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Norming Rates and Limit Theory for Some
Time-Varying Coeffi cient Autoregressions∗

Offer Lieberman†and Peter C. B. Phillips‡

Revised, August 24, 2013

Abstract

A time-varying autoregression is considered with a similarity-based
coeffi cient and possible drift. It is shown that the random walk model
has a natural interpretation as the leading term in a small-sigma ex-
pansion of a similarity model with an exponential similarity function
as its autoregressive coeffi cient. Consistency of the quasi-maximum
likelihood estimator of the parameters in this model is established,
the behaviors of the score and Hessian functions are analyzed and test
statistics are suggested. A complete list is provided of the normal-
ization rates required for the consistency proof and for the score and
Hessian functions standardization. A large family of unit root mod-
els with stationary and explosive alternatives are characterized within
the similarity class through the asymptotic negligibility of a certain
quadratic form that appears in the score function. A variant of the sto-
chastic unit root model within the class is studied and a large sample
limit theory provided which leads to a new nonlinear diffusion process
limit showing the form of the drift and conditional volatility induced
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by this model . Some simulations and a brief empirical application to
data on an Australian Exchange Traded Fund are included.

Key words and phrases: Autoregression; Consistency; Nonlinear dif-
fusion; Nonstationarity; Similarity; Small sigma approximation; Sto-
chastic unit root; Time-varying coeffi cients.

JEL Classification: C22

1 Introduction

First-order autoregressions with possible unit roots or roots that are in the
vicinity of unity have attracted an enormous amount of interest over recent
decades. The literature now provides a near comprehensive coverage of esti-
mation and testing of the coeffi cient of the lag dependent variable in station-
ary, unit root, explosive, and many intermediate cases of near and mild inte-
gration, including models with or without fitted intercepts and trends. Tra-
ditional analysis of this model relates to data generating processes (DGP’s)
with fixed coeffi cients that are consistent with a single scenario. For instance,
empirical studies frequently work under a null hypothesis that the DGP is a
unit root process with drift, not that the process may have fluctuating, time-
dependent parameters that are compatible with stationary behavior for some
parts of the sample, unit root behavior for other parts, and mildly explosive
behavior elsewhere. Most econometric software packages include common
tests for a unit root which reflect this characterization. But recent empirical
work, particularly on the global financial crisis, has shown the advantages of
working with flexible systems that accommodate multiple regimes of station-
ary and nonstationary behavior and transition mechanisms between them
(e.g. Phillips, Wu and Yu, 2011; Phillips and Yu, 2011).
A second trend in the literature involves models with time varying coeffi -

cients, such that the process is at least weakly stationary. See among others,
Nicholls and Quinn (1980, 1981, 1982), Chen and Tsay (1993), Dahlhaus et.
al. (1999), Dahlhaus (2000) and Lundbergh et. al. (2003). Some related
work on explosive random coeffi cient autoregressive processes has been done
by Hwang and Basawa (2005). In addition, Granger and Swanson (1997)
introduced a stochastic unit root (STUR) model where the autoregressive
root is in the vicinity of unity, is stochastic, and is driven by an independent
stationary process - see also McCabe and Tremayne (1995). Some properties
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of that model were derived but no limit theory or estimation theory was es-
tablished. Within the context of a wider class of models, the present paper
considers a variant of the STUR model, provides a large sample limit theory
and studies the discriminatory power of unit root testing against STUR al-
ternatives. We do not cover in this paper an important line of the literature
dealing with time varying coeffi cient models that are not autoregressions.
Those models give rise to issues which are very different from the ones which
surface in autoregressions.
Recently, Lieberman (2012) introduced a similarity-based model in the

context of time varying coeffi cient autoregressions. That paper developed
the asymptotic theory for quasi-maximum-likelihood estimation (QMLE) of
this model and various statistical tests. Unlike earlier literature, the coeffi -
cient of the lag dependent variable in this model can fluctuate freely and, at
any specific period t, the process may behave in a stationary, unit root, or
explosive manner. This feature of the similarity model adds some flexibility
to the prominent unit root model producing a system for which unit root ef-
fects may hold on average in a given sample but not necessarily at all points
within the sample.
In this paper we develop the idea further by considering a larger class of

models and by showing that the unit root model can be naturally interpreted
as a small-σ asymptotic approximation to the similarity model. To fix ideas,
we consider the process

Y1 = µ+ ε1,

Yt = µ+ βt (w)Yt−1 + εt, t = 2, ..., n, (1)

where µ ∈ R, w is an m-dimensional vector of unknown parameters, as-
sumed to lie in a compact subset of Rm, βt (w) = βt (xt, xt−1;w) ∈ R+,
xt = (X1t, ..., Xmt)

′ is an m-vector of explanatory variables, and {εt} is a
sequence of iid (0, σ2ε) random variables with cumulants κr, r ≥ 3. When
there is no risk of ambiguity we shall simply write σ2 in place of σ2ε. It is
emphasized that µ can be zero or otherwise and that the set of permissible
specifications for βt (xt, xt−1;w) is rich. Moreover, for a given t, βt (w) can
be less than-, equal to- or greater than unity, so that the model can behave
in a stationary-, unit-root- or explosive manner over subperiods.
Of particular interest is the model with an exponential similarity function

βt (xt, xt−1;w) = exp (wut) , m = 1, (2)
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where ut = ∆xt = ∆X1t is the source of variation in the coeffi cient. A natural
choice for xt would be an explanatory variable for Yt, but other generators
of coeffi cient randomness are possible. Suppose that ut are i.i.d. copies of
u. Mu (ω) = E (βt) is the moment generating function (mgf) of u when it
exists, and under certain conditions that will be discussed in Section 2,

Mu (w) = 1 +O
(
(wσu)

2) , (3)

where σ2u = Var (ut), ∀t. Moreover, the sample path of the coeffi cient βt (w)
has an average that converges pointwise in probability to Mu (w). Thus,
on average, the unit root specification, which is believed to be prevalent in
economic and financial data, may be interpreted as the leading form in a
small-σ expansion of the similarity model, with an error which is of the order
O (σ2u).
In studying the model (1), we prove consistency of the QMLE of w when

βt (w) is allowed to be non-negative and with µ ∈ R. This extends the
results of Lieberman (2012) by allowing for the case µ = 0. To achieve the
results, we introduce uniform norming factors which are functions of n × n
matrices, one of which covers the µ = 0 case and another the case µ 6= 0.
The behaviors of the score and Hessian functions are analyzed and, as with
the consistency proof, separate uniform norming factors are given for the
µ = 0 case and for the µ 6= 0 case. The simplest scenario, in which µ 6= 0
and the process is approximately a unit root, leads to a score-based test
which is asymptotically normal (see Lieberman 2012). A further case, where
the slope coeffi cient w = wn in the similarity function (2) is local to zero
and is allowed to be random, also approximates a unit root model. This
STUR model is analyzed by weak convergence methods and its limit theory
is related to that of a local to unity process but gives rise to a new nonlinear
diffusion. The properties of this limit process reveal the explicit form of the
conditional volatility induced by the similarity function. In many other cases
the distribution theory is much more complicated.
The plan for the paper is as follows. In Section 2 we discuss connections

and interpretations of the model and show how the random walk model can
be interpreted as a small-σ approximation of the similarity model with an
exponential similarity function. Notation and the main results are introduced
in Section 3, followed by some discussion in Section 4. Section 5 studies a
similarity-based STUR model, its limit theory, and the discriminatory power
of unit root tests against STUR alternatives. Simulations and an empirical

3



application are provided in Section 6 and Section 7 concludes. All proofs are
contained in the Appendix.

2 Connections and Interpretations of the model

This section draws connections between the similarity model and existing
time series models and provides some insights and interpretations of our
approach.

2.1 A Unit Root Model as a Small-σ Approximation
to the Similarity Model

Small σ asymptotics were originally developed in Kadane (1971) to ap-
proximate finite sample distributions in simultaneous equations models to
compare k-class estimators in terms of their bias, variance and mean squared
error. They may also be used to take expansions about the standard re-
gression model, which applies in a limiting case where the variance of the
endogenous regressors tends to zero. A related method was used by Samuel-
son (1970) to develop quadratic and higher order approximations useful in
portfolio analysis under situations where there is less and less risk.
In the present case, we consider the unit root model as a small σ approx-

imation of a more general system involving time varying random coeffi cients.
For the exponential similarity function given in (2), assume that ut are i.i.d.,
copies of u, each with mgfMu (w), zero mean and small variation, as when it
is distributed as U [−a, a], or N (0, σ2u), with small a or σ

2
u, respectively. The

import is that the coeffi cient of Yt−1 varies with ut but that the fluctuations
in the coeffi cient value are not too large. In the former case, as σ2u = a2/3,

Mu (w) =
ewa − e−wa

2wa
(4)

= 1 +
(wa)2

6
+

(wa)4

120
+O

(
(wa)6

)
= 1 +

(wσu)
2

2
+

3 (wσu)
4

40
+O

(
(wa)6

)
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and the property of the limit shown in (3) follows. In the second case,

Mu (w) = e(wσu)
2/2

= 1 +
(wσu)

2

2
+

(wσu)
4

8
+O

(
(wσu)

6)
so that (3) again holds. Of course, in both cases we can reparameterize with
wut = u∗t ∼ U [−w∗, w∗], w∗ = wa or u∗t ∼ N (0, w∗), w∗ = wσu. These
choices of βt are natural and reflect the principle that the average Yt−1-
coeffi cient value may be close to unity across the sample but will deviate
from unity at any point on the trajectory. In fact, the sample path of the
coeffi cient βt (w) in this setting has an average that converges pointwise in
probability to Mu (w). Figure 1 illustrates this point showing the QMLE of
βt for data on an Australian Exchange Traded Fund (ETF). We emphasize
that a limiting case occurs when xt = c, a.s. for all t, so that ut = 0, a.s.,
so that there is no random variation in the AR coeffi cient and the model
reduces to a random walk. The unit root model can thus be viewed as a
small-σ approximation to a flexible similarity model.

2.2 CAPM

The capital asset pricing model (CAPM) has long been central to finance and
provides a working foundation for more sophisticated models. Let ∆ log Yt
be the expected excess return of a certain capital asset and ∆ logZt be the
market premium, both at time t. Without the error term, the CAPM model
relates these quantities through the equation

∆ log Yt = β∆ logZt. (5)

Upon rearrangement, the model is

Yt = exp (β∆xt)Yt−1,

where, in line with our notation so far, xt = X1t = logZt. Thus, the CAPM
model is just a similarity model with an exponential similarity function in
which the value of Yt is determined by its similarity to Yt−1 through the
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closeness of Xt to Xt−1
1.

