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Abstract—Crowdsourcing has shown great potential in ob-
taining large-scale and cheap labels for different tasks. However,
obtaining reliable labels is challenging due to several reasons, such
as noisy annotators, limited budget and so on. The state-of-the-
art approaches, either suffer in some noisy scenarios, or rely on
unlimited resources to acquire reliable labels. In this article, we
adopt the learning with expert (AKA worker in crowdsourcing)
advice framework to robustly infer accurate labels by considering
the reliability of each worker. However, in order to accurately
predict the reliability of each worker, traditional learning with
expert advice will consult with external oracles (AKA domain
experts) on the true label of each instance. To reduce the cost
of consultation, we proposed two active learning approaches,
margin-based and weighted difference of advices based. Mean-
while, to address the problem of limited annotation budget, we
proposed a reliability-based assigning approach which actively
decides who to annotate the next instance based on each worker’s
cumulative performance. The experimental results both on real
and simulated datasets show that our algorithms can achieve
robust and promising performance both in the normal and noisy
scenarios with limited budget.

I. INTRODUCTION

For most of the supervised machine learning algorithms,
a large-scale of training data with golden labels is usually
required. However, labeling the data is usually costly and time-
consuming. To speed up the labeling process and obtaining
reliable labels, crowdsourcing platforms, such as Amazon
Mechanical Turk 1, CrowdFlower 2 and Baidu Test 3 and so on,
are developed to easily obtain large-scale and reliable labels.
However, obtaining reliable labels from crowdsourcing faces
two main challenges. First, the annotations are usually noisy
due to different knowledge bases of workers, also known as
annotators, varied difficulty of each task and so on [24]. This
gives rise to the question how to combine the noisy annotations
to get finalized accurate labels. Second, the budget size is
usually limited, and obtaining unlimited annotations for each
task is costly and impractical.

To tackle the problem of noisy annotations, several ap-
proaches in literature are proposed. One promising approach
is repeated labeling [22]. The basic idea is to score the

1https://www.mturk.com/mturk/
2http://www.crowdflower.com/
3http://test.baidu.com/crowdtest/

workers by their agreement with other workers. Most of the
existing work followed this approach by treating the true label
and workers’ reliability as latent variables, and inferred these
variables by building joint statistical models [25], [26], [27].
These algorithms are attractive because of the promising per-
formances they shown in real crowdsourcing datasets without
referring gold standard questions. However, these algorithms
are heavily relying on the assumption that the majority of
workers are correct, which may not be always true [18]. These
unsupervised algorithms would perform as bad as the majority
voting (MV) algorithm when the assumption could not be
met, such as in group-cheating scenarios, where group of
people cheat together by giving the same and noisy label for
each instance. To tackle the budget issue, Welinder et al. [25]
proposed to actively decide who to label by building a reliable
worker list and a noisy worker list. However, this algorithm
also suffers the same issue of requiring most of the workers
to be reliable.

Considering the group-cheating and limited budget issues,
we argue that it is necessary to build some gold standard ques-
tions with known answers, based on which workers’ reliability
can be accurately estimated and thus workers’ annotations can
be properly aggregated to get finalized accurate labels even
in extreme noisy scenarios. Meanwhile, the usage of gold
standard questions should be limited considering their high
prices and the limited budget. Another argument we made
here is that it is unsuitable to uniformly allocate tasks to each
worker once we obtain their reliabilities.

In this article, we adopt the learning with expert (cor-
responding to worker in crowdsourcing) advice framework
to tackle the issues of noisy workers and limited budget
on crowdsourcing tasks. However, traditional learning with
expert advice will consult with external oracles on the true
labels of each instance. To reduce the cost of consultation, we
proposed two active learning approaches, margin-based and
weighted difference of advices based. To further address the
limited budget issue, we proposed a reliability-based allocation
approach which actively decides who to annotate the given
instance based on each worker’s cumulative performance.
The experimental results both on real and simulated datasets
show that our algorithms can achieve robust and promising
performance both in the normal and extreme noisy scenarios
with limited budget.



