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ABSTRACT
Taxi bookings are events where requests for taxis are made
by passengers either over voice calls or mobile apps. As the
demand for taxis changes with space and time, it is important
to model both the space and temporal dimensions in dynamic
booking data. Several applications can benefit from a good
taxi booking model. These include the prediction of number
of bookings at certain location and time of the day, and the
detection of anomalous booking events. In this paper, we
propose a Grid-based Gaussian Mixture Model (GGMM)
with spatio-temporal dimensions that groups booking data
into a number of spatio-temporal clusters by observing the
bookings occurring at di↵erent time of the day in each spatial
grid cell. Using a large-scale real-world dataset consisting
of over millions of booking records, we show that GGMM
outperforms two strong baselines: a Gaussian Mixture Model
(GMM) and the state-of-the-art spatio-temporal behavior
model, Periodic Mobility Model (PMM), in estimating the
spatio-temporal distribution of bookings at specific grid cells
during specific time intervals. GGMM can achieve up to
95.8% (96.5%) reduction in perplexity compared against
GMM (PMM). Further, we apply GGMM to detect anoma-
lous bookings and successfully relate the anomalies with some
known events, demonstrating GGMM’s e↵ectiveness in this
task.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data Mining, Spatial databases and GIS

Keywords
Taxi demand modeling, spatial-temporal dynamics, unified
grid-based Gaussian mixure model

1. INTRODUCTION
Motivation. Many large cities today are facing increasing
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challenges in managing high commuting demand using public
transportation. While public transportation is often per-
ceived to involve trains and buses only, one should also
consider taxis as yet another form of public transportation
as it is a kind of resource shared among commuters. Taxi is
a flexible and e�cient means for commuters to get from one
place to another. The demand for taxis dynamically changes
due to daily patterns of people movement and possibly other
events. A good understanding of how the demand changes
relative to space and time is thus critical to the formulation
of e↵ective transportation policies to regulate the number
of taxis and to devise a reasonable taxi fare system. Taxi
operators, knowing the demand ahead of time, would also
be able to direct taxis to the right place at right time to
maximize taxi utilization thereby reducing the cost of empty
taxis running on the roads and maximizing revenues.

In this paper, our research goal is to model spatio-temporal
dynamics of taxi bookings to capture the demand for taxis.
We conduct our research using three months of taxi booking
data with more than few million bookings from approximately
hundreds of thousands commuters in Singapore 1. The data
is collected as commuters make taxi bookings using a mobile
app. While our research is motivated by taxi bookings, the
models developed in this work can also be applied to modeling
other spatio-temporal events (e.g., longitudinal sightings of
forest fires, disease outbreak reports, etc.).

Taxi booking modeling research must consider several im-
portant factors arising from both the static and dynamic
nature of taxi demand. The static factor concerns the land-
scape constraint on the possible locations where taxi bookings
can be made. For example, very few or zero taxi bookings
should be observed in forest or water areas. The dynamic
factor concerns: (1) the daily movement of commuters which
changes with location and time of the day, and (2) the daily
movement patterns of commuters which are di↵erent between
weekdays and weekends. For example, the spatial distribu-
tion of bookings in Figure 1(a) suggests that during morning
rush hour [09:00, 10:00), most of the taxi bookings come from
the peripheral areas of Singapore, which are residential areas.
This suggests a high demand for taxis to ferry commuters
to work. In contrast, the taxi bookings during evening rush
hour [18:00, 19:00) mainly come from the central business
district of Singapore as commuters make their way home.
Thus, our first challenge is: How can we infer the underlying
spatial and temporal distributions that continuously change

1We cannot provide precise statistics and app name in order
to comply with the non-disclosure agreement.



overt time from past taxi bookings?
There have been a number of studies devoted to modeling

human mobilities [1][5]. Lichman et al. [5] studied the be-
havior of geolocation/check-in data without timestamps and
proposed a mixture model to predict spatial distributions.
In consequence, the temporal dynamics cannot be reflected.
Cho et al. [1] proposed Periodic Mobility Model (PMM)
to model human mobilities from check-in data. PMM is a
spatial-driven model that generates spatial and temporal
dimensions of bookings in a pipeline. As a result, the clus-
ter structure of PMM exhibits clear distinctions in spatial
dimension as well as in temporal dimension. Limited by its
description power, PMM is ine↵ective especially when there
are more than one spatial temporal clusters sharing the same
spatial region or when there are clusters that have clear tem-
poral boundaries but do not have clear spatial boundaries.
Thus the second challenge is: How can we expressively model
the nature of spatial and temporal distribution from past taxi
bookings?

To address the challenges, we propose a continuous and
unified spatio-temporal model for the purpose of modeling
and predicting spatio-temporal dynamics of taxi demands.
Our research combines Poisson processes that give the num-
ber of daily events occurring within a grid cell and three-
dimensional Gaussian processes that generate multiple spatio-
temporal centres of a day. To the best of our knowledge,
the problem of unified modeling spatio-temporal dynamics
of taxi demand using time and pick-up locations of bookings
from passengers has not been studied so far.
Research Objective. In this work, we propose a Grid-
based Gaussian Mixture Model (GGMM) to model spatio-
temporal taxi bookings using a mixture of Gaussian processes
that determine the locations and time points of bookings.
This model summarizes the dynamic locations and times
of bookings into a few clusters. GGMM also divides the
city into small grid cells using a Poisson process to model
the daily rate of bookings in each grid cell. This addresses
the static factor due to landscape constraint as grid cells
in a sparsely- (or highly-) populated areas will be assigned
with low (or high) booking rates. To address the dynamic
factor caused by the weekday and weekend di↵erence in daily
movement patterns, we learn two models, one for weekdays
and another for weekends.
Using GGMM, we can perform at least two important

tasks: Firstly, we can predict the demand for taxis anywhere,
anytime. Secondly, we can also use GGMM to detect anoma-
lous events that trigger an abnormal distribution of taxi
bookings. These are also the two major application tasks il-
lustrated in this paper. We thus summarize the contributions
of this paper as follows:

• We propose a continuous and unified Grid-based Gaus-
sian Mixture Model (GGMM) to model spatio-temporal
taxi bookings considering both their static and dynamic
factors. This model extends the well-known Gaussian
Mixture Model (GMM) to consider grid-based booking
rate so as to reflect the landscape constraints.