2.3 Threshold Autoregression

The threshold case

βt (xt, xt−1;w) = 1 {‖∆xt‖ < w1}+ w21 {‖∆xt‖ ≥ w1} ,

where ‖·‖ is the Euclidean norm, is of particular interest. Here, Yt−1 receives
a unit weight in the response only if its characteristics, xt−1, are within
w1-Euclidean distance from xt, the characteristics of Yt. Otherwise, Yt−1
is considered to be too ‘far’ from Yt and receives only a w2-weight, where
|w2| < 1. This model essentially has the form of a threshold autoregression,
see for instance, Tong (2011) and the references therein.

3 Notation and Main Results

This section contains the main theoretical results of the paper. Assumptions
and proofs for what follows are given in the Appendix.
LetC = C (w) be an n×nmatrix with entries [C (w)]t,t−1 = βt (xt, xt−1;w),

t = 2, ..., n and [C (w)]i,j = 0, otherwise, xt = (X1t, ..., Xmt)
′ is an m-vector

of explanatory variables, In be the identity matrix of order n, S = In − C,
θ1 = σ2, θ′2 = (w1, . . . , wm), θ = (θ1, θ

′
2)
′, y = (Y1, ..., Yn)′ and ε = (ε1, ..., εn)′.

For brevity, we shall write βt (w) in place of βt (xt, xt−1;w), or simply βt. Fol-
lowing convention, the true values of θ, w, and µ are denoted θ0, w0 and µ0,
respectively. Similarly, we set C0 = C (w0) and S0 = In − C0.
For the µ0 = 0 case, model (1) can be rewritten as y = S−1ε and as

det (S) = 1, the quasi-log-likelihood function is given by

ln (θ) = −n
2

log
(
2πσ2

)
− y′S ′Sy

2σ2
. (6)

For the µ0 6= 0 case, we concentrate the quasi-log-likelihood function by using
µ̂n (θ) = 1′S (θ) y/n in place of µ, which leads to

(Sy − µ̂n (θ) 1)′ (Sy − µ̂n (θ) 1) = y′S ′MSy

1Strictly speaking, the inclusion of an additive error term in (5) results in the model
Yt = exp (β∆Xt)Yt−1 exp (εt) - a similarity model with a multiplicative error term.
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and therefore,

lcn (θ) = −n
2

log
(
2πσ2

)
− y′S ′MSy

2σ2
, (7)

where M = In − P , P = 11′/n and 1′ is an n × 1 (row) vector of 1’s. For
brevity, θ̂n will denote the QMLE of θ using either (6), for the case µ0 = 0,
or (7), for the case µ0 6= 0.
We use the l1-, spectral- and Frobenius norms of an n × n matrix A,

denoted by ‖A‖1, ‖A‖2 and ‖A‖F , and given by ‖A‖1 =
∑n

i,j=1

∣∣∣[A]i,j

∣∣∣,
‖A‖2 =

(
sup|x|=1 x

′A′Ax
)1/2

and ‖A‖F = (tr (A′A))1/2. Finally, by Oe (·)
and Op,e (·) we denote the exact order and exact order in probability, respec-
tively.
The quantity

ρn =

∥∥S−10 ∥∥2F∥∥S−1′0 S−10
∥∥
1

turns out to be central to the asymptotic analysis. Terms in the expansions
of ln (θ) , lcn (θ), the score and Hessian functions based on them, can be con-
veniently grouped according to orders of magnitude of powers of ρn. As C0
is nonnegative and nilpotent by Assumption A2,

S−10 = In + C0 + · · ·+ Cn−1
0 ,

so that all the elements of S−10 are nonnegative. It follows that

∥∥S−10 ∥∥2F =
n∑
i=1

[
S−1′0 S−10

]
i,i
≤

n∑
i,j=1

[
S−1′0 S−10

]
i,j

=
∥∥S−1′S−1∥∥

1
, (8)

implying that
ρn ≤ 1. (9)

The behavior of ρn has been analyzed by Lieberman (2012, lemma 1)
in some leading special cases. In particular, for fixed coeffi cient stable or
explosive autoregressions ρn is bounded from below, whereas for the unit
root model, ρn = o (1).
Consistency of the QMLE is given in Theorem 1.

Theorem 1 Under Assumptions A0-A3, θ̂n →p θ0.
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The requirements for consistency seem quite weak. To establish the as-
ymptotic distribution of the score and the Hessian behavior, we let Dn and
Dc
n be n × n normalizing matrices corresponding to the µ0 = 0 and µ0 6= 0

cases, respectively, such that,

Dn =



1√
n

0 · · · 0

0 1

‖S−10 ‖F
· · · · · ·

0 1

‖S−10 ‖F


and

Dc
n =



1√
n

0 · · · 0

0 1

‖S−1′0 S−10 ‖1/21

· · · · · ·

0 1

‖S−1′0 S−10 ‖1/21

 .

The normalized concentrated score is

zn (θ) = Dnz
∗
n (θ) , z∗n (θ) =

∂ln (θ)

∂θ
, if µ0 = 0,

zcn (θ) = Dc
n

∂lcn (θ)

∂θ
, zc∗n (θ) =

∂lcn (θ)

∂θ
, if µ0 6= 0,

with components znr (θ) and zcnr (θ), r = 1, ...,m+ 1. We have,

zn1 (θ0) = −
√
n

2σ20
+
y′S ′0S0y

2σ40
√
n
, µ0 = 0,

and

zcn1 (θ0) = −
√
n

2σ20
+
y′S ′0MS0y

2σ40
√
n

, µ0 6= 0. (10)

For r = 2, ...,m+ 1, let Ṡ0r = ∂S0/∂θr,

Λ0r = Ṡ0rS
−1
0 + S−1′0 Ṡ ′0r, (11)

Γ0r = MṠ0rS
−1
0 + S−1′0 Ṡ ′0rM, (12)

8



QFnr = ε′Λ0rε, (13)

QF c
nr = ε′Γ0rε, (14)

and
LF c

nr = 1′S−1′0 Ṡ ′0rMε. (15)

The notations QFnr and LFnr stands for quadratic form and linear form,
respectively and when the superscript c is used, it indicates that the score is
based on lcn (θ). For r = 2, ...,m+ 1 then, we have

znr (θ0) = − QFnr

2σ20
∥∥S−10 ∥∥F , µ0 = 0, (16)

zcnr (θ0) = −QF
c
nr + 2µ0LF

c
nr

2σ20
∥∥S−1′0 S−10

∥∥1/2
1

, µ0 6= 0, if ρn = Oe (1) (17)

and

zcnr (θ0) = − µ0LF
c
nr

σ20
∥∥S−1′0 S−10

∥∥1/2
1

+ op (1) , µ0 6= 0, if ρn = o (1) . (18)

As is evident from (16)-(18), the leading terms of znr (θ) and zcnr (θ) de-
pend on both the value of µ0 and on the order of magnitude of ρn. In
particular, in the µ0 6= 0 case with ρn = o (1), the leading term in (18) is
linear in ε. This case corresponds, for instance, to a unit root with a drift
process. On the other hand, in the µ0 6= 0 with ρn = Oe (1) case, zcnr (θ)
(r = 2, ...,m+ 1) involves both a linear and a quadratic form in ε, so the
asymptotic distributions of the score in the two cases are very different.

Theorem 2 Under Assumptions A0-A3:

1. zn1 (θ0) and zcn1 (θ0) converge in distribution to N
(

0, 1
2σ40

(
1 + κ4

2σ40

))
.

2. znr (θ0) and zcnr (θ0) are non-negligible, r = 2, ...,m+ 1.

3. In the case µ0 6= 0, ρn = o (1) and a Gaussian ε, zcnr (θ0) is asymptot-
ically normal. In all other cases znr (θ) and zcnr (θ) involve quadratic
forms in ε.

9



Since, in general, znr (θ) and zcnr (θ) involve quadratic forms, their asymp-
totic distributions cannot be determined without additional structure on the
model. See Theorem 2 of Lieberman (2012).
Continuing, the normalized Hessian is given by

Hn (θ) = DnH
∗
n (θ)Dn, H∗n (θ) =

∂2ln (θ)

∂θ∂θ′
, if µ0 = 0,

and

Hc
n (θ) = Dc

nH
c∗
n (θ)Dc

n, H
c∗
n (θ) =

∂2lcn (θ)

∂θ∂θ′
, if µ0 6= 0,

with components Hnr,s (θ) and Hc
nr,s (θ), r, s = 1, ...,m+ 1. Let

Hn1,1 (θ0) =
1

2σ40
− y′S ′0S0y

nσ60
,

Hn1,r (θ0) =
ε′Λ0rε

2σ40
√
n
∥∥S−10 ∥∥F , r = 2, ...,m+ 1,

HL
nr,s (θ0) = −ε

′S−10 Ṡ ′0sṠ0rS
−1
0 ε

σ20
∥∥S−10 ∥∥2F , r, s = 2, ...,m+ 1,

Hc
n1,1 (θ0) =

1

2σ40
− y′S ′0MS0y

nσ60
,

Hc
n1,r =

ε′Γ0rε

2σ40
√
n
∥∥S−1′0 S−10

∥∥1/2
1

, r = 2, ...,m+ 1,

Hc,L1
nr,s (θ0) = −µ

2
01
′S−10 Ṡ ′0sMṠ0rS

−1
0 1

σ20
∥∥S−1′0 S−10

∥∥
1

, r, s = 2, ...,m+ 1,

Hc,L2
nr,s (θ0) = −2µ01

′S−1′0 Ṡ ′0sMṠ0rS
−1
0 ε

σ20
∥∥S−1′0 S−10

∥∥
1

, r, s = 2, ...,m+ 1,

and

Hc,L3
nr,s (θ0) = −ε

′S−10 Ṡ ′0sMṠ0rS
−1
0 ε

σ20
∥∥S−1′0 S−10

∥∥
1

, r, s = 2, ...,m+ 1.

Theorem 3 Under Assumptions A0-A4,

1. Hn1,1 (θ0) and Hc
n1,1 (θ0) converge in probability to − (2σ20)

−1, ∀µ ∈ R.
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For r = 2, ...,m+ 1:

2. Hn1,r (θ0) and Hc
n1,r (θ0) converge in probability to 0, ∀µ ∈ R.

3. Hnr,s (θ0) = HL
nr,s (θ0) + op (1), with HL

nr,s (θ0) = Op,e (1), if µ0 = 0.

4. Hc
nr,s (θ0) = Hc,L1

nr,s (θ0)+Hc,L2
nr,s (θ0)+Hc,L3

nr,s (θ0)+op (1), with Hc,L1
nr,s (θ0) =

Op,e (1), Hc,L1
nr,s (θ0) = Op

(√
ρn
)
and Hc,L3

nr,s (θ0) = Op,e (ρn), if µ0 6= 0
and ρn = Oe (1).

