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Content-Based Visual Landmark Search via
Multimodal Hypergraph Learning

Lei Zhu, Jialie Shen, Hai Jin, Senior Member, IEEE, Ran Zheng, and Liang Xie

Abstract—While content-based landmark image search has
recently received a lot of attention and became a very active
domain, it still remains a challenging problem. Among the various
reasons, high diverse visual content is the most significant one. It
is common that for the same landmark, images with a wide range
of visual appearances can be found from different sources and
different landmarks may share very similar sets of images. As a
consequence, it is very hard to accurately estimate the similarities
between the landmarks purely based on single type of visual fea-
ture. Moreover, the relationships between landmark images can
be very complex and how to develop an effective modeling scheme
to characterize the associations still remains an open question.
Motivated by these concerns, we propose multimodal hypergraph
(MMHG) to characterize the complex associations between land-
mark images. In MMHG, images are modeled as independent
vertices and hyperedges contain several vertices corresponding
to particular views. Multiple hypergraphs are firstly constructed
independently based on different visual modalities to describe the
hidden high-order relations from different aspects. Then, they are
integrated together to involve discriminative information from
heterogeneous sources. We also propose a novel content-based
visual landmark search system based on MMHG to facilitate
effective search. Distinguished from the existing approaches, we
design a unified computational module to support query-specific
combination weight learning. An extensive experiment study on
a large-scale test collection demonstrates the effectiveness of our
scheme over state-of-the-art approaches.

Index Terms—Content-based visual landmark search,
high-order relations, multimodal hypergraph (MMHG), visual
diversity.

I. INTRODUCTION

OVER the past decades, with the prevalence of intelli-
gent mobile devices and advanced mobile multimedia

services, various kinds of geo-referenced multimedia data has
significantly reshaped the way how we search and represent the
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Fig. 1. Landmark images have diverse visual contents. There are com-
plex relations among them. Several different image views describe the same
landmark (images belong to red ellipse). Different landmarks share several
close image views (images belong to green ellipse).

knowledge about a geolocation. One of the typical examples is
landmark image. Due to a wide range of real applications such
as tour guide recommendation [1] and geo-localization [2],
developing intelligent algorithms to facilitate accurate visual
landmark search enjoys great importance.

Comparing to the image data in traditional content-based
image retrieval (CBIR) systems, landmark images have a few
distinguishing characteristics. In particular, a landmark can be
photographed from different viewpoints, under different light-
ing conditions and for different attractive spots. All of these
significantly increase the visual diversity of recorded query and
images stored in the database. As pointed out in [3], images
in each landmark category can be further classified into sev-
eral sub-categories according to the views they describe, such
as partial view, interior view, far-away view, and etc. Fig. 1
gives a few examples of several real-world landmark images.
As shown, several different image views describe the same
landmark, and some different landmarks may have several
views which are very similar to each other. This characteris-
tic makes the distance between landmarks and the high-order
relations among images hard to be estimated directly and
accurately. Further, it poses great challenges on the design
of content-based visual landmark search (CBVLS) system.

Existing CBVLS systems can be generally cate-
gorized into two major families: 1) similarity-based
search [3], [4] and 2) graph-based search [5]–[7]. Similarity-
based search leverages low-level feature matching to return
images sequentially. This solution suffers from two main
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disadvantages. First, it is hard to effectively learn query-
specific combination weights for different features. In this
case, multiple features are usually combined with the same
weights for all query images. Since query images can have
high visual diversity, if CBVLS system fails to capture dis-
criminative capabilities of the involved features on describing
visual contents of query images, search performance may
be degraded greatly. Second, similarity-based search relies
on simple similarities, which cannot model the high-order
relations among landmark images effectively. To represent
more complex relations, graph-based search applies graph
to model the search process. In graph, image is usually
considered as vertex and the edge connecting two vertices
represents a relation. Although graph enjoys a good capability
to model more complex relations, one edge in a graph only
connects two vertices and two edges only share one vertex.1

Indeed, high-order relations still cannot be fully characterized
by using simple graph. Therefore, graph also fails to capture
many important characteristics of landmark images.

In order to mitigate the drawbacks of current methods,
we explore hypergraph-based approach to solve the problem
of CBVLS. One of the most desirable advantages of hyper-
graph is that it can capture high-order relations among images.
This can lead to high-quality model for characterizing land-
mark images. Thus, in the hypergraph-based model, images
in databases are considered as vertices, and several similar
images in database form an edge.2 In this way, since a hyper-
edge connects several vertices and two hyperedges also share
several vertices, high-order relations among images can be
modeled effectively and comprehensively.

The similar visual features or patterns such as color, tex-
ture, or shape can be easily found in the contents of landmark
images from same or similar geolocation. Also, landmark
images from same or similar geolocation could have diverse
contents. As such, the uni-modal hypergraph (UMHG) might
be not able to comprehensively model or characterize them.
Inspired by recent success in visual data modeling by using
multimodal-based fusion [8]–[11], we develop multimodal
hypergraph (MMHG)-based approach in this paper. Basic idea
is to construct multiple hypergraphs based on different visual
modalities. The combination weights are exploited to measure
the importance of each hypergraph. Multiple hypergraphs are
integrated into an unified framework to take heterogeneous
discriminative information in account. To capture the distinc-
tiveness of query images, online search, and weight learning
are formulated into an unified computational module, which
iteratively calculates similarity scores of database images,
and assigns proper weights to the associated hypergraphs.
The main contributions of this paper can be summarized as
follows.

1) Hypergraph is leveraged to model the high-order rela-
tions between landmark images. To the best of our
knowledge, no existing study explores multimodal
hypergraph-based approach for the task of CBVLS.

1In this paper, edge and vertex represent relation and image, respectively.
2In hypergraph, edge is also termed as hyperedge.

2) A Novel Model: MMHG is developed to integrate
multiple hypergraphs based on heterogeneous visual
modalities for the purpose of representing highly com-
plex relations and effectively capturing the diverse
visual contents. Combination weights are learnt to
measure the importance of the various associated
hypergraphs.

3) Search and weight learning is conducted using an unified
computational framework, which iteratively calculates
similarity scores of the images stored in database, and
assigns proper query specific weights to the involved
hypergraphs.

The remainder of this paper is structured as follows.
Section II reviews the related work. Overview of the
proposed CBVLS system is provided in Section III.
Section IV introduces the components of MMHG-based
CBVLS system in detail. Experimental configuration
and empirical experimental results are presented in
Section V. Section VI finally summarizes this paper with the
conclusion.