The rest of this paper is organized as follows. Section
2 reviews the related work. Section 3 presents the proposed
framework and algorithms. Section 4 discusses our empirical
study and Section 5 concludes this work.

II. RELATED WORK

In this section, we review the related work on inferring
ground label for annotation tasks and the active learning
approaches related to our proposed algorithms.

Crowdsourcing, as an approach to collect large-scale and
cheap labeled data, has attracted great attention in recent
years [2], [9], [14], [16], [23], [28]. One of the critical
problems is how to properly aggregate the noisy annotations
to get accurate finalized labels. The most common method to
infer the ground label is majority voting [22]. However, this
approach would suffer when the number of noisy annotators
is larger than the number of reliable annotators, which is
common in the crowdsourcing platforms. The idea of majority
voting approach is taken one step further by looking at the
consistency between annotators. Most of recent work follows
this line by modeling the true label, worker’s ability, and the
task’s difficulty as the latent variables within graph models, by
which the problem is transferred to inferring latent variables
with EM-style algorithms. Dawid and Skene [8] modeled the
reliabilities of workers using a confusing matrix. Whitehill
et.al. [26] further modeled both worker reliability and image
difficulty. However, the algorithm would be worse than the ma-
jority voting when the variance of reliabilities between workers
is high [25]. To tackle this issue, Welinder et al. [25] further
introduced a high-dimensional concept of image difficulty
and annotator bias. These algorithms could achieve promising
performance without explicitly evaluating workers’ reliability
by querying golden label of sample instances. However, these
algorithms would suffer in noisy scenarios, such as group of
people cheating together to give the same labels [10].

Active learning has been extensively studied both in su-
pervised and unsupervised learning algorithms [1], [5], [20].
Interested users are recommended to refer the survey article
written by Settles [21]. Here we mainly focus on the literature
which is close to our active learning strategies and the work
which apply active learning approaches to the annotation tasks.
Due to its robustness and effectiveness, margin-based approach
has been widely used in literature [15]. Cesa-Bianchi et al. [4]
further applied the margin-based approach in the online setting.
Along this direction, we proposed our first active learning
algorithm, where the weighted annotation is defined as the
margin. Related to our second active learning approach, Zhao
et al. [30] proposed active learning with expert advice by
considering the difference of advices from different experts,
however, the proposed strategies assume the advice is a float
number in [0, 1], which is infeasible in the crowdsourcing
platforms, where the annotation is usually a categorical value,
such as {0, 1} in the binary case. Along this direction, we
propose a strategy based on the weighted difference of advices
by considering the cumulative performance of each expert.
Several researchers also studied the problem of applying active
learning approaches on crowdsourcing to alleviate the cost of
labeling [3], [29]. However, these active learning algorithms
in literature are focusing on training specific machine learn-
ing models, while our proposed algorithms are focusing on

inferring the true labels for any machine learning models.

III. A LEARNING FRAMEWORK FOR ACTIVE
CROWDSOURCING

A. Overview

Consider a real world online binary annotation task, such
as image annotation (the workers are asked to label whether an
image contains a bird or not), where images (AKA instances)
arrive sequentially. Our goal is to construct a predictive model
which can accurately infer the true label of the image given
several noisy labels annotated by a pool of noisy workers. In
general, this can be formulated as the framework of learn-
ing with expert advice for binary classification, where each
expert corresponds to a noisy worker, and a piece of advice
corresponds to a label given by a noisy worker. Based on the
labels given by the workers, the goal of learning with expert
advice is to train a forecaster which can correctly combine the
noisy annotations to predict a correct label of an image. In
particular, on each learning round, all the workers first receive
a new coming image, and then give their annotations, based on
which the forecaster predicts the label of the image. After that,
forecaster receives the ground-truth of the image from external
oracles (who are usually domain experts), and both the workers
and forecaster suffer some positive loss based on the ground-
truth and their predicted labels. At last, forecaster updates the
reliability of each worker in order to make better prediction
in future. It is natural to apply the learning with expert