5. Hc
nr,s (θ0) = Hc,L1

nr,s (θ0) + op (1), with Hc,L1
nr,s (θ0) = Op,e (1), if µ0 6= 0 and

ρn = o (1).

We remark that unlike the stationary fixed coeffi cient case, Hn (θ0) may
not converge to a fixed matrix. For example, in the µ0 = 0 and βt (w) =

1, ∀t case, −Hn (θ0) converges to the random variable 2
∫ 1
0
W (r)2 dr, see

Phillips (1987, Theorem 3.1). Nevertheless, we may still use Theorems 1-3
to construct hypothesis tests of the form H0 : θ = θ0 by adopting random
norming, see, among others, Heyde (1975), Feigin (1976) and Lieberman
(2010). To do so, we recall that by the mean value theorem

zn (θ0) = −Hn

(
θ̄n
)
D−1n

(
θ̂n − θ0

)
, if µ0 = 0, (19)

where θ̄n satisfies
∥∥∥θ̄n − θ̂n∥∥∥ ≤ ∥∥∥θ̂n − θ0∥∥∥. Let
A∗n (θ0) = Eθ0

(
∂ln (θ0)

∂θ

∂ln (θ0)

∂θ′

)
,

and
An (θ0) = DnA

∗
n (θ0)Dn.

Multiplying both sides of (19) by A−1/2n (θ0) we obtain

A−1/2n (θ0) zn (θ0) = −A−1/2n (θ0)Hn

(
θ̄n
)
D−1n

(
θ̂n − θ0

)
, if µ0 = 0, (20)

or simply,

A∗−1/2n (θ0) z
∗
n (θ0) = −A∗−1/2n (θ0)H

∗
n

(
θ̄n
) (
θ̂n − θ0

)
, if µ0 = 0, (21)
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the difference between (20) and (21) being the cancellation of the normaliza-
tion matrix, Dn. The last equation forms the basis of our test statistic for
the hypothesis H0 : θ = θ0. The suggested test is

Tn =
(
θ̂n − θ0

)′
H∗n (θ0) (A∗n (θ0))

−1H∗n (θ0)
(
θ̂n − θ0

)
, if µ0 = 0.

Similarly, for the µ 6= 0 case, the suggested test statistic is

T cn =
(
θ̂n − θ0

)′
Hc∗
n (θ0) (Ac∗n (θ0))

−1Hc∗
n (θ0)

(
θ̂n − θ0

)
,

where Hc∗
n (θ0) and Ac∗n are analogous to H

∗
n (θ0) and A∗n, respectively, except

that the former are based on lcn (θ0) in place of ln (θ0) everywhere.
The statistics in (20) and (21) are vectors of normalized quadratic forms

with mean zero and unit covariance matrix. In some special cases, such as in
the stationary fixed coeffi cient setting, they are asymptotically N (0, Im+1).
Note that in the construction of Tn and T cn we have replaced H

∗
n

(
θ̄n
)
and

Hc∗
n

(
θ̄n
)
by H∗n (θ0) and Hc∗

n (θ0). The validity of this step requires uniform
boundedness of the normalized third-order log-likelihood derivatives, which
is given in Lemma 7 of the Appendix. Formally, denote by Fq, F c

q be the
asymptotic distributions of the quadratic forms

qn (θ) = z∗n (θ0)
′ (A∗n (θ0))

−1 z∗n (θ0)

and
qcn (θ) = zc∗n (θ0)

′ (Ac∗n (θ0))
−1 zc∗n (θ0) ,

respectively. Let
b′0r = MṠ0rS

−1
0 1.

We have:

Lemma 4 Under Assumptions A0-A3:

1. [An]1,1 = 1
2σ40

(
1 + κ4

2σ40

)
and [Acn]1,1 = [An]1,1 + o (1).

2. [An]1,r = 0 and [Acn]1,r = o (1), r = 2, ...,m+ 1.

For r, s = 2, ...,m+ 1 :

3. [An]r,s = 1
2

(tr (Λ0rΛ0s)), if µ0 = 0.

12



4. If µ0 6= 0 and ρn = Oe (1),

[Acn]r,s =
1

4σ40
{2σ40tr (Λ0rΛ0s) + κ4

n∑
i=1

[Γ0r]i,i [Γ0s]i,i

+4µ20σ
2
0b
′
0rb0s + 2µ0κ3

n∑
i=1

([Γ0r]i,i [b0s]i

+ [Γ0s]i,i [b0r]i)}+ o (1) .

5. [Acn]r,s =
µ20
σ20
b′0rb0s, If µ0 6= 0 and ρn = o (1).

Theorem 5 Under Assumptions A0-A4, the statistics Tn and T cn are asymp-
totically distributed Fq and F c

q , respectively.

To construct a simple test of the form H0 : θr = θ0r, we may use

Tn =
(
θ̂nr − θ0r

)2 [
H∗n (θ0) (A∗n (θ0))

−1H∗n (θ0)
]
r,r
, if µ0 = 0,

or
T cn =

(
θ̂nr − θ0r

)2 [
H∗cn (θ0) (Ac∗n (θ0))

−1Hc∗
n (θ0)

]
r,r
, if µ0 6= 0.

The tests can be applied in principle by comparing the calculated Tn or T cn
values to the simulated p-values of qn (θ0) or qcn (θ0), respectively.
To complete the limit theory, we provide a consistency theorem for µ̂n

and discuss its asymptotic distribution.

Theorem 6 Under Assumptions A0-A3, µ̂n →p µ0.

As is clear from the proof of Theorem 6,

√
n (µ̂n − µ0) =

1′
(
C0 − C

(
θ̂n

))
y

√
n

+
√
nε̄n. (22)

Therefore, the asymptotic distribution of µ̂n depends critically on the behav-
iour of the first term on the rhs of (22) and may therefore be non-normal.
To illustrate, consider the case where ut is stochastic, βt (xt, xt−1;w) is given
by (2), ηt = (ut, εt) ∼ iid (0,Σ) with finite fourth moments, vech(Σ) =

(σ2u, σuε, σ
2
ε), n

−1/2∑bnrc
t=1 ηt ⇒ B (r) ≡ BM(Σ) , where B = (Bu, Bε)

′, µ0 = 0,

13



and w0 = 0. In this example and in what follows in Section 5 it is convenient
to use the notation σ2ε in place of σ

2 for E (ε2t ) . In this case, some detailed
but standard weak convergence arguments reveal the following explicit limit
theory for ŵn

√
nŵn ⇒ ξ :=

σεu
∫
B̃ε

{σ2u + E (εtu2t )}
∫
B̃2
ε

, (23)

where B̃ε (r) = Bε (r)−
∫
Bε and all integrals are taken over the unit interval

[0, 1] . Then

n−1/21′
(
C0 − C

(
θ̂n

))
y = n−1/2

n−1∑
t=1

(
βt+1 (w0)− βt+1 (ŵn)

)
Yt

= n−1/2
n−1∑
t=1

(
1− eŵnut+1

)
Yt

= −
(√

nŵn
)( 1

n

n−1∑
t=1

ut+1Yt

)
− σ2u (

√
nŵn)

2

2

(
1

n3/2

n−1∑
t=1

Yt

)

−(
√
nŵn)

2

2

(
1

n3/2

n−1∑
t=1

(
u2t+1 − σ2u

)
Yt

)
+ op (1)

∼ −ξ
∫
BεdBu −

σ2uξ
2

2

∫
Bε + op (1) ,

showing nonnormality in the limit theory and leading in this case to

√
n (µ̂n − µ0)⇒ −ξ

∫
BεdBu −

σ2uξ
2

2

∫
Bε +Bε (1) .

This example illustrates how the asymptotic distribution of
√
n (µ̂n − µ0)

generally depends intimately on that of θ̂n when σuε 6= 0. When σuε = 0,√
n (µ̂n − µ0)⇒ Bε (1) and the limit theory does not depend on that of θ̂n.
In the nonstochastic case where ut = t

n
we find in place of (23) the limit

theory

nŵn ⇒ ξ :=

∫
rBε (r) dBε∫
r2B2

ε (r)
. (24)
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Then

n−1/21′
(
C0 − C

(
θ̂n

))
y = n−1/2

n−1∑
t=1

(
1− eŵn t+1n

)
Yt

= − (nŵn)

(
1

n3/2

n−1∑
t=1

t+ 1

n
Yt

)
− (nŵn)2

2

(
1

n5/2

n−1∑
t=1

(
t+ 1

n

)2
Yt

)
⇒ −ξ

∫
rBε (r) .

So
√
n (µ̂n − µ0) ⇒ Bε (1) − ξ

∫
rBε (r) and the limit distribution is again

non-normal and depends on that of θ̂n.

4 Discussion

Some of the implications of these findings are as follows.

1. The normalization rates required for ln (θ) and lcn (θ) in the proof of
Theorem 1 are detailed in Table 1. For the case µ0 = 0, we require an∥∥S−10 ∥∥−2F - or an ∥∥S−1′0 S−10

∥∥−1
1
- normalization when ρn = Oe (1) and an∥∥S−10 ∥∥−2F -normalization when ρn = o (1). In terms of the fixed co-

effi cient framework, as the unit root model is characterized by the
condition ρn = o (1), an

∥∥S−10 ∥∥−2F -normalization corresponds to an
n−2-normalization. For the fixed coeffi cient stable or explosive AR(1)
model, both which are characterized by ρn = Oe (1), an

∥∥S−10 ∥∥−2F - or an∥∥S−1′0 S−10
∥∥−1
1
- normalization corresponds to an n−1- and a β−2n- nor-

malization in the stable- and explosive cases, respectively. These rate
results are well known —see Evans and Savin (1984), Phillips (1987)
and Lemma 1 of Lieberman (2012).

2. In the µ0 6= 0 case, an
∥∥S−1′0 S−10

∥∥−1
1
- normalization is required for the

consistency proof based on lcn (θ), regardless of the order of magnitude
of ρn. This corresponds to an n

−1- and a β−2n- normalization in the
stable- and explosive cases, respectively and an n−3-normalization for
the unit root model. Thus, unlike the stable and explosive cases in
which the normalization is uniform in µ0, different normalizations are
required for the µ0 = 0 and µ0 6= 0 cases in the unit root case.
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3. To establish the behavior of the score, we use the normalizations sum-
marized in Table 2. In the µ0 = 0 case, the score is a scalar multiple
of QFn and needs to be normalized by

∥∥S−10 ∥∥−1F . In the µ0 6= 0 and
ρn = Oe (1) case, bothQF c

n and LF
c
n are of the same order of magnitude

whereas in the µ0 6= 0 and ρn = o (1) case the term QFn/ ‖S−1′S−1‖1/21
is negligible. As the condition ρn = o (1) characterizes a unit root type
process, the vanishing of the latter term is indicative that the process
is unit root and not a stable or an explosive process. Moreover, since
LFn is the dominant term in the µ0 6= 0 and ρn = o (1), case, if ε
is Gaussian, the normalized score, being linear in ε, is also Gaussian.
This is the case discussed in Lieberman (2012). For all other cases, the
normalized score involves a quadratic form in ε and therefore is not
asymptotically Gaussian. It is clear that in general it is not possible to
determine the asymptotic distribution of the normalized score without
additional structure on the model.