• We perform empirical analysis of large-scale booking
data using GGMM and obtain interesting insights about
the taxi booking patterns in Singapore. In addition to
the di↵erences between weekday and weekend bookings,
we observe that rush hour bookings in the morning and
evening are quite distinctive.

(a) Morning Rush Hour (b) Evening Rush Hour

Figure 1: Spatial dynamics of bookings: spatial distributions
of number of bookings in log scale during morning rush
hour(a) and during evening rush hour(b).

• We conduct a rigorous evaluation of GGMM in com-
parison with GMM and PMM when applying them to
a prediction task using the booking data. Our experi-
ments show that GGMM yields more accurate predic-
tion results than the other two models.

• We further apply GGMM to detect anomalous booking
data and relate them to o✏ine events in the city. The
results show that GGMM is also e↵ective in this task.

The remainder of this paper is organized as follows. A sur-
vey of related work is presented in Section 2. Section 3 covers
data description and problem definition. Section 4 and Sec-
tion 5 detail proposed model and empirical analysis. Section
6 reports the experimental evaluation. Section 7 presents the
application of anomaly detection using our model. Section 8
concludes and discusses research directions.

2. RELATED WORKS
Urban Computing. Our research is related to urban
computing [20]. This research includes human mobility mod-
elling[1, 5, 4, 13], urban planning in transportation [15, 21,
14, 16, 10], etc.. Lichman et al. [5] proposed a mixture model
to predict spatial distributions of geolocation/check-in data.
While their model e↵ectively captures human mobility by
interpolating mixtures of individual and population spatial
distributions, the temporal aspect is not addressed. Cho et al.
[1] proposed to model human mobilities(check-in data) using
separate spatial and temporal Gaussian components with
social influence. Unlike [1], we propose a unified model to
model and predict spatio-temporal dynamics of taxi demand.

One of major interests of urban planning in transportation
is tra�c route prediction[15, 16]. Yuan et al. [16] proposed
a recommendation framework for both taxi drivers and pas-
sengers based on passenger mobility patterns and taxi driver
behaviour from their GPS trajectories. With detailed trajec-
tories, the parking places of taxi drivers are determined. The
paper also proposed a probabilistic model to detect the states
(e.g., occupied/cruising/parked) of a trajectory segment for
a working taxi. [8]
Recently, there have been a number of emerging applica-

tions driven by urban planning, such as travel cost estimation
[11, 12] and refuel behavior sensing[18]. Zheng et al. pro-
posed a travel time estimation model for any path based on
the trajectories of vehicles [11]. Liu et al. used taxi trajec-
tory data to learn drivers’ routing decisions [6]. The above
works have however relied heavily on vehicle trajectory data,
which is di↵erent from passenger bookings which are a kind
of point data instead of movement data.



Table 1: Definitions of symbols

Sym. Definition

D number of days

X bookings over D days

X(d)
bookings on day d

X(d)
g

bookings in grid g on day d

X(d)
g,t

bookings in grid g, time bin t on day d
G number of grids

K number of booking clusters

T number of time bins in a day

✓
k

Gaussian parameters of the k-th cluster (=(µ
k

,�
k

))

�
g

Poisson parameter of grid g
⇡
g

Multinomial distribution of clusters in grid in g
Z

g

cluster assignment for bookings in grid g

N(d)
g,k

number of bookings in cluster k of grid g on day d
S samples of bookings

Tra�c Anomaly Detection. Several pioneering studies
have investigated the problem of tra�c anomaly detection
using GPS trajectories [19]. Liu et al. [7] proposed to infer
causal relationships among detected tra�c outliers using
their spatio-temporal properties. The authors proposed an
outlier tree structure and reported empirical evidence using
GPS trajectory of taxis. Ge et al. [3] proposed a parameter-
free method to detect anomalous trajectories (in particular
driving frauds) that deviate in terms of driving distances or
driving routes. Zhang et al. [17] proposed the iBAT method
to detect anomalous taxi trajectories (e.g., driving frauds or
road network changes) in urban cities from taxi trajectories.
Pan et al. [9] proposed a tra�c anomaly detection and
description method based on driver routing behaviours on
road networks. The authors define an anomaly as a sub-graph
of a road network with significant routing changes. Chua et al.
[2] proposed a network transmission model and localisation
algorithm to detect locations of anomalies. The transmission
model can infer the spatio-temporal transportation data
using the temporal information of passenger boarding and
alighting bus stops without using the detailed trajectory
information. For detecting anomalies, they proposed to rank
anomalous events by the degree of their impacts on others.
Our work is di↵erent from the above in three aspects:

Firstly, our work only relies on time and locations of bookings.
Other works mainly focus on analyzing taxi trajectory data.
Secondly, taxi bookings are generated from the commuters
and are far more dynamic than the movement of the taxis.
This introduces more challenges in modeling without knowing
the exact commuter mobilities. Lastly, instead of finding
anomalous driving behaviors or road conditions, we propose
to identify the anomalous booking behaviors which again
are driven by commuters. Potentially, these anomalies can
reveal interesting events.

3. PROBLEM DEFINITION AND DATASET
In this section, we first introduce the notations and the

formal definition of the modeling problem. We then describe
a real taxi booking dataset to be used throughout this work.

3.1 Taxi Booking Modeling Problem
We define a booking x in some day by a 3-tuple x =
hx.lat, x.lng, x.ti, where (x.lat, x.lng) represent the pick-up
location (in latitiude and longitude coordinates respectively)
and x.t represents the time of day when the booking is made.