Fig. 1. A Framework of Budget Active Learning with Expert Ad-
vice (BALEA)

advice forecasters, such as “Exponentially Weighted Average
Forecaster” (EW) [5] and “Greedy Forecaster” (GF) [5], to
the annotation tasks in the crowdsourcing platforms. However,
it is impractical to directly apply the EW and GF forecasters
to the problem due to several reasons. First, for the regular
forecasters, each instance in the annotation task would need all
workers to annotate. However, for a real annotation task, the
budget is usually limited and noisy workers commonly exist,
which make it costly and unnecessary to obtain all workers’
annotations for each instance. Second, for the traditional
forecasters, they require that all instances at last receive the
ground-truth from the external oracles, such as domain experts.
However, obtaining the ground-truth from the domain experts
is much more costly than obtaining the annotations from noisy



workers, so it is impractical to obtain a large set of standard
questions with ground-truth in order to accurately predict the
reliability of each worker. To address these issues, we propose
the Budget Active Learning with Expert Advice (BALEA)
framework, as shown in Figure 1.

In general, the proposed BALEA framework attempts to
conquer the following challenges with a systematic and syn-
ergic way: (i) in the “Who to Label” module, the challenge is
how to actively decide which workers to label the incoming
instance in order to reduce cost and get reliable annotations;
and (ii) in the “When to Query” module, the challenge is how
to actively decide whether to query domain experts in order to
update the workers’ reliabilities. To conquer the first challenge,
our basic idea is considering the cumulative performance of
each worker when allocating the incoming instances. For the
second challenge, we propose two active learning strategies
which can greatly reducing the cost in query domain experts.
Before presenting our detailed algorithms, we first give a
formal formulation of the problem and introduce the regular
EW and GF forecasters.

B. Problem Formulation

We first define the problem of learning the reliabili-
ties (AKA competences or weights) of workers. For simplicity,
we consider the binary annotation task in this article.

For a fixed pool of N annotators, the goal is to train an
online learner (AKA forecaster, which describes the way of
how to combine the annotations) from a sequence of instances
{x1, · · · ,xT } where xt is an instance in the annotation
task. After receiving xt, N annotators give their annotations
{f it : Rd → {0, 1}|i = 1, . . . , N}, based on which the learner
makes the final prediction pt ∈ [0, 1], pt can be treated as
the weighted majority voting or margin of forecaster on xt.
After making the prediction, the learner is revealed with the
ground-truth yt ∈ {0, 1} from an external oracle. At last, we
evaluate the performance of each annotator according to some
non-negative loss functions between each worker’s label and
the ground-truth.

We formulate the problem above as the problem of learning
with expert advice. The label given by each worker corre-
sponds to the advice of each expert. We adopt the absolute
loss function to score each worker’s performance. For example,
the i-th worker’s loss on xt is defined as `(f it , yt) = |f it − yt|,
and the forecaster’s loss is defined as `(pt, yt) = |pt−yt|. The
cumulative losses suffered by the i-th expert and the forecaster
are computed respectively as follows:

Li
T =

T∑
t=1

`(f it , yt), LT =

T∑
t=1

` (pt, yt) .

The regret of i-th expert is defined as the loss difference
between the i-th expert and the forecaster:

Ri
T = Li

T − LT , i = 1, . . . , N. (1)

C. EW and GF Forecasters

To aggregate the advices of experts, a natural strategy of
combining advices is weighted average prediction strategy.

More specifically, the forecaster makes the prediction of xt

as follows:

pt =

∑N
i=1 w

i
t−1f

i
t∑N

i=1 w
i
t−1

, (2)

where wi
t−1 is the weight computed at time t− 1 for the i-th

expert. The intuitive idea of learning the weight is to assign
large weights for those experts with low loss and small weights
for those with high loss.

