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ABSTRACT
Next generation of smart grids face a number of challenges includ-
ing co-generation from intermittent renewable power sources, a
shift away from monolithic control due to increased market dereg-
ulation, and robust operation in the face of disasters. Such het-
erogeneous nature and high operational readiness requirement of
smart grids necessitates decentralized control for critical tasks such
as power supply restoration (PSR) after line failures. We present a
novel multiagent system based approach for PSR using Lagrangian
dual decomposition. Our approach works on general graphs, pro-
vides provable quality-bounds and requires only local message-
passing among different connected sub-regions of a smart grid, en-
abling decentralized control. Using these quality bounds, we show
that our approach can provide near-optimal solutions on a num-
ber of large real-world and synthetic benchmarks. Our approach
compares favorably both in solution quality and scalability with
previous best multiagent PSR approach.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems,
Intelligent agents

General Terms
Algorithms, Theory

Keywords
Multi-agent Systems, Distributed Constraint Optimization, Power
restoration, Smart Grids

1. INTRODUCTION
Due to increased world-wide incentive for cleaner electricity

generation [13, 16, 8], next generation of smart grids would feature
co-generation from intermittent renewable power sources. In addi-
tion, the deregulation of power markets has enabled the presence
of multiple operators [4, 9], which marks a shift away from highly
regulated monopolies of power grids. Such heterogeneous struc-
ture of future smart grids where multiple operators control differ-
ent sub-regions of the grid presents a unique opportunity for agent-
based decentralized control of smart grids. Decentralized control
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of power grids entails high operational readiness, increased robust-
ness and faster response time after disasters. In fact, the importance
of such decentralised control has been already recognized in power
systems and multiagent systems community [14, 9, 13, 12].

In our work, we address the important problem of power supply
restoration (PSR), where a power grid has to be reconfigured after
multiple line failures subject to constraints such as acyclic power
flow and line capacities [18, 1, 17]. In particular, we focus on the
multiagent PSR problem where different sub-regions of the grid are
controlled by different agents [9]. The power supply needs to be
restored to de-energized areas by local coordination among agents
without the oversight of a central authority. Such multiagent PSR
problems have been previously addressed using the framework of
distributed constraint optimization [9, 12]. However, the scalabil-
ity of such previous approaches is limited due to the NP-Hard [5]
complexity of solving PSR problems.

We use the framework of Lagrangian relaxation or dual decom-
position [2], to solve the multiagent PSR problem. Lagrangian re-
laxation (LR) has a rich history in power networks community [6,
7, 15]. These previous approaches use the LR approach to solve
the problem of optimal power flow (OPF), also known as the opti-
mal dispatch problem. Our application of LR to the PSR problem
is significantly different than OPF, as power restoration is a dis-
crete optimization problem where we are changing the underlying
structure of active power lines in the network. The OPF problem
is concerned with deciding how much power each generation unit
in the grid must generate to ensure that all the demand is satis-
fied [15]. Thus, OPF problem is a continuous, albeit, non-convex
problem. Such discrete versus continuous nature between PSR and
OPF also gets magnified when we develop strategies to extract a
feasible PSR solution during each iteration of LR.

Our main contribution in this paper is to develop a decentralised
Lagrangian Relaxation mechanism to solve the PSR problem. A
key component that enables decentralisation of LR is the extraction
of optimal feasible PSR solution at each iteration of LR in a de-
centralised manner. Extracting optimal feasible PSR solution even
for a tree-structured network is NP-Hard. Fortunately, it is an easy
NP-Hard problem and we develop a decentralized fully polynomial
time approximation scheme (FPTAS) to find a near-optimal feasi-
ble PSR solution by exploiting its connections with the knapsack
problem. Our decentralised LR mechanism has multiple necessary
and important properties, especially in the context of solving the
multi agent PSR problem:
• We only use local message-passing among agents (each repre-

senting a different region) to extract near-optimal feasible PSR
solution, thereby enabling decentralised control.
• We are able to provide provable guarantees on solution quality.
• Due to iterative nature of LR, our approach has the desirable



anytime property.
• Our approach is significantly more scalable than previous

multi-agent approaches and can solve existing real-world
benchmarks near optimally with significant speedups and with
significantly low message-passing overhead.

Our decentralised LR approach for the multi agent PSR prob-
lem bears some similarity to distributed constraint optimization
(DCOP) approaches that partially centralize the optimization prob-
lem, such as the asynchronous partial overlay (APO) algorithm [10,
11]. A key difference in our work is that the sub-regions of a
power network remain fixed with the LR approach not requiring
any additional centralization, whereas the APO approach dynami-
cally changes the (partial) centralization while solving the underly-
ing DCOP problem. Furthermore, as highlighted in [9], a straight-
forward conversion of the PSR problem to a DCOP presents sev-
eral challenges. For example, the resulting DCOP has high arity
constraints to represent the flow conservation and the line capac-
ity requirement of the PSR problem. Furthermore, discretization
of the line capacity is also required to allow standard DCOP ap-
proaches to solve PSR problems. In contrast, the LR technique we
develop does not require any discretization, and results in a simple
distributed approach that works by passing messages among differ-
ent connected sub-regions of the smart grid.

We test our decentralised LR approach on real world and large
synthetic benchmarks [5, 9] and were able to show that our ap-
proach is significantly more scalable than previous multi-agent ap-
proaches while obtaining near optimal solutions. To show that our
approach is competitive with centralized solvers, we also compare
it against a highly efficient centralized math programming solver
CPLEX. We show that our approach can achieve near optimal so-
lutions, close to 90% optimality, within comparable runtimes as the
CPLEX.