4. In the special case µ0 = 0 and a (fixed coeffi cient)unit root model, the
normalized score given by QFn/

∥∥S−10 ∥∥F is easily seen to converge to a
(χ2 (1)− 1) /2 variate, which agrees with the result of Phillips (1987).
See also Lieberman (2010).

5. The present setting assumes exogenous regressors Zt. This assumption
is common in time series regression where additional regressors are in-
troduced and occurs in models such as the CAPM, ARMAX, and error
correction models. In the following section, we consider a stochastic
unit root model where the regressors may be dependent.

6. We have given two examples that show the asymptotic distribution
of
√
n (µ̂n − µ0) may be non-normal. Furthermore, in suffi cient gen-

erality the asymptotic distributions of Tn and T cn are non-normal. In
both cases, simulation based approaches, such as the bootstrap, can be
applied to generate p-values for hypothesis testing.

5 A Similarity STUR Model

As a further example of a similarity autoregression we consider a model that
belongs to a class most closely related to the stochastic unit root (STUR)
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model studied in Granger and Swanson (1997). We use the no-intercept
similarity autoregression

Y1 = ε1,

Yt = βt (wn)Yt−1 + εt, t = 2, ..., n, (25)

with an exponential similarity function βt (xt, xt−1;wn) = ewnut, where in line
with the notation following eq’n (2), ut = ∆xt is the source of the variation
in the autoregressive coeffi cient. In this formulation, wn = a√

n
is local to

zero, so that

βt = exp

(
a√
n
ut

)
= 1 +

a√
n
ut +Op

(
1

n

)
→ 1, (26)

is local to unity as n → ∞. However, unlike the usual constant coeffi cient
local to unity model where β = exp

(
a
n

)
∼ 1 + a

n
, the coeffi cient is stochastic

and may therefore lie in the stationary or the explosive region, depending
on the realization of ut. Deviations from unity are Op

(
n−1/2

)
in this model

rather than deterministic and O (n−1) . The model (25) and (26) is closely
related to the STUR model of Granger and Swanson (1997) in which the
autoregressive coeffi cient took the form βt = eαt where αt is generated in-
dependently of yt by a stationary autoregression. Some of the properties of
that model were studied in Granger and Swanson but no limit theory was
provided.
With the localizing coeffi cient wn = a√

n
in the time-varying representation

βt = exp (wn∆xt) , the behavior of the model is autoregressive in the vicinity
of unity and is amenable to functional limit theory, as we show below. This
behavior may be directly analyzed as a stochastic alternative to either a unit
root model or a constant local to unity model. As we will see, the limit
behavior of the system is a nonlinear diffusion process rather than a linear
diffusion process.
We shall assume that the moment generating function Mu (s) = E (esut)

of ut is finite over some interval s ∈ (−δ, δ) of the origin for δ > 0. Solving
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(25) we have

Yt = εt +
t−1∑
j=1

{
j∏

k=0

βt−k

}
εt−j = εt +

t−1∑
j=1

{
j∏

k=0

e
a√
n
ut−k

}
εt−j

= εt +

t−1∑
j=1

{
e

a√
n

∑j
k=0 ut−k

}
εt−j = εt +

t−1∑
s=1

{
e

a√
n

∑t−s
`=0 us+`

}
εs.

Observe that the impulse responses in this system are

∂Yt
∂εt−j

=

j∏
k=0

βt−k = e
a√
n

∑j
k=0 ut−k = eaX

u
nj , (27)

where Xu
nj = n−1/2

∑j
k=0 ut−k is stochastic and a normalized partial sum

process which wanders over R. Hence, the impulse response function ∂Yt
∂εt−j

∈
R+ and may be arbitrarily small or arbitrarily large, the values being driven
by the partial sum process Xu

nj.
As in the example following Theorem 6, we assume that partial sums

of ηt = (ut, εt)
′ satisfy the invariance principle n−1/2

∑bnrc
t=1 ηt ⇒ B (r) ≡

BM(Σ) , where B = (Bu, Bε)
′ is vector Brownian motion (BM) with posi-

tive definite variance matrix vech(Σ) = (σ2u, σuε, σ
2
ε) . Then, the asymptotic

behavior of the time series Yt in (25) has the following form

n−1/2Ybnrc = n−1/2
bnrc−1∑
j=1

{
e

a√
n

∑j
k=0 ubnrc−k

}
εbnrc−j +Op

(
n−1/2

)
= n−1/2

bnrc−1∑
s=1

{
e

a√
n

∑bnrc−s
`=0 us+`

}
εs +Op

(
n−1/2

)
= n−1/2

bnrc−1∑
s=1

{
e

a√
n

∑bnrc
j=s uj

}
εs +Op

(
n−1/2

)
⇒

∫ r

0

ea
∫ r
p dBu(q)dBε (p)

= eaBu(r)
∫ r

0

e−aBu(p)dBε (p) =: Ga (r) . (28)
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The limit processGa (r) is a nonlinear Itō diffusion and satisfies the stochastic
differential equation

dGa (r) = aGa (r) dBu (r) +
a2σ2u

2
Ga (r) dr + dBε (r) ,

showing the form of the drift and conditional volatility in the process that
are induced by the similarity function βt (wn) = exp (wnut) in (25). The
quadratic variation of Ga (r) is

[Ga]r = σ2εr + a2σ2u

∫ r

0

Ga (s)2 ds+ 2aσuε

∫ r

0

Ga (s) ds

=

∫ r

0

ea (s)′Σea (s) ds,

where ea (s)′ = (aGa (s) , 1) . Evidently, realized and integrated volatility
depend on the past history of the state variable {Ga (s) , s ≤ r} .
If σuε = 0, Bu is independent of Bε and the limit process Ga (r) is mixed

Gaussian with the following covariance kernel conditional onFu= σ {Bu (s) : s ∈ [0, 1]}

γFu (r, s) = E {Ga (r)Ga (s) |Fu}

= eaBu(r)eaBu(s)
∫ r

0

∫ s

0

e−aBu(p1)e−aBu(p2)E {dBε (p1) dBε (p2)}

= σ2εe
aBu(r)eaBu(s)

∫ r∧s

0

e−2aBu(p)dp,
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and unconditional covariance kernel

γ (r, s) = E
{
γFu (r, s)

}
= σ2εE

{
eaBu(r)+aBu(s)

∫ r∧s

0

e−2aBu(p)dp

}
= σ2ε

∫ r∧s

0

E
{
ea[Bu(r)−Bu(p)]+a[Bu(s)−Bu(p)]

}
dp

= σ2εE
{
ea[Bu(r∨s)−Bu(r∧s)]

}∫ r∧s

0

E
{
e2a[Bu(r∧s)−Bu(p)]

}
dp

= σ2εe
1
2
a2(r∨s−r∧s)σ2u

∫ r∧s

0

e2a
2[r∧s−p]σ2udp = σ2εe

1
2
a2(r∨s−r∧s)σ2u

[
−e

2a2[r∧s−p]σ2u

2a2σ2u

]r∧s
0

= σ2ε
e2a

2σ2ur∧s − 1

2a2σ2u
e
1
2
a2σ2u(r∨s−r∧s).

Observe that when a2σ2u → 0, γ (r, s) → σ2εr ∧ s, the covariance kernel of
the Brownian motion Bε, corresponding to the case where βt = 1, Ga (r)→
Bε (r) , and (25) is a random walk. Thus, for small |a| or σ2u, the model is
local to a simple unit root model. When a → ±∞, the limit behavior of
Ybnrc is more complex. In particular, the rates of convergence change, and
the limit results become path dependent. This case deserves further study
and will be investigated in later work.
If σuε 6= 0, Bu and Bε are dependent, and the limit process Ga (r) is no

longer conditionally Gaussian. Instead, we have

Ga (r) = eaBu(r)
∫ r

0

e−aBu(p)dBε (p) = eaBu(r)
∫ r

0

e−aBu(p)dBε (p)

= eaBu(r)
∫ r

0

e−aBu(p)dBε.u (p) +
σuε
σ2u

eaBu(r)
∫ r

0

e−aBu(p)dBu (p)

= : Ga,ε.u (r) +
σuε
σ2u

Ga,u (r) ,

Here Bε.u (r) = Bε (r) − σuε
σ2u
Bu is BM(σ2ε.u) with σ

2
ε.u = σ2ε − σ2uε/σ

2
u, and

Ga,ε.u (r) is a conditional Gaussian (Itō diffusion) process with conditional
covariance kernel

γε.u,Fu (r, s) = E {Ga,ε.u (r)Ga,ε.u (s) |Fu} = σ2ε.ue
aBu(r)eaBu(s)

∫ r∧s

0

e−2aBu(p)dp,
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and unconditional covariance kernel

γε.u (r, s) = E {Ga,ε.u (r)Ga,ε.u (s)} = σ2ε.u
e2a

2σ2ur∧s − 1

2a2σ2u
e
1
2
a2(r∨s−r∧s)σ2u .

The process Ga,u (r) = eaBu(r)
∫ r
0
e−aBu(p)dBu (p) is a nonlinear stochastic

integral of Bu and obviously non Gaussian when a 6= 0.
For t = bnrc for some r ∈ (0, 1] and large j = bnκc, κ > 0, the impulse

responses (27) have the form

∂Ybnrc
∂εbnrc−bnκc

=

bnκc∏
k=0

βt−k = e
a√
n

∑bnκc
k=0 ubnrc−k ⇒ ea

∫ r
r−κ dBu(s) = ea[Bu(r)−Bu(r−κ)],

which may be arbitrarily small, close to unity, or arbitrarily large depending
on the historical trajectory of the process Bu over the past interval [r − κ, r] .
The functional law (28) enables us to derive the limit behavior of sta-

tistics arising from the model (25) and (26). For example, we may consider
conventional unit root tests applied to model (25) and (26). Observe that
least squares applied to (25) gives

β̂ =

∑n
t=1 YtYt−1∑n
t=1 Y

2
t−1

=

∑n
t=1 e

a√
n
utY 2

t−1∑n
t=1 Y

2
t−1

+

∑n
t=1 Yt−1εt∑n
t=1 Y

2
t−1

=

∑n
t=1 E

[
e

a√
n
ut
]
Y 2
t−1∑n

t=1 Y
2
t−1

+

∑n
t=1 Yt−1εt∑n
t=1 Y

2
t−1

+

∑n
t=1

{
e

a√
n
ut − E

[
e

a√
n
ut
]}

Y 2
t−1∑n

t=1 Y
2
t−1

= M

(
a√
n

)
+

∑n
t=1 Yt−1εt∑n
t=1 Y

2
t−1

+

∑n
t=1

{
e

a√
n
ut −M

(
a√
n

)}
Y 2
t−1∑n

t=1 Y
2
t−1

so that

n

[
β̂ −M

(
a√
n

)]
=
n−1

∑n
t=1 Yt−1εt

n−2
∑n

t=1 Y
2
t−1

+
n−1

∑n
t=1

{
e

a√
n
ut −M

(
a√
n

)}
Y 2
t−1

n−2
∑n

t=1 Y
2
t−1

By standard weak convergence arguments we have

n−1
∑n

t=1 Yt−1εt
n−2

∑n
t=1 Y

2
t−1
⇒
∫ 1
0
Ga (r) dBε (r)∫ 1
0
Ga (r)2 dr

.

