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Testing Linearity in Cointegrating Relations With
an Application to Purchasing Power Parity

Seung Hyun HONG
Korea Institute of Public Finance (KIPF), Songpa-ku, Seoul, South Korea 138-774

Peter C. B. PHILLIPS
Yale University, New Haven, CT 06520, University of Auckland, Auckland, New Zealand, University of
Southampton, Southampton, U.K., and Singapore Management University, Singapore, Singapore

This article shows that when applied to nonstationary time series, the conventional Regression Error Spec-
ification Test (RESET) leads to severe size distortion and its asymptotic distribution involves a mixture of
noncentral χ2 distributions. Nonstationarity introduces bias terms in the limit distribution, and appropriate
corrections for the bias are presented leading to a modified RESET test that has a central χ2 limit distri-
bution. In simulations, this modified test is shown to have power not only against nonlinear cointegration
but also against the absence of cointegration. In an empirical illustration, the linear purchasing power
parity (PPP) specification is tested using five Organization for Economic Cooperation and Development
(OECD) countries.

KEY WORDS: Noncentral χ2 distribution; Nonlinear cointegration; RESET test; Specification test.

1. INTRODUCTION

Since the introduction of the cointegration concept, linear
models have dominated practical work in cointegration analy-
sis. This emphasis has arisen, not so much because the under-
lying economic theory suggests linearity, but rather because the
cointegration concept and associated econometric methodology
was developed largely for linear models of integrated processes.
Correspondingly, the tools of econometric analysis are avail-
able in this case and there is great convenience in computation
for applied work.

Empirical applications, however, often stimulate an interest
in nonlinear specifications and, as a consequence, many non-
linear models (and almost as many specification tests) have
been developed for stationary time series modeling. Many re-
cent nonlinear model applications of nonstationary time series
have focused on nonlinear short-run dynamics around linear
long-run equilibria in error correction models (ECM), as in
Berben and Dijk (1999), Lo and Zivot (2001), and Teräsvirta
and Eliasson (2001) among others. However, few attempts have
been made to study nonlinear cointegrating relations directly
and the methods that have been tried in practical work often re-
quire restrictive conditions on the DGP (e.g., Haug and Basher
2003). Such extensions also await a corresponding development
in tests of specification.

Neglecting the possible nonlinearity in a long-run relation-
ship can be particularly detrimental in nonstationary cases. For
stationary time series, linear models can often provide work-
able approximations at least locally to nonlinear models. Unlike
mean-reverting stationary processes, nonstationary time series
have a tendency to wander with no fixed mean or locality in
the sample space and, like random walks, revisit points distant
from the origin an infinite number of times. In such cases, lo-
cal linear approximations can only poorly represent the global
characteristics of the process, producing a high risk of faulty
inference about a misspecified long-run equilibrium.

Consideration of the possibilities suggests three cases—
linear cointegration, some form of nonlinear cointegration, or
complete absence of cointegration. Existing cointegration tests
essentially presume a form of linear cointegration and do not ef-
fectively distinguish between linear and nonlinear cointegration
(e.g., Granger and Hallman 1989). So, traditional linear cointe-
gration analysis requires an additional test of specification to
address this particular issue of functional form. However, in the
absence of more appropriate specification tests, applied econo-
mists have treated existing cointegration tests as tests for linear
cointegration and all subsequent analysis rests on this assump-
tion.

Furthermore, existing linearity tests also fail to provide any
reliable guidance concerning the type of relationship that may
be present between nonstationary time series (Granger 1995;
Lee, Kim, and Newbold 2005). It is not surprising to find that
existing linearity tests developed for stationary processes work
poorly with nonstationary time series and this was well recog-
nized earlier in the case of the Regression Error Specification
Test (RESET).

The RESET test by Ramsey (1969) is a convenient device
for testing general misspecification (e.g., Vitaliano 1987; Bagh-
estani 1991; Peters 2000, among others), but is known not to
be robust to autocorrelated disturbances, especially when the
regressor is itself highly autocorrelated (Porter and Kashyap
1984) or contains a deterministic time trend (Leung and Yu
2001). Using simulation, Porter and Kashyap showed that the
presence of serially correlated disturbances combined with an
AR(1) regressor leads to size distortions, and the more autocor-
related the regressor is, the less robust the RESET test is to error
autocorrelation. Naturally, we might expect this size distortion
problem to become worse in the cointegrating case where the
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regressor has an autoregressive unit root and the errors are typi-
cally serially dependent. This article analyzes the source of this
test failure and shows how the original test can be modified for
empirical use with nonstationary time series using asymptotic
tools from Park and Phillips (1999, 2001).

The rest of the article is organized as follows. The next sec-
tion introduces the model and the maintained assumptions and
shows how nonstationarity of the data changes the limit theory
of existing tests. Section 3 discusses the modifications that are
needed when the RESET test is applied to evaluate cointegrat-
ing relations. Section 4 discusses the behavior of the modified
test under alternatives. Section 5 summarizes simulation results
and Section 6 presents an empirical application of the modified
test to purchasing power parity (PPP). Section 7 concludes and
the proofs are collected in the Appendix.

2. MODELS AND BACKGROUND IDEA

Suppose that we want to test the linear conditional mean
specification H0 : P[E(Yt|Xt) = θ1Xt] = 1, ∀t with a specific
nonlinear alternative model in mind, such as f (Xt). Then one
can use some conventional tests such as a Wald or Lagrange
multiplier (LM) test of H0 : θ2 = 0 in

Yt = θ1Xt + θ2f (Xt) + ut. (1)

In many practical cases, however, theory fails to provide a spe-
cific functional form, and the focus of attention is some conve-
nient linear model (such as that implied by purchasing power
parity considerations) with no specific nonlinear alternative.
Numerous specification tests have been developed so far, and
one of the most frequently used approaches is the so-called
residual based procedure. The residuals from regressing Y on X,
if the null is true, should not contain any systematic part of f (X)

and the many residual based tests arise from different meth-
ods of detecting such leftover signals in residuals. For exam-
ple, the KPSS (Kwiatkowski et al. 1992) test and the CUSUM
test (Ploberger and Kramer 1992 for structural change, Xiao
and Phillips 2002 for cointegration) are based on the excess
variations and the Park (1990) test and ANN (Artificial Neural
Network; White 1992; Lee, White, and Granger 1993) test are
based on the approximation to an unspecified f (·).

In the case of the approximation-based tests, first the unspec-
ified nonlinear function f (Xt) is replaced with its partial sum ap-
proximation f̂k(Xt) =∑k

j=1 βjFj(Xt) for some given basis func-
tions {Fj(x)} that form a complete set in L2. Now we proceed
to test the validity of the linear specification by testing whether
a linear combination of {Fj(·)}k

1 can detect any nonlinearity in
the regression residuals ût in

Yt = θXt + ut and ût =
k∑

j=1

βjFj(Xt) + et. (2)

In general, there are two ways to test the linear specifica-
tion in this setting. For an approximation based test with∑k

j=1 βjFj(Xt), we can either directly test its statistical signifi-
cance with H0 :βj = 0, ∀j (Ramsey 1969; White 1992; Kapetan-
ios 2003; DeBenedictis and Giles 1998), or find whether the op-
timal k = 0, using a version of order selection criterion (Eubank
and Hart 1992). In this article, we take the first approach with

the polynomial basis functions Fj(Xt) = Xj+1
t for the RESET

test.
Note that estimation of (2) involves working with the sam-

ple moments of nonlinearly transformed integrated time series
whose asymptotic behavior must be characterized. Before ex-
amining these quantities, we first specify the data generating
processes and some assumptions that will facilitate the devel-
opment of a limit theory.

Assumption A. Let �Xt = vt and ut be general linear pro-
cesses satisfying the following conditions:

ut =
∞∑

j=0

cjεt−j = C(L)εt, vt =
∞∑

j=0

djηt−j = D(L)ηt,

where ζ̃t = (ηt+1, εt)
′ is a stationary and ergodic martingale dif-

ference sequence with natural filtration Ft = σ({ζ̃s}t−∞) satis-
fying

1. supt≥1 E(‖ζ̃t‖r|Ft−1) < ∞ a.s. for some r > 4

2. E(ζ̃ 2
i,t ζ̃j,t−l) = 0 for all i, j and for all l ≥ 1

3. εt is iid with E|εt|r < ∞ for some r > 8, its distribution is
absolutely continuous with respect to Lebesgue measure
and its characteristic function ϕ satisfies ϕ(λ) = o(‖λ‖−δ)

as λ → ∞ for some δ > 0.

In addition, {cj,dj} satisfy the summability conditions:
∑∞

j=0 j×
|dj| < ∞,

∑∞
j=0 j1/2|cj| < ∞, and D(1) �= 0.

These assumptions on the innovation processes are fairly
standard and are satisfied by a wide class of processes; for ex-
ample, an invertible Gaussian autoregressive moving average
(ARMA) model. Similar conditions are employed in deriving
the results of Park and Phillips (1999, 2000, 2001) and Chang,
Park, and Phillips (2001). However, de Jong’s (2002) more re-
laxed conditions are sufficient for the modification of the RE-
SET test presented in this article.

Under Assumption A, the invariance principle holds for ζ̃t

so that n−1/2∑[nr]
t=1 ζ̂t ⇒d BM(). Using the Beveridge–Nelson

decomposition (Phillips and Solo 1992), we can show that a
similar result holds for the time series ζt = [vt+1,ut]′,

1√
n

[nr]∑
t=1

ζt ⇒d B(r) ≡
(

Bx(r)
Bu(r)

)
≡ BM(�),

with � =
(

�vv �vu

�uv �uu

)
.