A collection of bookings X over D days is defined as:

Definition 3.1. (Booking Collection) A booking collec-

tion X is a collection of booking sets X(d)’s, i.e., X = h X(1),

X(2), ..., X(D) i

To model landscape constraints on bookings, we divide
the entire city area into equal-sized square grid cells and
assign them unique grid indices. Every booking thus falls
into a grid cell. We use X

(d)
g

to denote the set of bookings
on dth day located in the grid cell g. If we further divide the
bookings in X

(d)
g

into T time bins, the bookings of time bin

t of day d in grid cell g is represented by X
(d)
g,t

.
Using the above notations, we now define the problem of

modeling taxi booking data as follows.

Problem 3.1. (Taxi Booking Modeling) Given a col-

lection of taxi bookings X = h X(1), X(2), ..., X(D) i, the
problem of taxi booking modeling is to design a probabilistic
model that generates the observed bookings at di↵erent loca-
tions and time points using a few spatial-temporal clusters of
bookings.

The objective of taxi booking modeling is to summarize
the common booking patterns shared by commuters. The
underlying assumption of this modeling research is that many
commuters share common taxi booking behaviors. For ex-
ample, many of them may book taxis from similar locations
at similar time of the day. To tell if this assumption is
reasonable, we test it on a real world taxi booking dataset
described in Section 3.2.

3.2 Taxi Booking Dataset
Taxi booking dataset. We used millions of taxi booking
records collected in Singapore over three months from July
to September 2014. The data was collected from a taxi
booking mobile app2. Using this app, a commuter can make
a taxi booking using his or her mobile phone providing her
pick-up and drop-o↵ locations. The timestamp of booking
is recorded. When a booking is served by a taxi driver, the
status of the booking is also updated.
Booking data preprocessing. When a commuter does
not succeed in the first booking attempt, she could submit
another booking again with the same pick-up and drop-o↵
locations. Such duplicate bookings inflate the demand for
taxis and were removed as follows. For any two bookings
from the same commuter, x

i

and x
i+1, sorted in chronological

order, we consider x
i+1 a duplicate booking with respect to

x
i

if: (1) the pick-up locations of x
i+1 and x

i

are less than
500 meters apart, and (2) the booking time stamps of the
two bookings are less than five minutes apart. The above
de-duplication criteria were empirically determined and have
been working quite well in our experiments.
Formation of grid cells. We then divide Singapore into
equal-sized 1km ⇥ 1km grid cells (see Section 6.3 for the
justification of grid size choice). Only grid cells with at least
100 bookings over three months are used in subsequent anal-
ysis and experiments. There are altogether 12,361 bookings
removed by booking de-duplication and grid-cell pruning. At
the end, the resultant dataset still contains millions of book-
ings after preprocessing, belonging to more than 100K unique
commuters and 449 grid cells. The number of three-month
bookings in the grid cells varies from 100 to 20,292, suggest-
ing that there are spatial regions with very high booking
counts.
2We could not reveal the app name and detailed statistics
due to non-disclosure agreement.



(a) Weekdays (b) Weekends

Figure 2: Temporal dynamics of bookings and completion
rate during weekdays(a) and weekends(b).

From the dataset, we observe both the spatial variation
and temporal variation. We describe each as follows.
Spatial Variations. Tra�c distribution changes over space.
Modeling spatial variation of taxi demand is thus essential.
Figure 1 (also mentioned in Section 1) illustrates the di↵er-
ence in the number of bookings among grid cells between the
morning and evening rush hours in the three month data.
The darker the fill color, the more bookings are observed in
the grid cell. Among the grid cells, 1,005 and 162 are the
maximum numbers of bookings observed on weekdays and
weekends respectively.
Temporal Variations. Figures 2(a) and 2(b) illustrate
the variations of booking count over time for weekdays and
weekends. During weekdays, there is high demand for taxis
at peak hours (e.g., [06:00,9:00) and [18:00,21:00)) as shown
in Figure 2(a).
During the weekends, the booking counts are smaller

throughout the day. Nevertheless, there are still spikes of
booking requests during the [09:00,15:00) and [15:00,18:00)
intervals. This suggests commuters are likely to attend so-
cial events (e.g., lunch, dinner, etc.) during those times.
The served booking rate is low during the [00:00,03:00) time
intervals as shown in Figure 2(b).

4. PROPOSED MODEL
In this section, we describe our proposed Grid-based

Gaussian Mixture Model (GGMM), a generative spatial-
temporal probabilistic model for dynamic taxi booking events
over time and space. We then outline the parameter learning
procedure.

4.1 Modeling of Spatial-Temporal Dynamics
The objective of our proposed model is to generate the

spatial-temporal dynamics of taxi bookings as given in the
observed booking data X = h X(1), X(2), ..., X(D) i.
As bookings in each X(d) are not uniformly distributed

over space and time, we introduce K clusters to group the
bookings according to their proximity in space and time.
Note that each booking is a tuple hx.lat, x.lng, x.ti. All
values in the tuple x.lat, x.lng, and x.t are continuous.

A straightforward approach is to use multivariate Gaus-
sian Mixture Model (GMM) to cluster bookings in 2-
dimensional space over D days into K clusters, each rep-
resented by a mean and covariance [5]. This simple model
however su↵ers from a few shortcomings. Firstly, it fails to
account for the landscape constraints such as forest and wa-
ter areas. Secondly, it does not capture the spatial-temporal
variation between grid cells. Hence, GMM may not be able
to accurately model the booking data as shown in our exper-
iment results (see Section 6).

g

xσ

π

λ

Z

D
N

G
µ

K

Figure 3: Plate diagram of GGMM.

