
Integral-Based Identification of
Patient Specific Parameters for a

Minimal Cardiac Model

C. E. Hann1, J. G. Chase2, G. M. Shaw3

Department of Mechanical Engineering

University of Canterbury

Private Bag 4800

Christchurch

New Zealand

Email: Chris.Hann@canterbury.ac.nz

1Research Associate, New Zealand Science and Technology Postdoctoral Fellow,
Dept. of Mech. Eng

2Assoc. Prof./Reader, Dept of Mech. Eng
3Consultant, Christchurch Hospital Dept of Intensive Care Medicine,
Christchurch, New Zealand

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35457316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

A minimal cardiac model has been developed which accurately captures

the essential dynamics of the cardiovascular system (CVS). However, identi-

fying patient specific parameters with the limited measurements often avail-

able, hinders the clinical application of the model for diagnosis and therapy

selection. This paper presents an integral based parameter identification

method for fast, accurate identification of patient specific parameters using

limited measured data. The integral method turns a previously non-linear

and non-convex optimization problem into a linear and convex identification

problem.

The model includes ventricular interaction and physiological valve dy-

namics. A healthy human state and two disease states, Valvular Stenosis

and Pulmonary Embolism, are used to test the method. Parameters for the

healthy and disease states are accurately identified using only discretized

flows into and out of the two cardiac chambers, the minimum and maxi-

mum volumes of the left and right ventricles, and the pressure waveforms

through the aorta and pulmonary artery. These input values can be readily

obtained non-invasively using echo-cardiography and ultra-sound, or inva-

sively via catheters that are often used in Intensive Care.

The method enables rapid identification of model parameters to match

a particular patient condition in clinical real time (3-5 minutes) to within

a mean value of 4 − 8% in the presence of 5 − 15% uniformly distributed

measurement noise. The specific changes made to simulate each disease state

are correctly identified in each case to within 5% without false identification
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of any other patient specific parameters. Clinically, the resulting patient

specific model can then be used to assist medical staff in understanding,

diagnosis and treatment selection.

1 Introduction

Optimizing haemodynamics in the critically ill is an important task for in-

tensive care staff who must filter and integrate a diverse range of information

about a patient’s circulation to provide the best care. Often this information

is time-varying, incomplete and/or confusing leaving medical professionals

to rely on their experience and intuition to identify and treat a patient’s

condition. A patient specific model enables therapeutic choices to be tested

and, with patient specific parameter identification, can aid diagnosis of subtle

haemodynamic behaviors, enabling better, more consistent care.

A minimal model developed by Smith et al [1; 2; 3], has been shown to

provide magnitudes and trends in agreement with existing data for a variety

of physiologically verified test cases and disease states in CVS function [2; 3].

This model uses a minimal number of parameters and equations where other

models in the literature are more complex [1; 3]. To use this model to

assist medical staff in diagnosis and treatment, a fast, accurate method for

identifying patient specific parameters is required.

Ideally, the means of identifying the parameters should be convex to avoid

finding false solutions. However, the dynamics of this model do not lend

themselves to a convex problem [3]. The most commonly used method for

identifying parameters in a physiological model described by differential equa-
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tions is non-linear regression [4]. This method, as with any gradient based

optimization, involves solving the differential equations each time the pa-

rameters are updated. The problem with this approach is that even if the

differential equation is linear in the parameters the numerical (or analytical)

solution will, in general, be non-linear in the parameters. Thus, the optimiza-

tion is non-linear and there is no guarantee of finding the correct solution.

In addition, the numerical solution procedure can be very computationally

intense, especially if long periods of data are being fit [5; 6]. The cardiac

model in this research needs to be run each time for many heart beats to

ensure a steady state solution is obtained so that accurate gradients can be

found [3]. This latter requirement severely limits the number of optimization

iterations available to find a solution in a clinically useful time period.

In this paper, the parameter identification optimization is formulated in

terms of integrals, which enables a set of linear equations in the parameters

to be created. This approach leads to a unique linear least squares solution

so the optimization is convex and computationally fast. In addition, the

differential equations are not required to be solved, which significantly further

reduces the computation required. As a result, the computations required

can be readily performed on a standard PC in 0-3 minutes, a clinically useful

time period.

Equally importantly, for this research, the measured output data satisfies

the criteria that it is either readily or reasonably available in the Intensive

Care Unit. Hence, the methods developed can be directly applied clinically

without excessive computational or measurement requirements.
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2 Model and Methodology

2.1 Single elastic chamber

The differential equations for the single elastic chamber shown in Figure 1

with inertia and upstream and downstream pressures P1 and P3, are defined

[1]:

V̇ = Q1 −Q2 (1)

Q̇1 =
P1 − P2 −Q1R1

L1

(2)

Q̇2 =
P2 − P3 −Q2R2

L2

(3)

where Q1 and Q2 are the flows in and out, L1 and L2 are inertances of the

blood, R1 and R2 are resistances. The driving pressure in the chamber is

defined:

P2 = e(t)Ees(V − Vd) + (1− e(t))P0(e
λ(V−V0) − 1), (4)

e(t) = e−80(t−0.375)2 (5)

where Ees is elastance, Vd is volume at zero pressure, e(t) is a driving function

that simulates ventricular contraction and P0, λ, and V0 define gradient,

curvature and volume at zero pressure of the EDPVR curve in the cardiac

cycle shown in Figure 2 [1].

