a smooth, negatively accelerated curve that closely 
approximates a so-called power law ([1] Figs. 2.2, 2.3; [4] Figs. 2.1, 2.2). It is 
not the amount of practice on the target skill as a whole but the amount of 
practice per knowledge unit that determines the level of mastery (of that unit). 
This fact is consistent with the idea that knowledge units are learned one by 
one, independently of each other, and that the acquisition of any one unit is a 
regular process. 

This conclusion implies that we can use the character of a learning curve 
as an indicator of the psychological appropriateness of the knowledge 
representation in terms of which the curve is plotted. An irregular learning 
curve indicates an inappropriate representation, while a regular curve 
indicates an appropriate representation. From this point of view, the irregular 
learning curves typically obtained when learning data are plotted in terms of 

                                                        
 
2 The term “phenomenological” is used here in the sense used by physicists, i.e., 

as referring to categories that are directly given in experience, rather than in the sense 
used by philosophers, i. e., as referring to a particular epistemology. 
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practice problems imply that students are not acquiring problem solutions as 
indivisible wholes. 

To apply the smooth curve criterion, one must have a way of measuring 
the acquisition of individual knowledge units and the amount of practice per 
knowledge unit. In a tutoring system that uses the model tracing technique, 
such measures are readily available because each observed problem solving 
step corresponds to one rule in the knowledge representation. Hence, 
response latencies and the correctness of the individual steps measures the 
mastery of the individual rule, and the number of opportunities to apply a rule 
measures the amount of practice of that rule. If model tracing is not used, or if 
knowledge is encoded in some other way than in rules, other techniques must 
be used. 

In SQL-Tutor, knowledge is represented in terms of constraints. If those 
constraints represent psychologically appropriate units of knowledge, then 
learning should follow a smooth curve when plotted in terms of those 
constraints. Because SQL-Tutor does not model generative knowledge, we 
cannot use speed of application as the relevant measure of learning. 
However, the probability of a constraint violation can be estimated from 
records of students’ interactions with the system.  

If the constraint base of a tutor is psychologically appropriate--i.e., if the 
constraints correspond to units of knowledge that tend to be learned 
independently of each other--then we would expect the data to be regular 
when plotted in terms of constraints rather than practice problems or solution 
attempts. In previous work [30] we evaluated this expectation by randomly 
selecting 100 constraints from SQL-Tutor among those constraints that were 

relevant at least once during the study3. For each of the selected constraints, 
the problem states in which that constraint was relevant were identified in 
each student’s record and rank ordered from 1 through R. We refer to these 
as occasions of application. For each occasion, it was recorded whether the 
relevant constraint was violated or satisfied. This analysis was repeated for 
each subject. The probability of violating a constraint decreased in a 
negatively accelerated fashion with increasing number of opportunities to 
acquire the knowledge embedded in that constraint. The fact that the relation 
looks smooth when plotted in terms of the individual constraints, but not when 
plotted in terms of practice problems, provides a measure of support for the 
appropriateness of the constraint representation and, indirectly, for the theory 
of learning from error. Furthermore, the proportion of subjects who do not 
violate any constraints increases smoothly and rapidly across occasions of 
applicability. Both analyses verify that the students learned something from 
their interactions with SQL-Tutor. We have obtained smooth learning curves 
in all constraint-based tutors we developed [5, 27, 29, 30, 48, 51, 52].  

                                                        
 
3 Because different constraints are relevant for different problems, a small group of 

constraints were never relevant for the particular practice problems the students 
attempted. We excluded those from the analysis. 
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5. General Discussion 

Formal representation of knowledge is the constituting idea of AI. The 
ambition to explore the technological potential of such representations makes 
AI a bridge between technology and the symbolic traditions in philosophy, 
psychology and other cognitive sciences. 

In the context of education, this ambition merges easily with the old [11] 
but as yet largely unexploited idea of individualized instruction. By embedding 
AI in instructional artifacts and materials, we can make those artifacts and 
materials responsive to the individual learner.  

This agenda, originally posed by John Seely Brown and co-workers at 
Xerox PARC in the 1970s, requires solutions to three difficult problems. First, 
how is the subject matter to be represented? The short answer is that 
someone who understands the domain has to sit down and lay out the 
appropriate representation. AI researchers have gathered considerable 
experience with this so-called knowledge acquisition problem. For 
instructional domains of low to intermediate complexity, this problem is not an 
obstacle to progress.  

Second, how is the student’s knowledge of the domain-- partially correct 
and partially incorrect--to be represented? Third, how is that representation to 
be updated on line, in response to student behavior? These two problems are 
of a different magnitude and workable solutions have been slow to emerge. 

We claim that the intractability of these problems is caused, in part, by the 
particular knowledge representations that have been used in intelligent 
tutoring systems to date. Horn clauses, Lisp functions and production rules 
require complete specificity because they were designed for the 
implementation of executable programs. But the information about a student 
available to an instructional system cannot support inferences at that level of 
specificity. Instead, an instructional system needs to represent a student in 
terms of pedagogically motivated equivalence classes of knowledge states. 

A knowledge representation for instruction should not be designed with 
only technological demands in mind. It is highly likely that an AI-based 
instructional system will be the more effective, the higher the psychological 
realism of its knowledge representation [34]. 

The state constraint representation fulfills both the technological and the 
psychological requirements. Although each individual state constraint has to 
be fully specified to be applied, dealing with student behavior in terms of 
constraint violations provides two useful forms of abstraction. First, problem 
solving steps that do not trigger constraints are effectively ignored. Second, all 
solutions that violate a particular constraint indicate a need to teach the 
knowledge embedded in that constraint. The student’s knowledge can be 
described in terms of the constraints that he or she does and does not violate 
in the course of an instructional session. 