Input:
K: initial cluster size;
G: number of grids;
✓: K dimensional Gaussian parameters, (µ

k

,�
k

) for
cluster k, 1  k  K ;
�: G Poisson parameters, one for each grid cell g;
⇡: G⇥K multinomial distribution parameters ;

Output: X: a set of bookings of a single day;

for g = 1 to G do
N

g

 Poisson(�
g

);
for n = 1 to N

g

do
repeat

Z
g,n

 Multinomial(⇡
g

) ;
x
g,n

 Gaussian(✓
Z

g,n

) ;
until (x

g,n

.lat, x
g,n

.long) falls into grid cell g
and x

g,n

.t 2 [0 : 00, 23H : 59);
X  X [ x

g,n

;
end

end
Algorithm 1: GGMM Generative Process

Our proposed generative model, GGMM, consists of the
following three components: (1) a Poisson process that mod-
els the daily number of bookings in a grid cell; (2) a Gaussian
Mixture Model (GMM) that models the spatial and temporal
distribution of bookings in a single day; and (3) a grid-cell-
specific mixture weight ⇡ that captures the probability of a
booking belonging to each spatial and temporal Gaussian
process of the bookings in each grid cell.
Figure 3 depicts the plate diagram of GGMM combining

the three components together. The generative story of
GGMM is shown in Algorithm 1. For each grid cell g, the
number of bookings in g, |X

g

|, follows a Poisson process with
parameter �

g

, 1  g  G.
For each grid cell g, we first sample the number of bookings

N
g

within a day using a Poisson distribution with parameter
�
g

. For each booking x
n

, we sample a cluster k from the
multinomial distribution over K clusters according to the
mixture weight ⇡

g

. Given k and Gaussian parameters ✓,
we then sample the location and time point for x

n

. If the
location of x

n

does not fall into grid cell g or its time point
falls outside the time of day, we re-sample x

n

until it falls
into g and time of the day.

4.1.1 Gaussian Mixture Model Component

GGMM determines the spatial locations and time stamps
of daily bookings denoted by X with a Gaussian Mixture
Model with K clusters. The clusters are shared among
bookings from all of the grid cells. Hence, each observed
booking x

n

is generated by one of the clusters, say kth cluster
with mean µ

k

and covariance �2
k

as follows:

x ⇠ N (µ
k

, �2
k

) (1)

As the probability of x belonging to each cluster is deter-



mined by the marginal distribution of bookings over grid
cells and clusters ({⇡

g,k

}), we have the likelihood of x
n

at a
specific location defined by:

p(x
n

) =
KX

k=1

⇡
g

x

n

,k

N (x
n

|µ
k

,�2
k

) (2)

where g
x

n

is the grid where x
n

falls into. ⇡ satisfies 0 
⇡
g,k

 1 and
P

k

⇡
g,k

= 1.
Suppose we have a set of observations X = {x1, ..., xN

}.
To model them using a mixture of Gaussians, we assume
that each observation is drawn independently as shown in
Figure 3. The log of the likelihood of X is given by

ln p(X|⇡, µ,�2
i

) =
NX

n=1

ln
�
p(x

n

) =
P

K

k=1 ⇡g

x

n

,k

N (x
n

|µ
k

,�2
k

)
 
.

(3)
The posterior probability of x

n

belonging to k can be
derived using Bayes’ theorem as follows:

p(k|x
n

) =
⇡
g

x

n

,k

N (x
n

|µ
k

,�2
k

))
P

K

i=1 ⇡g

x

n

,i

N (x
n

|µ
i

,�2
i

))
. (4)

4.1.2 Grid-based Mixture Weight Component

For each observation x
n

, the marginal distribution ⇡
g

x

n

at
grid g where x

n

falls into is a multinomial distribution over
K Gaussian components. Let N

g

be the number of bookings
at g. N

g,k

is the number of bookings at g belonging to cluster
k, which can be estimated as follows:

N
g,k

=

N

gX

n=1

p(k|x
n

). (5)

Accordingly, the probability that x
n

belongs to cluster k is

defined as ⇡
g

x

n

,k

=
N

g,k

N

g

.

4.2 Parameter Learning
We learn the GGMMmodel with parameters � from the ob-

served data using the well-known expectation-maximization
algorithm (EM). EM algorithm iteratively learns the pa-
rameters � to maximize the likelihood of observed data X.
Algorithm 2 summarizes the learning steps. We begin by
determining a set of K hard clusters for X, each with a
cluster mean and a covariance. These initial clusters are
obtained by k-means algorithm. We then alternate between
E-step and M-step until we find the parameter setting that
satisfactorily fits observed data.

In the E-step, EM evaluates the expectation of log-likelihood
with current parameter settings. Then, EM re-estimates the
parameters of the GGMM model, including means, covari-
ances, and grid-cell-specific mixture weights. We explain this
in details as follows.

4.2.1 E-Step

Assume that we are given the existing parameters �, in-
cluding (µ, �2, ⇡, �). In the E-step, EM first evaluates
the membership probability of an observed booking (x

n

.lat,
x
n

.lng, x
n

.time) belonging to cluster k as follows:

�(x
n

, k) =
⇡
g

x(n),k
N (x

n

|µ
k

,�2
k

)
P

K

j=1 ⇡j

N (x
n

|µ
j

,�2
j

)
. (6)

where
P

k

�(x
n

, k) = 1. � is therefore an N ⇥ K weight

Input:
X = {X(1), ..., X(D)}: bookings over D days;
K: number of clusters;
G: number of grids;

Output:
✓: Gaussian parameters for each cluster k;
�: Poisson parameter at each grid cell g;
⇡: multinomial distribution over clusters at each grid g;
�: posterior probability each booking x

�, ✓  initial clustering by k-means(X);
for g = 1 to G do

N
g

 
P

K

k=1 |�g,k|;
end
repeat

for g = 1 to G do
for k = 1 to K do

Update ⇡
g,k

by Equation 9;
end

end
for k = 1 to K do

✓
k

 UpdateGaussionParam({�});
end
�  ClusterAssignment(✓,⇡, X);

until no changes;

Algorithm 2: Grid-based Gaussian Mixture Model

matrix.