21



Expanding the moment generating function we have

ηn,t (a) = e
a√
n
ut −M

(
a√
n

)
=

{
1 +

a√
n
ut +

1

2

(
a√
n

)2
u2t

}
−
{

1 +
1

2

(
a√
n

)2
σ2u

}
+ op

(
n−1
)

=
a√
n
ut +

a2

2n

(
u2t − σ2u

)
+ op

(
n−1
)
,

so that by standard arguments

n−1
∑n

t=1 Y
2
t−1ηn,t (a)

n−2
∑n

t=1 Y
2
t−1

∼ a

∑n
t=1

(
Yt−1√
n

)2
ut√
n

n−1
∑n

t=1

(
Yt−1√
n

)2 +Op

(
n−1/2

)

⇒ a

∫ 1
0
Ga (r)2 dBu (r)∫ 1
0
Ga (r)2 dr

,

which leads to the limit theory

n

[
β̂ −M

(
a√
n

)]
⇒
∫ 1
0
Ga (r) dBε (r)∫ 1
0
Ga (r)2 dr

+ a

∫ 1
0
Ga (r)2 dBu (r)∫ 1
0
Ga (r)2 dr

.

Correspondingly, with a unit root centering, we have

n
[
β̂ − 1

]
⇒ 1

2
a2σ2u +

∫ 1
0
Ga (r) dBε (r)∫ 1
0
Ga (r)2 dr

+ a

∫ 1
0
Ga (r)2 dBu (r)∫ 1
0
Ga (r)2 dr

(29)

It follows that standard coeffi cient based UR tests have only local discrimi-
natory power against a stochastic UR of the form (25). Similar results apply
for t-ratio based and other UR tests.
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6 Simulations and Empirics

6.1 Simulations

To evaluate the behavior of the estimators, simulations were conducted on
the model (1) with βt = exp (wZt) for n = 250, 500, 1000, µ = 0, 0.25, and
w = 0.07, 0.2, with 2000 replications per experiment. In one setting we took
Zt ∼ NID (−w/2, 1) and in the other Zt ∼ U [−1, 1] + bw, bw = −0.0116648
if w = 0.07 and bw = −0.033289 if w = 0.2. With these choices EZ (βt) = 1,
∀t, but for each t, βt can be greater than- equal to- or less than unity. Means
and standard deviations of ŵn, µ̂n and β̂t for all the scenarios considered here
are summarized in Tables 3 and 4.
Overall, with no noticeable differences between the cases, the means are

very close to the true values and the estimated standard deviations decline
with n, as is expected, corroborating consistency.

6.2 Financial Data Application

We consider eight country Exchange Traded Funds (ETFs), denoted by Pt,
traded in the U.S. and measured in 15-minutes intervals. The model is

Pt = exp{∆NAVt (w1 + w2Dt) + ∆SPt (w3 + w4Dt) (30)

+ECTt−1 (w5 + w6Dt)}Pt−1 + εt,

where NAVt is the net asset value, SPt is the S&P500 index, ECTt is an
error correction term, equal to Pt − NAVt, Dt is a dummy variable, taking
the value of unity if t is the U.S. market-open time and zero otherwise, and
all variables (apart from Dt) were transformed by a natural logarithm. The
data are available for Australia, Hong Kong, Japan, Malaysia, Singapore,
Taiwan, South Korea and China. The tickers for these countries are given
by EWA, EWH, EWJ, EWM, EWS, EWT, EWY and FXI, respectively.
The sample range is 12/15/2000-12/13/2010, apart for China, where it is
available for 10/8/2004-12/13/2010. The data is discussed in detail in Levy
and Lieberman (2012).
The exponential similarity function in (30) satisfies Assumptions A0-A4 of

the Appendix. Unit root tests for Pt with and without a constant are reported
in Table 5. As expected, the p-values in all cases are very high and they are
generally higher for the version of the ADF test which does not include a
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constant. Thus, the (fixed coeffi cient) unit root null hypothesis cannot be
rejected, although the underlying process may well include a volatile lag
dependent variable coeffi cient.
The estimated model results are given in Table 6, with M1 and M2 de-

noting the unit root with a drift model and model (30), respectively. For the
former, the slope coeffi cient equals unity to the third decimal place through-
out, whereas the drift parameter is very small with large standard errors.
Thus, a driftless unit root model seems to be a reasonable approximation
to the dgp. Nevertheless, the average AIC criterion for M1 equals −7.949,
whereas for M2, it is −9.618. To the third decimal place the SC averages are
almost identical to the AIC averages and are therefore omitted.
Across all cases, the error correction coeffi cient estimates ŵ5 and ŵ6 are

negative, with cross country sample averages equal to −0.004 and −0.230,
respectively. These results imply that, ceteris paribus, when the error cor-
rection term is positive so that Pt−1 > NAVt−1, there will be a downward
correction to Pt. The model thus has a time varying coeffi cient together with
an embedded error correction mechanism that is a nonlinear driver of the
coeffi cient of the lagged dependent variable.
The graph of β̂t for EWA is displayed in Figure 1, exhibiting volatility and

fluctuating around unity, as expected. Other cases look very similar. Finally,
the standard errors are based on Eviews’calculation of the outer products of
the score and are only indicative for this application. In principle, the sug-
gested test procedure can be applied and compared to bootstrapped p-values.
Overall, the random walk model appears to be a reasonable approximation
to (30) but it does not reflect any of the period by period variation captured
in Figure 1 or potential drivers of that variation.

7 Conclusions

We investigated time varying autoregressions in which variation in the coef-
ficient of the lag dependent variable is driven by a similarity function. A key
feature of this model is that the slope coeffi cient can be equal to, less than,
or greater than unity at any point in time, giving the model a high degree
of flexibility in the autoregressive response. Consistency of the QMLE of the
parameter vector was established together with a complete taxonomy of the
required norming rates and standardization of the score and Hessian func-
tions for the different cases. A local to zero similarity-based STUR system
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was introduced and a new limit theory was established in which the limit
process, Ga (r), is a nonlinear Itō diffusion process. The similarity function
impacts this model by inducing drift and conditional volatility in the limit
process, showing how the flexible autoregressive response in a STUR system
can be the source of both drift and volatility.
Our simulations show that the QMLE performs well for sample sizes rang-

ing from 250 to 1000. The model is illustrated empirically in an application
to international ETF data. While a unit root model is not rejected, the time
varying coeffi cient characteristics of the autoregressive responses are vividly
apparent in the sample data, showing both mildly explosive and mildly inte-
grated realizations.

Appendix
The parameter space is given by Θ = Θ1 × Θ2, where Θ1, Θ2 are the

spaces in which σ2 and w are assumed to lie, respectively. By K we denote
a generic bounding constant, independent of n, which may vary from step to
step. In the following we enlist the assumptions used for our model.

Assumption A0: {εt}nt=1 is a sequence of iid continuous random vari-
ables, each with a zero mean, variance σ2, cumulants κr, r ≥ 3 and moment
generating function which converges in a narrow strip containing the ori-
gin. If w 6= w′, βt (w) 6= βt (w′), ∀t. The matrix X = (Xit)1≤i≤m,1≤t≤n is
nonstochastic, real and finite.
Assumption A1: There exist σ2L, σ

2
H , wL and wH , such that σ20 ∈

[σ2L, σ
2
H ], with 0 < σ2L < σ2H < ∞ and for each i = 1, ...,m, wi,0 ∈ [wL, wH ],

with −∞ < wL < wH <∞. In addition, µ0 ∈ R.
Assumption A2: For all 1 < t ≤ n, the function βt (w) is non-negative,

continuous and is three times continuously differentiable.

Let C0 = C (w0), so that S0 = In − C0. For r, s, t = 2, ...,m+ 1, set

Ċr (w) = ∂C (w) /∂θr, C̈r,s (w) = ∂2C (w) /∂θr∂θs

and
...
Cr,s,t (w) = ∂3C (w) /∂θr∂θs∂θt.

Assumption A3: For all 2 ≤ r ≤ m + 1, 1 ≤ i, j ≤ n, w ∈ Θ2 ⊂ Rm,
there exists a 0 < KL <∞, such that

[C]i,j ≤ K [C0]i,j ,
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KL [C0]i,j ≤
∣∣∣∣[Ċr (w)

]
i,j

∣∣∣∣ ≤ K [C0]i,j .

Assumption A4: For all 2 ≤ r, s, t ≤ m+1, 1 ≤ i, j ≤ n, w ∈ Θ2 ⊂ Rm,
there exists a 0 < KL <∞, such that

KL [C0]i,j ≤
∣∣∣∣[C̈r,s (w)

]
i,j

∣∣∣∣ ≤ K [C0]i,j

and
KL [C0]i,j ≤

∣∣∣[...Cr,s,t (w)]i,j

∣∣∣ ≤ K [C0]i,j .

Assumption A0 includes an identification condition. If βt = β, ∀t, then
this condition trivially holds. Assumptions A0—A4 are similar to those of
Lieberman (2012), the key difference being that µ0 is allowed to be zero
here. It is trivial to verify that all the assumptions hold for the expo-
nential similarity function, because, if βt (w) = exp

(∑m
j=1wj∆Xtj

)
, then

∂βt (w) /∂wrj = (∆Xtj)
r βt (w).

The following inequalities will be used throughout (see, among others,
Graybill (1983)).

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 , (31)

x′Ax ≤ x′x ‖A‖2 , for A > 0, |tr (AB)| ≤ ‖A‖F ‖B‖F ,
‖AB‖F ≤ ‖A‖2 ‖B‖F , ‖AB‖F ≤ ‖A‖F ‖B‖2 .