Equations (1) and (2) are solved when Q1 > 0, during the filling stage,

and Equations (1) and (3) are solved when Q2 > 0, during the ejection stage.

This model has an open on pressure, close on flow valve law as shown in

Figure 2 [2; 3]. Figure 2 shows the states used for each portion of the cardiac

cycle.
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2.2 Integral method and Full model

For the full CVS model shown in Figure 3 flows into and out of the left and

right ventricles are as described for the single chamber in Equations (2)-(4),

and the systemic and pulmonary flows are defined using Poiseuille’s equation

[3; 7; 8],

Qsys =
Pao − Pvc

Rsys

(6)

Qpul =
Ppa − Ppu

Rpul

(7)

For this research, it is assumed that

• the flow profiles in the cardiac chambers

• the minimum and maximum volumes of the left and right ventricles

• the pressure waveforms through the aorta and pulmonary artery

can be measured using echo-cardiography or ultra-sound, (e.g. [9]-[17]).

These assumptions represent a use of limited data to identify the full model.

The volume in the left and right ventricles are described, using Figure 3, by

the differential equations:

V̇lv = Qmt −Qav (8)

V̇rv = Qtc −Qpv. (9)

For the left ventricle, integrating Equation (8) from te to t during ejection

and from tf to t during filling gives:

Vlv(t) = Vlv(te)−
∫ t

te

Qavdt, te ≤ t ≤ tf

= Vlv(tf ) +

∫ t

tf

Qmtdt, tf ≤ t ≤ te + τ (10)
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where, as illustrated in Figure 2:

te ≡ beginning of ejection stage (11)

tf ≡ beginning of filling stage (12)

τ ≡ period of heart beat (13)

Thus,

• Vlv(te) = Vlv,max ≡ maximum volume of the left ventricle

• Vlv(tf ) = Vlv,min ≡ minimum volume of the left ventricle

The right ventricle can be treated similarly.

The differential equations describing the flows through the aortic valve

and mitral valve on either side of the left ventricle can be written for the full

model [1]-[3]:

LavQ̇av = Plv − Pao −RavQav (14)

LmtQ̇mt = Ppu − Plv −RmtQmt (15)

Plv = Plvf + Pperi (16)

Plvf = e(t)Ees,lvfVlvf + (1− e(t))P0,lvf(e
λlvfVlvf − 1) (17)

Vlvf = Vlv − Vspt (18)

Pperi = Ppcd + Pth (19)

Ppcd = P0,pcd(e
λpcd(Vpcd−V0,pcd) − 1) (20)
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Vpcd = Vlv + Vrv (21)

Pao = EaoVao (22)

Ppu = EpuVpu + Pth (23)

V̇ao = Qav −Qsys (24)

V̇pu = Qpul −Qmt (25)

where Ej denotes the jth chamber elastance in Figure 3, Qsys and Qpul are

given by Equations (6) and (7), and the other variables are defined in Figure

3. The pressures in the pulmonary artery (Ppu) and vena cava (Pvc) chambers

in Figure 3 are defined:

Pvc = EvcVvc (26)

Ppa = EpaVpa + Pth (27)

2.3 Integral equations for the full model

Equations (14)-(25) can now be reformulated in terms of integrals. For fixed

values of generic parameters P0,pcd, λpcd, Pth and V0,pcd, Pperi is completely

determined by the volume profiles Vlv(t) given by Equation (10) and the

similar equation for Vrv(t). The rest of this section develops the integral

equations for the system identification problem for the left ventricle, and the

aortic (ao) and pulmonary (pu) chambers in Figure 3. The exactly same

approach can be applied to the upper half of the model.
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Integrating Equations (24) and (25) from 0 to t gives:

Vao = Vao(0) +

∫ t

0

(Qav −Qsys)dt (28)

Vpu = Vpu(0) +

∫ t

0

(Qpul −Qmt)dt (29)

=⇒ Pao = Pao0 + Eao

∫ t

0

(Qav −Qsys)dt (30)

Ppu = Ppu0 + Epu

∫ t

0

(Qpul −Qmt)dt + Pth (31)

where the only unknowns are Eao, Epu, Ppu, Vao, Vpu, Vao(0), Vpu(0), Pao0 and

Ppu0, assuming Qav, Qmt and Pao are measured, Pth is given and Qsys and

Qpul are determined independently to this formulation as described later.

The terms Pao0 and Pao0 are defined:

Pao0 = EaoVao(0) (32)

Ppu0 = EpuVpu(0). (33)

In practice, given Eao and Epu, Vpu(t0) and Vao(t0) can be determined only

approximately using Equations (32) and (33), due to noise in the measure-

ments. Therefore, Pao0 and Ppu0 are treated as extra unknown parameters.