Next we introduce a special case that leads to the well-
known forecaster, known as “Exponentially Weighted average
forecaster” (EW) [5]. In particular, by choosing

wi
t−1 =

exp(−ηLi
t−1)∑N

j=1 exp(−ηL
j
t−1)

,

where η > 0 is a parameter to control the learning rate, the
EW forecaster makes the following prediction:

pt =
N∑
i=1

wi
t−1f

i
t . (3)

In addition to the weighted average forecaster, we also
consider another kind of forecaster, known as the “Greedy
Forecaster” (GF) [5], which makes the following prediction:

pt = π[0,1]

(
1

2
+

1

2η
ln
E(i, 1)

E(i, 0)

)
, (4)

where π[0,1](·) = max(0,min(1, ·)), E(i, 1) =∑N
i=1 exp(−ηLi

t−1 − η`(f it , 1)) and E(i, 0) =∑N
i=1 exp(−ηLi

t−1 − η`(f it , 0)).

According to the existing studies [5], we have the following
theorem for the regret bounds of the above EW and GF
algorithms.

Theorem 1: Consider the loss function `(p, y) = |p − y|,
then for any T > 0 and η > 0, and for all y1, . . . , yT ∈ {0, 1},
the regrets of both the EW and GF algorithms are bounded
from above as follows:

RT = LT − min
1≤i≤N

Li
T ≤

ln(N)

η
+
ηT

8
.

By choosing η =
√
8 lnN/T , the regret is bounded from

above by
√
(T/2) lnN .

The above theorem shows both the EW and GF algorithms
satisfy the Hannan consistency [12], i.e., RT ≤ o(T ), which
guarantees that the learner could trace the best annotator as T
grows.

D. Who to Label

For the “Who to Label” module in Figure 1, the basic idea
is to give more chance to the reliable workers. Here, the metric
to evaluate the reliability of each worker is the cumulative loss
suffered. The higher the loss Li

t is, the less reliable of the i-th
worker is.

Specifically, we define the unreliability of i-th worker on
t-th round as follows:



uit =
exp(Li

t−1)∑N
i=1 exp(L

i
t−1)

. (5)

We can see uit ∈ (0, 1) and
∑N

i uit = 1. The larger uit is,
the more unreliable the i-th worker is.

For the incoming xt, we draw a Bernoulli random variable
Si
t ∈ {0, 1} for i-th worker with probability

ait =
σ

σ + uit
, (6)

where σ > 0 is a parameter to trade off the budget size and the
number of annotations the t-th instance could get. If Si

t = 1,
the i-th worker would get the chance to annotate xt. If Si

t = 0,
the algorithm will skip the i-th worker. From the equation, we
can see, the more unreliable the i-th work is, the more chance
the work would not get the t-th annotation task.

E. When to Query

For the traditional learning with expert advice, the ground-
truth is always obtained from the domain experts for each
instance. However, consulting with domain experts is highly
costly, so the key challenge is how to design effective Active
learner for the “When to Query” module in Figure 1. By
observing the Equation (3) and (4), we could treat the pt as the
confidence of forecaster on instance xt, therefore, we adopt a
simple yet effective active learning scheme to decide when xt

should be queried.

Specifically, for both the EW and GF forecasters, at the
t-th round, the algorithm decides when xt should be queried
according to a Bernoulli random variable Zt ∈ {0, 1} with
probability

qt =
δ

δ + |pt|
, (7)

where pt is computed based on Equation (3) or (4), and
δ > 0 is a sampling parameter to control the query ratio to
trade off the budget size and the number of consultation with
domain experts. This strategy is similar to the margin-based
active learning [21], and has been used in online classification
problem [4]. If Zt = 1, the true label yt provided by domain
experts is revealed to the forecaster, and the algorithm will
update workers’ reliabilities. If Zt = 0, the true label will not
be queried and the reliabilities of workers will not be updated.