Proof of Theorem 1: The proof for the case µ0 6= 0 was given by Lieber-
man (2012). The case µ0 = 0 requires a different normalization and we deal
with it here. For any δ1 > 0, denote byBδ1 (θ0) the ball {θ ∈ Θ : ||θ − θ0|| ≤ δ1}
and byBc

δ1
(θ0) the complement of Bδ1 (θ0) inΘ. UsingWu’s (1981) criterion,

it is suffi cient to show that ∀δ1 > 0,

lim inf
n→∞

inf
Bcδ1

(θ0)
n−1

(
ln
(
σ20, θ

′
20

)
− ln

(
σ2, θ′20

))
, (32)

and
lim inf

n→∞
inf

Bcδ1
(θ0)

∥∥S−10 ∥∥−2F (
ln
(
σ20, θ

′
20

)
− ln

(
σ20, θ

′
2

))
(33)
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are strictly positive in probability. Now,

Eθ0
(
n−1ln

(
σ2, θ′20

))
= −1

2
log
(
2πσ2

)
− σ20

2σ2
,

and
V arθ0

(
n−1ln

(
σ2, θ′20

))
=

1

2σ4n

(
σ40 +

κ4
2

)
.

Hence,

n−1
(
ln
(
σ20, θ20

)
− ln

(
σ2, θ′20

))
→p

1

2

(
σ20
σ2
− 1− log

(
σ20
σ2

))
≥ 0,

with equality iff σ2 = σ20.
To establish (33), we use the decomposition(

ln
(
σ20, θ

′
20

)
− ln

(
σ20, θ

′
2

))
=

1

2σ20
(y′S ′Sy − y′S0S0y)

=
1

2σ20
y′S ′0

(
S−1′0 G′ +GS−10

)
S0y

+
1

2σ20
y′G′Gy,

= Q1n +Q2n, (34)

say, where G = S − S0. We have,

Q1n = Op

(∥∥S−10 ∥∥F ) . (35)

Considering Q2n, we have

Eθ0 (y′G′Gy) = Eθ0
(
ε′S−1′0 G′GS−10 ε

)
≤ K

∥∥S−10 ∥∥2F ,
and

V arθ0 (y′G′Gy) ≤ K
∥∥S−10 ∥∥4F

so that
Q2n = Op

(∥∥S−10 ∥∥2F) .
To complete the proof, we see that Q2n ≥ 0, because G′G is positive semi-
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definite. Now, with gmin = min2≤i≤n [G]i,i−1,

Eθ0
(
ε′S−1′0 G′GS−10 ε

)∥∥S−10 ∥∥2F =
σ20tr

(
S−1′0 G′GS−10

)∥∥S−10 ∥∥2F
=

σ20
∥∥GS−10 ∥∥2F∥∥S−10 ∥∥2F

≥ σ20g
2
min

∑n−1
i,j=1

[
S−10

]2
i,j∑n

i,j=1

[
S−10

]2
i,j

≥ KL,

for some KL > 0 which is independent of n. As
∥∥S−10 ∥∥2F ≥ n, Q2n strictly

dominatesQ1n and because y is continuous, Q2n ≥ 0 and Eθ0
(
Q2n/

∥∥S−10 ∥∥2F) >
0, Q2n/

∥∥S−10 ∥∥2F is strictly positive in probability uniformly in Bc
δ1

(θ0), as re-
quired. �

Proof of Theorem 2:
Case 1: µ0 = 0. The score with respect to σ2 is given by

zn1 (θ0) = −
√
n

2σ20
+
y′S ′0S0y

2σ40
√
n
. (36)

Hence,
Eθ0 (zn1 (θ0)) = 0

and

V arθ0 (zn1 (θ0)) =
1

2σ40

(
1 +

κ4
2σ40

)
. (37)

Higher order cumulants of zn1 (θ0) tend to zero, so part 1 of the Theorem is
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done. For r = 2, ...,m+ 1,

∂ln (θ0)

∂θr
= −

y′
(
Ṡ ′0rS0 + S ′0Ṡ0r

)
y

2σ20

= −
ε′
(
Ṡ0rS

−1
0 + S−1′0 Ṡ ′0r

)
ε

2σ20
. (38)

It follows that

ε′
(
Ṡ0rS

−1
0 + S−1′0 Ṡ ′0r

)
ε = Op

(∥∥S−10 ∥∥F ) . (39)

By Assumption A3, ∥∥∥Ċ0rS−10 ∥∥∥
F
≥ KL

∥∥S−10 − In∥∥F .
Hence, ∥∥S−10 ∥∥2F

tr
(
S−1′0 Ṡ ′0rṠ0rS

−1
0

) =

∥∥S−10 ∥∥2F∥∥∥Ṡ0rS−10 ∥∥∥2
F

≤ KL

∥∥S−10 ∥∥2F∥∥S−10 − I∥∥2F
= KL

∑n
i,j=1

[
C0 + · · ·+ Cn−1

0

]2
i,j

+ n∑n
i,j=1

[
C0 + · · ·+ Cn−1

0

]2
i,j

< KL

(
1 +

n∑n
i,j=1 [C0]

2
i,j

)
≤ K.

Therefore, there exists a c, such that,

1∥∥S−10 ∥∥2F V arθ0
(
ε′
(
Ṡ0rS

−1
0 + S−1′0 Ṡ ′0r

)
ε
)
> c > 0,
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implying that the required normalization for ∂ln (θ0) /∂θr, r = 2, ...,m + 1,
is
∥∥S−10 ∥∥−1F .
Case 2: µ0 6= 0. The score wrt σ2 has been dealt with by Lieberman

(2012). The concentrated score wrt θr, r = 2, ...,m+ 1, is given by

∂lcn (θ0)

∂θr
= − 1

2σ20
(QF c

n + 2µ0LF
c
n) , (40)

where QF c
n and LF

c
n are given by (14) and (15). We know from Lieberman

(2012) that
QF c

nr = Op

(∥∥S−10 ∥∥F ) (41)

and that
LF c

nr = Op

(∥∥S−1′0 S−10
∥∥1/2
1

)
. (42)

Therefore, we need to distinguish between two subcases.
Subcase 2(i): ρn = Oe (1). In this subcase, we can normalize the score

by
∥∥S−1′0 S−10

∥∥−1/2
1

to obtain

zcnr (θ0) = Op (1) +Op

(√
ρn
)
.

But in this case, Op,e

(√
ρn
)

= Op,e (1), and because
∥∥S−10 ∥∥F ≥ KL

∥∥S−1′0 S−10
∥∥1/2
1
,

for some 1 > KL > 0, obtaining the lower bound on the variance ofQF c
n/
∥∥S−1′0 S−10

∥∥1/2
1

is similar to the derivation of the lower bound in the µ0 = 0 case and there-
fore, this subcase is done.
Subcase 2(ii): ρn = o (1). By (40)-(42), in this subcase

zcnr (θ0) =
LF c

n∥∥S−1′0 S−10
∥∥1/2
1

+ op (1) .

The lower bound on LF c
n/
∥∥S−1′0 S−10

∥∥1/2
1
was established in Lieberman (2012)

and therefore the proof of Theorem 2 is completed.�

Proof of Theorem 3:
Case 1: µ0 = 0. It is straightforward to verify part (1) of the Theorem

for this case. Part (2) is established on the observation that

Eθ0

(
ε′
(
Ṡ0rS

−1
0 + S−1′0 Ṡ ′0r

)
ε
)

= 0
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and

V arθ0

(
ε′
(
Ṡ0rS

−1
0 + S−1′0 Ṡ ′0r

)
ε
)

= 4σ40tr
(
S−1′0 Ṡ ′0rṠ0rS

−1
0

)
+κ4

∑[
Ṡ0rS

−1
0 + S−1′0 Ṡ ′0r

]2
i,i

≤ 4σ40
∥∥S−10 ∥∥2F sup

t
β̇
2

0t

≤ K
∥∥S−10 ∥∥2F .

because Ṡ0rS−10 has zero diagonal elements. For 2 ≤ r, s ≤ m+ 1,

Hnr,s (θ0) = −
y′
(
S̈ ′0r,sS0 + Ṡ ′0rṠ0s + Ṡ ′0sṠ0r + S ′0S̈0r,s

)
y

2σ20
∥∥S−10 ∥∥2F

= − 1

2σ20
∥∥S−10 ∥∥2F {ε′

(
S−1′0 S̈ ′0r,s + S̈0r,sS

−1
0

)
ε (43)

+2ε′S−1′0 Ṡ ′0sṠ0rS
−1
0 ε}.

The first term in (43) has

Eθ0

(
ε
(
S−1′0 S̈ ′0r,s + S̈0r,sS

−1
0

)
ε
)

= 0

and

V arθ0

(
ε
(
S−1′0 S̈ ′0r,s + S̈0r,sS

−1
0

)
ε
)

= 2σ40tr
(
S−1′0 S̈ ′0r,s + S̈0r,sS

−1
0

)2
(44)

+κ4

n∑
i=1

[
S−1′0 S̈ ′0r,s + S̈0r,sS

−1
0

]2
i,i
.

The matrix S̈0r,sS−10 is lower triangular with zero diagonal elements and there-
fore the lhs of (44) is bounded by

4σ40tr
(
S−1′0 S̈ ′0r,sS̈0r,sS

−1
0

)
= 4σ40

∥∥∥S̈0r,sS−10 ∥∥∥2
F
≤ K

∥∥∥S̈0r,s∥∥∥2
2

∥∥S−10 ∥∥2F .
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Under Assumption A4,∥∥∥S̈0r,s∥∥∥2
2

= sup
|x|=1

x′S̈ ′0r,sS̈0r,sAx = sup
|x|=1

x′C̈ ′0r,sC̈0r,sAx ≤ sup
t
β̈tr,s ≤ K (45)

and therefore

ε′
(
S−1′0 S̈ ′0r,s + S̈0r,sS

−1
0

)
ε

2σ20
∥∥S−10 ∥∥2F = Op

(∥∥S−10 ∥∥−1F ) . (46)

The second term on the rhs of (43) has∣∣∣Eθ0 (2ε′S−1′0 Ṡ ′0sṠ0rS
−1
0 ε
)∣∣∣ = σ20

∣∣∣tr (S−1′0

(
Ṡ ′0sṠ0r + Ṡ ′0rṠ0s

)
S−10

)∣∣∣
= σ20

∥∥∥∥(Ṡ ′0sṠ0r + Ṡ ′0rṠ0s

)1/2
S−10

∥∥∥∥2
F

≤ σ20

∥∥∥∥(Ṡ ′0sṠ0r + Ṡ ′0rṠ0s

)1/2∥∥∥∥2
2

∥∥S−10 ∥∥2F .
Under Assumption A3,∥∥∥∥(Ṡ ′0sṠ0r + Ṡ ′0rṠ0s

)1/2∥∥∥∥2
2

= sup
|x|=1

x′
(
Ṡ ′0sṠ0r + Ṡ ′0rṠ0s

)
x ≤ sup

t

∣∣∣β̇0t,rβ̇0t,s∣∣∣ ≤ K

by similar reasoning to (45). On the other hand,

Eθ0

(
2ε′S−1′0 Ṡ ′0sṠ0rS

−1
0 ε
)
≥ KLtr

(
S−1′0 S−10

)
inf
t

(
β̇0t,rβ̇0t,s

)
= KL

∥∥S−10 ∥∥2F inf
t

(
β̇0t,rβ̇0t,s

)
. (47)