II. RELATED WORK

A. Landmark Search

Most existing approaches on CBVLS mainly focus
on improving accuracy or diversity of the search
results [3], [4], [12]–[14]. They can be generally clas-
sified into two major categories: single modal-based
and multimodal-based. State-of-the-art single feature-
based CBVLS systems are based on bag-of-visual-words
(BOVW) [15] or its improved variants. Visual synonyms and
3-D visual phrases are proposed in [4] and [16], respectively
to describe the visual contents of landmark images, by
identifying pairs of distant words with similar appearance
or characterizing the spatial structure of 3-D landmark.
It has been reported in [4] that, with less visual-words,
visual synonyms can also achieve comparable performance.
However, extraction of visual synonyms relies on spatial
verification-based image reranking and thus cannot be
extracted in a one-shot process. 3-D visual phrase [16] also
cannot be applied to our case directly, because it relies
on time-consuming 3-D reconstruction which is hard to be
implemented on diverse landmark images. In [17], structure
from motion-based [18] 3-D reconstruction is exploited for
CBVLS. This approach suffers from the same drawback
with [16]. Cheng et al. [3] proposed a multiple feature fusion
strategy for CBVLS. Their experimental results demonstrate
that search accuracy is low and far from practical applications.
They point out that the potential reason for low accuracy
is that high-order relations among landmark images cannot
be simply captured by low-level features and raw similarity
measures. In addition to the work presented above, there are
also some efforts that are made to diversify search results of
CBVLS [13], [19].

Many researchers also propose methods to conduct CBVLS
on mobile platform [14], [20]. These approaches are mainly
based on variants of BOVW [15]. Efforts are mainly made on
converting BOVW as a compact descriptor to reduce memory
consumption and speedup network transmission.
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B. Graph and Hypergraph Learning

Graph learning has been proven to be an effective method
to improve the performance of unsupervised and semi-
supervised data modeling by uncovering the underlying struc-
tures of image collections (e.g., correlation and dependency).
It has been widely applied to many fields, such as clus-
tering [21], [22], dimensionality reduction [23], [24], image
retrieval [25], [26], and etc. For example, Jones and Shao [27]
proposed a feature grouped spectral multigraph by aggregating
results from multiple graphs, which are built in mutually inde-
pendent subsets of the original feature space. Shao et al. [28]
used graph to embed the penultimate hierarchical discrimina-
tive manifolds into a compact representation. Although their
reported experimental results are promising, their employed
graph cannot be applied to our case directly because of
its inability to capture high-order relations among landmark
images.

Hypergraph does not suffer from the drawbacks of graph,
and due to high capability to model complex data, hyper-
graph has attracted more and more attention in [29]–[32].
One of typical example is a hypergraph-based framework for
video object segmentation proposed by Huang et al. [29].
In this paper, over-segmented image patches are taken as
vertices, and vertices with the same attribute construct a
hyperedge. Via hypergraph modeling, inherent spatio-temporal
neighborhood relations among patches are naturally captured.
Zhang et al. [30] constructed a feature correlation hypergraph
to capture the high-order correlation among multimodal fea-
tures, which directly extends the previous binary correlations.
Huang et al. [31] formulated CBIR in a probabilistic hyper-
graph (PHG) framework. Images are taken as vertices and a
hyperedge is comprised of a centroid vertex and its several
nearest neighbors. A vertex is assigned to hyperedge in a prob-
abilistic way. Although multiple features can be fused effec-
tively using single framework [31], it only adopts simple equal
weights (EW) to measure the importance of the employed
features. Consequently, it fails to describe their discrimina-
tive capabilities. This paper constructs the hypergraph without
the above drawback, and formulates search and weight learn-
ing into an unified computational module, which iteratively
performs searching process and learns the optimal feature
combination weights for each query image. In [32], hyper-
graph is leveraged to solve the problem of view-based 3-D
object retrieval. Each vertex is an object and a cluster of views
constructs a hyperedge. K-means is adopted to generate multi-
ple overlapping hyperedges. Although promising experimental
results are reported, their hyperedge construction approach
cannot be applied for CBVLS directly. This is because images
in different landmarks have different visual diversity degrees,
which makes the key parameter—number of clusters hard to
be adjusted. More importantly, their learning framework only
takes single modality into account, which fails to leverage
discriminative information from multiple modalities.

C. Multimodal Visual Feature Fusion

Visual contents of landmark images can be complex and
highly diverse. Different kinds of visual features could have

Fig. 2. Overall view of the MMHG-based CBVLS system. Best viewed in
color and with pdf magnification.

various contribution on visual recognition task. Thus, fusion
of multimodal visual features can effectively improve the
discriminating ability of single feature-based systems or algo-
rithms. Early-fusion [33] and late-fusion [34] are two classic
strategies in literature. Early fusion concatenates multiple
features into a holistic one and conducts learning on high-
dimensional vectors. This technique inevitably results in
information loss and suffers from “curse of dimensionality.”
In contrast, late-fusion performs learning processes indepen-
dently in each single modality and then fuses the obtained
results. Proper combination weights are essential important in
this case for good performance.

In [35] and [36], multiple kernel learning [37] is pro-
posed to combine multiple features for object recognition
and detection, respectively. These methods suffer from high
computation burden brought by kernel matrix computation.
Yang et al. [6] fused multiple features in framework of hier-
archical regression to annotate concepts and recognize actions
in videos. Ma et al. [38] proposed to detect events by mul-
tiple video attributes learned from different types of features.
Wang et al. [39] used multiple feature learning for action
recognition by applying structural analysis to discover the
common subspace shared by multiple features. Yang et al. [26]
proposed to rank the image search results with multiple fea-
tures in a multigraph framework with Laplacian matrix learned
by local regression and global alignment (LRGA). However,
the approaches introduced above [6], [26], [38], [39] all adopt
the same weights to fuse multiple features, which may lose
discriminative information, especially when the discriminative
capabilities of the involved features are not equal. In addi-
tion, Xu et al. [40] adopts optimal thresholding-based feature
weighting (FWOT) to fuse multiple features for video analysis,
which can simultaneously learn the weights, thresholding, and
smoothing parameters in a joint framework. However, FWOT
is specially designed for visual classification, where learning
optimal combination weights needs large quantities of labeled
images.

III. SYSTEM OVERVIEW

This section briefly provides overview of the proposed
MMHG-based CBVLS system. As shown in Fig. 2, the sys-
tem architecture consists of two key components: 1) offline
MMHG construction and 2) online search.