We also propose another active learning strategy by ex-
ploring the weighted consistence of workers’ annotations. In
the work [30], the authors assumed the advice given by each
expert is a float point in the range of [0, 1]. However, for
the annotation tasks in the crowdsourcing platforms, the label
given by each worker is in {0, 1}, which makes the proposed
strategies infeasible. Besides, the proposed strategies [30] are
only based on the annotations f it on current instance xt,
and the cumulative performance of each worker shown in
Equation (5) is not considered, which makes the strategies
suffer when noisy workers exist. In this article, we proposed
two active learning strategies by considering both workers’
annotations and their cumulative performances. For an instance
xt, we denote p̂t as the prediction of forecaster which is
trained based on queried instances until t-th round, and pt

as the prediction of forecaster which is trained based on all
instance until t-th round. The basic idea is to design querying
strategies which guarantee a small difference between p̂t and
pt. Formally, for the EW forecaster, if the following theorem is
satisfied, the ground-truth of xt is unnecessary to be revealed
(Zt = 0), vice versa.

Theorem 2: For a small constant β > 0, if the following
condition is satisfied, then |pt − p̂t| ≤ β∣∣∣∣∣

∑N
i=1

∑N
j=1 γ

i,j
t−1(f

i
t − f

j
t )∑N

i=1

∑N
j=1 γ

i,j
t−1

∣∣∣∣∣ ≤ β, (8)

where γi,jt−1 = exp
(
−η
[
L̂i
t−1 + Ĥi

t−1 + L̂j
t−1

])
, L̂i

t−1

and Ĥi
t−1 are the losses suffered of i-th worker until t-th round

on queried and un-queried instances, respectively. β > 0 is a
small constant to control the query ratio.

Similarly, for the GF forecaster, if the following theorem is
satisfied, the ground-truth of xt is unnecessary to be revealed
(Zt = 0), vice versa.

Theorem 3: For a small constant β > 0, if the following
condition is satisfied, then |pt − p̂t| ≤ β.

1

2η
ln

∑N
i=1 µ

i
t exp

(
2η(f it − pt)

)∑N
i=1 µ

i
t

≤ β, (9)

where µi
t = exp

(
−η[L̂i

t−1 + `(f it , 0) + Ĥi
t−1]

)
, i ∈ [N ].

Remark. Detailed proof is appended in the supplementary
material. Ĥi

t−1 is an unknown loss suffered on the un-queried
instances. We assume that all the instances are independently
and identically distributed from some unknown distribution
and the performance of one worker will not change over time.
Given these two assumptions, we can easily verify that the
cumulative loss of one worker on the unlabeled examples is
propositional to that on the labeled examples. Formally, if there
are m labeled examples and n unlabeled examples until time
t, then we have E[Ĥi

t−1] =
m
n L̂

i
t−1.

Algorithm 1 summarizes the procedure of the proposed
framework.

Algorithm 1 Budget Active Learning with Expert Advice
Input: a pool of experts f i, i = 1, . . . , N .
Output: cumulative loss L̂i, i = 1, . . . , N .
Initialize tolerance threshold δ > 0, β > 0 and L̂i

t = 0, i ∈
[N ].
for t = 1, . . . , T1 do

receive xt;
get annotations f it , i ∈ [N ];
decide who to label according to Equation (6);
decide when to query xt based on Equation (7) or
Theorem 2 and 3;
if Zt = 1 then

request label yt;
update L̂i

t = L̂i
t−1 + `(f it , yt), i ∈ [N ];

else
skip the label request for instance xt

end if
end for



IV. EXPERIMENTAL RESULTS

A. Baseline Algorithms

Here we list all the algorithms used in the following
experiments:

• MV: the Majority Voting algorithm which takes the
majority label as the predicted label;

• SIGNAL: the classical Maximum Likelihood Estima-
tion algorithm [8];

• BIAS: the state-of-the-art Multidimensional Wisdom
of Crowds algorithm [25];

• EW: the regular Exponentially Weighted average fore-
caster algorithm [5];

• MAEW/WAEW: the Margin-based/Weighted differ-
ence of advices based Active EW algorithm based on
Equation (7) or Theorem 2, and REW is the random
version;

• EW-Who: the EW algorithm with strategy of Who to
label based on Equation (6), and REW-Who is the
random version;

• EW-All: the EW algorithm combining MAEW and
EW-Who, and REW-All is the random version;

• GF: the regular Greedy Forecaster algorithm [5];
• MAGF/WAGF: the Margin-based/Weighted difference

of annotations Active GF algorithm based on Equa-
tion (7) or Theorem 3 , and RGF is the random
version;

• GF-Who: the GF algorithm with strategy of Who to
label based on Equation (6), and RGF-Who is the
random version;

• GF-All: the GF algorithm combining MAGF and GF-
Who, and RGF-All is the random version;

B. Experimental Testbed and Setup

TABLE I. DATASETS USED IN THE FOLLOWING EXPERIMENTS.