The flows Qsys and Qpul and the parameters Eao, Epa, Epu, Evc, Rsys and Rpul

can then be determined from the measured wave forms of Pao and Ppa, and

the flows in the left and right ventricle chambers.

Substituting Equations (16), (17), (30) and (31) into Equations (14) and

(15) gives equations with the measured Qav and Qmt values on the left hand
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right hand sides.

LavQ̇av = Ees,lvf e(t)Vlvf + P0,lvf(1− e(t))(eλlvfVlvf − 1) + Pperi

− Pao0 − Eao

∫ t

0

(Qav −Qsys)dt−RavQav (34)

LmtQ̇mt = Ppu0 + Epu

∫ t

0

(Qpul −Qmt)dt + Pth − Pperi

− Ees,lvf e(t)Vlvf − P0,lvf(1− e(t))(eλlvfVlvf − 1) (35)

Integrating Equation (34) from te to T yields equations with measured values

and unknowns on the left and right hand sides.

Lav(Qav(T )−Qav(te)) = Ees,lvf

∫ T

te

eVlvfdT + P0,lvf

∫ T

te

(1− e)(eλlvfVlvf − 1)dT

+
∫ T

te

PperidT − Pao0(T − te)

− Eao

∫ T

te

(∫ t

0
(Qav −Qsys)dt

)
dT −Rav(Vlv(te)− Vlv(T ))

(36)

where T ∈ [te, te + τe], and where the terms inside the integrals (Qav, Qsys,

Vlvf ,Pperi) are measured or reasonably estimated, as discussed previously.

Similarly, integrating Equation (35) from tf to T ′ yields:

Lmt(Qmt(T ′)−Qmt(tf )) = Ppu0(T ′ − tf ) + Epu

∫ T ′

tf

(∫ t

0
(Qpul −Qmt)dt

)
dT ′

+
∫ T ′

tf

(Pth − Pperi)− Ees,lvf

∫ T ′

tf

eVlvfdT ′

− P0,lvf

∫ T ′

tf

(1− e)(eλlvfVlvf − 1)dT ′ −Rmt(Vlv(T ′)− Vlv(tf ))

(37)

where T ′ ∈ [tf , tf + τf ], and τe and τf are the times for ejection and filling of

the left ventricle.
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Note that in practice the integral sign corresponds to numerical integra-

tion, which effectively acts as a low pass filter, so the effect of any noise in

the flow measurements is significantly reduced. Finally, Equations (34)-(37)

consider only the left ventricle and the aortic (ao) and pulmonary (pu) cham-

bers of Figure 3. The right ventricle and the vena cava (vc) and pulmonary

artery (pa) chambers can be treated exactly the same.

2.4 Matrix system

Equations (36) and (37) can now be written as a matrix system where there

are more equations than unknowns, thus there is a unique linear least squares

solution. More specifically, taking Pth = −4 mm Hg [1; 3; 18] and assuming

Vspt = 0 ml or approximated, Vlvf can be found from Equation (18). Therefore

all the integrals involve quantities that are either given or determined from

measurement.

Thus, by choosing various values of T during the ejection period and T ′

during the filling period of the left ventricle a set of linear equations can be

set up in the 8 unknown parameters Lav, Lmt, Ees,lvf , P0,lvf , Rav, Rmt, Pao0,

Ppu0. If inertial effects are ignored Lmt and Lav can be ignored.

After applying the same method to the right ventricle, a set of N linear

equations can be set up in 16 variables to identify the patient specific pa-

rameters in the full model of Figure 3. The variable vector, β, is defined in

two sets:

β = [α, Pao0, Ppu0, Ppa0, Pvc0], (38)
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where:

α = [Lav, Lmt, Ltc, Lpv, Ees,lvf , P0,lvf , Ees,rvf , P0,rvf , Rav, Rmt, Rtc, Rpv] ∈ R16×1.

(39)

The last four variables in Equation (38) Pao0, Ppu0, Ppa0, Pvc0 included as in

Equations (32)-(33) to keep the equations linear in the unknowns. The pa-

tient specific parameters to be identified for the full model are given by α in

Equation (39). Finally, for clarity the estimated and measured variables are

defined by γ.

γ = [Qav, Qmt, Qtc, Qpv, Qsys, Qpul, Pao, Ppa, Vlv, Vrv, Vlvf , Vrvf , Pperi] (40)

In critical care these values can be obtained by a variety of means includ-

ing ultrasound and echo-cardiography (e.g. [9]-[17]), or estimated.