1) Offline MMHG Construction: It is designed to build
MMHG, based on which the whole CBVLS process



ZHU et al.: CONTENT-BASED VISUAL LANDMARK SEARCH VIA MMHG LEARNING 2759

is performed. More specifically, this process can be
further divided into three independent sub-processes:
1) low-level feature extraction; 2) UMHG construction;
and 3) MMHG integration. In the system, five visual fea-
tures from different modalities are extracted to describe
the diverse visual contents of landmark images from
different aspects. Then, UMHG which represents the
relations of images stored in database is constructed in
each visual modality. Finally, these UMHGs are inte-
grated into an unified MMHG with combination weights
to represent more complex relations.

2) Online Search: Query image is first submitted by user.
Low-level features of it are obtained by the same fea-
ture extraction processes performed on database images.
Then, initial similarity scores of database images are
set to represent the similarity between query image
and database images. Next, based on the constructed
MMHG, similarity scores are updated iteratively in mod-
ule of search and weight learning. Finally, the estimated
similarity scores are ranked in descending order, and
their corresponding database images are returned back
to user.

IV. MMHG-BASED CONTENT-BASED VISUAL

LANDMARK SEARCH

In this section, we provide the details of proposed MMHG-
based CBVLS system. First, we introduce five visual features
used in this paper. Second, we formulate the hypergraph con-
struction in a single modality. Third, we extend the UMHG
formulation to MMHG to integrate hypergraphs constructed in
multiple modalities. Finally, we present the module of search
and weight learning.

A. Low-Level Feature Extraction

Our system considers five widely used low-level visual
features. Their details are as follows.

1) Color Moments (CM) [41]: First, image is partitioned
into regions without overlapping with 3 × 3 grid. Then,
in each segmented region, color mean, color variance,
and color skewness are extracted in each color channel.
Finally, features calculated from regions are concate-
nated to form 81-D vector.

2) Local Binary Pattern (LBP) [42]: LBP is simple yet
powerful texture descriptor to describe local structure of
image by comparing centering pixel with surrounding
pixels. It has good property of tolerating illumination
changes. In this paper, 58-D LBP is adopted for texture
description.

3) Histogram of Oriented Gradients (HOG) [43]: HOG
is an effective descriptor which describes the shape
information of image. It counts occurrences of gradi-
ent orientation in localized portions of an image and
normalizes the result using a block-wise pattern. In this
paper, 31-D HOG is adopted for shape description.

4) BOVW [15]: BOVW quantizes order-less local features
to visual-words and represents image as frequency his-
tograms of visual-words, and it has been widely used

Fig. 3. Left: toy example of graph and hypergraph which include six vertices.
Right: corresponding incidence matrices. The element h(vi, ej) = 1 means that
the vertex vi belongs to edge ej, and vice versa. In graph, edge is comprised of
two vertices and two edges share with only one vertex. In hypergraph, centroid
vertex and its three nearest neighbors comprise a hyperedge. Two hyperedges
share with two or more vertices. Note that hypergraph degenerates to graph
when k = 1. Best viewed in color and with pdf magnification.

in [44]. In this paper, densely sampling strategy is
employed to detect interest points and scale invariant
feature transform [45] is used to describe image patches.
In our case, each interest point is represented by a vec-
tor of 128 dimensions. The best performance of BOVW
is obtained when the visual-word vocabulary size is set
to 400.

5) GIST [46]: GIST is a widely used global feature,
which exploits a set of perceptual dimensions (natural-
ness, openness, roughness, expansion, and ruggedness)
to describe the spatial structure of the image. First,
Gabor filter with fixed parameters is built. Then, image
is filtered and segmented into grid cells where orien-
tation histograms are extracted. In this paper, image
is segmented by a 4 × 4 grid and features extracted
from sub-regions are concatenated into a 512-D feature
vector.

B. UMHG Construction

This section introduces the details of UMHG construction.
Fig. 3 shows a toy example of graph, hypergraph, and their cor-
responding incidence matrices. Hypergraph is different from
graph on its inner structure. In graph, edge is comprised of
two vertices, while hyperedge in hypergraph is comprised of
three or more vertices.3 In addition, edge in graph can only
share one vertex, while hyperedge can share two or more ver-
tices. From this perspective, graph can only describe simple
relations among images, while hypergraph can describe high-
order relations. More specifically, in CBVLS, it can describe
the high-order relations, such as whether three or more images
describe the same landmark, whether three or more landmarks
share close views, and etc.

3In our case, a hyperedge contains k + 1 vertices.
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A hypergraph constructed in modality m can be denoted
as Gm = (Vm, Em, Wm) (m = 1, 2, . . . , M), where M is
the number of visual modalities, Vm = {vim}N

i=1 denotes
the vertex set, Em = {ejm}N

j=1 denotes the hyperedge set,
Wm = {wm(ejm)}N

j=1 denotes the weight set for hyperedges,
wm(ejm) is weight of hyperedge ejm. Each image in database
is considered as a vertex. A vertex and its k nearest vertices
comprise a hyperedge. For example, in Fig. 3, centroid vertex
v1 and its nearest vertices v2, v4, v6 comprise hyperedge e1.
The number of hyperedges is equal to the number of vertices
(images). Similarities of images in modality m are measured
by the distances of their corresponding features. In this case,
the size of hyperedge is k + 1. As visual contents of images
in landmarks are distributed with different visual diversity
degree, it is hard to estimate the number of visual clusters.
Therefore, the hypergraph construction method here is differ-
ent from the approach proposed in [32], which adopts simple
K-means clustering to generate hyperedges.