4.2.2 M-Step

We can now use the membership probabilities to obtain
the � parameter values. Among them are the mean µ

k

and the covariance matrix �2
k

for the K di↵erent Gaussian
components. The mean µ

k

is obtained by taking a weighted
mean of all the bookings in the data set with a weighting
factor for each data point x

n

by the membership probability
�(x

n

, k). The mean and covariance are therefore re-estimated
using current membership probability as follows:

µ
(new)
k

=
1
N

k

NX

n=1

�(x
n

, k) · x
n

(7)

where N
k

=
P

N

n=1 �(xn

, k).

�
2(new)
k

=
1
N

k

NX

n=1

�(x
n

, k)(x
n

� µ
(new)
k

)(x
n

� µ
(new)
k

)T (8)

The mixture weight for the kth component is given by the
average posterior probability, indicating the probability that
component k generates data points falling in grid cell g.

⇡
(new)
g,k

=
N

g,k

N
g

(9)

where N
g,k

=
P

N

g

n=1 �(xn

, k).
Note that time di↵erence is derived in circular form as

defined in Equation 10. For instance, the di↵erence between
01:00 and 23:00 should be 2 hours apart; whereas the di↵er-
ence between 23:00 and 01:00 is �2 hours apart. Under this
definition, the summation of all distances to the temporal
mean would be zero.



(a) Weekdays (b) Weekends

Figure 4: The temporal means.

dist(t1, t2) =

8
>>>>><

>>>>>:

t1 � t2 if 00:00  t2  t1 and t1 < 12:00
t1 � t2 if t1 < t2 < t1 + 12 and t1 < 12:00
t1 � t2 + 24 if t1 + 12  t2 and t1 < 12:00
t1 � t2 � 24 if t2  t1 � 12 and t1 � 12:00
t1 � t2 if t1 � 12 < t2  t1 and t1 � 12:00
t1 � t2 if t1 < t2 and t1 � 12:00

(10)

5. EMPIRICAL ANALYSIS USING GGMM
We now apply GGMM to the taxi booking dataset and

analyze the latent clusters and mixture weights of the learnt
model. We study the model di↵erences between weekdays
and weekends.

5.1 Gaussian Clusters
Figures 4 and 5 illustrate the spatial means/standard de-

viations and temporal means/standard deviations learnt by
GGMM for K=35 clusters (the choice of K is elaborated on
in Section 6.2). We first study the temporal aspect of the
clusters followed by the spatial aspect.
Temporal Means. Figure 4(a) shows the temporal means
of weekday taxi bookings. We observe three dominant time
periods. The first set of clusters (blue) is centred around
morning rush hours (e.g., 09:00) on weekdays. It is followed
by the set of clusters (red) centred during mid-days (e.g.,
noon and 16:00). The remaining clusters (grey) emerge
during evening rush hours (e.g., 07:00). The existence of
temporal means reflects recurring commuting behaviors on
weekdays.

Figure 4(b) reveals the distribution of temporal means from
taxi bookings on weekends. The dominant temporal means
on weekends are the blue cluster occurring after midnight
(e.g., 01:00) followed by the remaining clusters (red) during
mid-day (e.g., noon).
Spatial Means. Figures 5 reveals spatial means after
applying the GGMM model to booking locations. To observe
the correlations between spatial and temporal means, we
divide the time of day into four time windows: early morning
[00:00,04:00), morning [04:00,11:00), mid-day [11:00,18:00)
and evening [18:00,00:00). Then, we illustrate a collective
view of spatial means into one plot from the clusters whose
temporal means fall into a time window. For example, the
set of spatial means on weekdays can be separated into
three temporal subgroups, where each temporal subgroup
corresponds to one of the time windows.

Figure 5(a) depicts the spatial means on weekday mornings,
which are mainly located in the peripheral suburban areas.
This coincides with typical morning commuting behaviours,
where massive amount of taxi bookings originate from resi-
dential areas. The second dominant group of bookings comes

(a) Weekdays (b) Weekends

Figure 6: Distribution of dominant clusters.

from central Singapore during the mid-days (t 2[11:00,18:00))
on weekdays as shown in Figure 5(b). Figure 5(c) reveals
that the third dominant taxi booking group mainly originates
from the central business districts on weekday evenings.

The spatial means on weekends are skewed into two time
windows, as shown in Figures 5(d) and 5(e). Figure 5(d)
illustrates the spatial means of booking locations mainly
in the central business districts after midnight (i.e., 00:21).
This suggests that the first dominant group of taxi bookings
is contributed by midnight activities from downtown areas.
Figure 5(e) shows that the spatial means of remaining clusters
are in the northeast area of Singapore during mid-days on
weekends. The emergence of mid-day taxi bookings reflects
the mid-day activities originating from suburban areas.

5.2 Grid-based Mixture Weights
To observe the correlation between grid-based mixture

weights and spatial-temporal clusters, we divide spatial-
temporal clusters into four time windows: early morning
[00:00,04:00), morning [04:00,11:00), mid-day [11:00,18:00)
and evening [18:00,00:00). For each grid cell g, we com-
pute the aggregate of mixture weights for each time window.
Specifically, we define the aggregate of mixture weights dur-
ing a given time window [t

i

,t
j

) as follows:

⇡
g,k

(t
i

, t
j

) =
X

µ

k.time

2[t
i

,t

j

)

⇡
g

x

,k

. (11)

For each grid cell g, we select the time window [t
i

,t
j

) that
gives the maximum value of aggregate mixture weights among
the four time windows as the dominant time period of g. We
refer to the set of clusters whose temporal means fall into
the dominant time period as dominant clusters. We assign a
unique color to indicate each dominant cluster. The distri-
bution of dominant clusters across grid cells are illustrated
in Figures 6(a) and 6(b) for weekdays and weekends respec-
tively. During weekdays (Figure 6(a)), the blue grid cells
show their dominate clusters in the morning [04:00,11:00),
whereas the grey areas show their dominate clusters in the
evening [18:00,00:00). This coincides with our observations of
taxi bookings driven by morning commuters from suburban
areas and taxi bookings driven by evening commuters from
central business districts. During weekends (Figure 6(b)),
the green areas show their dominant clusters in early morning
[00:00,04:00) and the remaining areas show their dominant
clusters during mid-day [11:00,18:00). This supports the
observations that taxi bookings are mainly contributed by
midnight events and mid-day events on weekends as shown
in Figures 5(d) and 5(e). Note that the white areas are the
grid cells with less than 100 bookings over three months.
These grid cells typically relate to the water reservoir area
in the north and the oceans outside of Singapore territories.