For n1 values of T = Ti ∈ [te, te = τe] and n2 values of T ′ = T ′
j ∈

[tf , tf+τf ], Equations (36) and (37) can be numerically integrated and written

as a matrix system:

Alvβ = blv (41)

where the ith row of the (n1 + n2)× 16 matrix Alv is defined:

Alv(i, 1 . . . 16) =





[
Qav(Ti), 0, 0, 0,− ∫ T

te
eVlvfdT,

− ∫ T

te
(1− e)(eλlvfVlvf − 1)dT,

0, 0, Vlv(te)− Vlv(Ti), 0, 0, 0, Ti − te, 0, 0, 0

]

[
0, Qmt(T ′i−n1

), 0, 0,− ∫ T ′i−n1
tf

eVlvfdT ′,

− ∫ T ′i−n1
tf

(1− e)(eλlvfVlvf − 1)dT ′, 0, 0, 0,

Vlv(T ′i−n1
)− Vlv(tf ), 0, 0, 0,−(T ′i−n1

− tf ), 0, 0

]





i = 1 . . . n1

i = n1+1 . . . n1+n2

(42)
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and the (n1 + n2 × 1) vector blv is defined:

blv = [blv,1 , blv,2]
T (43)

where blv,1 is a (1× n1) vector and blv,2 is a (1× n2) vector defined:

blv,1 =

[ ∫ T1

te

PperidT − Eao

∫ T1

te

(∫ t

0

(Qav −Qsys)dt

)
dT, . . . ,

∫ Tn1

te

PperidT − Eao

∫ Tn1

te

(∫ t

0

(Qav −Qsys)dt

)
dT

]
, (44)

blv,2 =

[ ∫ T ′1

tf

(Pth − Pperi)dT ′ + Epu

∫ T ′1

tf

(∫ t

0

(Qpul −Qmt)dt

)
dT ′, . . . ,

∫ T ′n2

tf

(Pth − Pperi)dT ′ + Epu

∫ T ′n2

tf

(∫ t

0

(Qpul −Qmt)dt

)
dT ′

]
(45)

Note that Qav(te) = 0 and Qmt(tf ) = 0 as illustrated in Figure 2.

An (N1 + N2)× 16 matrix Arv and an (N1 + N2)× 1 vector brv can be set

up for the right ventricle in a similar way where N1 and N2 are the number

of time values chosen in the filling and ejection periods of the right ventricle.

The matrices and vectors for the left and right ventricles can be combined

to complete the matrix system relating all 16 parameters.

Aβ = b. (46)

where:

A =




Alv

Arv


 , b =




blv

brv


 . (47)

Thus Equation (46) defines a set of N = n1 + n2 + N1 + N2 equations in 16

unknowns.

Therefore, to calculate the numerical values in A and b requires the mea-

sured flows Qav, Qmt, Qtc, Qpv, the measured pressure waveforms Pao, Ppa, the
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measured maximum and minimum volumes in each ventricle, the approxi-

mation to Vspt and assumed generic values of λlvf , λrvf , Pth, P0, pcd, λpcd and

V0, pcd defined in [3].

For Equations (42)-(43) of the left ventricle, assuming Vspt = 0 ml, or

approximated, e(t), Vlv and Vlvf are given by Equations (5), (10) and (18).

Similarly, given generic values of λlv, Pth, P0,,pcd, λpcd and V0, pcd, Pperi is de-

termined by Equations (19)-(21). The flows Qav and Qmt can be measured

and the systemic and pulmonary flows Qsys and Qpul and the parameters Eao

and Epu are approximated. All integrals are numerically evaluated using the

trapezium rule.

2.5 Determining Qsys and Qpul

The goal is to determine the patient parameters Eao, Epa, Evc, Epu, Rsys, Rpul

and the flows Qsys and Qpul so that the integrals in Equations (42)-(47) can be

numerically evaluated and used to set up the matrix Ā and vector b̄ defined

by Equations (67) and (68). The measured data required in this case is the

pressure waveforms through the aorta (Pao) and pulmonary artery (Ppa) in

Figure 3, and the flows (Qav, Qmt and Qtc, Qpv) into and out of the left and

right ventricles.

The pressures in the vena cava (Pvc) and pulmonary vein (Ppu) are close

to constant when compared to the pressure in the aorta (Pao) and pulmonary

artery (Ppa), [2; 3]. Figure 4 shows all these pressures for the mitral stenosis

case as an example. Thus, assuming Pvc = Pvc0 and Ppu = Ppu0 are constant,

Equation (6) can be substituted into Equation (30) and solved for Pao to give
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a new expression for the pressure in the aorta,

P̄ao = Pao0 + Eao

∫ t

0

Qavdt− Eao

Rsys

∫ t

0

Paodt +
Eao

Rsys

∫ t

0

Pvc0dt

= Pao0 + Eao

∫ t

0

Qavdt + A1

∫ t

0

Paodt + A2t (48)

where A1 and A2 are defined:

A1 = − Eao

Rsys

, A2 =
EaoPvc0

Rsys

.