Dataset # Instances # Train # Test # Workers Type
fashion 4005 400 3605 6 real

fashion-cloth 4005 400 3605 6 real
a8a 32561 2604 23444 5 simulated

spambase 4601 368 3312 5 simulated
svmguide1 7089 567 5104 5 simulated

Table I shows the datasets used in our experiments. fashion,
fashion-cloth are two real crowdsourcing datasets downloaded
from UMassTrace 4 repository, and the other datasets are
simulated datasets downloaded from LIBSVM 5 repository.
To simulate the reliable workers in the simulated datasets, we
adopt the following online learning algorithms implemented in
the library LIBOL [13].

• PA: the Passive-Aggressive algorithm [6];

• AROW: the Adaptive Regularization Of Weights al-
gorithm [7];

• ALMAp(α): the Approximate Maximal Margin Algo-
rithm [11];

• ROMMA: the Relaxed Online Maximum Margin Al-
gorithm [17];

4http://traces.cs.umass.edu/index.php/Mmsys/Mmsys
5http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

• PERCEPTRON: the classical Perceptron
algorithm [19].

The parameter C of the PA algorithm is set to 5, and
the parameter γ of the AROW algorithm is set to 1. For
the ALMAp(α) algorithm, p and α are set to 2 and 0.9,
respectively. The learning rate η for Equation (3) and (4) is set
to
√
8 lnN/T on all datasets, where N denotes the number

of workers and T = # Train in Table I.

To investigate the performance of the algorithms in the
scenarios where noisy workers exist, we manually added
{0, 3, 5, 10} noisy workers for each dataset. These four dif-
ferent number of noisy workers represent the scenarios where
the number of noisy workers is much less than, less than,
the same as and larger than the number of reliable workers,
respectively. These four scenarios could almost simulate the
situations happening in the real crowdsourcing platforms. Here
the noise we considered is the group-cheating noise, where all
the noisy workers added would give the same and random label
for all the instances.

For each simulated dataset, 20% of the instances are used to
train the five reliable workers. The rest of instances are divided
into 10 parts. Each part of these 10 parts is used as standard
questions to train the proposed algorithms, and the other 9 parts
are used as test sets, where we use the workers’ reliabilities
learned on the 1 part. The accuracy (Y-axis) showed in the
following figures is the average accuracy on the test sets among
the 10 folds. Please notice, on the 9 test parts, true labels are
not queried from domain experts and only their annotations
and workers’ reliabilities learned on the 1 part are used.

C. Experiments on Different Noisy Scenarios

0 3 5 10
0.5

0.6

0.7

0.8

0.9

1

Number of Noisy Annotators

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

EW

GF

0 3 5 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Noisy Annotators

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

EW

GF

(a) fashion (b) fashion-cloth

Fig. 2. Accuracy V.S. Number of Group-cheating Workers.

In this section, we investigate the influence of noisy work-
ers on baseline algorithms. Figure 2 shows the accuracy of
different algorithms with different number of noisy workers.
The performance on the other datasets is shown in supplemen-
tary material.

As expected, both the EW and GF algorithms are stable and
outperform the state-of-the-art algorithms in all noisy levels.
All of the other algorithms could perform as well as EW and
GF in the noise-free scenario (0 noisy workers added) without
any ground-truth labels requirement. This makes SIGNAL
and BIAS algorithms attractive in large-scale annotation tasks,
however, as the group-cheating noisy workers are added,
all of the baseline algorithms greatly suffered as expected.