Here the covariance matrix � =∑∞
h=−∞ �ζ (h), where �ζ (h) =

E(ζ0ζ
′
h). Also, define the one-sided long-run covariance ma-

trices with similar partitions as � = ∑∞
h=1 �ζ (h) and � =

�ζ (0) + �.
Among the wide variety of possible nonlinear functions, Park

and Phillips (1999, 2001) provide tools for asymptotic analy-
sis with some classes of functions (of integrated processes)
satisfying certain regularity conditions. The simple basis func-
tions {Xj

t} of a Taylor series expansion fall within the so-called
H-regular class (or Class H). Functions in this class have ho-
mogeneous, asymptotically dominating components, that is,
f (λx) ∼= κ(λ)H(x), that are locally integrable. H(x) is referred
as the asymptotic homogeneous function of F(x) and κ(λ) as
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the asymptotic order of F(x). Park and Phillips (1999) provided
various examples that belong to this class, such as finite order
polynomials, and distribution-like functions, including their lin-
ear combinations and products. The polynomial basis functions
{Xm+1} from a Taylor series expansion belong to this class with
H(x) = xm+1 and κ(λ) = λm+1.

Another important class of nonlinear transformation is the
I-regular (or Class I) transformation. Roughly speaking, func-
tions in this class are bounded, integrable, and (piecewise)
smooth. All pdf-like functions belong to this class. See Park
and Phillips (1999) for further details on these classifications.

2.1 Nonlinear Sample Covariances & RESET

Testing a linear specification with H0 :βj = 0, ∀j in (2) in-
volves the sample covariance between ut and the polynomials
of Xt. The following lemma is a special case of de Jong (2002)
and shows the asymptotic behavior of this sample quantity.

Lemma 1. Suppose Assumption A holds. For m ≥ 1, the
sample covariance between Xm

t and ut satisfies

1

n(m+1)/2

n∑
t=1

Xm
t ut ⇒d

∫
Bm

x dBu.x + �uv�
−1
vv

∫
Bm

x dBx

+ m�vu

∫
Bm−1

x , (3)

where �vu = ∑∞
h=1 E(v0uh) and the Brownian motion Bu.x =

Bu − �uv�
−1
vv Bx is independent of Bx and has variance �uu.v =

�uu − �uv�
−1
vv �vu.

The limit of the sample covariance (3) has two components—∫
Bm

x dBu.x, a mean zero Gaussian mixture, and the remaining
two terms that correspond to the so-called endogeneity bias and
serial correlation bias of linear cointegration theory (Phillips
and Hansen 1990). These second-order bias terms stem from
the nonstationarity of Xt and shift the mean of the limit dis-
tribution away from zero. In the simplest case of strictly ex-
ogenous Xt, E(vtus) = 0 for all t, s so that the two bias terms
are zero with �uv = �uv = 0. In related work, de Jong (2002)
examined nonlinear sample covariance asymptotics under con-
ditions that are less strict on the innovation processes, but more
restrictive in terms of functional forms; and a general semi-
martingale approach to establishing limit results of this type
was developed in Ibragimov and Phillips (2004).

The effects of the two bias terms in (3) can be substantial on
the distribution of the RESET test statistic. As is well known
(e.g., Muirhead 1982, theorem 1.4.5), a quadratic form x′Ax in
the Gaussian random vector x ∼ N(ξ ,V) follows a noncentral
χ2 distribution, χ2(k, ν), where k = rank(AV) is the degrees of
freedom and ν = ξ ′Aξ is the noncentrality parameter. Letting
x be the limit of

∑n
t=1 ûtFt after appropriate normalization, we

can show that the test statistic Rn in (4) follows a mixture of
noncentral χ2 distributions under suitable conditioning. Due to
the presence of the fitted residual ût instead of ut, some addi-
tional bias terms appear in the limit, in addition to the two terms
shown in (3). The following theorem summarizes this result.

Theorem 2. Under Assumption A, the RESET test statistic
Rn asymptotically has a mixture of noncentral χ2(k, ν) distrib-
utions with k degrees of freedom and the random noncentrality
parameter ν = ξ ′Aξ . That is, the RESET test statistic

Rn =
(

n∑
t=1

ûtFt

)′(
�̂uu.v

n∑
t=1

F̃tF̃′
t

)−1( n∑
t=1

ûtFt

)

= û′F(�̂uu.vF̃′F̃)−1F′û a∼ χ2(k, ν) (4)

for the auxiliary regressors Ft = [X2
t · · · Xk+1

t ]′, F = [F1,

. . . ,Fn]′, and the regression residuals F̃ = [F̃1, . . . , F̃n]′ with
F̃t = Ft −Xt(

∑
t XtX′

t)
−1∑

t XtFt. The random vector ξ is k ×1
with (m − 1)th element defined as, for m ≥ 2,

ξ(m − 1) = �uv�
−1
vv

∫
B̃m

x dBx + m�vu

∫
Bm−1

x

− �vu

(∫
B2

x

)−1 ∫
Bm+1

x , (5)

with B̃m
x = Bm

x − Bx(
∫

B2
x)

−1
∫

Bm+1
x and A is the inverse of a

k × k limit variance matrix, vis-a-vis,

A =

⎡⎢⎢⎣�uu.v

⎛⎜⎜⎝
∫

B̃2
x

2 · · · ∫
B̃2

xB̃k+1
x

...
. . .

...∫
B̃k+1

x B̃2
x · · · ∫

B̃k+1
x

2

⎞⎟⎟⎠
⎤⎥⎥⎦

−1

. (6)

When Xt is strictly exogenous, all bias terms disappear with
E(utvs) = 0,∀t, s, and the test statistic Rn asymptotically has
a mixture of central χ2 distributions conditional on Fx =
σ(Bx(r),0 ≤ r ≤ 1). Since the limit distribution is independent
of Fx, we deduce that Rn converges to χ2(k) unconditionally.

In general, Rn ∼ χ2(k, ν) asymptotically and this noncentral
distribution can be approximated by a multiple of the central
χ2 distribution, aχ2(b), where the two constants are given by
(Johnson and Kotz 1970)

a = 1 + ν

k + ν
≥ 1 and b = k + ν2

k + 2ν
≥ k.

Therefore, conditional on Fx, the probability of rejecting the
linear null hypothesis can be shown to be at least as great as the
nominal size α asymptotically, vis-a-vis,

P[Rn > χ2
α] ∼ P

[(
1 + ν

k + ν

)
χ2(b) > χ2

α

]
≥ P

[
χ2
(

k + ν2

k + 2ν

)
> χ2

α

]
≥ α,

and this explains the large size distortions in Porter and
Kashyap (1984).

3. BIAS CORRECTION & MODIFIED TEST

The previous section shows that nonstationarity of Xt intro-
duces bias terms in the limit distribution of the sample covari-
ance between Xm

t and ût, leading to the noncentral limit distri-
bution of the RESET statistic Rn. These bias terms are the main
source of the large size distortions of the test and the follow-
ing theorem presents a method to remove them similar to the
direct nonparametric correction method in fully modified (FM)
regression (Phillips and Hansen 1990; Phillips 1995).
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Theorem 3. Suppose Assumption A holds. If {Xt,Yt} are lin-
early cointegrated, the following modified RESET statistic has
a limiting central χ2(k) distribution

MRn = {û′FDn − E′
n − S′

n}(�̂uu.vD′
nF̃′F̃Dn)

−1

× {DnF′û − En − Sn}
a∼ χ2(k),

where û is an n × 1 vector of residuals from the linear coin-
tegration regression (2) with F and F̃ as in Theorem 2. The
k × k normalization matrix Dn and the (m − 1)th elements of
the two k × 1 correction vectors En = [En(1), . . . ,En(k)]′ and
Sn = [Sn(1), . . . ,Sn(k)]′ are defined as

Dn = diag
(
n−3/2,n−4/2, . . . ,n−(k+2)/2),

En(m − 1) = �̂uv�̂
−1
vv

×
[{

n∑
t=1

(
Xt√

n

)m vt√
n

− �̂vv
m

n

n∑
t=1

(
Xt√

n

)m−1
}

−
(

1

n

n∑
t=1

Xtvt − �̂vv

)(
1

n2

n∑
t=1

X2
t

)−1

×
(

1

n

n∑
t=1

(
Xt√

n

)m+1
)]

, (7)

Sn(m − 1) = �̂vu
m

n

n∑
t=1

(
Xt√

n

)m−1

− �̂vu

(
1

n2

n∑
t=1

X2
t

)−1
1

n

n∑
t=1

(
Xt√

n

)m+1

. (8)

Since this type of test is based on a finite approximation, its
power naturally depends on the adequacy of the approximation
under the alternative specification. The goodness of approxi-
mation depends on the given nonlinear functional form that is
approximated and two components that can be controlled—the
type and the number of basis functions included in the aug-
mented regressors. A good approximation will definitely help
in detecting nonlinearity when it is present, but even poor ap-
proximations can be effective for testing purposes. This is be-
cause the null hypothesis requires that all coefficients be zero,
βj = 0 for j = 1, . . . , k, and the test will reject the null hypothe-
sis if at least one coefficient deviates enough from zero, that is,
if at least one basis function is able to catch some “part” of the
nonlinearity.

Although the RESET test is usually thought of as a general
linearity test without specific alternatives, it also can be inter-
preted as an LM test, where the basis functions are treated as
possible alternative nonlinear specifications. By construction,
the test has highest power against such alternatives. Further-
more, if the test rejects linearity, the estimated nonlinear coin-
tegration relationship provides a possible alternative nonlinear
model, or more specifically a partial approximation to an alter-
native nonlinear model for the data, at least when the relation-
ship is not spurious.