Formally, a hypergraph built in modality m can be repre-
sented with a |Vm| × |Em| incidence matrix Hm (| · | denotes
the cardinality of set, |Vm| = |Em| = N, N is the num-
ber of database images). For example, the incidence value
between vertex vim and hyperedge ejm in Hm is given as
(i, j = 1, 2, . . . , N)

hm(vim, ejm) =
{

1 dist
(
xim, xjm

) ≤ k_dist
(
vjm
)

0 otherwise

dist
(
xim, xjm

) = ∣∣∣∣xim − xjm
∣∣∣∣

F (1)

where dist(xim, xjm) denotes the distance between image i and j
in modality m, || · ||F denotes the Frobenius norm, hm(vim, ejm)

is the ith row, jth column element in Hm, image j is centroid
vertex of hyperedge ejm, xim, xjm are features of image i and j
extracted in modality m, respectively, k_dist(vjm) denotes the
distance between image j and its kth nearest database images.
Different from graph, the degree of hyperedge is defined as the
number of images that belong to it. For example, for hyperedge
ejm, its degree δm(ejm) is defined as

δm
(
ejm
) =

N∑
i=1

hm
(
vim, ejm

)
. (2)

Since each hyperedge contains k + 1 vertices in our
approach, the number of nonzero elements in incidence matrix
is N × (k + 1), and the degrees of hyperedges are all equal
to k + 1. In this paper, we explore visual consistence to mea-
sure the importance of hyperedges. The hyperedge with more
visual consistence is assigned with higher weight, and vice
versa. In our case, visual consistence is measured by the sim-
ilarities of images in hyperedge. Formally, for hyperedge ejm,
its weight wm(ejm) is defined as

wm
(
ejm
) =

N∑
a,b=1

hm
(
vam, ejm

)
hm
(
vbm, ejm

)
exp

(
−||xam − xbm||F

σejm

)

(3)

where a and b is arbitrary database images, σejm is the nor-
malization factor, which is calculated as the mean distance of

all images that belong to the hyperedge

σejm = 1

(k + 1)2

N∑
a,b=1

hm
(
vam, ejm

)
hm
(
vbm, ejm

)||xam − xbm||F.

(4)

With the calculated weights of hyperedges, the degree of
each vertex is defined as the sum of the weights of hyperedges
that the vertex belongs to

d(vim) =
N∑

j=1

wm
(
ejm
)

hm
(
vim, ejm

)
. (5)

Based on the constructed hypergraph, the search process
can be formulated in a transductive learning framework. The
formulation objective is to make the images, that belong to the
highly weighted hyperedge, be assigned with similar similarity
scores, so that similar database images with query image can
be ranked at top positions. Denote f as the similarity score
vector of database images. Optimization function �m( f ) of
hypergraph construction in modality m can be formulated as

�m( f ) = arg min
f

�m( f ) + λRm( f ) (6)

where loss term �m( f ) is used to reduce empirical loss, reg-
ularization term Rm( f ) is used to avoid overfitting, λ > 0 is
the balance factor that plays a trade-off between two terms.
Specifically, �m( f ) is calculated as

�m( f ) = 1

2

N∑
i,j,l=1

wm
(
ejm
)

hm
(
vlm, ejm

)
hm
(
vim, ejm

)
δm
(
ejm
)

(
f (vlm)√
d(vlm)

− f (vim)√
d(vim)

)2

(7)

where f (vlm) and f (vim) denote the similarity score for vertex
vlm and vim, d(vlm) and d(vim) denote the degree of vertex
vlm and vim. The learning objective is to assign more similar
scores for images that belong to many incidental hyperedges.
Denote y as the initial score vector, Rm( f ) can be defined as

Rm( f ) = ||f − y||F =
N∑

i=1

( f (vim) − y(vim))2 (8)

where y(vim) is 1 if the image that corresponds to vertex vim

is considered as query one. Then

�m( f ) =
N∑

i,j,l=1

wm
(
ejm
)

hm
(
vlm, ejm

)
hm
(
vim, ejm

)
δm
(
ejm
)

(
f (vim)2

d(vim)
− f (vlm)f (vim)√

d(vlm)d(vim)

)

=
N∑

i=1

f (vim)2
N∑

j=1

wm
(
ejm
)

hm
(
vim, ejm

)
d(vim)

N∑
l=1

hm
(
vlm, ejm

)
δm
(
ejm
)

−
N∑

i,j,l=1

wm
(
ejm
)

hm
(
vlm, ejm

)
hm
(
vim, ejm

)
f (vlm)f (vim)

δm
(
ejm
)√

d(vlm)d(vim)
.

(9)
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From (2) and (5), we can easily derive that

N∑
l=1

hm
(
vlm, ejm

)
δm
(
ejm
) = 1

N∑
j=1

wm
(
ejm
)

hm
(
vim, ejm

)
d(vim)

= 1. (10)

Therefore

�m( f ) =
N∑

i=1

f (vim)2

−
N∑

i,j,l=1

wm
(
ejm
)

hm
(
vlm, ejm

)
hm
(
vim, ejm

)
f (vlm)f (vim)

δm
(
ejm
)√

d(vlm)d(vim)

= f T�mf (11)

where �m is Laplacian matrix of hypergraph. It can be cal-
culated as �m = I − �m. �m can be calculated as �m =
D−1/2

vm HmDwm D−1
em

HT
mD−1/2

vm , where Dvm , Dem , and Dwm are the
diagonal matrices of the vertex degrees, edge degrees, and
hyperedge weights in modality m, respectively

Dvm(i, j) =
{

d(vim) i = j
0 i �= j

Dem(i, j) =
{

δm
(
ejm
)

i = j
0 i �= j

Dwm(i, j) =
{

wm
(
ejm
)

i = j
0 i �= j.

(12)

Equation (6) can be reformed as

�m( f ) = arg min
f

f T�mf + λ||f − y||F. (13)

C. MMHG Construction

To gain more comprehensive modeling capability, we
develop MMHG-based on UMHG. The key motivation for
the multimodal-based extension is mainly based on the two
observations as below.

1) Different landmark images may have similar visual
appearance in terms of color, texture, and shape.
Integrating multiple hypergraphs from heterogeneous
sources can represent more complex relations.

2) Images in a landmark category have diverse visual con-
tents. Hypergraph built from a single modality may
be not effective to capture diverse visual contents of
query and database images, while combing discrimina-
tive features from multiple modalities may improve the
performance of single one.

Moreover, hypergraphs constructed from heterogeneous
visual modalities generally possess different discriminating
ability. Weighting them equally cannot strengthen the dis-
criminative hypergraph and attenuate the weak ones, while
assigning proper weight for each hypergraph and query image
specifically can improve the performance further. Therefore,
in this paper, we explore combination weights {αm}M

m=1 to
measure the importance of UMHGs. The weight is higher
if hypergraph is more discriminative, and vice versa. In this
paper, we denote hypergraphs constructed in M modalities
using G1 = (V1, E1, W1), G2 = (V2, E2, W2), . . . , GM =
(VM, EM, WM). {Vm}M

m=1, {Em}M
i=m, {Wm}M

m=1 are the vertex set,
hyperedge set, and weight set for M hypergraphs, respectively.