2. MULTIAGENT PSR PROBLEM
We first describe the centralised PSR problem and then describe

the multi-region decomposition that results in multi agent PSR.
A power distribution system is a network of electric lines con-

nected by switching devices (SDs), and fed by circuit breakers
(CBs) [1]. Both SDs and CBs have two device positions: closed,
open. SDs are analogous to sinks (transformer stations) which con-
sume some power and forward the rest on other lines if closed.
Open SD stops power flow. Circuit breakers, which are analogous
to power sources with finite available power, feed the network when
closed. The positions of the devices are set such that the paths taken
by the power of each CB forms a tree called feeder tree, and no sink
is powered by more than one power line. In addition, Kirchhoff’s
law (or flow conservation) must hold for all devices and the cur-
rent load for any line must not exceed its capacity. The problem of
power supply restoration (PSR) is that of reconfiguring the network
(setting positions of devices) such that power supply is restored to
maximum possible affected sinks after one or more lines become
faulty. Note that in this work, we assume that faulty elements are
identified in the network and isolated to prevent feeding power to a
faulty line before the PSR task.

We view a power distribution network as a graph G = (V =
P ∪ S, E). Vertices represent power sources (CBs) pi ∈ P and
sinks (SDs) si ∈ S. Each power source has a finite amount |pi|
of power available. A sink si consumes |si| units of power. A
value vi, called sink weight, is also associated with a sink si to
denote the relative importance of the sink. Edges represent power
lines connecting sinks and power sources. Let L denote the power
capacity of a line. For ease of exposition, we assume it is the same

Figure 1: Multi-region decomposition of a power network using col-
ored relay nodes on the right

for each line. There is a positive ε > 0 line loss associated with
power flow across a line.

We now describe the multiagent PSR problem. Due to the
presence of underlying decomposition (due to de-regulation), we
have a region-based decomposition of the underlying graph G.
The vertices of the network G are partitioned into R regions:
V = ∪r∈RV r . Let Er denote the edge set such that both its
vertices lie in the region r. Intuitively, each region r is managed
by a different entity. Therefore, each region r represents an agent
in our multiagent PSR problem. The edges in set E\∪r∈REr de-
note the cut edges that connect different regions. Power can flow
from one region to another region via these cut edges. Analogously,
only agents that share cut edges can communicate with each other
along such edges, resulting in a multiagent system representation of
a power network.

Relay Nodes: Our approach to solve the multiagent PSR via
message-passing along the cut edges is to view each network re-
gion as a separate sub-network per agent. Intuitively, cut edges
are the complicating edges that connect two different regions. It
is not clear whose agent’s sub-network they belong to. To make
separation among regions clear and exploitable by optimization al-
gorithms later, we introduce the notion of relay nodes. A pair of
relay nodes are defined for each cut edge (ur, vr

′
) connecting re-

gions r and r′. One relay node cr belongs to the region r and
the second relay node cr

′
belongs to region r′. We then remove

the cut edge (ur, vr
′
) from the graph G, and create two new relay

edges (ur, cr) and (cr
′
, vr

′
). Figure 1 describes such a process of

decomposing the original networkG into multiple independent net-
works Gr , one for each region r ∈ R. Relay nodes can consume
any amount of power that comes in, and also act as power source
with infinite supply. Even though we have partitioned the original
network G into independent regions, flow conservation constraints
for relay nodes still logically connect the whole network together.
Intuitively, the total incoming power for a relay node cr in region r
must be equal to the total outgoing power for its paired relay node
cr

′
in region r′.

In the next section, we provide a mixed-integer linear program
(MILP) to solve PSR for a network decomposed into multiple re-
gions using relay nodes. Naturally, this approach is not a decentral-
ized approach. However, using the technique of Lagrangian relax-
ation (LR) [2], we relax the flow conservation constraints for relay
nodes. We then show that the resulting dual problem can solved
independently for each region r via local message-passing along
the cut edges. Thus, introducing the idea of relay nodes in a global
network divided into multiple regions leads to a decentralized al-
gorithm within the LR framework.



3. DUAL DECOMPOSITION FOR
MULTIAGENT PSR

Variable Definition
xri xri = 1 indicates that sink si in region r

consumes |si| units of power
xrij xrij = 1 indicates that power flows from node i

to j in region r
drij Power flow between nodes i and j in region r
Sr Set of sinks in region r
Pr Set of power sources in region r
Cr Set of relay nodes in region r
Er Set of relay edges in region r
δrij Intermediate variable employed to linearize xrij · drij

Table 1: Notation
We first develop a MILP to solve the PSR problem for the de-

composed global network. We then show how to relax the com-
plicating constraints within this MILP such that the resulting dual
problem can be solved in a decentralized manner. Before we intro-
duce the MILP, we provide the notation employed in Table 1. Let
Cr denote the set of all relay nodes and Er denote the set of all re-
lay edges belonging to a region r. Each region r is then described
using the graph Gr=(V r∪Cr, Er∪Er). The node set V r consists
of sink set Sr and power source set Pr for the region r.