When the linear model is rejected and the alternative polyno-
mial model is estimated, the correction methods in Theorem 3

can be applied again to correct the biases in the least-squares
(LS) coefficient estimators. For example, suppose we estimate
the following nonlinear cointegration model

Yt = θXm
t + ut, t = 1, . . . ,n.

Then the corresponding FM estimator of θ is

θ̃m =
(∑

X2m
t

)−1{∑
Xm

t Yt − n(m+1)/2[Em + Sm]
}

with the correction terms

Em ≡ �̂vu
m

n

n∑
t=1

(
Xt√

n

)m−1

,

Sm ≡ �̂uv�̂
−1
vv

{
n∑

t=1

(
Xt√

n

)m vt√
n

− �̂vv
m

n

n∑
t=1

(
Xt√

n

)m−1
}

and we can show that the modified estimator has a mixed
Gaussian asymptotic distribution about the true value, that is,
n(m+1)/2(θ̃m − θ) ⇒d (

∫
B2m

x )−1
∫

Bm
x dBu.x. When m = 1, θ̃m is

simply the FM estimator in a typical linear cointegration model.
With stationary time series, the auxiliary regressor set

{Xj+1
t }k

j=1 often suffers from multicollinearity, in which case
principal components can be used instead. If this is the case,
the bias correction terms also need to be adjusted accordingly,
and the modified test statistic using principal components can
be constructed as follows:

{û′F∗
n − E′

nG − S′
nG}(�̂uu.vF̃∗′

n F̃∗
n)

−1

× {F∗′
n û − G′En − G′Sn} a∼ χ2(k̃),

where G is the k × k̃ matrix whose columns are the eigen-
vectors of F′F divided by the corresponding eigenvalues, and
F∗

n = FDnG is n × k̃ normalized matrix with the jth principal
component in the jth column. The k̃ eigenvectors are chosen
according to the k̃ largest eigenvalues.

This multicollinearity problem is mainly due to the mean-
reversion property of stationary time series for which the vari-
ation of Xt around zero is dampened by polynomial transfor-
mations. However, this is not the case for integrated Xt, which
spends little time around the origin and whose variations are
typically magnified by polynomial transformations as n in-
creases.

4. MODIFIED TEST UNDER ALTERNATIVES

As discussed earlier, considering nonlinearity together with
nonstationarity gives rise to three possible scenarios. Our mod-
ified test tests the null hypothesis of linear cointegration against
both nonlinear cointegration and the absence of cointegration,
the latter incorporating both the conventional spurious regres-
sion case and omitted variable cases. This section examines test
power in these alternative scenarios.
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4.1 No Cointegration Case

Lee, Kim, and Newbold (2005) examined six widely used
linearity tests and find that evidence of spurious nonlinearity in-
creases with the sample size. The following theorem shows that
our modified test statistic also diverges when it is applied to two
independent I(1) processes. However, divergence of the test sta-
tistic should not be interpreted as evidence of spurious nonlin-
earity but rather simply as a rejection of the linear cointegration
specification with two possible alternative cases. Therefore, the
diverging test statistics in the no-cointegration case correctly
point out the absence of linear cointegration. To determine if
the rejection is due to nonlinearity, a further specification test is
required.

Theorem 4. Suppose Xt and Yt are not cointegrated so that

Yt = θXt + ut, t = 1, . . . ,n

with the I(1) process ut satisfying n−1/2ut=[n·] ⇒d Bu(·). In this
case the modified RESET statistic diverges at the rate of n/M,
where M is the bandwidth parameter used in kernel estimation
of the long-run (co)variances.

This result is of some practical interest. The RESET test was
originally developed for testing linearity of the model but, when
applied to cointegrating relations, the test has power against
lack of cointegration as well. Thus, the modified RESET test
can serve as an omnibus test for the linear cointegration speci-
fication that has power against both no cointegration and non-
linear cointegration.

A similar idea in the context of detecting unit roots is present
in Park’s (1990) unit root test by variable addition. This test
uses deterministic polynomials to detect the presence of left-
over stochastic trend(s); the RESET test uses polynomials of
the stochastic regressors instead, which have a natural advan-
tage when there is nonlinear cointegration involving these vari-
ables.

Since the rate of divergence depends on the relative size of
the bandwidth parameter and the number of observations, the
choice of M can greatly affect the power of the test against the
lack of cointegration. Similar issues arise in other tests that rely
on nonparametric estimates, such as the KPSS test for station-
arity. We will discuss this issue in the next section together with
other practical issues related to applying the modified RESET
test.

4.2 Nonlinear Cointegration Case

Among the many types of possible nonlinearities in cointe-
grated systems, we consider here models in the following non-
linear form

Yt = f (Xt, θ) + ut, t = 1, . . . ,n (9)

with f (·) being either H-regular or I-regular.

Theorem 5. Suppose the true model has the nonlinear
form (9) and {Xt,ut} satisfy the conditions of Theorem 3. For
given M, the modified test statistic MRn diverges at the rate
n/M in the H-regular nonlinear case, but does not diverge in
the I-regular nonlinear case.

Obviously, the power of the modified RESET test depends
on the true nonlinear functional form. For H-regular nonlinear-
ities, the test statistic diverges at the rate Op(

n
M ), just as in the

case of no cointegration. Note that this result includes the case
of a threshold model alternative, where the H-regular transfor-
mation is based on indicator functions. The asymptotic order in
this case is κ = 1, as in the case of linear cointegration, but the
test statistic still diverges in this case at the rate n/M.

Contrary to the H-regular case, the modified test has particu-
larly low power against I-regular-type nonlinearity. This is be-
cause the variations from the I-regular-type nonlinear transfor-
mation of Xt that remain in the linear cointegration residuals
{ût} become negligible relative to the variations of Xt as n in-
creases.

5. SIMULATIONS

Monte Carlo results are presented in this section to show the
size distortion of the original RESET test and to investigate how
satisfactory the suggested modifications are in achieving the
nominal asymptotic size in finite samples. We also report some
simulations on the power of the modified RESET test against
some specific nonlinear models, choosing the following seven
nonlinear models in addition to the linear cointegration model
as the reference case:

(1): Yt = 1.1Xt + ut,

(2): Yt = log(|Xt| + 1) + ut,

(3): Yt = X2
t + ut,

(4): Yt = 1.2 exp(−X2
t ) + ut,

(5): Yt = 1.1XtI{|n−1/2Xt|≥0.6} − 0.8XtI{|n−1/2Xt|<0.6} + ut,

(6): Yt = 1/(|Xt| + 1) + ut,

(7): Yt = 1.1(|Xt| + 1)1/2 + ut,

(8): Yt = 1.1(|Xt| + 1)3/2 + ut.

The regression error {ut}n
t=1 and the integrated regressor Xt

are generated from the design

�Xt = vt = e2,t−1 + 0.4e2,t−2,

ut = ρut−1 + 1√
2
(e1,t + e2,t),

where ρ ∈ [0.2,0.4,0.6,0.8] controls the level of serial corre-
lation in the error term, and (e1,t, e2,t)

′ ∼ N (0, I2). Note that
the innovation processes are constructed in such a way that
Xt is predetermined, as specified in Assumption A. Samples
of five different sizes (n = 50,100,250,500,1000) are drawn
with 10,000 replications to examine both small sample proper-
ties and rate of convergence to the limit

5.1 Size of the Test

Figure 1 compares two RESET tests—before and after bias
corrections—when Xt and Yt are linearly cointegrated. The four
graphs summarize the test performance under H0 from Table 1
with (a) a varying number of observations for a given level of
serial correlation (ρ = 0.6) and (b) a varying level of serial cor-
relation for a given number of observations. As shown in the
upper panels (a), with a moderate level of serial correlation in
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(a) Varying number of observations with ρ = 0.6 and k = 3.

(b) Varying serial correlation with n = 1000 and k = 3.

Figure 1. The RESET test statistics before and after modification under H0. Empirical distributions of the test statistic shown above are
from 10,000 simulated samples with k = 3. The bandwidth for the kernel estimator of long-run (co)variance is chosen automatically following
Andrews (1991). χ2-distribution in a thick solid line represents the limit distribution of test statistics from a central χ2(k) distribution.

the regression error, the RESET test without correction terms
shows severe size distortions that become even worse as the
sample size increases. For a nominal asymptotic 5% size, the
probability of a Type I error rises up to 0.357 with n = 1000.
This result may be regarded as an extreme version of the earlier
findings in Porter and Kashyap (1984). Contrary to the severe

size distortions in the original test, the modified test in the right
panel of Figure 1(a) exhibits only a minor size distortion, which
vanishes as n increases and, at the same time, shows a relatively
fast convergence to the limit distribution.

Figure 1(b) shows how the bias correction terms work for
different ρ values. The left panel confirms the severe size dis-
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tortions due to the serially correlated errors. For a nominal as-
ymptotic 5% size, the probability of a Type I error reaches up to
70% for ρ = 0.8, while including two correction terms brings it
back to 4.99%.

5.2 Power of the Test

Table 1 also reports the power of the modified RESET test
against some specific nonlinear models. With linear cointegra-
tion as the reference case in (1), simulation results show that
the modified RESET test is quite sensitive to many nonlinear
possibilities for a wide range of ρ values. The probabilities
of rejecting the linearity null are over 90% in most cases ex-
cept for (4) and (7). As expected, the modified RESET test is
most powerful against polynomial type nonlinearity (3) but also
shows good powers against logarithmic (2), threshold (5), and
reciprocal (6) nonlinearities and a small deviation from linear
model (8) as well. Note also that the original RESET test in the
second part also shows a similar pattern.