(a) Weekdays t 2[04,11) (b) Weekdays t 2[11,18) (c) Weekdays t 2[18,24) (d) Weekends t 2[00,04) (e) Weekends t 2[11,18)
Figure 5: Spatial means of booking locations. Figures 5(a) and 5(c) show that taxi bookings are largely contributed by morning
commuters from suburban areas and evening commuters from the central business districts. Figure 5(b) coincides with our
observations that the main pick-up locations of taxi bookings during mid-days are within the central Singapore. Figure 5(d)
shows the taxi bookings contributed by midnight activities from downtown areas on weekends. Figure 5(e) shows the taxi
bookings contributed by mid-day activities from suburban areas on weekends.

6. EXPERIMENTAL EVALUATION
We conducted two evaluation tasks on our model using the

taxi booking dataset. In the first task, we seek to determine
the behavior of both GGMM and baselines for di↵erent
parameter settings. Secondly, we evaluated the GGMM and
baselines in a prediction task.

6.1 Baselines
We evaluate our model by examining its performance in

spatio-temporal behavior modeling and prediction. In this
study, we consider two strong baseline methods, including:
the Gaussian Mixture Model (GMM) and the extended Peri-
odic Mobility Model (PMM).
GMM: a classic three-dimensional Gaussian Mixture Model
which continuously and jointly models spatio-temporal varia-
tions for behavior modeling and prediction. GMM learns data
in unified spatial and temporal dimensions simultaneously.
GMM does not model grid cells and the grid-based mixture
weights. In our context, it assumes that an observed booking
x is generated by a mixture of K Gaussians each with a mean
(covering both spatial and temporal dimensions), covariance,
and a K-dimensional mixture weight vector. That is, GMM
is a special case of GGMM when G = 1.
PMM [1]: a state-of-the-art spatio-temporal behavior model
which incorporates the temporal influence and spatial in-
terests for behavior modeling and prediction. PMM is a
spatial-driven model which generates spatial and temporal
dimensions in a pipeline. First, the cluster structure is de-
rived based on spatial distribution. Second, the mixture
weight of each data point is derived based on the tempo-
ral distribution from spatial clusters (please refer to [1] for
details). PMM is designed mainly to estimate the proba-
bility distribution over locations of a user at time t (i.e.,
p(x

n

.lat, x
n

.lng|x
n

.t)) without modeling time. To estimate
the quality of PMM, we therefore extend PMM to model
time by generalizing PMM to model p(x

n

). Given a set of
unobserved samples X = {x1, x2, ..., xN

}, the log-likelihood
is defined accordingly as follows:

ln p(X|⇡, µ,⌃) =
NX

n=1

ln
KX

i=1

p(x
n

.lat, x
n

.lng|k)p(k|x
n

.t) ·
KX

i=1

p(x
n

.t|k)p(k)
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where PMM assumes that the location x

n

.lat, x
n

.lng is gen-
erated by K two-dimensional Gaussian p(x

n

.lat, x
n

.lng|k) ⇠
N (x

n

.lat, x
n

.lng|µs

k

,�s2
k

) and the time x
n

.t is generated by
K one-dimensional Gaussian p(x

n

.t) ⇠ N (x
n

.t|µt

k

,�t2
k

) re-

spectively.

6.2 Evaluation using Real Dataset
The dataset was divided into training and testing sets. For

each grid cell, we randomly grouped the bookings into five
folds. Four folds were used as training data, and the rest data
were used for testing. Since the taxi demand on weekdays and
weekends are fairly di↵erent, we further separate the training
and test data into weekdays and weekends accordingly.
Likelihood Evaluation. To answer the research question:
how well does GGMM model the dynamic booking data?,
we conducted experiments to evaluate three models (i.e.,
GGMM, GMM, and PMM) from the weekday and weekend
training datasets.
We fix the grid size or width (denoted by gs) to be 1km.

We varied the number of clusters K from 5 to 50 and plot-
ted the log-likelihoods of GGMM, GMM, and PMM learnt
from weekday and weekend training data, as shown in Fig-
ures 7(a) and 7(b) respectively. All models show increasing
log-likelihoods as K increases. GMM begins to converge
when K=10 while GGMM converges when K=35. Since
K = 35 yields good log-likelihood for GGMM, we used that
for the remaining experiments.
GGMM outperforms GMM and PMM for all K for both

weekday and weekend data. For weekday bookings, GGMM
achieves up to 5.4 (5.1) times improvement in log-likelihood
compared with GMM (PMM) with K = 35. For weekend
bookings, GGMM’s log-likelihood is 3.6 (3.7) times that
of GMM (PMM). Both GGMM and GMM enjoy higher
log-likelihood for weekday booking data. This may be due
to either larger training data (i.e., 2,774,358 bookings for
weekdays vs 876,556 bookings for weekends) or more regular
booking behaviors on weekdays.
Unified spatio-temporal models (i.e., GMM and GGMM)

outperform PMM for both weekday and weekend data due to
their more expressive ability than PMM. PMM is a spatial-
driven model that generates spatial and temporal dimensions
of bookings in a pipeline. As a result, the cluster structure
of PMM exhibits clear distinctions in spatial dimension as
well as in temporal dimension. The clusters derived from
unified spatio-temporal models on the other hand may highly
overlap at one dimension while di↵ering greatly in the other
dimension. As shown in Figure 5(a), 21 clusters of bookings
derived from GGMM emerge during [04,11) while they are
distinctive from one another in spatial dimension.
Perplexity Evaluation. To evaluate the prediction ac-
curacy of each model, we applied the model to estimate