Especially for the MV algorithm, as the number of group-
cheating workers increases, the annotations from noisy workers
rapidly dominant the vote. This makes the MV algorithm
infeasible. BIAS algorithm considers each workers bias based
on the SIGNAL algorithm, this feature makes it outperform
the other two baseline algorithms in the noise-free or random
noisy setting [25], however, its performance also suffers most
as group-cheating noisy workers are added. These observations
motivate to consult domain experts to robustly learn workers’
reliabilities in the group-cheating scenarios.

Although EW and GF algorithms could robustly achieve
better performance, task allocation doesn’t consider workers’
reliabilities which could waste money on allocating task to
noisy workers. What’s worse, both EW and GF require all the
golden labels on the training set, which is costly considering
the high price to querying the domain experts. In the following
subsections, we evaluate the proposed algorithms on tackling
these two limitations, respectively.

D. Experiments on Who to Label
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Fig. 3. Accuracy V.S. Budget Ratio in Different Group-cheating Scenarios
on fashion Dataset.

In this section, we investigate the performance of the
proposed active allocation strategy on “Who to Label” module
in Figure 1. To simplify the evaluation, we assume each worker
will spend 1 resource to label one instance, so the budget size
equals the multiplication of # Train and # Workers shown in
Table I. Figure 3 shows the performance with varied budget
ratio under different noisy scenarios. The performance on the
other datasets is shown in supplementary material.

Several observations could be made. First, on all noisy
settings, the proposed active allocation algorithms, EW-Who

and GF-Who, could consistently infer much more accurate
labels than the random versions REW-Who and GF-Who, re-
spectively. Specifically, In Figure 3 (a), where there is no extra
noisy workers added, random algorithms REW-Who and RGF-
Who could achieve similar performance as the active allocation
algorithms EW-Who and GF-Who since the reliabilities of all
workers are comparable, and there is no much difference of
deciding who to label the given instance. However, as the
number of noisy workers increases, shown in Figure 3 (b), (c),
(d), the proposed reliability-based allocation algorithms based
on Equation (6) greatly outperform their random versions.
This confirms the effectiveness of considering the cumulative
performance of each worker when assigning the annotation
tasks.

Second, the proposed strategies could reduce the anno-
tation budget to get comparable performance with baseline
algorithms when noisy workers exist. For example, in Figure 3
(d), with less than %20 budget, GF-who could outperform all
the other algorithms in terms of accuracy. This feature makes it
much more attractive as the number of noisy workers increases.

Figure 4 shows the performance of proposed algorithms
on the other datasets, where 10 extra noisy workers are added.
Similar observations could be made. It should be noted that
BIAS algorithm performs as bad as MV algorithm. Although
the proposed active allocation algorithms could consistently
achieve promising results, they are built on the workers’
reliabilities which are learned by querying domain experts,
who usually charge much higher than the noisy workers in
the crowdsourcing platforms. In the following experiments, we
investigate the proposed algorithms in reducing the number of
queries of domain experts.
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Fig. 4. Accuracy V.S. Budget Ratio with 10 Extra Noisy Workers Added on
Four Different Datasets.



0 0.2 0.4 0.6 0.8 1
0.94

0.95

0.96

0.97

0.98

0.99

1

Ratio of Querying Budge

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

EW

REW

MAEW

WAEW

0 0.2 0.4 0.6 0.8 1
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ratio of Querying Budge

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

EW

REW

MAEW

WAEW

(a) fashion (b) fashion-cloth

0 0.2 0.4 0.6 0.8 1
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

Ratio of Querying Budge

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

EW

REW

MAEW

WAEW

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

Ratio of Querying Budge

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

EW

REW

MAEW

WAEW

(c) a8a (d) spambase

Fig. 5. Accuracy V.S. Budget Ratio with 0 Extra Noisy Workers Added
Based on EW Forecaster.

E. Experiments on When to Query

In this experiment, we assume the budgets equal “# Train”
shown in Table I, and querying one instance for true label
would cost one budget. We evaluate the accuracy on test set
with respect to the querying ratio on training set, as shown
in Figure 5 and 6. The performance on the other datasets is
shown in supplementary material.