Denote {Hm}M
m=1, {Dvm}M

m=1, {Dem}M
m=1, {Dwm}M

m=1 are inci-
dence matrices, vertex degree matrices, hyperedge degree
matrices, and hyperedge weight matrices for M hypergraphs,
respectively. The combined hypergraph is constructed by fus-
ing M hypergraphs with linear combination weights {αm}M

m=1.
In MMHG, we redefine the empirical loss �( f ) as the sum
of weighted empirical loss of M UMHGs

�( f ) =
M∑

m=1

αm�m( f )

= 1

2

M∑
m=1

αm

N∑
i,j,l=1

wm
(
ejm
)

hm
(
vlm, ejm

)
hm
(
vim, ejm

)
δm
(
ejm
)

(
f (vlm)

d(vlm)
− f (vim)

d(vim)

)2

=
M∑

m=1

αmf T (I − �m) f = f T
M∑

m=1

αm
(
I − �m) f

= f T
M∑

m=1

αm�mf = f T�f (14)

where � = ∑M
m=1 αm�m = ∑M

m=1 αm(I − �m) is Laplacian
matrix of the MMHG. Since linear weights are adopted for
combination, (14) may result in trivial results when {�m}M

m=1
are equal with each other. To avoid this case, we intro-
duce a smooth factor γ to relax α to α

γ
m. Therefore, (14) is

transformed to

�( f ) = f T
M∑

m=1

αγ
m�mf = f T�f (15)

where � = ∑M
m=1 α

γ
m�m = ∑M

m=1 α
γ
m(I − �m). Similar to

UMHG construction, regularization term R( f ) in MMHG can
be calculated as R( f ) = ∑N

i=1( f (vi) − y(vi))
2 = ||f − y||F.

In this way, the optimization objective function �(α, f ) of
MMHG is formulated as

�(α, f ) = arg min
α,f

�( f ) + λR( f )

= arg min
α,f

f T�f + λ||f − y||F. (16)

Since the combination weights should be guaranteed to be
nonnegative and the sum of them should be guaranteed to be 1,
the objective function should be optimized subjecting to the
following condition:

M∑
m=1

αm = 1, 0 ≤ αm ≤ 1, λ > 0. (17)

D. Search and Weight Learning

Different users might use different query images to search
the same landmark and thus query images can have highly
diverse visual contents. Accurate computing of query spe-
cific combination weights can play very important role in
the UMHG that can better characterize the visual contents of
query. In this paper, we model search and weight learning in an
unified computational framework, which iteratively calculates
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the similarity scores of database images and adaptively learns
query specific combination weights.

The whole CBVLS is performed on the constructed MMHG.
At the stage of online search, a query image is uploaded from
user and low-level features of it are obtained by the same
feature extraction processes performed on database images.
There are two cases need to be dealt with separately: 1) query
images are already in the database and 2) query images are out-
side the database. When query images are already in database,
inner structure of hypergraph built in the offline process can be
preserved without any adjustment. In this case, image search
results can be easily obtained by ranking the calculated sim-
ilarity scores directly. In contrast, when the query images are
not in database, the hypergraph should be adjusted accord-
ingly since new vertex and hyperedge are added. However,
the adjustment process will bring additional computations,
which may generate negative effects on the efficiency of online
learning. Inspired by the success of query expansion in graph
learning [26], we apply it here to deal with the problem of
out of sample. More specifically, the positions in the initial
similarity score vector, which correspond to k nearest images
of query are set to 1, and the remaining positions are set to 0.
Formally

y(vim) =
{

1 dist(xim, xqm) < k_dist(vqm)

0 otherwise.
(18)

With the initial similarity score vector f for query image,
the estimated similarity scores of all database images in f
are obtained by solving the (16) subjecting to the conditions
in (17). Fortunately, the optimization function is convex with
respect to both of them, the optimization parameters can be
converged to certain values. Since there are two parameter
sets that are involved in the optimization objective function,
they cannot be solved at one time. In this paper, we propose
an alternating optimization approach to separately optimize
the parameters, namely, the combination weight vector α and
similarity score vector of f . Specifically, we optimize each
parameter set by fixing the other.

We calculate the partial derivatives of �(α, f ) with respec-
tive to α and f as

∂� (α, f )

∂f
= 2

M∑
m=1

αγ
m

(
�mf + λ( f − y)

)

∂�(α, f )

∂αm
= γαγ−1

m

(
f T�mf + λ||f − y||F

)
(19)

where γ > 0 is the smooth factor, which reflects the effect of
the smoothness difference of hypergraphs.

By fixing α, the problem is transformed to UMHG-based
search. By substituting the Laplacian matrix of UMHG to
that of MMHG, we can obtain the solution of f . Formally,
its solution can be given as

f =
(

I + 1

λ
�

)−1

y. (20)

Following the rules proposed in [47], (20) can be efficiently
solved via iterated computing. Detailed steps are presented in
Algorithm 1. Details of proof are presented in the Appendix.

Algorithm 1 Iterative Computation for f
Input:

Initial similarity score vector of database images, ȳ.
Output:

f = yt

1: Initialize y1 = ȳ, t = 1.
2: repeat
3: t = t + 1.
4: Update y via: yt = 1

1+λ
(I − �)yt−1 + λ

1+λ
ȳ.

5: until |yt − yt−1| < θ

6: return yt

By fixing f , the (16) is transformed to

arg min
α

M∑
m=1

αmf T�mf + λ||f − y||F

s.t.
M∑

m=1

αm = 1, 0 ≤ αm ≤ 1, λ > 0. (21)

The solution of α can be derived as

αm =
(

1
f T�mf +λ||f −y||F

) 1
γ−1

∑M
m=1

(
1

f T�mf +λ||f −y||F
) 1

γ−1

. (22)

The complete procedure of MMHG-based CBVLS can
be shown in Algorithm 2. The computational cost of
MMHG-based CBVLS consists of two major parts. One is
for offline MMHG construction and the other is for online
CBVLS. It can be easily derived that the computational cost
of MMHG construction is O(MN2), where M is the number
of visual modalities, N is the number of database images.
MMHG construction is offline process, thus its calculation
has no impact on the efficiency of online CBVLS. The pro-
cess of initial score vector setting in online CBVLS can be
completed with time complexity O(N). Search and weight
learning costs O(MTN) (T is the number of iterations), which
is linear with the number of database images. Furthermore,
both the calculation of f and {αm}M

m=1 consist of many pro-
cesses of sparse matrix-vector multiplication (note that, � is
sparse matrix), which can be efficiently stored with sparse
matrix compression, and accelerated with parallel implemen-
tation [48]. Therefore, the online search approach proposed in
this paper can be applied to large-scale landmark search.