Similarly, from the equations:

V̇pa = Qpv −Qpul (49)

Ppa = EpaVpa + Pth (50)

where Qpv is the flow out of the right ventricle through the pulmonary valve,

a new expression for the pressure in the pulmonary artery can be written,

P̄pa = Ppa0 + Epa

∫ t

0

Qpvdt + B1

∫ t

0

Ppa + B2t (51)

where B1 and B2 are defined:

B1 = − Epa

Rpul

, B2 =
EpaPpu0

Rpul

The integrals in Equations (48) and (51) are calculated numerically from

measured data. The best linear least squares fit of P̄ao and P̄pa to the mea-

sured waveforms of Pao and Ppa will give an approximation to the parameters

Eao and Epa. Finally, rearranging Equation (30) yields:

∫ t

0

Qsys =
1

Eao

(
Pao0 + Eao

∫ t

0

Qav − Pao

)
. (52)
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Thus, given the least squares best fit curve P̄ao through Pao and the approx-

imation of Eao, the value of Qsys is estimated:

Q̄sys =
1

Eao

(
P̄ao(0) + Eao

∫ t

0

Qav − P̄ao

)′
(53)

Similarly, Qpul is estimated:

Q̄pul =
1

Epa

(
P̄pa(0) + Epa

∫ t

0

Qpv − P̄pa

)′
. (54)

Integrating the equation:

V̇vc = Q̄sys −Qtc (55)

where Vvc is the volume of the vena cava and Qtc is the flow into the right

ventricle through the tricuspid valve yields:

Vvc = Vvc(0) +

∫ t

0

(Q̄sys −Qtc)dt (56)

Using Equation (52), Equation (56) can be rewritten to determine the change

in Vvc.

∆Vvc = Vvc − Vvc(0) =
1

Eao

(
P̄ao0 + Eao

∫ t

0

Qav − P̄ao

)
−

∫ t

0

Qtcdt. (57)

Multiplying Equation (6) by Rsys then integrating gives:

∫ t

0

Paodt = RsysIQsys(t) +

∫ t

0

Pvcdt (58)

where from Equation (52) a function IQsys(t) representing the integrated sys-

temic flow Qsys can be defined using the approximated value P̄ao.

IQsys(t) =
1

Eao

(P̄ao(0) + Eao

∫ t

0

Qavdt− P̄ao) (59)
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Equation (59) is clearly a function of t. Substituting Vvc = Vvc(0)+∆Vvc and

Equation (26) into Equation (58) gives:

∫ t

0

Paodt = RsysIQsys(t) + Evc

∫ t

0

∆Vvcdt + EvcVvc(0)t (60)

where from Equation (57), ∆Vvc is a known function. Defining,

IPao(t) = RsysIQsys(t) + Evc

∫ t

0

∆Vvcdt + aPaot (61)

where,

aPao = EvcVvc(0) (62)

and finding the best least squares fit of IPao(t) to
∫ t

0
P̄aodt will yield an esti-

mate of Rsys and Evc. In a similar way, the parameters Rpul and Epu can be

determined from the measured waveform Ppa.

In summary, the parameters Eao, Epa, Evc, Epu, Rsys, Rpul and the flows

through the systemic and pulmonary circulations, Qsys and Qpul are deter-

mined from the measured pressure waveforms through the aorta and pul-

monary artery and the flows into and out of each ventricle.

2.6 Alternative formulation

The inertances are difficult to measure and represent the inertia of blood

volumes and are not well defined [3]. Hence, solving Equation (46) with all

the parameters β at once may require physiological constraints on the values

of Lav, Lmt, Lpv and Ltc, which will take longer to solve using constrained

linear least squares and be potentially less accurate. In addition, Lav, Lmt,

Lpv and Ltc are of the order 10−2 smaller than the rest of the parameters and
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are therefore prone to numerical error in solution. The alternative formula-

tion presented manages this problem by identifying Lav, Lmt, Lpv and Ltc,

are separately.

For a given set of inertances Lav, Lmt, Ltc and Lpv an alternative set of N

linear equations can be set up in 12 variables β(5 . . . 16). Dividing Equation

(36) by Lav and Equation (37) by Lmt gives the matrix system:

Ālv (β(5 . . . 16)) = b̄lv (63)

where Ālv is an (n1 + n2)× 12 matrix and is defined:

Ālv =




1
Lav

Alv(5 . . . 16, 1 . . . n1)

1
Lmt

Alv(5 . . . 16, n1+1 . . . n1 + n2)


 (64)

and b̄lv is an (n1 + n2)× 1 vector defined:

b̄lv =




1
Lav

blv(1 . . . n1)− [Qav(T1), . . . , Qav(Tn1)]
T

1
Lmt

blv(n1+1, . . . , n1 + n2)− [Qmt(T
′
1), . . . , Qmt(T

′
n2

)]T


 (65)

Similarly, an (N1+N2)×12 matrix Ārv and an (N1+N2)×1 vector b̄rv can be

formed for the right ventricle. Thus, the resulting set of N = n1+n2+N1+N2

equations in 12 unknowns β(5 . . . 16) can be written as a matrix system.

Ā(β(5 . . . 16)) = b̄ (66)

where Ā and b̄ are defined as functions of the inertance values.