Table 2 shows the math program for finding the optimal solution
to the PSR problem. The objective of this program is to maximize
the total weight of nodes that are supplied power. Binary decision
variables xi are created for each sink and relay node for each region
(superscripts denote region). If xi = 1, then sink si consumes |si|
units of power. Binary variables xij are created for each edge in
the network for a region r. If xij = 1, it means that power flows
from node i to j. The continuous variable dij denotes the amount
of power flow along the directed edge (i, j). The constraints in
table 2 denote the following:
• Constraint 2 denotes that a sink is always switched off if there

is no incoming power flow, otherwise, it can be switched on.
• Constraint 3 denotes that a sink can receive power from at most

one of its neighbors. This is also a necessary constraint for
PSR. This also helps maintain the acyclicity of power flow.
• Constraint 4 is the capacity constraint for a line.
• Constraint 5 denotes flow conservation for sink nodes. For ev-

ery sink sj , total power inflow must be equal to the sum of
power consumed by it, the line loss ε for incoming power, and
the total power forwarded to other nodes.
• Constraint 6 denotes flow conservation for relay nodes. As

relay nodes are created in pairs, we use the terminology that
for every relay node c ∈ Cr in region r, its pair is denoted as
c′ ∈ Cr

′
in region r′1This flow constraint denotes that the total

incoming power into relay node c in region r should be equal
to the total outgoing power from c′ in region r′.
• Constraint 7 is the capacity constraint for all the power sources

across all regions pi ∈ P .The total outgoing power from a
power source should not exceed the power available to it.

Notice that the math program in table 2 is nonlinear due to
quadratic terms, such as xrij · drij in constraints. However, this
constraint can be linearized as the variables xrij are binary and the
1For ease of exposition, for every region r, we assume that there is
at most one connecting region r′. In general, there can be multiple
regions r′ that share a cut edge with r and we can use multiple flow
conservation constraints (6) to represent such connectivity.

Variables: xri ∀sri ∈Sr∪Cr;xrij , drij ∀(i, j)∈Er∪Er ∀r ∈ R
Minimize: −

∑
r∈R

∑
i∈Sr

xri · vri (1)

Subject to:

xrj ≤
∑

i∈V r∪Cr
xrij , ∀j ∈ Sr∪Cr,∀r (2)∑

i∈V r∪Cr
xrij ≤ 1 , ∀j ∈ Sr∪Cr, ∀r (3)

drij ≤ L ∀(i, j)∈Er∪Er, ∀r (4)∑
i∈V r∪Cr

(drij − ε) · xrij =
∑

l∈Sr∪Cr
drjl · xrjl + xrj · |srj |, ∀j ∈ Sr, ∀r

(5)∑
i∈V r

(dric − ε) · xric =
∑

j∈Sr′∪Cr′
dr

′
c′j · xr

′
c′j , ∀c ∈ Cr,∀r (6)

∑
j∈Sr∪Cr

drpj · xrpj ≤ |p| ,∀p ∈ Pr, ∀r (7)

drij ≥ 0 , xrij ∈ {0, 1} , xri ∈ {0, 1} (8)

Table 2: Nonlinear mathematical program for PSR

power flow drij is bounded. To linearize such quadratic terms, we
replace xrij · drij by a new variable δrij . The constraints (5), (6)
and (7) in the previous formulation are thus replaced with follow-
ing constraints (9), (10) and (11). To complete the linearization, we
also add a new constraint (12). The constant M is a large number.
Such constraints are also known as ‘big M’ constraints in the OR
literature.

∑
i∈V r∪Cr

δrij − ε · xrij =
∑

l∈Sr∪Cr
δrjl + xrj · |srj |, ∀j ∈ Sr, ∀r (9)

∑
i∈V r

δric − ε · xric =
∑

j∈Sr′∪Cr′
δr

′
c′j , ∀c ∈ Cr,∀r (10)

∑
j∈Sr∪Cr

δrpj ≤ |p| , ∀p ∈ Pr, ∀r (11)

δrij


≤ drij , ∀(i, j)∈Er∪Er, ∀r
≤M · xrij ∀(i, j)∈Er∪Er, ∀r
≥ drij + (xrij − 1) ·M, ∀(i, j)∈Er∪Er, ∀r

(12)

We refer to the program of table 2 with the above linearized con-
straints as the global MILP for PSR.

Model Extensions The basic model we presented in table 2 can
be extended in multiple ways to account for varying preferences of
power grid operators. For example, one can include linear terms in
the objective function that penalize switching of devices from their
previous positions to minimize the number of device switching op-
erations in the network. We used a simple approximation of the
line loss. In networks, where accurate modeling of line loss is re-
quired, a linear approximation of the line loss can be added to flow
equations [3, 17].

3.1 Relaxing Flow Conservation For
Relay Nodes

Notice that every constraint and variable in the global MIP is sep-
arable for each region r, except for the flow conservation constraint
for relay nodes (10). Therefore, if we are able to principally relax
this constraint, then our global MIP would decompose into inde-
pendent parts, one per region, which can be solved independently
of each other. This is indeed achievable by using the technique of
Lagrangian relaxation (LR) or dual decomposition [2].



We first provide a brief overview of the LR approach, more de-
tails can be found in [2, Chapter 6]. Consider the optimization
problem:

min f(x)

s.t x ∈ X, gj(x) ≤ 0, j = 1, . . . , p

The dual function q(·) and the Lagrangian L(·) of the above prob-
lem after dualizing all the constraints g are given as:

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{
f(x) + µ · g(x)

}
(13)

The dual solution q(µ) is a lower bound of optimal f?(x) for ev-
ery value of dual variables µ. The advantage while working with
the dual formulation of the original problem is that the structure
of the dual is often much simpler leading to computational gains.
Furthermore, the dual solution also provides a lower bound on
the original problem. In addition, the dual optimization problem,
maxµ:q(µ)>−∞ q(µ), is always concave, and can be solved opti-
mally using the projected subgradient method even in the case of
non-differentiable objective function [2].