V. EXPERIMENTS

This section presents experimental results and analy-
sis. First, experimental configuration including experimen-
tal dataset and testing method is introduced. Second, we
present comparative study to show the superior performance of
MMHG compared with state-of-the-art approaches. Third, var-
ious factors that directly influence the performance of MMHG
are discussed in detail. Fourth, parameter experiments are per-
formed to show the robustness of the MMHG when parameters
are varied. Finally, we apply MMHG to the task of general
image search and evaluate its performance.
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Algorithm 2 MMHG-Based CBVLS
Input:

Query image Q and database images I1, I2, . . . , IN .
Output:

Landmark search results.
Offline MMHG Construction

1: Extract low-level features {x11, x12,. . . , x1M , x21, x22,. . . ,
x2M ,. . . , xN1, xN2,. . . , xNM} for all database images.

2: Consider each image in database as a vertex. Find k most
similar images for each of them. k + 1 images construct
the hyperedge of UMHG in each modality.

3: Calculate incidence matrix, vertex degree matrix, hyper-
edge degree matrix, and hyperedge weight matrix for each
UMHG.

4: Output incidence matrices {Hm}M
m=1, vertex degree matri-

ces {Dvm}M
m=1, hyperedge degree matrices {Dem}M

m=1,
hyperedge weight matrices {Dwm}M

m=1 for online CBVLS.
Online CBVLS

5: Extract low-level features {xq1, xq2, . . . , xqM} for query
image.

6: Find k nearest database images for query in raw feature
space.

7: Initialize the similarity score vector according to (18).
8: Calculate Laplacian matrices {�m}M

m=1 for MMHG.
9: for t = 1 to T do

10: Update weight vector α according to (22).
11: Based on the obtained α, update similarity score vector

f according to Algorithm 1.
12: end for
13: Rank the similarity score vector f in descending order.
14: return Ranked order of database images.

A. Experimental Dataset and Testing Method

To facilitate experimental study, we develop a test col-
lection called landmark-25, which contains real-world land-
mark images by crawling the images from Flickr. For each
landmark, candidate images are first obtained by retrieving
images from Flickr with relevant keywords and the pro-
vided API. Images with low relevance and quality are then
removed manually. Finally, landmark-25 has 25 landmark
categories, including the images photographed from differ-
ent viewpoints, under different lighting conditions, and for
different beauty spots. To make evaluation fair and robust,
the same number of images (200 images) from each land-
mark category are randomly selected to comprise database
images. Twenty images are randomly selected as query
images. This dataset is challenging because visual con-
tents of images in a landmark category have high visual
diversity. Typical images are shown in Fig. 4. In evaluation,
images in the same category are considered as relevant, and
vice versa.

To measure the performance of MMHG-based CBVLS, we
use standard evaluation metric precision-scope, which has been
also employed in [31] and [49] for performance evaluation.
For given NQ query images, the average search precision is

Fig. 4. Typical images sampled from landmark-25. Landmark names and
their abbreviations are listed under the sample images.

defined as

Precision = 1

NQ

NQ∑
i=1

Ri

Scope
(23)

where NQ denotes the number of query images (in this paper,
NQ = 500), Ri denotes the number of relevant images in
returned results for query image i, scope denotes the number
of returned images. Scope is varied to observe the performance
variations. It should be noted that, since query images are dis-
tributed with high visual diversity, search precision in our case
can also demonstrate the robustness of the search approaches
on dealing with different types of queries.

B. Comparative Experiments

In this section, comparative experiments are conducted to
compare the performance of MMHG against state-of-the-art
approaches. The performance of MMHG is obtained when
k = 10, γ = 1.1, λ = 0.3, and T = 10. Details of the
approaches used for comparison are as follows.

1) Similarity-Based Search With EW (SSEW) [3]: First,
similarities between low-level features of query image
and that of database images are calculated in each
visual modality. Then, they are integrated into a unified
one with equal combination weights. Finally, database
images are ranked by comparing the weighted sum of
similarities that are calculated in all modalities.

2) Similarity-Based Search With Proper Weights
(SSPW) [50]: SSPW is similar with SSEW on
most of execution procedures, except for the way of
combination weight generation. In our implementation,
the optimal weights are learned by brute force search.

3) Manifold-Based Search (MS) [51]: MS can be regarded
as a typical graph-based search. MS leverages simple
graph to model the relations among images. In imple-
mentation, MMHG Laplacian is substituted with graph
Laplacian.

4) Multifeature Learning via Hierarchical Regression
(MLHR) [6]: MLHR explores discriminative informa-
tion contained in multiple features of both labeled
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(a)

(b)

Fig. 5. Performance comparisons with state-of-the-art approaches on
landmark-25. (a) Query images are selected from the database. (b) Query
images are not selected from the database.

and unlabeled images in framework of semi-supervised
graph learning. The optimal combination weights are
learned via hierarchical regression. MLHR can be
regarded as a state-of-the-art graph learning approach.
In implementation, images are ranked with classification
scores.

5) Unified Hypergraph (UHG) [52]: UHG constructs
hypergraph by integrating hyperedges in MMHGs into
an UHG, based on which search process is performed.

6) PHG [31]: PHG constructs PHG to model the rela-
tions among landmark images. It assigns each vertex
to hyperedge in probabilistic way. Multimodal features
are combined to describe the affinity relations among
vertices within each hyperedge.

In this experiment, number of returned results (search scope)
is varied from 10 to 70 to compare how different schemes
perform. The main experimental results are presented in Fig. 5
and a few interesting observations are gained.

1) MMHG consistently outperforms all the competitors
used for comparison on all search scopes. The main
reason is that MMHG can represent diverse visual con-
tents of landmark images, perform well on capturing
high-order relations among landmark images and the
distinctiveness of query images. Detailed discussions are
given in Section V-C to illustrate the contribution of each
part of MMHG on the final performance.

2) Among the approaches used for comparison, MLHR
achieves the best performance, PHG obtains the sec-
ond best results, and SSEW achieves the worst per-
formance. The good performance of MLHR can be
mainly attributed to LRGA, while the good perfor-
mance of PHG may benefit from the PHG modeling for
search process. However, both MLHR and PHG equally
deal with multiple features in the process of global

TABLE I
DETAILED SEARCH PRECISIONS (%) ACHIEVED ON LANDMARK

CATEGORIES BY THE PROPOSED MMHG. SEARCH SCOPE IS

SET TO 20. CASE I DENOTES THE SEARCH SCENARIO WHEN

QUERY IMAGES ARE INSIDE THE DATABASE. CASE II
DENOTES THE SEARCH SCENARIO WHEN QUERY

IMAGES ARE OUTSIDE THE DATABASE

alignment or hypergraph construction, which both fail
to take advantages of each features and capture the dis-
tinctiveness of queries. Therefore, they achieve worse
performance than MMHG. For example, when search
scope is 10, the performance gap between MMHG and
MLHR is 1.26% in Fig. 5(a), while 7.72% is achieved
if query images are not from the database [as shown in
Fig. 5(b)].