Under Assumption A3,
∣∣∣inft

(
β̇0t,rβ̇0t,s

)∣∣∣ <∞ and we conclude that

−ε
′S−1′0 Ṡ ′0sṠ0rS

−1
0 ε

σ20
∥∥S−10 ∥∥2F = Op,e (1) , (48)

establishing part (1) of the theorem.
Case 2: µ0 6= 0. Showing parts (1) and (2) of the Theorem is very similar
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to the case µ0 = 0. For 2 ≤ r, s ≤ m+ 1,

Hc
nr,s (θ0) = −

y′
(
S̈ ′0r,sMS0 + Ṡ ′0rMṠ0s + Ṡ ′0sMṠ0r + S ′0MS̈0r,s

)
y

2σ20
∥∥S−1′0 S−10

∥∥
1

= − 1

2σ20
∥∥S−1′0 S−10

∥∥
1

{ε′
(
S−1′0 S̈ ′0r,sM +MS̈0r,sS

−1
0

)
ε (49)

+2µ01
′S−1′0 S̈ ′0r,sMε+ 2ε′S−1′0 Ṡ ′0sMṠ0rS

−1
0 ε

+4µ01
′S−1′0 Ṡ ′0sMṠ0rS

−1
0 ε+ 2µ201

′S−1′0 Ṡ ′0sMṠ0rS
−1
0 1}.

The first term on the rhs of (49) has∣∣∣Eθ0 (ε′ (S−1′0 S̈ ′0r,sM +MS̈0r,sS
−1
0

)
ε
)∣∣∣ = 2σ20

∣∣∣tr (PS̈0r,sS−10 )∣∣∣
≤ 2σ20 ‖P‖F

∥∥∥S̈0r,sS−10 ∥∥∥
F

≤ 2σ20

∥∥∥S̈0r,s∥∥∥
2

∥∥S−10 ∥∥F
≤ K

∥∥S−10 ∥∥F ,
because of (45). With similar calculations, we see that

V arθ0

(
ε′
(
S−1′0 S̈ ′0r,sM +MS̈0r,sS

−1
0

)
ε
)
≤ K

∥∥S−10 ∥∥2F
and therefore

ε′
(
S−1′0 S̈ ′0r,sM +MS̈0r,sS

−1
0

)
ε∥∥S−1′0 S−10

∥∥
1

= Op

(
ρn
∥∥S−10 ∥∥−1F ) ,

which is asymptotically negligible.
The term 2µ01

′S−1′0 S̈ ′0r,sMε in (49) has zero expectation and

V arθ0

(
2µ01

′S−1′0 S̈ ′0r,sMε
)

= 4µ20σ
2
01
′S−1′0 S̈ ′0r,sMS̈0r,sS01

≤ 4µ20σ
2
0

∥∥S−1′0 S−10
∥∥
1

∥∥∥S̈ ′0r,sMS̈0r,s

∥∥∥
2

≤ K
∥∥S−1′0 S−10

∥∥
1
,
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implying that

2µ01
′S−1′0 S̈ ′0r,sMε∥∥S−1′0 S−10

∥∥
1

= Op

(∥∥S−1′0 S−10
∥∥−1/2
1

)
,

which is also asymptotically negligible.
For the third term on the rhs of (49),

ε′S−1′0 Ṡ ′0sMṠ0rS
−1
0 ε = ε′S−1′0 Ṡ ′0sṠ0rS

−1
0 ε− ε′S−1′0 Ṡ ′0sPṠ0rS

−1
0 ε. (50)

By (48), the first term on the rhs of (50) is Op,e

(∥∥S−10 ∥∥2F) and for the second
term, we have∣∣∣Eθ0 (ε′S−1′0 Ṡ ′0sPṠ0rS

−1
0 ε
)∣∣∣ =

σ20
n

∣∣∣1′Ṡ0rS−10 S−1′0 Ṡ ′0s1
∣∣∣ (51)

≤ K

n
1′
(
S−10 − In

) (
S−10 − In

)′
1

≤ K

n

(
1′S−10 S−1′0 1 + 21′S−10 1 + n

)
.

Now,
1′S−10 S−1′0 1 ≤ n

∥∥S−10 S−1′0

∥∥
2
≤ n

∥∥S−10 ∥∥22 ≤ n
∥∥S−10 ∥∥2F

and 1′S−10 1 ≤
√
n
∥∥S−1′0 S−10

∥∥1/2
1
. Therefore, (51) is less than or equal to

K

(∥∥S−10 ∥∥2F +
2√
n

∥∥S−1′0 S−10
∥∥1/2
1

+ 1

)
. (52)

With a
∥∥S−1′0 S−10

∥∥−1
1
-normalization, the dominant term in (52) is bounded

by Kρn. Similar calculations reveal the variance to be of ε
′S−1′0 Ṡ ′0sMṠ0rS

−1
0 ε

to be of the order O
(∥∥S−10 ∥∥4F). Together with the exact order of the first

term on the rhs of (50), it follows that

−ε
′S−1′0 Ṡ ′0sMṠ0rS

−1
0 ε

σ20
∥∥S−1′0 S−10

∥∥
1

= Op,e (ρn) .
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The fourth term on the rhs of (49) equals

4µ01
′S−1′0 Ṡ ′0s (In − P ) Ṡ0rS

−1
0 ε, (53)

which has zero expectation. Also,

V arθ0

(
4µ01

′S−1′0 Ṡ ′0sṠ0rS
−1
0 ε
)

= 16µ20σ
2
01
′S−1′0 Ṡ ′0sṠ0rS

−1
0 S−1′0 Ṡ ′0rṠ0sS

−1
0 1

≤ K1′
(
S−1′0 S−10

)2
1

≤
∥∥S−1′0 S−10

∥∥
1

∥∥S−10 S−1′0

∥∥
2

≤
∥∥S−1′0 S−10

∥∥
1

∥∥S−10 ∥∥2F . (54)

Under Assumption A3, it is also true that

V arθ0

(
4µ01

′S−1′0 Ṡ ′0sṠ0rS
−1
0 ε
)
≥ KL1′

(
S−1′0 S−10

)2
1.

With tedious albeit straightforward calculations we obtain(
1′
(
S−1′0 S−10

)2
1
)1/2∥∥S−1′0 S−10

∥∥
1

= Oe (1) , if βt = β > 1, ∀t

and (
1′
(
S−1′0 S−10

)2
1
)1/2∥∥S−1′0 S−10

∥∥
1

= o (1) , if 0 ≤ βt = β < 1, ∀t.

In general though, the bound in (54) implies that

4µ01
′S−1′0 Ṡ ′0sṠ0rS

−1
0 ε∥∥S−1′0 S−10

∥∥
1

= Op

(√
ρn
)
.

The second term in (53) has zero expectation and

V arθ0

(
4µ01

′S−1′0 Ṡ ′0sPṠ0rS
−1
0 ε
)

= 16µ20σ
2
01
′S−1′0 Ṡ ′0sPṠ0rS

−1
0 S−1′0 Ṡ ′0rPṠ0sS

−1
0 1

≤ K
∥∥S−1′0 S−10

∥∥
1

∥∥∥Ṡ ′0sPṠ0rS−10 S−1′0 Ṡ ′0rPṠ0s

∥∥∥
2

≤
∥∥S−1′0 S−10

∥∥
1

∥∥S−10 ∥∥2F .
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We recall that in both of the cases βt = β > 1, ∀t and 0 ≤ βt = β < 1, ∀t
ρn = Oe (1). The implication is that

−2µ01
′S−1′0 Ṡ ′0sMṠ0rS

−1
0 ε

σ20
∥∥S−1′0 S−10

∥∥
1

= Op

(√
ρn
)

(55)

and it is emphasized that the bound is an upper one and not an exact one.
Specifically, in the fixed coeffi cient explosive case the bound is also exact
whereas in the fixed coeffi cient stationary case the upper bound is not exact
and in fact it holds that in this case (55) is op (1).
The last term in (49) was shown to be Oe (1) in Lieberman (2012).�

Proof of Lemma 4:
Case 1: µ0 = 0. The terms [An]1,1 and [An]1,r, r = 2, ...,m+ 1, are given

in (37) and in the proof of Theorem 3, respectively. The term [An]2≤r,s≤m+1
follows from (11) and (38) and because the diagonal of Λ0r is equal to zero.
Case 2: µ0 6= 0. The treatment of the terms [Acn]1,1 and to [Acn]1,r is

similar to the previous case, the additional o (1) arising from the fact that
tr (M) = n− 1. For r, s = 2, ...,m+ 1, we use the facts:

Covθ0 (QF c
nr, QF

c
ns) = 2σ40tr (Γ0rΓ0s) + κ4

n∑
i=1

[Γ0r]i,i [Γ0s]i,i

Covθ0 (LF c
nr, LF

c
ns) = σ20b

′
0rb0s,

and

Covθ0 (QF c
nr, LF

c
ns) = κ3

n∑
i=1

[Γ0r]i,i [b0s]i .

Moreover, Eθ0 (LF c
nr) = 0 and

|Eθ0 (QF c
nr)| = 2σ20

∣∣∣tr (PṠ0rS−10 )∣∣∣ ≤ K

n
1′
(
S−10 − In

)
1.

But 1′S−10 1 ≤
√
n
∥∥S−1′0 S−10

∥∥1/2
1
, implying that

|Eθ0 (QF c
nr)|∥∥S−1′0 S−10
∥∥1/2
1

≤ K√
n
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and therefore,

1∥∥S−1′0 S−10
∥∥
1

Covθ0 (QF c
nr, QF

c
ns) =

1∥∥S−1′0 S−10
∥∥
1

Eθ0 (QF c
nrQF

c
ns) +O

(
1

n

)
.

The proof is completed on the observation of (17) and (18).�

Lemma 7 Under Assumptions A0-A4, for all j, k, l = 1, ...,m + 1 and uni-
formly in Θ,

Dn
∂ln (θ)

∂θj∂θk∂θl
Dn = Op (1) and Dc

n

∂lcn (θ)

∂θj∂θk∂θl
Dc
n = Op (1) .