The low power against (4) and (7) is due to fact that in these
cases, the nonlinear transforms tend to suppress the variations
of Xt, while the polynomials of the RESET test tend to magnify
the variations. Therefore, the asymptotic forms of the function
e−X2

t and (|Xt| + 1)1/2 when Xt = Op(t1/2) for large t are not
well captured by the asymptotic form of the polynomial terms
Xm

t = Op(tm/2) for m ≥ 2.
Table 2 shows another direction for the alternative case of

2 independent I(1) variables. As discussed in Theorem 4, the
modified test statistic diverges at the rate n/M so that the re-
jection rate is sensitive to the choice of the bandwidth parame-
ter M. We report five cases, corresponding to M = n1/5, n1/4,
n1/3, n1/2 and the usual data-dependent automatic bandwidth
(Andrews 1991) for a Parzen kernel. Two aspects of the results
in Table 2 confirm Theorem 4. First, the rejection probability
tends to be higher for the smaller bandwidth choices for given
k and n. Second, the rejection probability increases with n as
well as with the number of augmented regressors k in general,
especially for smaller bandwidths. For M = n1/3, the effect of
increasing k on the rejection probability is not as large as in the
case of M = n1/5, and even decreases for M = n1/2. When an
automatic bandwidth rule is employed, increasing k has a more
significant effect on power for a given n than increasing n for a
given k.

5.3 Limitations and Practical Issues

The limitations of the modified RESET test are related to
the approximation method that the test is based on, and the
nature of the cointegration functional forms. Once the cointe-
grating function is given, the size of the approximation error is
determined by the “type” and “number” of the basis functions
{Fj}k

j=1. These choices determine how well a linear combina-
tion of the basis functions can approximate unknown nonlinear
cointegrating function f (Xt). If there exists a set of coefficients
{βj}k

j=1 such that
∑k

j=1 βjFj(Xt) is close to f (Xt) over a wide
enough domain, then it is clear that we can expect the test to
reject linear cointegration in favor of some form of nonlinear
cointegration, corresponding to the nonzero {βj} estimates.

Once the type of basis functions {Fj} is selected, the number
of them, k, needs to be chosen. Although larger k may produce

an improved approximation to f (·), in a finite sample testing
framework, there exist some trade-offs. On the one hand, larger
values of k will, at least to a certain point, generally increase
the power of the test by virtue of their improved approximation
capability. On the other hand, larger k increases the risk of spu-
rious nonlinearity resulting in a higher probability of a Type I
error under the null as well as a decrease in degrees of free-
dom in the regression. Moreover, to reject the null hypothesis
H0 :β1 = · · · = βk = 0, at least one significant coefficient will
suffice, a condition that is less restrictive than requiring a good
fit to f (Xt) by

∑k
j=1 β̂jFj(Xt). Simulations (not reported here)

suggest that the use of k = 2 or 3 generally produces good size
and reasonable power, while increasing k to k = 3 or 4 adds
power without too much compromise in size.

Another important factor that is not shown explicitly in the
regression Equation (2) is the choice of bandwidth parameter M
for kernel estimation. As discussed in Theorem 4 and shown in
Table 2, the power against the no-cointegration alternative de-
pends on n/M. The test statistic under the same alternatives di-
verges faster as M/n becomes smaller, but this makes the test
statistic under the null converge to the asymptotic distribution
at a slower rate. Therefore, in addition to the choice of k, it
is recommended to apply the test with different combinations
of k and M to get a more concrete result. A popular choice for
bandwidth selection is the data dependent method of Andrews
(1991). The Parzen kernel is used in the simulations shown
but, while not reported here, other kernels with their automatic
bandwidths gave similar power and size properites.

Finally, an important but uncontrollable factor that affects the
power of the test is the actual nonlinear functional form under
the alternative. Although general approximation methods, in-
cluding the power series approximations that underlie the RE-
SET test, can provide reasonable approximations for a wide
class of nonlinear functions, there are nonlinear transformations
that are not well approximated by these methods. Low power
of the modified RESET test against I-regular-type nonlinearity
can be understood in this context. This problem can be allevi-
ated by unit root testing, which can sometimes provide informa-
tion about the type of nonlinearity. For example, if the depen-
dent variable is a trigonometic function of an I(1) process, this
function will behave like a stationary AR(1) process (e.g., Er-
mini and Granger 1993) and unit root tests prior to cointegration
analysis will help to identify the dependent variable as station-
ary while the independent variables are nonstationary. Certain
extensions to polynomial (or rational) approximants are needed
in order to produce global approximations for such integrable
functions over the whole real line. Phillips (1983) suggested a
class of extended rational approximants that have good global
approximant performance over the whole real line to integrable
functions, which may therefore be useful in this context.

One useful feature of the approximation-based linearity test
is that the estimated linear combinations of the basis func-
tions can suggest possible nonlinear alternatives when the lin-
ear specification is rejected due to nonlinearity. In this case, the
modified RESET test can be interpreted as an LM test that com-
pares a linear cointegration model against an estimated approx-
imation to some unknown nonlinear cointegration model. So,
if the null is rejected, we can write down an alternative non-
linear model with additional basis functions until the approxi-
mation errors become I(0) and reestimate this model using the
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Table 1. Probability of rejecting H0 of linear cointegration

Modified RESET test Original RESET test

Function Type (1) (2) (3) (4) (5) (6) (7) (8) (1) (2) (3) (4) (5) (6) (7) (8)
ρ = 0.2: n = 50 17.86 49.84 99.80 32.70 91.98 99.60 23.26 48.78 8.26 50.40 100.00 29.88 94.48 100.00 14.90 47.90

n = 100 11.68 70.82 99.66 31.58 94.98 99.80 23.46 70.94 8.32 74.64 100.00 37.32 96.90 100.00 24.04 72.92
n = 250 8.60 89.26 99.80 31.52 96.72 99.78 31.40 88.02 9.70 93.26 100.00 41.28 98.18 100.00 37.52 90.14
n = 500 8.32 98.52 99.60 34.80 97.34 99.78 45.38 97.62 11.30 99.24 100.00 45.28 98.30 100.00 51.82 98.60
n = 1000 7.20 99.92 99.66 37.62 98.46 99.74 60.18 99.94 9.82 100.00 100.00 46.96 99.08 100.00 65.92 100.00

ρ = 0.4: n = 50 15.96 41.08 99.74 28.00 91.58 99.54 20.12 40.40 9.40 47.88 100.00 29.80 94.22 99.92 16.04 45.06
n = 100 9.48 58.64 99.68 23.14 94.58 99.86 17.50 60.92 12.12 72.76 100.00 35.48 96.68 100.00 23.94 71.22
n = 250 7.04 84.36 99.68 22.98 96.44 99.80 21.34 83.86 14.54 92.28 100.00 41.24 98.12 100.00 37.86 89.28
n = 500 6.40 95.16 99.74 23.68 97.64 99.66 30.70 94.40 15.10 98.68 100.00 44.36 98.58 100.00 50.22 97.48
n = 1000 6.34 99.42 99.76 26.06 98.06 99.72 41.42 99.56 16.40 99.92 100.00 44.84 98.86 100.00 60.64 99.88

ρ = 0.6: n = 50 15.86 33.00 99.78 24.54 90.94 99.08 18.82 32.86 13.16 43.44 100.00 30.28 93.74 99.96 18.80 41.20
n = 100 8.38 41.20 99.76 16.60 94.40 99.84 12.76 45.16 20.40 68.00 100.00 36.96 97.14 100.00 28.84 67.90
n = 250 5.26 69.18 99.74 13.26 96.02 99.74 11.80 73.24 24.76 88.26 100.00 43.28 97.96 100.00 40.68 87.80
n = 500 5.60 85.58 99.68 13.28 97.22 99.76 16.10 87.26 28.72 96.88 100.00 46.78 98.78 100.00 50.58 96.04
n = 1000 4.96 95.62 99.84 13.90 98.24 99.76 21.72 96.64 28.62 99.68 100.00 47.96 99.02 100.00 59.00 99.58

ρ = 0.8: n = 50 21.12 31.12 99.78 24.78 89.08 97.58 22.52 30.92 19.76 40.50 100.00 32.14 94.10 99.70 23.86 38.82
n = 100 10.46 25.32 99.74 12.68 92.54 99.48 11.82 27.90 33.72 61.64 100.00 42.74 97.06 100.00 38.06 62.66
n = 250 4.84 32.86 99.90 7.32 96.20 99.88 6.88 45.78 49.24 83.66 100.00 55.32 98.46 100.00 54.44 85.74
n = 500 5.04 54.48 99.70 6.84 96.80 99.80 7.34 69.14 55.36 92.34 100.00 60.80 98.98 100.00 62.02 92.94
n = 1000 5.06 75.78 99.80 6.96 97.70 99.76 8.88 84.10 60.84 97.40 100.00 65.08 99.40 100.00 68.10 97.84