3) As shown, under both settings, SSEW performs worse
than SSPW and it even achieves similar performance
with UHG on several search scopes. This experimen-
tal phenomenon indicates that capturing distinctiveness
of features can effectively leverage their discriminative
information. It also reveals the fact that the involved
features in this paper have different discriminative capa-
bilities on describing the visual contents of landmark
images.

Table I presents the detailed search precisions achieved on
all landmark categories by our proposed MMHG. It can be
easily observed from this table that MMHG performs rather
differently on landmark categories. For example, in case I
(query images are inside database), the search precisions on
these landmark categories are widely different. The gap is
even more than 50% between the highest precision 65.50%
on Statue of Liberty and the lowest precision 15.25% on
Forbidden City. The reason to explain this phenomenon is that
different landmark categories have different visual diversities.
Visual contents of images in some landmark categories could
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be highly diverse. Indeed, diverse visual contents of images in
a landmark category lead to the bigger challenge in design of
corresponding CBVLS algorithm and lower search precision.

C. Discussion

In this section, we present comprehensive analysis and dis-
cussion about how various factors influence the performance of
MMHG. In particular, we investigate the effects of hypergraph
learning, effects of multimodal feature fusion, and effects of
weight learning on the overall system performance. Due to
limited space here, we only present the experimental results
achieved when queries are inside the database. Similar results
can also be obtained when queries are outside the database.

1) Effects of Hypergraph Learning: In MMHG, hypergraph
is core component, which is employed to model the latent
high-order relations among landmark images. This experiment
is conducted to validate the effects of hypergraph learning.
More specifically, we compare the performance of hypergraph
learning with distance learning and graph learning in each
visual modality. Details of them are as follows.

1) Similarity Learning [3]: Raw feature similarity is used
to describe the relations among landmark images. Search
results are obtained by ranking the similarities that cor-
respond to the database images in descending order.
Similarities between query image and database images
are calculated as the similarities between their corre-
sponding visual features. Formally, similarity between
query image q and database image i in modality m is
calculated as

sim(q, i) = exp(−||xqm − xim||F). (24)

2) Graph Learning [47]: Graph is used to model the rela-
tions among landmark images. Final similarity scores of
database images in modality m are calculated by solving
the following formula:

f =
(

I + 1

λ
�m

GL

)−1

y (25)

where �m
GL denotes graph Laplacian, �m

GL = I −�m
GL =

I − Dm−1/2Am
GLDm−1/2. Am

GL is affinity matrix, which is
calculated as

Am
GL(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
− dis(xim,xjm)∑N

j=1 dist(xim,xjm)

)

dist
(
xim, xjm

) ≤ k_dist(xim)

0 otherwise.

(26)

Dm is a diagonal matrix, whose diagonal element is
Dm

ii = ∑m
j=1 Am

GL(i, j).

Fig. 6 presents the performance achieved by three image
relation modeling approaches in each single modality when
search scope is 20. We can easily draw two conclusions from
this figure.

1) Search performance of similarity learning can be
improved by graph learning. This is because graph can
exploit the relations among database images for search-
ing, while distance learning only leverages the relations
between query image and database images.

Fig. 6. Performance improvement with hypergraph learning in each visual
modality. Search scope is set to 20. Best viewed in color.

Fig. 7. Performance achieved by different UMHGs. Hypergraphs built in
different modalities are complement to each other, and the combination of
them can achieve better performance.

2) Hypergraph learning can further improve the perfor-
mance of graph learning. The reason is that hyper-
graph can capture high-order relations among landmark
images, which cannot be modeled by simple graph.

These experimental results clearly validate the effectiveness
of hypergraph learning on describing the high-order relations
of images in CBVLS.

2) Effects of Multimodal Feature Fusion: In our approach,
discriminative information from multiple visual modalities are
integrated into an unified MMHG. In fact, landmark images
potentially contain rich heterogeneous information on facets
of color, texture, shape, and appearance. These latent infor-
mation can be characterized by visual features extracted from
their corresponding modalities. Heterogenous features may
complement each other, and the combination of them may
make contributions on improving system performance. In this
section, experiment is conducted to investigate the above
possibility on MMHG-based CBVLS task. Performance of
MMHG and UMHGs are compared directly.

Fig. 7 summarizes the main experimental results obtained
by different UMHGs. In these results, “XXHG” denotes that
hypergraph is constructed with feature “XX.” For example,
CMHG denotes that hypergraph is built in color modality
with CM feature. From this figure, we can clearly find that
MMHG performs better than other UMHGs. Among UMHGs,
HOGHG obtains the worst performance. The reason is that
landmark images are generally photographed from various
viewpoints, which makes images in a landmark category have
large visual diversity on facets of shape distribution. In addi-
tion, we can find that GISTHG performs better than other
UMHGs used for comparison. This is because GIST can cap-
ture global information distribution of a particular scene, and it
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Fig. 8. Performance loss when different features are removed from the
construction process of MMHG.

has higher discriminative ability. From the above experimental
results, we can draw a conclusion that integrating multiple het-
erogeneous UMHGs from multiple modalities into an unified
MMHG can bring performance improvement in CBVLS.

We further conduct experiments to investigate the contri-
bution of each feature on the final performance of MMHG.
Fig. 8 shows the main experimental results when differ-
ent features are removed from the construction process of
MMHG. In these results, “MMHG\XX” denotes the feature
XX is removed from MMHG. For example, MMHG\CM
denotes CM feature is removed from MMHG construction.
In other words, MMHG is constructed with LBP, HOG,
BOVW, and GIST. From this figure, we can easily observe the
following.

1) Any feature configurations with feature removing gen-
erate more or less performance loss. It reveals that the
features employed in this paper all contribute to the final
performance.

2) Different feature configurations generate different per-
formance loss.

For example, MMHG\GIST brings the maximum perfor-
mance loss, while MMHG\BOVW brings the second perfor-
mance loss. MMHG\CM, MMHG\LBP, and MMHG\HOG
all bring small performance loss. This phenomenon can be
observed and it is because the performance loss is related
to the discriminative ability of features. The removal of high
discriminative feature brings much more performance loss.