First, we could observe that the proposed algo-
rithms (MAEW, MAGF, WAEW and WAGF) greatly out-
perform their random versions REW and RGF. Specially,
the proposed WAEW and WAGF outperform the margin-
based algorithms MAEW and MAGF once querying ratio is
larger than a certain point. Besides, the MAEW and MAGF
algorithms could achieve similar performance as EW and GF
with limited querying budget, such as %40 of querying budget
in Figure 5 (a) (b). More importantly, with little extra cost in
querying domain experts, the proposed algorithms are robust in
accurately aggregating workers’ annotations on different noisy
scenarios.

Second, all active learning algorithms and their random
versions could outperforms the MV algorithm with less than
%10 of querying budget (when the ratio of querying budget
equals 0, the active learning algorithms are down to MV algo-
rithm, where all workers are assigned with the same weight).
These findings verify the effectiveness of the proposed active
learning algorithms in reducing the cost of querying domain
experts and achieving promising performance meanwhile.

F. Experiments on the Framework

In this section, we investigate the overall performance
of the proposed Framework 1 by combining the strategies

0 0.2 0.4 0.6 0.8 1
0.94

0.95

0.96

0.97

0.98

0.99

1

Ratio of Querying Budget

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

GF

RGF

MAGF

WAGF

0 0.2 0.4 0.6 0.8 1
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ratio of Querying Budget

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

GF

RGF

MAGF

WAGF

(a) fashion (b) fashion-cloth

0 0.2 0.4 0.6 0.8 1
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

Ratio of Querying Budget

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

GF

RGF

MAGF

WAGF

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

Ratio of Querying Budget

A
c
c
u
ra

c
y

 

 

MV

SIGNAL

BIAS

GF

RGF

MAGF

WAGF

(c) a8a (d) spambase

Fig. 6. Accuracy V.S. Budget Ratio with 0 Extra Noisy Workers Added
Based on GF Forecaster.

of who to label (EW-Who and GF-Who) and strategies of
when to query (MAEW and MAGF) together. To make a
fair comparison with baseline algorithms, we assume the total
budget as the number of annotations collected on “# Train”
and “# Test” in Table I, and querying one instance with
domain experts will cost m resources, where m equals the
average number of annotations received from noisy workers
for each instance. Ratio of budget equals the resources used on
consulting domain experts with MAEW or MAGF algorithms
and annotating with EW-Who or GF-Who algorithms over total
budget defined.

Figure 7 shows the performance of the proposed framework
with varied budget ratio on four datasets when 10 noisy
workers are added. The performance on the other datasets is
shown in supplementary material. Firstly, similar observations
as in Figure 3 could be made. EW based algorithms achieve
comparable performance as the one based on GF.

Secondly, by combining the “Who to Label” and “When
to Query” strategies, the proposed framework could robustly
infer much more accurate labels with limited budget. Although
it needs domain experts to query the true labels, only 1% of
the instances are queried. Besides, the learned reliabilities of
workers could be directly and smoothly adopted in the alloca-
tion phrase. Considering all these advantages, the framework
shows great potential to be applied into real annotation tasks,
especially for the group-cheating scenarios.

V. CONCLUSION

In this article, we proposed a framework, budget active
learning with expert advice, to infer accurate labels from noisy
annotations. Specifically, we proposed two active learning
strategies to decide when to query the ground-truth (which is
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Fig. 7. Accuracy of Framework 1 V.S. Budget Ratio with 10 Extra Noisy
Workers Added.

usually given by the domain experts) of an instance. Relying
on the reliability of each worker learned, we proposed an active
allocation strategy to decide who to label for an instance.
We also carried extensive experiments both with real and
simulated datasets in different scenarios. The empirical studies
show the proposed active learning strategies could greatly
alleviate intervention of domain experts, and the proposed
active allocation strategy could effectively choose reliable
workers to label. In summary, the proposed framework could
achieve comparable results with the baseline algorithms in the
normal setting, and robustly outperform the baselines in the
group-cheating scenarios. In the future, we are interested in
theoretically analyzing the proposed framework and evaluating
its performance in interactive annotation tasks.
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