ρ = 0.9: n = 50 26.28 32.90 99.60 27.42 85.08 94.70 26.74 32.52 25.90 41.36 100.00 33.76 93.84 99.26 28.46 40.24
n = 100 14.86 23.24 99.66 15.26 91.18 98.94 15.92 25.64 42.78 59.88 100.00 48.20 97.00 100.00 45.42 60.62
n = 250 5.92 16.66 99.78 6.12 94.32 99.70 6.24 23.46 62.54 80.38 100.00 63.94 98.78 100.00 63.54 83.72
n = 500 4.86 22.64 99.86 5.26 97.00 99.84 5.30 38.46 74.48 88.22 100.00 75.42 99.50 100.00 76.16 91.52
n = 1000 5.14 38.72 99.80 5.80 97.66 99.76 6.22 64.50 78.66 94.34 100.00 79.38 99.62 100.00 79.80 95.92

44.8 62.8 100.0 48.1 98.2 100.0 44.7 64.8
NOTE: (1)–(8) denote the functional forms defined in the beginning of simulation. The probabilities are calculated from 10,000 simulated samples with k = 3 and the bandwidth is chosen automatically following Andrews (1991) for Parzen window.
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Table 2. Probability of rejecting linearity/cointegration when Xt and
Yt are not cointegrated

Number of basis functions (k)

Bandwidth 1 2 3 4 5

M = n1/5

n = 50 15.94 13.02 10.64 8.92 6.92
n = 100 25.62 25.06 22.68 19.88 16.88
n = 500 54.00 64.96 67.58 67.92 67.26
n = 1000 64.40 78.88 82.46 84.12 84.54

M = n1/4

n = 50 13.84 10.14 8.10 6.52 4.98
n = 100 22.16 19.94 17.24 14.46 11.96
n = 500 48.72 57.90 59.38 58.00 56.76
n = 1000 59.40 73.08 76.26 76.72 76.98

M = n1/3

n = 50 10.10 5.91 4.35 3.99 3.96
n = 100 14.52 10.50 8.07 5.73 4.13
n = 500 37.53 42.76 41.06 39.05 36.54
n = 1000 49.16 58.31 59.39 58.85 57.05

M = n1/2

n = 50 6.09 3.81 3.41 5.33 6.31
n = 100 6.73 3.05 2.10 1.54 1.41
n = 500 16.59 12.98 9.84 7.68 5.25
n = 1000 23.68 21.70 18.14 15.13 11.93

Automatic
n = 50 26.02 36.87 42.42 54.43 57.14
n = 100 23.08 30.36 33.89 42.31 45.01
n = 500 17.77 21.40 23.60 27.23 28.63
n = 1000 17.30 19.30 20.65 22.90 24.10

NOTE: The rejection probabilities are calculated from 10,000 replications for the nomi-
nal 5% test. The automatic data-determined bandwidth choice in the bottom panel is based
on Andrews (1991).

FM regression method presented in the previous section. This
approach has clear advantages in empirical research over other
residual-based general specification tests like the CUSUM type
test, which indicate only whether the null hypothesis is rejected
or not. Of course, the alternative nonlinear model is valid only
if the rejection of the null hypothesis is due to nonlinearity. If
the rejection is due to complete lack of cointegration, then the
approximation error will not become I(0). Also, finding a sat-
isfactory nonlinear alternative specification by way of approxi-
mation involves choosing a suitable value of k for the regression
so that the approximation error is reduced while not attempt-
ing to overfit the data. Such complex issues necessarily involve
model selection and are beyond the scope of the present article.

6. EMPIRICAL APPLICATION

The introduction of unit root limit theory and cointegration
methods has led to a vast number of empirical studies with
nonstationary time series, many of them conducted without fur-
ther attention to specification testing beyond what is implied by
unit root and cointegration tests. This section considers the PPP
relationship between nominal exchange rates and the foreign–
domestic price ratio and applies the modified RESET linearity
test to check whether the traditional linear cointegration speci-
fication is appropriate in this context.

6.1 PPP Models

PPP is a simple, intuitively appealing empirical proposition
dated at least to the 16th Century in Spain (Dornbusch 1987).
The theory postulates that once converted to a common cur-
rency, the price level of traded goods should be equalized across
countries due to arbitrage. In its strict sense, the idea is some-
times understood as an extension of the law of one price (LOP),

Pi,t = St · P∗
i,t,

with a nominal exchange rate, St, a domestic price of a traded
good i at time t, Pi,t, and the foreign price for the same good,
P∗

i,t. Aggregating this relationship over traded goods, PPP states
that ∑

i

Pi,t = St ·
∑

i

P∗
i,t.

For a variety of reasons, this exact form of PPP, the so-called
absolute PPP, does not hold and a weaker version of PPP is
commonly used to provide a definition of the real exchange rate
as

qt = st + p∗
t − pt,

where qt and st are log transforms of real and nominal exchange
rates, and p∗

t and pt are log transforms of foreign and domestic
price levels.

Intuitively accepted as providing a long-run equilibrium rela-
tionship among price levels and exchange rates, traditional unit
root/cointegration approaches have been the most widely used
method in PPP empirical studies, but these methods have of-
ten failed to find any strong empirical support for PPP. These
failures have led to the use of many new methods in search-
ing for evidence of PPP, including longer datasets, panel unit
root evaluations, and the use of nonlinear models. Noticing the
low power of unit root tests in small samples, researchers have
tested PPP using long-horizon data, finding stronger support
for PPP (e.g., Lothian and Taylor 1996) by this method. Us-
ing cross-country data to improve the power of unit root tests
has also tended to produce stronger support for PPP, but with
some criticism for neglecting cross-country dependence (e.g.,
O’Connell 1998). While these methods have involved the use
of different datasets to improve tests of PPP, the last approach
takes into account the possibility of different model specifica-
tions.

Nonlinear specifications are often obtained from market fric-
tions like transaction/transportation costs or trade barriers (e.g.,
Sercu, Uppal, and van Hulle 1995 and Michael, Nobay, and Peel
1997). These market frictions are usually formulated in terms
of nonlinear adjustments to parity, and some variants of thresh-
old models are being suggested to find stronger empirical evi-
dence in support of these models (Saikkonen and Choi 2004).
In addition to the nonlinear short-run adjustment terms asso-
ciated with the long-run linear equilibrium, Haug and Basher
(2003) posited a nonlinear PPP relationship and apply a simple
nonlinear cointegration test developed by Breitung (2001), but
failed to find any linear and nonlinear cointegration relationship
among the G10 countries. We use their model,

St = α + f

(
P∗

t

Pt

)
+ ut, (10)
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and test for linearity in this cointegrating relationship directly.
Not having a specific functional form for f (·) offers some

advantages. First, even if the threshold model had strong theo-
retical justification for one tradable good, aggregating over all
goods and using a general price level inevitably obscures the
form of the implied nonlinearity for the aggregate relationship
(for instance, because of the manifold threshold points that ap-
pear in the aggregation). Second, setting a regression equation
in the general form of (10) allows for a more flexible interpre-
tation. Apart from providing a testable form of PPP, (10) can
be thought of as a general model of nominal exchange rate
determination in terms of economic fundamentals. Although
Meese and Rogoff (1983) found that no existing structural
model outperforms a simple random walk model in prediction,
the monetary model has been the standard model for exchange
rate determination. This model’s main implication is that the
nominal exchange rate is determined by some economic funda-
mentals like money and output of the two countries, and the risk
premium. Using the price ratio to reflect the economic funda-
mentals, (10) can be regarded as expressing nominal exchange
rates as some unknown function of underlying fundamentals.

In addition to the PPP in levels (or absolute PPP), we also
test relative PPP which can be written as (Rogoff 1996)

Pt

Pt−1
=
(

St

St−1

)
· P∗

t

P∗
t−1

.

Since the price index is the relative value to a base year and we
do not know how big the deviation from absolute PPP was at the
base year, this relative version of PPP requires the relationship
to hold only in terms of changes. In this case, since the loga-
rithms of the price and exchange rate ratios are stationary, we
need to interpret empirical results appropriately. Also, note that
our modified test becomes equivalent to the traditional RESET
test as both the bias and the correction terms vanish asymptoti-
cally for stationary time series.

6.2 Data

We consider five countries (U.S., Japan, Canada, Mexico,
and U.K.) forming the four pairs: U.S.–Japan, U.S.–Canada,
U.S.–Mexico and U.S.–U.K. Both bordering the U.S., Canada
and Mexico had strong economic ties to the U.S. even before
the North American Free Trade Act (NAFTA) came into ef-
fect in January 1994. According to WTO statistics, in the year
2005, 36.7% of exports and 26.8% of imports of the total mer-
chandise trade of the U.S. are with these two countries. Those
proportions are as high as 83.9% of exports and 56.5% of im-
ports in Canada with the U.S., and 85.8% of exports and 53.6%
of imports in Mexico with the U.S. While both countries de-
pend heavily on trading with the U.S., their experiences with
the U.S. are quite different in our sample period, which will
be discussed later. Due to the geographic proximity as well as
previous trade agreements including NAFTA, we expect that
the market frictions—transportation cost, trade barriers, and
so on—hampering the international arbitrage are at the low-
est level among these countries. The U.K. is one of the biggest
economies in the EU as well as in the world and has a long his-
tory of close connection with the U.S. Although about half of
its merchandise imports and exports are with other EU coun-
tries, the next largest trading partner is the U.S., accounting for

14.7% of exports and 8% of imports in U.K. merchandise trade
in 2005. Another interesting country is Japan, which used to
be the second largest economy in the world excluding the EU.
Like the U.K., it’s still one of the biggest players in world trade
and its biggest trade partner is the U.S. (22.9% of exports and
12.7% of imports). Japan alone takes 6.1% of exports and 8.2%
of imports in U.S. merchandise trade. Both the U.K. and Japan
are geographically far from the U.S. compared with Canada and
Mexico, but Japan is in general very different from the other
four countries socioeconomically, so that we expect such dif-
ferences will cause movements in relative price levels as well
as differences in exchange rates.