We therefore relax or dualize the complicating flow conserva-
tion constraint (10) for all the relay nodes in each region. For
each complicating constraint, we create a dual variable λrc ∀c ∈
Cr, ∀r. This dual variable can be thought of as the cost of vi-
olating the flow conservation constraint. The dual decomposition
technique will try to find the ‘right’ cost such that violations of
the dualized constraints are minimal. The Lagrangian function,
L({xr, δr,dr},λ), (ignoring the line loss ε for ease of exposition)
is given as:

∑
r∈R,i∈Sr

−xri vri +
∑

r∈R,c∈Cr
λrc

(∑
j

δr
′

c
′
j
−
∑
i

δric

)
(14)

Upon rearranging the terms to highlight the separable structure of
Lagrangian further, we simplify the above to get:

∑
r∈R

{ ∑
i∈Sr

−xri vri +
∑
c∈Cr

∑
j

δrcj · λr
′

c
′ −

∑
i

δric · λrc

) (15)

Notice that in the above equation, nodes c and c′ are paired relay
nodes in region r and r′. Using the above equation, we get our dual
q(λ) as below:

∑
r∈R

min
xr,δr,dr

{∑
i∈Sr

−xri vri +
∑
c∈Cr

∑
j

δrcj · λr
′

c
′ −

∑
i

δric · λrc

)
(16)

Notice that the above dual function can be evaluated by solv-
ing the inner optimization problem independently for each region r
controlled by the corresponding agent. Thus, evaluating the dual is
substantially simplified, and follows the region-based decomposi-
tion of the global network G.

Practical Considerations The performance of the LR approach
w.r.t. the solution quality is affected by the number of constraints
that are being relaxed or dualized. In general, the optimal dual so-
lution q? may not be equal to the optimal primal solution p?. The
gap between these solutions (p? − q?), also called the duality gap,
can increase with higher number of relaxed constraints. Nonethe-
less, we show empirically that for several large instances, the LR
approach is able to provide good solution quality despite large num-
ber of dualized constraints. The degradation in the performance of
LR with increasing number of relaxed constraints is graceful.

3.2 Maximizing the Dual Function
As the dual function is a lower bound on the optimal primal op-

timal solution for every value of λ, we now address the problem
of optimizing dual: maxλ q(λ). We maximize the dual iteratively
by using the projected sub-gradient ascent technique [2]. Using the
sub-gradient information, the updated value of the dual variable
λr?c for the next iteration is:

λr?c =λrc + α

 ∑
j∈Sr′∪Cr′

δ̄r
′
c′j −

∑
i∈V r

δ̄ric

 ∀c ∈ Cr, ∀r (17)

where δ̄r
′
c′j and δ̄ric are the variable values obtained while solv-

ing the corresponding minimization problem in (16) for regions r′

and r respectively; c and c′ are paired relay nodes in regions r
and r′. The parameter α is the step parameter. Notice that such
an update of dual variables requires exchange of variable values
only across the cut edges of the global network among neighboring
agents. Thus, this step can be carried out in a distributed fashion.

The step size α is crucial to fast and accurate convergence of the
LR approach. There are a number of recommendations for setting
the step size in sub-gradient method. We use the following rule
which has theoretical justifications in [2]. The step size αi+1 for
the iteration i+ 1 is set based on quantities computed in iteration i
as follows:

αi+1 =
Primali −Duali

||∇qi||2 (18)

where Primali denotes the primal solution quality (or the solution
quality corresponding to a feasible solution satisfying all the power
network constraints) and Duali denotes the dual value q(λi) for
the current iteration i, and∇qi denotes the sub-gradient of the dual
function q. The sub-gradient w.r.t. a variable λrc is essentially the
quantity in square brackets in Eq. (17). Each quantity in Eq. (18)
is readily available except the primal solution corresponding to the
current iteration’s dual solution. Therefore, we need to extract a
good primal solution at each iteration, which also the imparts the
desirable anytime property to the LR approach. Thus, at each it-
eration, our approach provides a feasible reconfiguration plan cor-
responding to the primal solution and the quality bounds using the
dual solution q(λ).

3.3 Extraction of Feasible Primal Solution
At each iteration of our LR approach, we need to extract a good

quality feasible primal solution that satisfies all power network con-
straints from the current dual solution. It is challenging to extract a
feasible solution from the dual solution as flow conservation will
be violated for relay nodes. Our strategy is to first extract one
feeder tree for each power source in the global network. This can
be done in a distributed manner by locally inspecting the direction
and amount of power flow (xij , δij) for relay edges within each
region. Once we have such feeder trees extracted from the current
dual solution with a power source as root node, we attempt to de-
termine which nodes should be switched on or off such that total
sink weight of switched on nodes is maximized. Unfortunately, we
show below that even this problem is challenging.

PROPOSITION 1. Solving optimally the PSR problem is NP-
Hard even for tree-structured power networks.

PROOF. We reduce the well known 0/1 knapsack problem to a
tree-structured power network. Consider a generic 0/1 knapsack
problem with a set of m items, and two m tuples of positive in-
tegers, corresponding to values: 〈v1, v2, · · · , vm〉, and weights of
items: 〈w1, w2, · · · , wm〉. The goal is to identify the set of items



whose total weight is less than the given capacity W and it yields
the highest value.