Ā = Ā(Lav, Lmt, Ltc, Lpv) =




Ālv

Ārv


 (67)

b̄ = b̄(Lav, Lmt, Ltc, Lpv) =




b̄lv

b̄rv


 (68)

18



Hence, for given values of Lav, Lmt, Ltc and Lpv the rest of the parame-

ters are given by the unique linear least squares solution to Equation (66).

Therefore, if the function F (Lav, Lmt, Ltc, Lpv) is defined:

F (Lav, Lmt, Ltc, Lpv) = Ā(β(5 . . . 16))− b̄ (69)

then ||F ||2 has a minimum value at the true values of Lav, Lmt, Ltc and Lpv,

and the original problem can be simplified. These inertances and the rest of

the parameters are therefore found by minimizing the function F . Note that

each function evaluation of F involves solving Equation (66) by linear least

squares. Note also that the sum of the initial volumes:

Vao0 + Vpu0 + Vpa0 + Vvc0 + Vlv(0) + Vrv(0) = 1500 (70)

where

Vao0 =
Pao

Eao

, Vpu0 =
Ppu0

Epu

, Vpa0 =
Ppa0

Epa

, Vvc0 =
Pvc0

Evc

(71)

is constrained to be equal to 1500ml, the total unstressed volume of blood

assumed in this model [1; 3]. This constraint was added by including:

Vao0 + Vpu0 + Vpa0 + Vvc0 + Vlv(0) + Vrv(0)− 1500 (72)

as an extra equation in the vector function F (Lav, Lmt, Lpv, Ltc) defined in

Equation (69).

In summary,

• The parameters λlvf , λrvf , Pth, P0, pcd, λpcd, V0, pcd, Eao, Epa, Epu, Evc, Rsys

are either fixed at generic values or approximated using measured data
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• The time varying dependent parameters e(t) and γ in Equation (40),

are either given, measured or determined from measurement

• The numerical values of the matrix A and vector b of Equation (47)

which involve the Equations (42) and (43) of the left ventricle and

similar equations for the right ventricle are calculated using numerical

integration

• The matrix Ā and vector b̄ given by Equations (64)-(68) are determined

for a given set of inertances Lav, Lmt, Ltc and Lpv using the numerical

values of the matrix A and vector b of Equation (47)

• The unknown patient specific parameters are defined in Equations (38)

and (39) and are found by minimizing the function F defined in Equa-

tion (69).

3 Results

A healthy human is simulated first, using the full model with outputs shown

in Table 1. These results agree well with values reported in medical physi-

ology texts for example [18]. The resistances used in simulating the healthy

human are shown in the first column of Table 2.

Valvular Stenosis is caused by calcium deposition on the surface of a valve,

which limits the valve’s ability to open properly. The resistance Rmt of the

mitral valve is doubled to simulate mitral stenosis [3]. The average pressure

in the pulmonary vein rises from Ppu = 2 mmHg to 3.5 mmHg, the average
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left ventricle volume decreases from 76.3 ml to 66.6 ml and the stroke volume

decreases from 66.0 ml to 59.0 ml, matching known physiological trends [19].

Pulmonary Embolism is caused by obstruction to the blood flow in the

pulmonary circulation system, commonly a blood clot. The pulmonary vas-

cular resistance Rpul is increased by a factor of two to simulate Pulmonary

Embolism. Cardiac output drops from 5.3 L/min to 4.8 L/min, the maximum

pressure in the pulmonary artery increases from 25.7 mmHg to 35.4 mmHg

and the average pressure in the vena cava increases from 2.0 mmHg to

2.4 mmHg, also matching known trends [19].

The flows around the cardiac chambers (i.e in and out of each ventricle)

and the pressure waveforms through the aorta and pulmonary artery are

discretized for each simulation, analogous to measured data. Figures 6 and

7 show the flow through the aortic and mitral valves for a healthy human

and the two disease states. As noted, these flows can be measured by echo-

cardiography. Equally importantly, these “measured” values represent a very

limited set of measurements compared to the full set of model pressures,

volumes and flows. The results of each simulation are discretized and used to

test the identification method presented. Accuracy is measured by comparing

identified parameters to the “true” values used in the original simulation.

3.1 Implementation of the integral method

The alternative formulation of the integral method of Equations (64)-(68) is

first applied to identify the patient specific parameters for the healthy hu-

man. However, the volume of the septum Vspt is unknown and not directly
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measurable. As an initial approximation, it is set to zero (Vspt = 0). The

resulting optimized parameters from the integral method are then used to

rerun the model and obtain a significantly better approximation to Vspt. Fig-

ure 5 shows the approximated Vspt versus the true, simulated Vspt from this

step. The integral method is then applied a second time with the approx-

imated Vspt value producing the results shown in Table 2. Note that this

approach requires a second identification but this includes this last model

variable (Vspt).