Our dataset is taken from the IMF’s International Finan-
cial Statistics (IFS) CD-ROM and contains nominal exchange
rates, the consumer price index (CPI), and producer price index
(PPI)/wholesale price index (WPI) at a monthly frequency. The
data span the period from 1971:1 to 2004:12, yielding 34 years
or 408 monthly observations except Mexico’s PPI series which
starts from 1981:1. A monthly average market rate is used
for the nominal exchange rate and both the CPI and PPI/WPI
are used to calculate price ratios. The data are plotted against
time in Figure 2. The left column shows the absolute PPP (in
levels)—nominal exchange rate (solid), CPI ratio (dashed), and
PPI ratio (dash-dotted)—and the right column shows the rela-
tive PPP in the same manner—in changes calculated by year-to-
year ratios, that is, for the nominal exchange rate (St), St/St−12
and for the CPI or PPI (Pt), (Pt/Pt−12)/(P∗

t /P∗
t−12).

6.3 Variations and Two Sample Periods

The fact that exchange rates are much more volatile than the
price measures has been posited as one of the reasons why it
is hard to find empirical supports for PPP, often leading to the
models of factionally integrated real exchange rate series, or
other nonlinear models for PPP. We first calculate the standard-
ized variations. For an arbitrary monthly series {Xt}n

t=1, define
a three-year rolling standardized variation of Xt at t by

Vt =
√

1
35

∑18
j=−17(Xt+j − X̄t)2

X̄t
,

where

X̄t = 1

36

18∑
j=−17

Xt+j for t = 17, . . . ,n − 18,

which is the ratio of a standard deviation in nearby three-year
period (36 months) to its local mean for that period. Therefore,
Vt is a unit-free measure of the size of variations in Xt dur-
ing the three years in the neighborhood of t, proportional to its
level. Figure 3 shows these proportional standardized variations
of exchange rates, CPIs and PPIs both in levels (in left column)
and in ratios (in right column). The right y-axis scale is used for
Mexico and the rest of the countries follow the left y-axis scale.

One thing that is clear from these plots is a declining volatil-
ity in the case of price measures, especially from early 1980s,
but the exchange rates do not show any clear pattern. Only Mex-
ico is an exceptional case, where price levels become much
more volatile during 1980s and then, only after early 1990s,
they become stabilized at a lower level but still considerably
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Figure 2. Nominal exchange rates and price ratios: U.S.–Canada, U.S.–Japan, U.S.–Mexico, and U.S.–U.K. The sample spans from 1971:1
to 2004:12. Left figures plot dataset in levels and right figures plot in the changes, St/St−12 and (Pt/Pt−12)/(P∗

t /P∗
t−12) where the nominal

exchange rate is plotted in the solid line, CPI ratio in the dashed line, and PPI ratio in the dash-dotted line.

higher than those of the other countries. This period of early
1980s roughly coincides with the so-called Volcker period dur-
ing which the Fed strongly fought for the worldwide high infla-
tion rates, and we consider this a subsample period where the

volatilities of price measures are significantly lower than those
from the other period.

In our analysis, we first consider the whole sample period
(1971M1–2004M12: “Period 1” hereafter) with 408 monthly
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Figure 3. Changes in standarized variations. Graphs show the changes in the standardized variations in exchange rates, CPI ratios, and PPI
ratios for a three-year rolling window. Left figures plot the variations of variables in the levels, that is, variables for the absolute PPP, and right
figures plot the same for the relative PPP.

observations and then the post-Volcker period (1983M1–
2004M12: “Period 2” hereafter) with 264 monthly observa-
tions. These two sample sizes are roughly equal to the two sam-
ple sizes (250 and 500) we considered in the simulation, so that
we expect our test statistic will show a similar performance as
shown in the simulation study. As we have seen already, with
a moderate level of serial correlation in the error, our modified
test is significantly better than the original test in the test size
and relatively good powers as well. In Figures 2 and 3, this
Volcker period is shown in shade, and our Period 2 covers the
sample after this period.

6.4 Traditional Cointegration Analysis

We start with the traditional cointegration analysis and will
compare the results with our modified RESET test results. First,

we apply augmented Dickey–Fuller (ADF) tests to determine
whether our dataset contains integrated processes. Test results,
not reported here, indicate that the nominal exchange rate, CPI,
and PPI are all unit root nonstationary in levels (for absolute
PPP) and stationary in changes (for relative PPP). The Phillips–
Perron test gives similar results. Second, we apply ADF and
KPSS tests to the regression residuals from regressing the ex-
change rate (St) on a constant and the price ratio (Pt/P∗

t ), with
varying sample periods, to check whether these residual-based
cointegration tests find any meaningful (linear) cointegration
relationship (see Table 3). For the ADF test, various specifica-
tions of Dickey–Fuller regression are used with different lagged
terms and both (1) constant or (2) constant and linear trends.
Note that the null hypotheses of the two tests are different: no
linear cointegration for the ADF test and linear cointegration for
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Table 3. Residual-based cointegration tests of absolute PPP: ADF and KPSS

ADF test

Number of lags 1 2 3 4 KPSS test

(A) PPP with consumer price index
Period 1:
U.S.–Canada (1) −0.9850 −0.8228 −0.9342 −1.0758 0.1295

(2) −0.9468 −0.7698 −0.8726 −1.0081

U.S.–Japan (1) −2.4526 −2.2983 −2.4672 −2.6947 0.3389∗∗∗
(2) −2.4486 −2.2951 −2.4646 −2.6927

U.S.–Mexico (1) −3.4293∗∗ −3.4236∗∗ −3.0710∗∗ −2.9329∗∗ 0.0866
(2) −3.4251∗∗ −3.4193∗ −3.0672 −2.9292

U.S.–U.K. (1) −2.9394∗∗ −2.6062∗ −2.7581∗ −2.7298∗ 0.0655
(2) −2.9323 −2.5983 −2.7486 −2.7192

Period 2:
U.S.–Canada (1) −1.7996 −1.3970 −1.5988 −1.7630 0.0732

(2) −1.7400 −1.3175 −1.5032 −1.6614

U.S.–Japan (1) −2.5091 −2.1480 −1.9787 −1.8106 0.3227∗∗∗
(2) −2.5051 −2.1459 −1.9786 −1.8106

U.S.–Mexico (1) −2.7934∗ −2.8001∗ −2.5178 −2.4025 0.1198
(2) −2.7879 −2.7946 −2.5130 −2.3980

U.S.–U.K. (1) −2.9379∗∗ −2.2689 −2.5902∗ −2.5077 0.1265
(2) −2.9182 −2.2439 −2.5591 −2.4683

(B) PPP with wholesale/producer price index
Period 1:
U.S.–Canada (1) −2.3966 −2.2435 −2.1414 −2.1075 0.1895

(2) −2.3910 −2.2365 −2.1335 −2.0994

U.S.–Japan (1) −3.0016 −2.9066 −3.0173 −3.2448 0.1853
(2) −3.0020 −2.9119 −3.0809 −3.2589

U.S.–Mexicoa

U.S.–UK (1) −2.8720∗∗ −2.5746∗ −2.6094∗ −2.6623∗ 0.1745
(2) −2.8689 −2.5736 −2.6103 −2.6648

Period 2:
U.S.–Canada (1) −2.3776 −2.2044 −2.1072 −1.9968 0.2354∗∗∗

(2) −2.3778 −2.2051 −2.1098 −2.0010

U.S.–Japan (1) −2.3365 −2.2941 −2.5456 −2.5605 0.2610∗∗∗
(2) −2.3271 −2.2834 −2.5344 −2.5496

U.S.–Mexico (1) −2.7442∗ −2.6802∗ −2.4586 −2.3487 0.1446∗∗∗
(2) −2.7388 −2.6748 −2.4536 −2.3438

U.S.–U.K. (1) −2.7148∗ −2.1968 −2.5061 −2.3882 0.1687
(2) −2.7012 −2.1813 −2.4850 −2.3630

NOTE: The cointegration regression is estimated for Period 1 (1971M1–2004M12) and Period 2 (1983M1–2004M12) with a constant and a linear trend. The number of lags in the
column shows the number of lagged terms in the Dickey–Fuller regression for the regression residuals. The ADF test statistics with a constant term are reported in (1) and statistics with
both a constant and a linear time trend are tabulated in (2). *’s show the null hypothesis rejected. One asterisk means rejection at a 10% significance level, 2 and 3 asterisks imply 5%
and 1%, respectively.
aSince PPI series for Mexico is available only after 1981, cointegration is tested only for the second period.

the KPSS test. As much previous research has reported, conven-
tional linear cointegration tests show somewhat mixed results.

1. The ADF test on U.S.–Canada and U.S.–Japan does not
find evidence of any linear cointegration relationship be-
tween nominal exchange rate and the ratio of price lev-
els (absolute PPP) with either CPI or PPI. However, tests
find significant linear cointegration for U.S.–Mexico and
U.S.–U.K. with CPI for the whole sample period and
these cointegration relationships become less significant
if we look at Period 2. While the stylized fact from the

existing empirical studies shows more favorable evidence
with PPI, the ADF test with our sample does not show
such pattern.

2. Unlike the ADF test, which finds only a few cases of lin-
ear cointegration, the KPSS test finds many linear coin-
tegration relations for the whole sample period, but some
of these are not supported by tests for Period 2, especially
with PPI, and this is exactly opposite to the empirical styl-
ized fact. Although U.S.–Mexico is the most strongly sup-
ported linear cointegration by the ADF test, the KPSS test
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shows stronger support for U.S.–U.K., finding linear coin-
tegration in all four cases. For U.S.–Japan, however, ex-
cept the whole period with PPI, the KPSS does not find
any linear cointegration at all.