For this 0/1 knapsack problem, we have an equivalent PSR prob-
lem with graph G = (P ∪ S, E) where.
• P = {p1}, where p1 has a finite supply W .
• S = {s1, s2, · · · , sm}, where si consumes wi units of power

and has a sink weight of vi.
• E = {(p1, s1), (s1, s2), (s2, s3), · · · , (sm−1, sm)} denotes a

chain network
We set the line capacity of each edge as W . Clearly, the above
reduction is a polynomial time. We have the following correspon-
dence between the optimal PSR solution for this chain and the
knapsack. If sink si consumes power (i.e., xi=1), then the item i is
included in the knapsack, otherwise not. Given that line and power
source capacity is W , total switched-on sink consumption will al-
ways be less than W . As we maximize

∑
i xivi for the power

network, this implies finding the best set of items to be included in
the knapsack. One can show that such an optimal PSR solution is
also optimal for knapsack, and vice-versa. Thus, PSR problem is
NP-Hard even for tree-structured networks.

Despite the above negative result, we exploit the fact that the
knapsack problem is an easy NP-Hard problem and admits a fully
polynomial time approximation scheme (FPTAS). Thus, our ap-
proach is to derive an FPTAS for optimal PSR in a tree-structured
problem. Furthermore, we also show that such a scheme can be
implemented using message-passing along the edges of the power
network making all the steps of our approach—evaluating the dual,
iteratively maximizing the dual and extracting a feasible solution—
distributed in nature.

3.3.1 Feeder Tree Extraction
We provide a sketch of the procedure to extract feeder trees from

the current dual solution. The first step for extracting a feeder tree
is to determine the direction of power flow for the cut edges. Notice
that for every edge (i, j) for any region that is not a cut edge, the
binary variable xij denotes the power flow direction. However,
while decomposing a power network into regions, a cut edge (u, v)
that connects two different regions r and r′ is being decomposed
into two relay edges (u, c) in region r and (c′, v) in region r′.

We now outline a simple procedure that determines the power
flow direction for a cut edge (u, v) based on inspecting the dual
solution (the δ variable) for the relay edges. Figure 2 visually shows
this procedure. Based on the dual solution for the relay edges (u, c)
and (c′, v), there are three cases possible. In the first case, positive
power flows from node u to node c, and from node c′ to node v. In
this case, we make the direction of flow from the node u to node v
for the cut edge. Notice that we are only inspecting the direction of
power flow. The amount of power may be inconsistent in the dual
solution. For e.g., one relay node may assume that it is forwarding
10 units of power to its paired node, and its paired node may assume
that it is receiving 20 units, leading to violation of flow conservation
constraints. Correcting such flow conservation violation is exactly
the main task for primal extraction.

For the other two cases (case 2 and case 3 in Figure 2), there is
no flow across the cut edge and its corresponding devices are set to
the open position. Once we have determined the direction of power
flow for each edge in the global power network, the only remaining
task is to extract a feeder tree corresponding to each power source.
This can be done easily as the direction of power flow provides the
parent-child relationship required for the tree construction. Further-
more, given the constraint that a node cannot receive power from
multiple incoming edges, there are going to be no cycles while ex-

Case 1: u vc c′

Case 2: u vc c′

u v
Cut edge

Case 3: u vc c′

u v
Cut edge

u v
Cut edge

Figure 2: Determining power flow for the cut edge (u, v) from the
dual solution for relay edges (u, c) in region r and (c′, v) in paired
region r′. Arrows denote power flow direction. A dotted line denotes
no power flow with corresponding devices being open.

tracting such trees. Notice also that we discard any tree and its
corresponding nodes where a relay node is the root. For e.g., case
3 in figure 2 denotes one such setting. Once we have such trees ex-
tracted, we develop a tree-based dynamic programming algorithm
that determines which sinks are switched on and off to maximize
the sink weight for each feeder tree.

3.3.2 Tree Based Dynamic Programming (TBDP)
Our scheme, called TBDP, provides an FPTAS for a tree-

structured PSR. It follows the high level architecture of [19] for
stochastic network design in ecology. Our approach is different on
multiple fronts due to different recurrence relationships than [19],
which are essential for deriving the FPTAS for PSR.

We are given a tree A = (V,E). The root of this tree is a power
source P with maximum supply p. We denote other nodes (total of
m) using i and js. Their sink consumption is si, value is vi. The
capacity of each line is L. We denote using π the policy that spec-
ifies which node should be switched on and thus, consume some
power, and forward the rest downstream. If a node is switched off,
it does not consume any power and forwards all power to its chil-
dren. The binary decision variable is π(i) indicating whether a sink
node is on or off. The total power consumed by the entire subtree
rooted at (and including) node i be t(i) =

∑
j∈Ti π(j)sj . For a

given policy π, the optimization problem to solve is:

max
π

∑
i

π(i)vi s.t. t(i) ≤ L ∀i ∈ V, t(P ) ≤ p (19)

Let zi(π) denote the total utility of the subtree Ti:

zi(π) =
∑
j∈Ti

π(j)vj

We first highlight a simple, yet important recurrence relation for
quantities z(·) that forms the basis of the FPTAS for PSR:

zi(π) = π(i)vi +
∑

j∈Ch(i)

zj(π), ∀i (20)

where Ch(i) is the set of children of i. Another key recurrence rela-
tionship is for the minimum power supply Ci(z) needed to produce
a utility of exactly z from the subtree Ti rooted at node i. Without
loss of generality, we assume that each node has at most two chil-
dren, otherwise, any tree with more than 2 children per node can
be reconfigured to a two-children tree by creating dummy nodes as
in [19].