A similar method was applied for Mitral Stenosis and Pulmonary Em-

bolism. Table 2 shows that Rmt and Rpul are identified accurately in the

healthy human and each disease state with less than 1% error. Importantly,

the other identified parameters in all three cases were unchanged from the

“true” values used to generate the simulated data and thus accurately identi-

fied. Therefore, these two disease states are accurately identified with the full

model based only on measured flows, the maximum and minimum volumes

of the left and right ventricles and the pressure waveforms through the aorta

and pulmonary artery.

All measured data simulated in this research can be obtained non-invasively

using echo-cardiography and ultra-sound. Using the identified patient spe-

cific parameters the model can be rerun to obtain the model response error

for the output flows. The mean percentage error in total is 0.15% with a

standard deviation of 0.17% further validating the integral method devel-

oped. Figure 8 is an example of the flow output through the mitral valve

with optimized values (solid line) versus the true “measured” values (circles)

for mitral stenosis, showing a very close match.
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3.2 Impact of noise

In practical situations, measurements will not be free of noise. In this case,

5, 10 and 15% uniform distributed noise is added to the measured flow and

the pressure waveforms through the aorta and pulmonary artery. A uniform

distribution is used as a conservative choice where outliers are much more

likely to occur.

Figure 9 shows the flow through the mitral valve with 5% noise for Mitral

Stenosis. Table 3 shows that for all levels of noise the method successively

identified the increased resistance of the mitral valve. Note that for 15%

noise, the mean model response error in all the flows compared to the true

flows was 0.9% with a standard deviation of 1.0% and the mean model re-

sponse error of the pressures of the aorta and pulmonary artery were 1.0%

and 4.5% with standard deviations of 0.4% and 2.6%. Hence, the integral

method is very effective in matching the data in the presence of significant

measurement noise. Similar results were obtained for Pulmonary Embolism

and are shown in Table 4.

4 Discussion

The integral based optimization successively identified patient specific pa-

rameters for the full six chamber minimal cardiac model with inertial effects

and ventricular interaction using only measured cardiac chamber flows, the

minimum and maximum volumes in the left and right ventricles and the

pressure waveforms through the aorta and pulmonary artery. The use of

integrals means measurement noise is low pass filtered, as demonstrated by
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the accurate matching of the identified model output to the original virtual

patient results with up to 15% uniformly distributed noise.

Computationally, the parameter identification optimization problem is

made linear and convex where current approaches are non-linear and non-

convex. In addition, the differential equations are not required to be solved

each iteration and initial conditions or guesses for the parameter values are

not needed. Thus, the issue of the incorrect initial conditions leading to

increased time for model convergence, non-optimal or false results are avoided

[3].

Patient specific parameters for the healthy human and two disease states

are accurately identified in the presence of significant noise with minimal

computation, showing the method is applicable to a clinical setting. This

integral approach ensures medical staff can obtain rapid patient specific in-

formation to assist in diagnosis and therapy selection in clinical real time (3-5

minutes). Hence, the reduction in computation enables its practical, clinical

use in a decision support role.

4.1 Limitations and possible extensions

The underlying minimal model has been extensively verified with the trends

of a significant variety of disease states and sensitivity analysis shows that

most parameters have a unique localized impact [1]-[3]. However, because of

assumptions in the model, for example holding the parameters in the peri-

cardium at generic values and using a simple time varying elastance curve,

there is always the possibility of the model missing dynamics that may exist
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clinically. Such errors would show up as an error in the data fitting. More

specifically, while the model has been extensively verified using clinical data

for both steady state and transient dynamics [1]-[3], there remains the pos-

sibility of unmodelled dynamics being observed clinically. Future work will

involve more direct clinical verification of this model and methods.

The approach of this research is to model the primary parameters that

govern the major dynamics of a patient’s physiological state and only bring

in extra parameters as required. The integral approach presented greatly

simplifies the process of identifying these primary parameters. Hence, there

is significantly more scope for introducing further complexity into the model

to capture subtle behaviors that may not be represented in the model yet.

Current non-linear regression methods [4] are severely limited in this regard.

For example, the parameters Ees and P0 could be made piecewise constant

over say 10− 20 equally spaced time intervals in a single heart beat to pick

up any deviation in the currently assumed time varying elastance curve. In

this case, the number of variables in the optimization will increase by the

number of equally spaced time intervals, but the optimization will still be

linear and convex using this parametrization.

The overall approach is to use a number of linear optimizations for each

fixed value of the non-linear parameters rather than one large non-linear

optimization of all the parameters. In the case of the current model, if the

non-linear pericardium parameters P0,pcd, λpcd, V0,pcd are included there are

18 + 3 = 21 patient parameters to be identified. The integral approach

effectively reduces the number of parameters to this set of three pericardium

parameters since the rest of the parameters can be first found by linear
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least squares optimization before identifying these remaining terms. Iteration

between identification problems would then lead to convergence.