6.5 The Modified RESET Test

When these two popular residual-based cointegration tests
produce ambiguous findings, we now apply our modified RE-
SET test and compare the results with the original RESET test.
Table 4 summarizes the results from the modified test as well
as the original RESET for both absolute PPP (left) and relative
PPP (right) with varying bandwidths and numbers of polyno-
mials k. The upper part (A) is the case with CPI and the lower
part (B) is the case with PPI, and each part is divided into two
sample periods. While the original RESET test tends to find that
most relationships are linear, the modified RESET test shows
little support for a linear cointegration specification except one
special case of U.S.–Mexico where the linear cointegration is
strongly supported for all cases. One interesting point is that
this tends to be opposite to the original RESET test, which finds
little or no evidence for a linear relationship between the U.S.
and Mexico compared with other country pairs where the mod-
ified test cannot find a linear cointegration relationship. There
are a few other cases where our modified RESET test found
some evidence for a linear relationship such as U.S.–U.K. with
CPI, U.S.–Japan with PPI, or U.S.–Canada with PPI. These
findings look consistent with Figure 2, but it seems that their
cointegration relationships are not as stable as the U.S.–Mexico
case.

Table 4 shows a few additional interesting results. Although
many empirical studies find that PPP works better with PPI than
CPI (Froot and Rogoff 1995), there seems to be no significant
difference between CPI and PPI in our modified test result, and
two traditional tests even find CPI is more supportive of linear
specification than PPI. Regarding the two sample periods, two
traditional tests show considerable differences between these
two periods while our modified test does not show such differ-
ences. In the case of the relative PPP, where our test becomes
a linearity test instead of a linear cointegration test, our modi-
fied test does not find any significant linear relationship while
the original RESET test found that all the relationships are lin-
ear. Our results are also more consistent with Figure 2 than the
original test results.

7. CONCLUSION

Using some recently developed asymptotic tools in Park and
Phillips (1999, 2001), this article presents how nonstationarity
combined with nonlinearity interferes with the RESET test and
we analyze the resulting severe size distortion that makes the
test unsuitable for empirical application. The appropriate modi-
fications to the RESET test are proposed to eliminate the biases
that cause these size distortions and the proposed modifications
are shown to lead to a corrected test statistic that has a limiting
central χ2 distribution. The proposed modified test statistic has
good power against both nonlinear cointegration and no cointe-
gration alternatives so that it can be used to assess the adequacy
of a linear cointegrating relation against certain forms of non-
linear cointegration and the alternative of no cointegration.

Some related work is in progress. Since the power of the test
depends on the choice of basis functions, we are developing a
set of linearity tests using different basis functions. This seems
particularly appropriate when we want to allow for functions
whose behavior is poorly approximated by polynomials, such
as integrable functions that attenuate the influence of integrated
regressors. At the same time, there is scope for developing a lin-
earity test that is not based directly on an approximating family,
so that the power and the size of the test do not depend on so
many choices, such as the basis functions, the number of basis
functions, and a bandwidth parameter.

APPENDIX

The following proofs sketch the main steps in the argu-
ments and details are provided in an earlier version of the
article (Hong and Phillips 2007). The proofs frequently use
standard limit theorems for nonlinearly transformed integrated
processes. These are based on lemma 5 of Chang, Park, and
Phillips (2001), unless specified otherwise.

Proof of Lemma 1

See de Jong (2002) or Ibragimov and Phillips (2004).

Proof of Theorem 2

The proof is the same as Theorem 3 except that the second-
order bias terms are not corrected but are collected together to
form the noncentrality parameter.

Proof of Theorem 3

The test statistic is a quadratic form in DnF′û and two bias
correction terms, with the weight matrix (�̂uu.vD′

nF̃′F̃Dn)
−1 as

metric in the form. We prove this theorem in two steps. First,
conditional on Fx = σ(Bx(r),0 ≤ r ≤ 1), we show that DnF′û
becomes a zero mean Gaussian vector after bias corrections in
the limit; and second, that its variance matrix is the limit of the
weight matrix.

The (m − 1)th element in DnF′û is

1

n(m+1)/2

n∑
t=1

Xm
t ût

= 1

n(m+1)/2

n∑
t=1

Xm
t ut

− 1

n(m+1)/2

n∑
t=1

Xtut

(
n∑

t=1

X2
t

)−1 n∑
t=1

Xm+1
t

⇒
∫

Bm
x dBεC(1) + m�vu

∫
Bm−1

x

−
(∫

Bx dBu + �vu

)(∫
B2

x

)−1 ∫
Bm+1

x

=
∫

B̃m
x dBu + m�vu

∫
Bm−1

x − �vu

(∫
B2

x

)−1 ∫
Bm+1

x
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Table 4. p-values of the modified and original RESET tests

Absolute PPP Relative PPP

Modified RESET Original RESET Modified RESET Original RESET

Bandwidth Choice of k: 2 3 4 2 3 4 2 3 4 2 3 4

(1) Period 1: 1971M1–2004M12 (A) PPP with consumer price index
U.S.–Canada M = n1/3 0.000 0.000 0.000 0.089 0.179 0.298 0.000 0.000 0.000 0.612 0.806 0.809

M = n2/3 0.000 0.000 0.000 0.280 0.460 0.629 0.000 0.000 0.000 0.696 0.867 0.881
Auto 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.604 0.799 0.801

U.S.–Japan M = n1/3 0.000 0.000 0.000 0.006 0.011 0.006 0.000 0.000 1.000 0.205 0.336 0.514
M = n2/3 0.000 0.000 0.000 0.073 0.126 0.112 0.000 0.000 1.000 0.214 0.348 0.527

Auto 0.000 0.000 0.000 0.039 0.069 0.055 0.000 0.000 1.000 0.023 0.044 0.099

U.S.–Mexico M = n1/3 0.455 0.274 0.041 0.015 0.012 0.002 0.000 0.000 0.000 0.119 0.188 0.306
M = n2/3 0.482 0.406 0.146 0.079 0.087 0.038 0.000 0.000 0.000 0.066 0.106 0.187

Auto 0.035 0.027 0.000 0.008 0.006 0.001 0.000 0.000 0.000 0.054 0.088 0.159

U.S.–U.K. M = n1/3 0.481 0.561 0.329 0.454 0.465 0.532 0.000 0.000 1.000 0.358 0.559 0.727
M = n2/3 0.720 0.000 0.000 0.625 0.677 0.758 0.000 0.000 1.000 0.433 0.641 0.796

Auto 0.000 0.000 0.000 0.007 0.001 0.001 0.000 0.000 1.000 0.090 0.184 0.308

(2) Period 2: 1983M1–2004M12
U.S.–Canada M = n1/3 0.000 0.000 0.000 0.796 0.908 0.938 0.000 0.000 0.000 0.623 0.814 0.906

M = n2/3 0.000 0.000 0.000 0.860 0.948 0.970 0.000 0.000 0.000 0.733 0.892 0.955
Auto 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.670 0.849 0.929

U.S.–Japan M = n1/3 0.000 0.000 0.000 0.002 0.006 0.012 0.000 0.000 0.000 0.906 0.946 0.960
M = n2/3 0.000 0.000 0.000 0.037 0.085 0.143 0.000 0.000 0.000 0.921 0.959 0.971

Auto 0.000 0.000 0.000 0.034 0.080 0.136 0.000 0.000 0.000 0.768 0.803 0.794

U.S.–Mexico M = n1/3 0.943 0.962 0.046 0.038 0.051 0.010 0.000 0.000 0.000 0.088 0.156 0.209
M = n2/3 0.981 0.993 0.232 0.156 0.220 0.107 0.000 0.000 0.000 0.092 0.163 0.217

Auto 0.194 0.252 0.002 0.024 0.032 0.004 0.000 0.000 0.000 0.084 0.150 0.200

U.S.–U.K. M = n1/3 0.000 0.000 0.000 0.636 0.323 0.430 0.000 1.000 0.000 0.300 0.501 0.645
M = n2/3 0.000 0.000 0.000 0.748 0.526 0.653 0.000 1.000 0.000 0.356 0.566 0.709

Auto 0.000 0.000 0.000 0.582 0.244 0.333 0.000 1.000 0.000 0.228 0.407 0.546
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Table 4. (Continued)

Absolute PPP Relative PPP

Modified RESET Original RESET Modified RESET Original RESET

Bandwidth Choice of k: 2 3 4 2 3 4 2 3 4 2 3 4

(B) PPP with wholesale/producer price index
(1) Period 1: 1971M1–2004M12
U.S.–Canada M = n1/3 0.000 0.000 0.000 0.020 0.048 0.059 0.000 0.000 1.000 0.477 0.464 0.684

M = n2/3 0.000 0.000 0.000 0.150 0.279 0.354 0.000 0.000 1.000 0.539 0.544 0.753
Auto 0.000 0.000 0.000 0.059 0.125 0.160 0.000 0.000 1.000 0.493 0.485 0.703

U.S.–Japan M = n1/3 0.000 0.000 0.000 0.034 0.064 0.122 0.000 0.000 0.000 0.821 0.940 0.721
M = n2/3 0.000 0.000 0.000 0.153 0.258 0.399 0.000 0.000 0.000 0.827 0.943 0.737