Ci(z) = min
π(i)∈{0,1}

Ci,π(i)(z) (21)



Ci,π(i)(z) = min
0≤d≤z′i

π(i)si + Cj(d) + Ck(z′i − d) (22)

where z′i is z − π(i)vi; j and k are the two children of the node
i. We can also write a similar recurrence when node i is a leaf
node or has only one child (details omitted). The recurrence rela-
tionships (20) and (22) for the PSR problem form the basis of key
differences in our work from that of [19]. The above recurrences
can provide a pseudo-polynomial time dynamic programming ap-
proach for optimal PSR similar to the knapsack problem. However,
to develop an FPTAS, we need to discretize all the possible achiev-
able utilities z(π). We write a discretized version of Eq. (20) as:

ẑi(π) = Ki

⌊π(i)vi +
∑
j∈Ch(i) ẑj(π)

Ki

⌋
∀i (23)

where Ki is a constant provided as input. Using theoretical analy-
sis similar to [19], we can show that Ki=K=0.5 · β · (minj∈V vj)

provides an FPTAS, where β is an input parameter that determines
the optimally guarantee for the FPTAS. Once we have discretized
the set of all possible utility values using constant K, all that is re-
maining is to perform a bottom-up dynamic programming to solve
the problem (21) for each node in the feeder tree, and a final pol-
icy determining top-down phase on the feeder tree. These com-
putations can be performed by using message-passing and is again
distributed. We omit the details of such bottom-up and top down
pass of TBDP as it is similar to [19]. While doing the bottom-up
pass, we make sure that if Ci(z)> L, then we make it infeasible
as Ci(z) =∞ to respect line capacity constraint. Once the C(z)
values are computed at the root node, we choose the highest utility
z such thatC(z)≤p, the power capacity of the source. Using simi-
lar theoretical analysis provided in [19], our approach can provably
provide a solution within β fraction of the optimal with a worst-
case runtime guarantee ofO(m2/β2) givenm nodes in the tree. In
practice, TBDP was much faster than the worst-case time.

3.4 D2ADP Approach
D2ADP or dual decomposition based approximate dynamic pro-

gramming uses lagrangian dual decomposition along with dynamic
programming in a decentralized manner. The algorithm has four
major phases. The first phase involves the SolveRegion() function
that computes dual D over all regions by solving each region in-
dependently. The second phase involves the FeederTreeExtract()
function that extracts the feeder trees A to determine the parent-
child relationship between relay node pairs. We extract one feeder
tree for every power source, regardless of the regions. All trees
are disjoint (at most one incoming power line for a node) and may
contain nodes from different regions (via exchange of messages for
relay node pairs). The third phase employs the TBDP() function to
compute primal solution Ptree for every feeder tree using a bottom
up followed by a top down message passing scheme. The bottom
up message passing stage finds the best solution where every node
sends its reward information to it’s parent node. The top down
stage of TBDP is responsible for assignment of resources where
every power source chooses the best assignment configuration for
all nodes that passes down the tree. Finally, the price update phase
updates the price variables, λ using the price update rule Eq. (17).
This process is repeated until convergence which occurs when the
duality gap is less than a very small number, ε or when a specified
number of iterations is reached.

Space Complexity Analysis We provide the space complexity for
D2ADP since exchange of messages requires storage space. We
show that the space requirement of D2ADP is very small, even in
the worst case where the count and size of messages exchanged

Algorithm 1 D2ADP ALGORITHM

Initialization : λ0 ← 0
repeat
Dr,xr, δr ← SolveRegion(λ0,r, Region r), ∀r ∈ R
Ar,p ← FeederTreeExtract(xr, δr), ∀p ∈ Pr, ∀r
Ptree ← TBDP (Ar,p), ∀p ∈ Pr, ∀r
λr,?c = λrc + α

[∑
j δ̄

r′
c′j −

∑
i δ̄
r
ic

]
, ∀c ∈ Cr, ∀r

until Convergence
return P, x, δ

increase proportionally with the increase in number of cut edges
and total nodes respectively.

PROPOSITION 2. Total number of messages exchanged over
cut edges is O(Ec), where Ec is total number of cut edges.

PROOF. All inter-region message exchanges take place only
over cut edges. Every relay node obtained from cut edges requires
one message exchange for dual variables, one for determining
parent-child relationship in feeder tree and 2 for top-down/bottom-
up messages over feeder tree. Hence, total messages exchanged is
4Ec, i.e. O(Ec).

PROPOSITION 3. The maximum size of message exchanged
over cut edges isO(N/β), whereN denotes total number of nodes
and β is the FPTAS parameter.