Proof of Lemma 7: It will be suffi cient to consider derivatives wrt the
θ2 components. For the case µ0 = 0, for j, k, l = 2, ...,m+ 1,

∂ln (θ)

∂θj∂θk∂θl
= − 1

2σ2
y′(
...
S
′
j,k,lS + S̈ ′j,kṠl + S̈ ′j,lṠk + Ṡ ′jS̈k,l (56)

+S̈ ′k,lṠj + Ṡ ′kS̈j,l + Ṡ ′lS̈j,k + S ′
...
S j,k,l)y

and therefore, we need to show that for p = 1, 2,

|tr(S−1′0 (
...
S
′
j,k,lS + S̈ ′j,kṠl + S̈ ′j,lṠk + Ṡ ′jS̈k,l (57)

+S̈ ′k,lṠj + Ṡ ′kS̈j,l + Ṡ ′lS̈j,k + S ′
...
S j,k,l)S

−1
0 )p|

≤ K
∥∥S−10 ∥∥p ,

uniformly in Θ. Denote by S∗ be a derivative of S wrt any θ2 component.
We observe that the terms in (57) are either of the form∣∣tr ((S−1′0 (S∗′S∗)S−10

)p)∣∣
or ∣∣tr ((S−1′0 (S∗′S + S ′S∗)S−10

)p)∣∣ .
Under Assumptions A3-A4, both terms are uniformly bounded by K

∥∥S−10 ∥∥p
by very similar arguments used in the proofs of Theorems 2 and 3. For the
µ0 6= 0 case, instead of replacing y by S−10 ε in (56), we replace it by µ0S

−1
0 1+

S−10 ε and again use similar reasoning to obtain a uniform Op

(∥∥S−1′0 S−10
∥∥
1

)
bound.�
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Proof of Theorem 5: We shall deal with the µ0 6= 0 case only - the
complementary case is very similar. For part (2), we write

vech
(
Hn

(
θ̄n
))

= vech (Hn (θ0)) +
∂vech

(
Hn

(
θ̃n

))
∂θ′

(
θ̄n − θ0

)
,

where
∣∣∣∣∣∣θ̃n − θ0∣∣∣∣∣∣ ≤ ∣∣∣∣θ̄n − θ0∣∣∣∣ and vech (·) is the operator which vectorizes

the lower half, including the main diagonal, of a symmetric matrix. By virtue
of Theorem 3 vech (Hn (θ0)) = Op (1). By Theorem 1, the mean value θ̃n sat-
isfies θ̃n − θ0 = op (1). Under Assumption A4, with very similar calculations

to the proof of Theorem 3, which we omit for brevity, ∂vech
(
Hn

(
θ̃n

))
/∂θ′

is uniformly bounded. Therefore,

vech
(
Hn

(
θ̄n
))

= vech (Hn (θ0)) + op (1) .

The Theorem is established by an application of Lemma 2.4(a) of Hayashi
(2000) and using Lemma 7.�
Proof of Theorem 6: The model is S0y = µ01 + ε and therefore

µ0 =
1′S0y

n
− ε̄n,

where ε̄n =
∑n

t=1 εt. Hence,

µ̂n − µ0 =
1′
(
S
(
θ̂n

)
− S (θ0)

)
y

n
+ ε̄n

=

m+1∑
r=2

(
θ̂nr − θ0r

) 1′Ṡr
(
θ̄n
)
y

n
+ ε̄n,

where θ̄n satisfies
∥∥∥θ̄n − θ̂n∥∥∥ ≤ ∥∥∥θ̂n − θ0∥∥∥. Under Assumptions A2-A3,∣∣∣1′Ṡr (θ̄n) y∣∣∣ =
∣∣∣1′Ṡr (θ̄n) (µ0S−10 1 + S−10 ε

)∣∣∣
≤

√
1′Ċr

(
θ̄n
)′
Ċr
(
θ̄n
)

1

(
µ0

√
1′S−1′0 S−10 1 +

√
ε′S−1′0 S−10 ε

)
≤ K

√
n
(
µ0
∥∥S−1′0 S−10

∥∥1/2
1

+Op

(∥∥S−10 ∥∥F )) .
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It follows that,

|µ̂n − µ0| ≤
K√
n

(
µ0
∥∥S−10 S−10

∥∥1/2
1

+Op

(∥∥S−10 ∥∥F ))m+1∑
r=2

∣∣∣θ̂nr − θ0r∣∣∣+ |ε̄n| .

By (19), Theorem 2 and Theorem 3, D−1n
(
θ̂n − θ0

)
= Op,e (1), if µ0 = 0 and

(Dc
n)−1

(
θ̂n − θ0

)
= Op,e (1), if µ0 6= 0. This implies that

|µ̂n − µ0| ≤
K√
n

+ |ε̄n| , if µ0 = 0,

|µ̂n − µ0| ≤
K√
n

(
µ0 + ρ1/2n

)
+ |ε̄n| , if µ0 6= 0

and the proof is completed.�
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Table 1. Normalization factors for the consistency proof.
µ0 = 0 µ0 6= 0

Normalization Normalization
ρn = Oe (1)

∥∥S−10 ∥∥−2F or
∥∥S−1′0 S−10

∥∥−1
1

∥∥S−1′0 S−10
∥∥−1
1

ρn = o (1)
∥∥S−10 ∥∥−2F ∥∥S−1′0 S−10

∥∥−1
1

Table 2. Normalization factors and dominant terms for the score.
µ0 = 0 µ0 6= 0

Normalization Normalization Dominant Term
ρn = Oe (1)

∥∥S−10 ∥∥−1F ‖S−1′S−1‖−1/21 QFn + LFn

ρn = o (1)
∥∥S−10 ∥∥−1F ‖S−1′S−1‖−1/21 LFn
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Table 3. Performance of the Model Estimators
µ = 0, w = 0.07

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .0696 .0164 −.0010 .0624 1.0000 .0027
500 .0702 .0082 .0001 .0448 1.0000 .0018
1000 .0699 .0042 −.0006 .0318 1.0000 .0013

µ = 0, w = 0.2

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .1998 .0170 .0023 .0632 .9996 .0074
500 .1998 .0093 .0007 .0448 .9997 .0052
1000 .2001 .0048 .0000 .0309 .9999 .0037

µ = 0.25, w = 0.07

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .0701 .0038 .2500 .0626 1.0000 .0026
500 .0700 .0013 .2496 .0450 1.0000 .0018
1000 .0700 .0005 .2501 .0326 1.0000 .0013

µ = 0.25, w = 0.2

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .1998 .0053 .2513 .0630 .9999 .0074
500 .2000 .0021 .2523 .0447 1.0001 .0052
1000 .2000 .0010 .2501 .0316 1.0001 .0036

Zt ∼ U [−1, 1] + bw, where bw = −0.0116648 if w = 0.07 and
bw = −0.033289 if w = 0.2.
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Table 4. Performance of the Model’s Estimators
µ = 0, w = 0.07

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .0700 .0094 −.0010 .0630 .9999 .0044
500 .0698 .0050 −.0009 .0457 .9999 .0031
1000 .0700 .0023 −.0009 .0324 1.0000 .0022

µ = 0, w = 0.2

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .1996 .0106 .0026 .0629 .9998 .0128
500 .1997 .0052 −.0004 .0454 .9998 .0091
1000 .1999 .0027 −.0002 .0321 1.0000 .0064

µ = 0.25, w = 0.07

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .0700 .0026 .2485 .0638 1.0000 .0045
500 .0700 .0010 .2507 .0460 .9999 .0032
1000 .0700 .0004 .2494 .0315 1.0000 .0022

µ = 0.25, w = 0.2

ŵ µ̂ β̂t
n Mean SD Mean SD Mean SD

250 .2000 .0043 .2514 .0636 .9999 .0128
500 .1999 .0019 .2501 .0436 .9998 .0093
1000 .1999 .0009 .2499 .0322 1.0001 .0063

Zt ∼ NID (µZ , 1) with µZ = −w/2.
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Table 5. p-values of the ADF tests for the ETF data
Ticker EWA EWH EWJ EWM

(Australia) (Hong Kong) (Japan) (Malaysia)
Intercept 0.1800 0.7910 0.6403 0.7002
None 0.5913 0.6190 0.6109 0.8491
Ticker EWS EWT EWY FXI

(Singapore) (Taiwan) (South Korea) (China)
Intercept 0.6105 0.6142 0.0675 0.3243
None 0.8078 0.6400 0.8034 0.8596

Note: Intercept-the ADF test with an intercept; None-the ADF test
without a trend or an intercept.
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Table 6. Similarity-based model estimation of the ETF data
Ticker µ̂ ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 AIC
EWA M1 0.001 1.000 -7.625

(Australia) (0.0004) (0.0001)
M2 0.269 0.001 0.283 0.017 -0.003 -0.251 -9.903

(0.0033) (0.0036) (0.0018) (0.0032) (0.0004) (0.0019)
EWH M1 0.000 1.000 -8.010

(Hong Kong) (0.003) (0.0001)
M2 0.040 0.244 0.374 -0.053 -0.003 -0.241 -9.668

(0.0026) (0.0026) (0.0019) (0.0035) (0.0004) (0.0018)
EWJ M1 0.000 1.000 -8.779
(Japan) (0.0002) (0.0000)

M2 0.213 0.072 0.336 0.054 -0.002 -0.237 -10.180
(0.0037) (0.0040) (0.0017) (0.0028) (0.0003) (0.0016)

EWM M1 0.000 1.000 -8.144
(Malaysia) (0.0003) (0.0001)

M2 0.031 0.329 0.339 -0.082 -0.008 -0.236 -9.196
(0.0109) (0.0114) (0.0032) (0.0055) (0.0007) (0.0035)

EWS M1 0.001 1.000 -7.583
(Singapore) (0.0005) (0.0002)

M2 0.104 0.299 0.424 -0.165 -0.007 -0.348 -9.575
(0.0141) (0.0144) (0.0030) (0.0059) (0.0008) (0.0035)

EWT M1 0.000 1.000 -7.958
(Taiwan) (0.0003) (0.0001)

M2 0.0258 0.275 0.399 0.042 -0.004 -0.204 -9.335
(0.0082) (0.0084) (0.0025) (0.0044) (0.0004) (0.0020)

EWY M1 0.001 1.000 -7.773
(South Korea) (0.0004) (0.0001)

M2 0.004 0.202 0.281 0.008 -0.001 -0.159 -9.370
(0.0023) (0.0026) (0.0016) (0.0030) (0.0003) (0.0013)

FXI M1 0.002 1.000 -7.722
(China) (0.0008) (0.0002)

M2 0.010 0.189 0.332 -0.061 -0.001 -0.166 -9.715
(0.0170) (0.0170) (0.0017) (0.0034) (0.0003) (0.0017)

Note: M1-the random walk with a drift model; For M1, ŵ1 ≡ β̂; M2-the
similarity model (30); standard errors are in brackets.
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Fig. 1: Recursive values of β̂t based on the fitted version of (30)
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