Auto 0.123 0.061 0.005 0.065 0.117 0.205 0.000 0.000 0.000 0.690 0.860 0.418

U.S.–Mexicoa

U.S.–U.K. M = n1/3 0.000 0.000 0.000 0.073 0.041 0.079 0.000 0.000 0.000 0.299 0.358 0.512
M = n2/3 0.000 0.000 0.000 0.236 0.209 0.330 0.003 0.000 0.000 0.368 0.445 0.607

Auto 0.000 0.000 0.000 0.114 0.078 0.140 0.000 0.000 0.000 0.103 0.108 0.186

(2) Period 2: 1983M1–2004M12
U.S.–Canada M = n1/3 0.000 0.000 1.000 0.220 0.387 0.562 0.000 0.000 0.000 0.515 0.571 0.704

M = n2/3 0.000 0.000 1.000 0.460 0.670 0.822 0.000 0.000 0.000 0.609 0.682 0.804
Auto 0.000 0.000 1.000 0.297 0.488 0.666 0.000 0.000 0.000 0.534 0.594 0.726

U.S.–Japan M = n1/3 0.000 0.000 0.000 0.004 0.011 0.022 0.000 0.000 1.000 0.742 0.896 0.963
M = n2/3 0.000 0.000 0.000 0.040 0.088 0.149 0.000 0.000 1.000 0.769 0.913 0.971

Auto 0.000 0.000 0.000 0.018 0.044 0.079 0.000 0.000 1.000 0.436 0.644 0.797

U.S.–Mexico M = n1/3 0.402 0.507 0.083 0.028 0.025 0.009 0.000 0.000 0.000 0.064 0.121 0.128
M = n2/3 0.777 0.901 0.351 0.137 0.157 0.111 0.000 0.000 0.000 0.049 0.095 0.097

Auto 0.190 0.261 0.012 0.040 0.038 0.016 0.000 0.000 0.000 0.060 0.115 0.121

U.S.–U.K. M = n1/3 0.000 0.000 0.000 0.199 0.006 0.013 0.000 0.000 1.000 0.517 0.687 0.831
M = n2/3 0.000 0.000 0.000 0.394 0.065 0.122 0.000 0.000 1.000 0.568 0.737 0.867

Auto 0.000 0.000 0.000 0.201 0.006 0.014 0.000 0.000 1.000 0.377 0.534 0.702
NOTE: The modified RESET test results with bandwidths M = n1/3and M = n2/3 and automatic bandwidth are reported. The p-values from the original RESET test without bias corrections are reported in the right panel for comparison.
aSince PPI series for Mexico is available only after 1981, cointegration is tested only for the second period.
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sum of three elements—a zero mean Gaussian mixture, the en-
dogeneity bias, and the serial correlation bias. With consistent
estimators of �vv, �vu, and �vu, 2 bias correction terms (7)
and (8) converge to the corresponding bias terms in the above
limit, so that the (m − 1)th element of the sample covariance
{DnF′û − En − Sn} becomes
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), conditional on Fx.
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From (11) and (12), it follows that the modified RESET statistic
is a quadratic form with a limiting χ2 distribution as

{û′FDn − E′
n − S′

n}(�̂uu.vD′
nF̃′F̃Dn)

−1{DnF′û − En − Sn}

⇒d
(∫

B̃x,k dBu.x

)′
A
(∫
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)
a∼ χ2(k),

where
∫

B̃x,k dBu.x = [∫ B̃2
x dBu.x, . . . ,

∫
B̃k+1

x dBu.x] and an in-
verse covariance matrix A as defined in (6) of Theorem 2. Note
that the test statistic follows a central χ2(k) unconditionally.

Proof of Theorem 4

Note that if ut is I(1), then DnF′u = Op(n) since

1

n

[
n∑

t=1

(
Xt√

n

)m ut√
n

]
⇒d

∫
Bm

x Bu.

Also, since �̂vu and �̂vu are Op(M) (see Xiao and Phillips 2002,
lemma 1), the two bias correction terms in (7) and (8) diverge
at the rate of Op(M) as well. Therefore, the sample covariance,
augmented by the correction terms, diverges at the rate of n, that
is, (DnF′û − En − Sn) = Op(n), and the variance matrix term
diverges at the rate of nM, that is, (�̂uu.vDnF̃′F̃Dn) = Op(nM)

from Xiao and Phillips (2002, lemma 1). Combining these two,
the modified RESET test statistic diverges at the rate of n/M.

Proof of Theorem 5

Under the alternative specification of nonlinear cointegra-
tion, the modified test statistic changes only through û, that
is, through DnF′û, �̂vu, �̂uv and �̂uu.v. We will examine the
changes in the statistic by checking the orders of each of these
terms.

First, if we estimate the following misspecified linear regres-
sion by LS

Yt = θXt + ut,

where the true relationship is nonlinear (9), the coefficient es-
timate θ̂ can be shown to be either convergent to zero in the
I-regular case (assuming xkf (x) is integrable) or of the order of
n−1/2κn for the H-regular case using Chang, Park, and Phillips
(2001). With affixes I and H to designate these cases, we have

θ̂ (I) ⇒ 1

n

(∫
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x

)−1(
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∫
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√

n

)
≡ θ(H),

Note that when the true model is a linear cointegration we have
H(Bx) = θBx and then θ̂ (H) − θ = Op(n−1), as usual.

We first consider the H-regular case. The (m − 1)th ele-
ment of the normalized nonlinear sample covariance DnF′û is
Op(κn

√
n) since
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The orders of the two bias correction terms (7) and (8) depend
on the asymptotic order of the kernel estimators �̂vu and �̂uv.
Letting K(j/M) be the lag kernel, we may decompose each of
these estimates as follows:

�̂uv =
M∑

j=−M
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(
j
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){
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ût+jvt

}

=
M∑

j=−M

K

(
j

M

){
1

n

∑
ut+jvt

+ 1

n

∑
f (Xt+j)vt − θ̂ (H) 1

n

∑
Xt+jvt

}
. (14)

The first term in braces in (14) is Op(1) and the other two are
Op(n−1/2κn), so that the overall maximum asymptotic orders of
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�̂uv and �̂vu are all n−1/2Mκn. Thus, combining (14) and (13)
we find that

DnF′û − En − Sn

= Op
(
n1/2κn

)− Op
(
n−1/2Mκn

)− Op
(
n−1/2Mκn

)
has order Op(n1/2κn) since M/n → 0.

For the variance term �̂uu.vDnF̃′F̃Dn, the order now depends
on the order of �̂uu.v, since the remaining factor is of order
Op(1) under both the null and the alternative hypotheses. The
kernel estimator �̂uu can be shown to be of the maximum or-
der of Mκ2

n (but Op(1) as usual under the null hypothesis). In
particular, with

�̂uu =
M∑

j=−M

K

(
j

M

)[
1

n

∑
t

ûtût+j

]

=
M∑

j=−M

K

(
j

M

)[
1

n

∑
t

f (Xt)f (Xt+j) + 1

n

∑
t

f (Xt)ut+j

− θ̂ (H) 1

n

∑
t

f (Xt)Xt+j + 1

n

∑
t

f (Xt+j)ut

+ 1

n

∑
t

utut+j − θ̂ (H) 1

n

∑
t

Xt+jut

− θ̂ (H) 1

n

∑
t

f (Xt+j)Xt − θ̂ (H) 1

n

∑
t

Xtut+j

+ θ̂ (H)2 1

n

∑
t

XtXt+j

]
the maximum order of each term in the square bracket can be
determined as follows.

1. By virtue of the Cauchy inequality, the maximum orders
of following terms are Op(κ

2
n ):

1

n

∑
f (Xt)f (Xt+j), θ̂ (H) 1

n

∑
f (Xt)Xt+j,

θ̂ (H) 1

n

∑
f (Xt+j)Xt.

2. The following terms are all of the same order
Op(n−1/2κn):

1

n

∑
f (Xt)ut+j,

1

n

∑
f (Xt+j)ut,

θ̂ (H) 1

n

∑
Xt+jut, θ̂ (H) 1

n

∑
Xtut+j.

3. 1
n

∑
t utut+j = Op(1) and θ̂ (H)2 1

n

∑
t XtXt+j = Op(n−1κ2

n ) ·
Op(n) = Op(κ

2
n ).

Combining these results, the modified RESET test statistic
is a quadratic form in a vector of Op(n1/2κn) elements with a
weight matrix of order Op(M−1κ−2

n ), so that the overall order
of the test statistic is at most Op(n/M).

For the I-regular case, we can show that the sample covari-
ance does not diverge

1√
n

n∑
t=1

(
Xt√

n

)m[
f (Xt) + ut − θ̂ (I)Xt

]
∼ Op(1) +

∫
Bm

x dBu − θ(I)
∫

Bm+1
x

= Op(1).

The kernel estimator of the long-run (co)variance is

�̂uv =
M∑

j=−M

K

(
j

M

)[
1

n

∑
ut+jvt

+ 1

n

∑
f (Xt+j)vt − θ̂ (I) 1

n

∑
Xt+jvt

]
∼ �uv + Op

(
M/n3/4)− Op(M/n)

= Op
(
max

{
1,M/n3/4}),

so that the two correction terms En and Sn do not diverge either,
as long as M/n3/4 → 0. Therefore,

DnF′û − En − Sn = Op
(
max

{
1,M/n3/4}).

The variance term, as in the H-regular case, can be shown to
have the following order:

�̂uu ≈ �uu +Op
(
M/n3/4)+Op(M/n) = Op

(
max

{
1,M/n3/4}),

so that with �̂uu.v = �̂uu − �̂uv�̂
−1
vv �̂vu, the test statistic is

Op(1).
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