PROOF. The maximum size of any message in D2ADP is dom-
inated by dynamic programming for primal extraction which re-
quires top-down and bottom-up message exchanges for feeder
trees. Let us consider the worst case where every node is a re-
gion and single power source is available with power lines having
infinite line capacity. Here, all nodes will be the part of a single
feeder tree where the discretized utilities for root node can be ob-
tained as {0Ki, 1Ki, ..., liKi} from Eq. (23). liKi provides the
upper bound for message size with li being an integer value given
by
⌈
zi(π)
Ki

⌉
. We further assume thatm ≤ vj ≤M, ∀j ∈ Ti. Then,

li =
⌈
zi(π)
Ki

⌉
≤
⌈
NM
Ki

⌉
= O

(
N
β

)

4. EXPERIMENTS
In this section, we perform experiments2 to compare D2ADP

with the dynamic programming based decentralized approach for
power supply restoration in the literature [9], referred to as PSR-
DPOP or DPOP for short. We also compare against the centralized
global MILP solved using CPLEX. Our goal in these experiments
is the following. We demonstrate that our approach, despite being
approximate in nature, can provide provably near-optimal solutions
for a range of problems. We also show the scalability of our ap-
proach on large synthetic benchmarks while providing good qual-
ity guarantees, close to 90% optimality. We further highlight the
anytime nature of our approach to provide good solutions quickly.

Real World Benchmarks We test on real world benchmarks rep-
resenting real world configurations of NESA, a power distribution
company in Denmark [5, 9]. We specifically take the two largest
configurations and decompose them into multiple regions. The
smaller of the two, ‘Large’ network, has 56 sinks, 66 lines and
2 power sources. We decompose this network into 7, 10 and 15

2All our experiments were performed on a 3.2GHz CPU with 4GB
RAM. All our optimization problems are run on CPLEX v12.5



Configuration Algorithm Time(s) Total(Kb) Max(Kb) Optimality
Large(56R) DPOP 54.5 36000.0 3900.0 100%
Large(7R) D2ADP 8.7 119.7 0.3 97.3%
Large(10R) D2ADP 6.0 149.4 0.3 92.9%
Large(15R) D2ADP 8.6 178.3 0.2 89.1%
Large(56R) D2ADP 17.8 639.7 0.3 87.8%
Complex(119R) DPOP – – – –
Complex(10R) D2ADP 15.0 219.5 0.5 91.7%
Complex(15R) D2ADP 14.8 239.3 0.4 88.4%
Complex(20R) D2ADP 15.5 272.9 0.4 78.3%
Complex(119R) D2ADP 41.0 1086.3 0.5 70.1%

Table 3: Real World Configurations. The quantities in (·) denote total
number of regions for the instance. ‘Total’ denotes the total size of
all the messages exchanged, ‘Max’ denotes the maximum message size
between any two agents.

underlying regions to test the scalability of our approach with in-
creasing regions. The PSR-DPOP approach of [9] cannot exploit
the region based decomposition of the power network, and con-
siders each node in the network to be controlled by a different
agent. Therefore, for fair comparisons against PSR-DPOP, we also
show results on the ‘Large’ benchmark with 56 regions (denoted as
‘Large(56R)’). The largest instance ‘Complex’ has 119 sinks, 146
lines and 3 power sources. We consider 10, 15 and 20 regions for
this case along with the extreme case in which every network node
is a separate agent. We run our approach, D2ADP for 100 itera-
tions. The PSR-DPOP is not an anytime approach, so we run it
with the maximum memory limited to 4GB.

Table 3 provides the comparisons against PSR-DPOP on real
world configurations, with respect to runtime, space requirements
(total and maximum message size), and solution quality. PSR-
DPOP was able to terminate and provide a solution only on the
‘Large’ configuration. As PSR-DPOP is agnostic to region based
decomposition of the network, the results for PSR-DPOP are ex-
actly the same for varying number of regions. As PSR-DPOP is
an optimal approach, it provided the optimal solution upon termi-
nation for ‘Large(56R)’. We can clearly see that our approach pro-
vides provably near-optimal solutions without the large message
overhead of the PSR-DPOP approach. The total message size and
the maximum size is significantly smaller for D2ADP.

For the largest ‘Complex’ instance, PSR-DPOP was unable to
provide any solution as its memory requirements are exponential
in the tree-width of the underlying network, which was about 40
for the ‘Complex’ instance. In contrast, our approach scales well
for this largest instance with varying number of regions. As high-
lighted earlier, the performance of the LR approach is adversely
affected by the increasing number of regions in the network as this
causes several constraints to be relaxed. Nonetheless, D2ADP’s
performance w.r.t. solution quality varied gracefully while increas-
ing the number of regions from 10 to 119. Notice that the instance
‘Complex(119R)’ represents the worst possible scenario for our ap-
proach as each network node is an agent, thereby relaxing the flow
conservation constraint for each edge. Despite this, our approach
is able to get a solution provably within 70% of the optimal. We
expect that in real networks, such an extreme case is unlikely to
occur as each region in a power network is typically composed of
multiple nodes.

Large Synthetic Benchmarks To further experiment with the
scalability, we created synthetic configurations based on the
‘Complex’ real-world configuration. We refer to them as ‘L-
Complex(<Number of regions>R)’. For example, a L-Complex
(2R) configuration refers to two layers of the complex configura-
tion connected through multiple randomly selected nodes. Each
layer forms a region controlled by an agent. The network within

Configuration Algorithm Time(s) Total(Kb) Max(Kb) Optimality
L-Complex(1R) DPOP – – – –
L-Complex(10R) D2ADP 247.2 910.7 5.4 88.0%
L-Complex(15R) D2ADP 389.4 1579.8 6.1 89.0%
L-Complex(20R) D2ADP 516.6 2231.1 7.0 86.7%
L-Complex(25R) D2ADP 540.0 2823.1 7.4 86.5%
L-Complex(30R) D2ADP 786.0 16858.9 8.9 86.4%

Table 4: Solution quality, runtime and message size results for syn-
thetic configurations

each layer is the same as ‘Complex’. Layers are arranged in a
3D fashion with each layer connected via inter-layer edges to the
layer above and below. Agents can only communicate via inter-
layer edges. The number of inter-layer edges was about 10% of
total edges (=14) in the ‘Complex’ network. Such a layered model
of construction helps conserve the network structure of real power
networks while increasing the scale with increasing number of lay-
ers. We consider instances with up to 30 layers. We consider each
region to be one layer in the synthetic configurations. For instance,
we use L-Complex(10R) to mean 10 layered ‘Complex’ configura-
tion with 10 regions or 10 agents.