Current non-linear regression approaches would have to deal with all 21

parameters, as well as the large cost of solving the differential equations each

time. Thus, to remain computationally viable in clinical real time, there is

a severe restriction on the amount of extra complexity that can be added

to the model. The integral based approach presented therefore allows a

significantly greater flexibility in the modelling to deal with any potentially

missing dynamics found clinically.

However, note that the parameters Eao, Epa, Evc, Epu, Rsys and Rpul can

be found independently of all the rest of the parameters in the model, as

they only depend on the measured flows into and out of each ventricle, and

the measured pressure waveforms through the aorta and pulmonary artery.

Thus, any dynamics of the flows that may not be captured in the current

model because of, for example, a different time varying elastance curve, will

not effect the calculation of the parameters Eao, Epa, Evc, Epu, Rsys and Rpul.

As these are the more critical parameters for identifying disease states [1]-[3],

the overall approach should be robust. This result also indicates a much less

complex way to solve some clinical problems.

5 Conclusion

An integral based optimization method is presented which turns a previ-

ously non-linear non-convex problem into a linear convex problem. Exam-

ples are given with a healthy human and two disease states to demonstrate
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the method. All parameters were identified successfully and the results for

rerunning the model with the optimized parameters were very close to the

original simulated outputs even with up to 15% uniformly distributed noise

added.

Ventricular interaction was included by initially assuming the septum

volume Vspt = 0 then rerunning the model with the approximate optimized

parameters to obtain a better approximation. Apart from this one simulation

the differential equations are not required to be solved and there is a unique

linear least squares solution to the optimization equations. Note that if the

pressure in the left and right ventricles is measured then this iteration is not

needed as Vspt can be determined directly from Plv − Prv [1]. The integral

method significantly reduces the computation required and enables a fast and

accurate method for identifying patient specific parameters. Also because of

the speed of the method this allows much more scope for introducing further

complexity into the model to capture more dynamics if required, for example

adding an atrium. The non-linear method is severely restricted in this regard.

Clinically, this approach means patient specific parameters will be able to

be found accurately and robustly using a standard modern desktop computer.

Medical staff will be able to have rapid data on patients to assist in diagnosis

and can trial and test therapies in clinical real time (3-5 minutes).
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Figure 1: The single cardiac chamber model

(a) (b)

Figure 2: An example of a pressure-volume diagram with the different states

of the single cardiac chamber model included. Right side shows model state

at each part of the cardiac cycle.

Figure 3: The presented closed loop model of the cardiovascular system.
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Figure 4: The pressures in the aorta and pulmonary artery compared to the

pressures in the vena cava and the pulmonary vein for mitral stenosis.

Description Output

Volume in left ventricle 111.7/45.7 ml

Volume in right ventricle 112.2/46.1 ml

Max Plv 119.2 mmHg

Max Prv 26.2 mmHg

Pressure in aorta 116.6/79.1 mmHg

Pressure in pulmonary artery 25.7/7.8 mmHg

Average pressure in pulmonary vein 2.0 mmHg

Average pressure in vena cava 2.0 mmHg

Table 1: Healthy human model outputs
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Figure 5: Approximated Vspt (solid) versus true Vspt (dots).

Healthy Error (%) Mitral Error (%) Pulmonary Error (%)
Stenosis Embolism

Rav (Resistance) 0.0180 0.06 0.0181 0.32 0.0183 1.89

Rmt (mmHg s/ml) 0.0157 0.54 0.0315 0.10 0.0158 0.37

Rpv 0.0055 0.05 0.0055 0.80 0.0055 0.07

Rtc 0.0236 0.19 0.0235 0.90 0.0238 0.68

Rsys 1.0853 0.33 1.0888 0.01 1.1010 1.11

Rpul 0.1552 0.001 0.1536 1.03 0.3099 0.16

mean (including 0.78 1.02 2.90
all 18 parameters)

standard deviation 1.18 1.29 4.25

Table 2: Optimization results
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(a) Healthy
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(b) Mitral Stenosis
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(c) Pulmonary Embolism

Figure 6: Flow through the aortic valve.

Noise level (%) Error (%) Mean (all parameters) Standard deviation

Rmt

5 1.8 4.3 8.2

10 2.9 5.5 7.0

15 0.8 6.1 6.3

Table 3: Percentage error in parameters for Mitral Stenosis with noise

34



0.35 0.4 0.45 0.5 0.55 0.6
0

50

100

150

200

250

300

350

400

450

time (s)

flo
w

 (
m

l s
−

1 )

(a) Healthy
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(b) Mitral Stenosis
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(c) Pulmonary Embolism

Figure 7: Flow through the mitral valve.

Noise level (%) Error (%) Mean (all parameters) Standard deviation

Rpul

5 1.5 4.4 5.6

10 3.4 4.9 5.3

15 4.7 8.2 11.9

Table 4: Percentage error in parameters for Pulmonary Embolism with noise
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Figure 8: Flow through the mitral valve using identified patient specific

parameters (solid line) versus the original true simulation (circles) for Mitral

Stenosis
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Figure 9: Flow through the mitral valve for Mitral Stenosis with 5% noise.
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