This type of description is appropriate, because research on skill 
acquisition--particularly people’s ability to detect and correct their own errors--
indicate that learners have two separate knowledge bases, one for generative 
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knowledge and one for evaluative knowledge. Skill acquisition can be 
conceptualized as a process of moving information from the latter to the 
former [37]. A constraint-based instructional system functions as an amplified 
evaluative knowledge base that feeds additional information into the student’s 
natural learning process. 

How does one assess the validity of a claim to psychological realism? The 
smooth learning curve criterion proposed by John Anderson, Albert Corbett 
and Kenneth Koedinger and their co-workers is the only criterion suggested to 
date. Irregular learning curves indicate an inappropriate representation, while 
regular curves signal an appropriate representation. 

The empirical data reported in [5, 16, 18, 21, 22, 26, 27, 29, 30, 47, 48, 51] 
show that the constraint-based representation is doing well on this criterion. 
When learning is measured in terms of the number of errors per practice 
problem, then the data are highly irregular, as one would expect from the fact 
that the students had considerable control over which practice problems they 
attempted and in which order. However, when learning is measured in terms 
of probability of violating a particular constraint, the learning process is 
revealed to be highly regular. The number of opportunities to violate a 
constraint, and hence to acquire the knowledge encoded in that constraint, is 
a strong determinant of the probability of further violations of that constraint. 

The state constraint representation contrasts with traditional knowledge 
representations. It is not designed to encode executable programs. A set of 
state constraints normally cannot accomplish tasks or carry out computations. 
Although we use the “if-then” construct in English transcriptions of state 
constraint formulas, the state constraint idea cannot be absorbed either into 
the material implication of logic-based programming or the rule construct of 
production system architectures. A state constraint is a piece of evaluative 
knowledge. It is a tool for passing judgment, not for computing new results or 
inferring new conclusions. 

Although sets of state constraints encode correct domain knowledge, they 
have some of the same functions as bug libraries. A constraint violation 
provides the same information as a positive match between a theoretical bug 
description and a student solution. The set of all possible violations of a 
constraint base represents the same universe of behaviors as the set of all 
positive matches to a bug library, but the representation is implicit rather than 
explicit. Consequently, constraint-based modeling does not require extensive 
research to identify and represent the common bugs in a given student 
population. 

Although conditional branching and pattern matching are familiar ideas in 
AI, the bipartite structure of state constraints provide a new twist. The 
matching of the satisfaction pattern is conditional on a successful prior match 
of the relevance pattern. Nothing like this double conditionality occurs in the 
execution of Horn clauses and production rules, but it is the source of the 
power of the state constraint representation. A state constraint cannot be 
replaced by an unstructured pattern. 

The idea of a constraint and the associated processes like constraint 
relaxation are, of course, familiar in AI research [9]. However, in the standard 
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formulation, a constraint is a relation between two variables, such that 
specifying the value of one variable restricts the possible values of the other. 
In the typical case, the variables refer to quantities and the constraint itself is 
an equation linking those quantities [15]. 

The state constraint idea and the standard notion of a constraint appear 
different at first glance, but a closer look reveals that they are related. The 
state constraint concept generalizes the common notion of a constraint to 
variables that refer to truth values. If certain propositions (namely, those in the 
relevance condition) turn out to be true, then that restricts the possible truth 
values of some other propositions (namely, those in the satisfaction 
condition). Although they are similar at this high level of description, 
implementations of the state constraint idea and of the standard constraint 
notion have such different flavors that they are better considered distinct 
representations in the context of system implementation. 

Although we have emphasized the strengths of the state constraint idea 
throughout this article, we do not claim that it provides the final solution to the 
problem of student modeling and hence to AI-based instruction. On the 
contrary, we regard constraint-based modeling as one technique among 
others, with its own unique profile of strengths and weaknesses that is likely to 
work well in some task domains but not in others. First, constraint-based 
modeling is likely to be useful in domains with problem states with complex 
internal structures that accumulate detail as problem solving proceeds. In 
such domains, student errors typically result in inconsistencies between parts 
of problem states and those inconsistencies can be detected by state 
constraints. 

Second, constraint-based modeling is likely to be advantageous in 
domains in which the order of problem solving steps is not crucial for the 
correctness of the final solution. In such domains, the sequential information 
in a behavioral record is not diagnostic and all diagnosis has to be done on 
the basis of the final outcome, a situation that provides a good fit to the state 
constraint technique. Formulating database queries and database design are 
domains of this sort. Of course, when the sequential information is diagnostic, 
then the constraint-based technique can make use of it, as its success in 
arithmetic [39, 40] and data normalization [25, 27] shows, but it is not 
essential. The articles in this issue provide additional information about the 
application of constraint-based tutoring to a diverse set of task domains. 

The general lesson of constraint-based modeling is that progress in 
embedding AI in instructional artifacts requires the invention of novel 
knowledge representations especially designed for this purpose. There is no 
reason to limit knowledge representation to the traditional representations, nor 
is there any reason to believe that the state constraint representation will 
remain the last word. The universe of possible knowledge representations is 
large and we have only explored a small fraction of it. Innovative exploration, 
rather than ever more rigorous analysis and application of entrenched 
techniques is likely to open doors into the enchanted world of adaptive and 
helpful artifacts that Allen Newell envisioned two decades ago. 
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