(a) Weekdays (b) Weekends

(c) Weekdays (d) Weekends

Figure 7: E↵ect of k on log-likelihood(a)(b) and perplex-
ity(c)(d).

the perplexity on testing data using 5-fold cross validation.
Perplexity measures how well a set of unobserved samples
X = {x1, x2, ..., xN

} is predicted by the model as follows:

Perplexity(X) = exp[� 1
N

NX

n=1

log2 p(xn

)]. (13)

A good model will assign high probabilities p(x
n

) to the test
data thus resulting in low perplexity.
To observe the e↵ects of K, we plotted the perplexity

with varying K for weekdays and weekends in Figures 7(c)
and 7(d) respectively. All models see their perplexities de-
crease with larger K for both weekday and weekend data.
All models perform better on weekday data than on week-
end data, suggesting that they have better predictive power
on weekdays. Again, GGMM outperforms both PMM and
GMM models across all K’s, which suggests that GGMM
can model the observed data with mixture of gaussian spatio-
temporal distributions in di↵erent grid cells. For example,
GGMM reduces 95.7% (95.8%) perplexity against GMM in
the weekday(weekend) model for K=50.

6.3 Empirical Findings
In the next experiment, we study the e↵ect of parameters

on the performance performance.
E↵ects of Grid Size (gs). We vary the size of grid cell
(gs) among 250m, 1km, 2km and 4km. Intuitively, smaller
grid size should yield more accurate performance for GGMM
as it captures more detailed spatial structures of bookings.
In Figure 8(a), the perplexity of GGMM indeed decreases
when gs becomes smaller. For instance, with gs = 250m,
GGMM achieves an improvement of over 1.8(2.8) orders of
magnitude compared to the perplexity with coarser-grained
grid size (gs =4,000m) in weekdays(weekends) model.
E↵ects of Training Data. To observe the e↵ect of the
size of training data, we used data from i folds of weekday
(weekend) data for training and the remaining one fold for
testing, where 1  i  4. For example, when i=3, data
from fold-1 to fold-3 are used for training. The perplexities

(a) Grid Size(m) (b) Train Data Size

(c) Weekdays (d) Weekends

Figure 8: E↵ect of (a) grid size; (b) training data size; (c)(d)
Perplexity of di↵erent time periods.

using di↵erent training sets are reported in Figure 8(b). As
expected, the prediction accuracy increases (as shown in
decreasing perplexity) when the training data size increases.
E↵ects of Time Periods. As the number of bookings
and its distribution change over time, we investigat how
each model behaves during peak hours and o↵-peak hours.
The time t is considered peak hours if t 2[07:00,09:00) or
t 2[17:00,19:00), otherwise t is considered an o↵-peak hour.
Figures 8(c) and 8(d) report the perplexity at each time pe-
riod. During weekdays, all models show a better prediction
power during peak hours. This is because peak hours are
dominant time periods during weekdays, and as a result,
the model learnt from peak hours completely depicts the
dominant spatio-temporal distributions of bookings on week-
days. On the other hand, because the dominant time periods
during weekends are o↵-peak hours, the prediction accuracy
during o↵-peak hours is better than that during peak hours.
GGMM outperforms remaining models regardless of time
periods in both weekdays and weekends. We calculate the
standard deviations in prediction accuracy across all testing
folds (shown as error bars in Figures 8(c) and 8(d)) for each
model. We obtain that the average standard deviation of
GGMM (0.001 and 0.009 in weekday and weekend data) is
significantly smaller than that of PMM (0.034 and 0.048 in
weekday and weekend data), demonstrating a more perfor-
mance of GGMM with less deviation compared to others. In
conclusion, GGMM can better predict booking distribution
during peak hours with fine-grained grid cells.

7. ANOMALY DETECTION

7.1 Problem Definition and Method
Once we learn a model to describe the variations of taxi

demands over space and time, we can determine when and
where anomalous taxi demands occur using the model. We
define the anomaly detection task as follows:

Task 7.1. (Anomaly Detection) Given a taxi booking dataset,
we want to find top-ranked groups of anomalous taxi bookings.



Table 2: Top-5 anomalies in weekdays

Date Time Location Num. Per. Z-Score Event

07-14 [6:00,7:00) 1.25,103.816 62.0 182.9 84.4 WCF
07-14 [6:00,7:00) 1.277,103.852 117.0 98.4 45.2 WCF
07-14 [5:00,6:00) 1.259,103.816 77.0 89.3 41.0 WCF
07-14 [6:00,7:00) 1.259,103.816 111.0 61.6 28.6 WCF
09-22 [6:00,7:00) 1.286,103.852 67.0 58.0 26.7 F1

As defined, the anomalies to be detected are not individual
bookings that are anomalous. Such isolated anomalies are
di�cult to validate and have little utility values in the trans-
portation system. Instead, we aims to find anomalies that
involve groups of anomalous bookings that happen at same
location regions during same time intervals. Both taxi opera-
tors and transportation regulation units find such anomalies
interesting as they may suggest revenue opportunities or
events that a↵ect transportation service (e.g., train break-
down). Even so, it is non-trivial to verify the anomalies as
there are no ground truths. In this part of the work, we shall
focus on GGMM model only.

There are several possible ways to detect anomalous groups
of bookings using GGMM model. To verify the e�cacy of
GGMM in anomaly detection, we employ a simple approach
as follow. We bin all taxi bookings by both space and time.
For simplicity, each bin consists of bookings in a grid cell
over one hour of the day. Hence, we have G⇥ 24 bins per
day. A bin with many anomalous bookings as determined by
GGMM is thus detected and ranked. We define the anomaly
score of a bin using perplexity as defined in Equation 13.
The higher the perplexity is, the more anomalous is the bin
of bookings. We also flag the bins with perplexity at least
three standard deviations away from mean as anomalous. In
other words, we compute the z-score of the bins and return
those with z-score � 3.