3) Effects of Weight Learning: Weight learning in our
approach is used to capture query specific feature combina-
tion weights. We maintain that this process is very essential
for query images of landmarks are also presented with diverse
visual appearances, and learning proper combination weights
can capture the characteristics of different queries. To validate
our assumption, we compare the proposed weight learn-
ing approach with other two weight generation mechanisms.
Details are as follows.

1) MMHG + EW (MMHGEW): Multiple UMHGs are
combined with EW (weight = 0.2). In addition, these
combination weights are the same for all queries.

2) MMHG + Brute Weights (MMHGBW): The optimal
combination weights are obtained via brute searching
range of 0 to 1 with step size 0.1. The optimal combi-
nation weights for UMHGs are 0.2, 0.2, 0.1, 0.4, and 0.1,
respectively. Similar to MMHGEW, these combination
weights are the same for all queries.

Fig. 9. Performance achieved by different weight generation mechanisms.
Our approach can capture query specific combination weights and achieve the
best performance.

Fig. 10. Performance variations with hyperedge size k. Best viewed in color.

3) MMHG + Query Specific Weights (MMHGQSW): Query
specific weights are learned using the approach proposed
in this paper to combine UMHGs.

Fig. 9 illustrates search results of different weight learning
mechanisms. As shown, our approach consistently outperforms
other weight learning mechanisms used for comparison on all
search scopes. These presented results demonstrate the effec-
tiveness of our approach on capturing the distinctiveness of
the landmark query images. In addition, it is worthwhile to
note that MMHGEW performs better than MMHGBW. This
experimental phenomenon demonstrates that setting improper
weights for all queries even obtain lower search accuracy than
exploiting simple weights. In a summary, from the above pre-
sented experimental results, we can draw a conclusion that
capturing query specific combination weights can improve the
performance of MMHG-based CBVLS.

D. Parameter Sensitivity Experiment

In this part of experimental study, we investigate the per-
formance variations with hyperedge size k and the involved
parameters T , γ , λ in MMHG.

1) Performance Variations With Hyperedge Size k: In this
paper, k denotes the size of hyperedge. At the point of theoretic
analysis, with larger k, a hyperedge can contain more images,
and more computations will be caused. Also, it will bring neg-
ative effects that irrelevant images may be included and noises
may be generated accordingly. In contrast, with smaller k,
more relevant images may be removed from the hyperedge
and descriptive accuracy may be degraded simultaneously.

This experiment is conducted to demonstrate the perfor-
mance variations with hyperedge size. Fig. 10 presents the
performance variations with hyperedge size. It shows that
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(b)(a) (c)

Fig. 11. Performance variations with the involved parameters T , γ , and λ in MMHG when search scope is 20. (a) Search precision increases steadily when
T is ranged from 2 to 10. (b) Search precision is stable when γ varies from 1.1 to 1.5. (c) Search precision first increases when λ varies from 0.1 to 0.5, and
it becomes steady when the λ is more than 0.5.

search precision increases steadily when the k varies from 4
to 10 on most of scopes, they become stable when hyperedge
size is larger than 10. Therefore, we set the hyperedge size to
10 in all our experiments. These presented results reveal that
hyperedge learning can perform well on removing noises in
larger hyperedges, which are brought in the process of MMHG
construction.

2) Performance Test With Various Parameters in MMHG:
In this experiment, we fix one of the three parameters and
observe the search performance when the other two parame-
ters are varied. Fig. 11 shows performance variations with the
involved parameters T , γ , λ in MMHG. The best performance
of MMHG is achieved when γ = 1.1, λ = 0.3, and T = 10.
We can obtain the following observations from this figure.
For parameter T , search precision increases steadily when T
is ranged from 2 to 10. The gap between the lowest and the
highest precision (only 0.0141) is small when T varies. For
parameter γ , search precision is stable when γ varies from
1.1 to 1.5. For parameter λ, search precision first increases
when λ varies from 0.1 to 0.5, and it becomes stable when
λ is more than 0.5. Besides, we can easily find that the gap
between the lowest and the highest precision (only 0.0194) is
also small when λ varies. From the above experimental results,
we can clearly find that MMHG is robust to the variations of
parameters.

E. Application to General Image Search

We also conduct experimental study using Corel5K [53] to
demonstrate the effectiveness of MMHG on task of general
image search. Corel5K is collected from Flickr, which con-
sists of 50 categories with 100 images in each category. In
our experiment, ten images are randomly selected from each
image category to comprise query images, and the remain-
ing is determined as database images. Note that, we explore
Corel5K here because it has been used as the benchmark
for manifold ranking [49], hypergraph learning [31]. Fig. 12
shows the main experimental results. It clearly shows that
our approach consistently outperforms all the competitors,
which indicates that MMHG can still perform well on task
of general image search. In addition, we find that, on larger
scopes, graph-based learning approach (MR and MLHR) can
achieve comparable performance compared with hypergraph-
based approaches (UHG and PHG). This experimental result

Fig. 12. Performance comparisons with state-of-the-art approaches on
Corel5K.

demonstrates that graph can be highly effective and com-
prehensive for representing the relations among general
images.

VI. CONCLUSION

High visual diversity of landmark images poses big chal-
lenges in design of CBVLS system. Several different image
views describe the same landmark, and some different land-
marks may have several close views. These complex high-
order relations among images cannot be represented well by
traditional similarity-based search or graph-based search mod-
els. This paper explores MMHG to model the high-order
relations among landmark images, to describe the diverse
visual contents of landmark images, and capture the distinc-
tiveness of queries. For capturing query specific combination
weights, search and weight learning are formulated in an uni-
fied computational module, which iteratively calculates the
best combination weights and similarity scores of database
images. Experiments on real-world landmark dataset demon-
strate the effectiveness of the proposed approach.

The research opens up three promising directions for future
investigation in future study.

1) Integrating discriminative information from textual
modality into the current MMHG. Textual feature con-
tains rich semantics that cannot be represented by
low-level visual features. Effective combination of tex-
tual hypergraph and visual hypergraph could boost the
performance further.

2) On efficiency side, integrating MMHG with hashing
to further accelerate search process. Hashing is a hot
topic in recent literature, which performs well on feature
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indexing [25]. MMHG-based hashing will not only have
strong describing capability, but also have high search
efficiency.

3) Extending the MMHG to solve other tasks, such as
landmark classification, where we will face similar
challenges.

APPENDIX

We proof the convergency of Algorithm 1
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