7.2 Qualitative Evaluation
We qualitatively evaluate the application of GGMM for

anomaly detection by verifying the anomalies against on-
line content as follows. We trained a GGMM model using
weekday booking data and another using weekend data with
number of clusters K = 35. We focus only on bins with at
least 50 bookings as small events are less interesting. As a
results, we have 13,565 bins for the weekdays and 3067 bins
for the weekends to be considered for anomaly detection. For
each detected anomalous bin, we perform a search for events
that happened at the stated location area during the stated
time interval mentioned by online news and announcements.
This approach of verification is obviously non-ideal but is
the only option that can be employed. Despite this, we can
find reasonably clear events that are possible associated with
the anomalies as shown below.

7.2.1 Weekday Anomalies

Table 2 reports the top five anomalous bins using GGMM
(K=35, trained using weekday data) according to their z-
scores. The mean and standard deviation of perplexities are
0.09 and 2.17 respectively. We also found these anomalous
bins likely to be associated with the following events.
World Cup Final screening (WCF). The top-1, top-
3 and top-4 anomalies are very likely related to the night
screening of World Cup Final screening at Sentosa, a resort
island3 which occurred from 3AM to 5AM on July 14. After

3https://store.sentosa.com.sg/main/events/universal-
studios-singapore-ni/54#!/

Table 3: Top-5 anomalies on weekends

Date Time Location Num. Per. Z-Score Event

08-16 [23:00,0:00) 1.376,103.996 96.0 1.19⇥108 55.37 NDC
08-17 [17:00,18:00) 1.322,103.654 55.0 873.6 -0.02 RE
07-12 [10:00,11:00) 1.412,103.69 52.0 197.5 -0.02 ME
07-12 [11:00,12:00) 1.412,103.69 64.0 141.5 -0.02 ME
08-16 [16:00,17:00) 1.412,103.69 141.0 102.7 -0.02 ME

screening, many users might have make taxi bookings the
early morning to return home. Figures 9(a) and 9(b) illus-
trate the spatial and temporal deviations of the WCF event
(pink box) from GGMM weekday model. Figure 9(a) shows
the spatial means of two clusters of GGMM (29th and 32th

clusters) that are temporally closest to the WCF location.
It is quite clear that the WCF location is quite far from
these two spatial means. Similarly, Figure 9(b) shows the
probability density functions for 29th and 32th clusters in
blue lines, and the histogram of bookings on 14 July 2014
and the anomalous bookings in grey during [06:00, 07:00) to
highlight the temporal deviation of WCF bookings.

7.2.2 Weekend Anomalies

Table 3 reports the top-5 anomalous bins using GGMM
(K=35, trained with weekend data). The mean and stan-
dard deviation of perplexities are 3.9 ⇥ 104 and 2.2 ⇥ 106

respectively. We also found these anomalous bins likely to
be associated with the following events.
National Day Celebration (NDC). The top-1 anomaly
is located at Singapore Changi Airport during [23:00, 00:00)
right after a National Day Celebration event held in Crown
Plaza Hotel at the airport around [18:30, 22:30)4. The
anomalous taxi bookings were likely due to the crowd leaving
that event. Figures 9(c) and 9(d) depict the spatial and
temporal deviations, respectively, of the NDC-related bin
(pink box) from the GGMM weekend model. Spatially and
temporally, the bin of bookings quite far from the nearest
clusters of GGMM making it appear to be very anomalous.
Racing event(RE). The top-2 anomaly occurred around
5pm on Aug 17 at a factory area in west Singapore where
the population is sparse. Interestingly, we observed a racing
event held on the same day5 by Ra✏es Marina Club House,
which is the only point of interest in the factory area. The
anomalous taxi demand may be caused by this racing event.
Military event(ME). The top-3 to top-5 anomalies oc-
curred at Sungei Gedong Camp, one of Singapore’s army
bases. The camp is located in northwest Singapore in a forest
area where civilians are forbidden to visit. The anomalous
taxi demands may be related to personnel booking taxis to
leave the army base after finishing military training classes
on Saturday morning (July 12) and Saturday afternoon (Au-
gust 16). Unfortunately, we could not correlate this with any
events online on July 12’s morning or August 16’s afternoon.

8. CONCLUSIONS
In this paper, we have proposed and evaluated a novel

model, GGMM, for predicting the dynamics of taxi demands
using Poisson processes and spatio-temporal Gaussian pro-
cesses at the grid cell level. GGMM is especially good at
coping with multiple spatio-temporal clusters sharing similar
time periods or spatial regions. This is not the case for the
state-of-the-art Periodic Mobility Model (PMM). The empir-
ical studies on GGMM reveal the spatio-temporal movement

4http://www.whatshappening.sg/events/index.php?eID=79165
5http://www.westerncircuit.com/schedule.php



(a) Spatial Deviations (b) Temporal Deviations

(c) Spatial Deviations (d) Temporal Deviations

Figure 9: (a) Spatial and (b) Temporal deviations of WCF
discovered by GGMM during [06:00, 07:00) on July 14. (c)
Spatial and (d) Temporal deviations of NDC discovered by
GGMM during [23:00, 00:00) on August 16.

patterns of daily commuters on both weekdays and week-
ends separately. Our experiments on a taxi booking dataset
show that the modeling quality of GGMM measured by log-
likelihood is 5.4 times better than the standard Gaussian
Mixture Model (GMM) and 5.2 times better than PMM.
GGMM also have been shown to yield around 95.8% (96.5%)
reduction in perplexity compared against GMM (PMM).
Lastly, we demonstrated the e↵ectiveness of our proposed
model through anomaly detection and successfully verified
the anomalies with real-world events.
Two directions for future work are of particular interest.

The first is to update taxi demands in real time. Another
direction is to explore taxi supplies from trajectory data.
We would like to extend our model to analyze taxi trajecto-
ries and derive the spatio-temporal dynamics of taxi supply.
Combining the two directions, we will yield a more complete
set of insights on urban mobility patterns.
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