We have generated 10 random instances, where sink-weights are
varied, for the synthetic configurations to ensure there is no spe-
cific dependence on sink weights. The capacity of power sources
was set such that it was necessary for power to flow from one layer
to another; one layer was severely deficient in total power, another
had excess power. Table 4 shows the results on such synthetic in-
stances. Even on such large and intricate instances, our decentral-
ized approach is able to get good solution quality. Furthermore,
the size of each individual message in our approach increases quite
moderately w.r.t. increasing number of regions. This is because the
messages only contain local information about the dual variables
and the sub-gradient information for each cut edge. Thus, our ap-
proach scales well with the network size and is able to provide good
quality solutions with limited message passing overhead.

Anytime Performance We next show solution quality results ob-
tained using D2ADP on the ‘Large’ and ‘Complex’ configurations
for different regions for each iteration. We show primal and dual
values for each instance as the number of iterations is increased.
Figure 3(a) provides the results on the ‘Large’ configuration. ‘7r-
p’ refers to the primal solution with 7 regions, ‘7r-d’ refers to the
dual solution with 7 regions, ‘15r-p’ is primal for 15 regions and
so on. We interpret the problem as a maximization problem with
dual always providing an upper bound. We can clearly see from
these results that our approach is able to provide good primal so-
lutions even in early iterations. Figure 3(b) provides the results on
the ‘Complex’ configuration with 10, 15 and 20 regions. Again,
we get good solution quality for 10 and 15 regions. As the number
of regions increased to 20, our approach had to relax and dualize
many constraints. That resulted in performance hit. We do note that
with 20 regions, each region has about 6 nodes. This represents a
very harsh partitioning of the network. Still our approach was able
to provide a decent solution quality.

The results for different L-Complex instances and configurations
are presented in Figures 3(c) and 3(d). 10r-p in this graph refers to
the primal quality for a 10 layered L-Complex configuration with
10 regions. We observe that as number of layers are increased, the
duality gap increases. However, even on multiple instances of dif-
ferent L-Complex configurations, we obtain strong quality guaran-
tees of around 85% or more of the optimal as shown in Figures 3(c)
and 3(d).

Comparison with centralized solver As shown in table 4, ex-
isting decentralised algorithms are unable to scale to L-Complex
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Figure 3: Duality gap for real datasets (figures a & b) & synthetic datasets(figures c & d) with varying regions:#r-p denotes #regions-
primal & #r-d denotes #regions-dual. All values are normalzied to 1

instances. Hence, we benchmark the run-time performance of
D2ADP with the Global MILP (GMILP) of Table 2. This is not
a fair comparison for our decentralized approach D2ADP which
solves the PSR problem using message passing, whereas the cen-
tralized solver has complete knowledge of the problem. Nonethe-
less, these results shed light on the effectiveness of our approach.
Figure 4 provides the time taken by D2ADP and GMILP for a
given quality bound for different multilayered networks. We ex-
periment with 10 random settings of sink-weights and compare
the time taken for an average of result. Despite being a decen-
tralized approach, D2ADP runtime is highly competitive with re-
spect to GMILP for a 85% quality bound. The best solution
quality achieved (in percentage of optimal) for the respective L-
Complex configuration by D2ADP is mentioned on top of bars in
figure 4(b). We show in figure 4(b) the time required by the GMILP
solver (CPLEX) to achieve the same quality bound as provided by
D2ADP. This table further highlights that our approach is highly
competitive to a strong centralized baseline. Thus, our key mes-
sage from these results is that our approach can provide similar
quality guarantees as a highly efficient centralized solver in a de-
centralized setting. In contrast, MILP solvers such as CPLEX are
unable to work in a decentralized setting.

Primal Extraction Finally, we experiment with different values of
constant K to obtain the right setting for TBDP. A key practical
issue with choosing K according to the formula 0.5β · (minj vj)
for a feeder tree is that such a value of K that provides the theoret-
ical guarantee for the FPTAS may be small, and unnecessarily lead
to large running time for primal extraction. As also highlighted
in [19], larger values of K can provide similar empirical perfor-
mance. Notice that in our case, the dual solution provides the upper
bound, which is not affected by the primal extraction part. The the-
oretical guarantee for primal extraction does not affect the overall
optimality gap for our approach.

We experiment on K values as small as .01 and as large as 1.
Figure 5(a) provides the time taken and Figure 5(b) provides the
solution quality obtained for different values of K on 3 different
problem instances. We can see that for smaller value of K, run-
time is significantly higher than for the larger K values. However,
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Figure 5: Time and Quality Variation w.r.t.K

figure 5(b) shows that the solution quality remains almost the same
for differentK values. Therefore, we choseK = 0.4 that provided
the right tradeoff between time taken and optimality.

5. CONCLUSION
In our work, we addressed the problem of power grid recon-

figuration after multiple line failures. We presented a number of
advances for the multiagent version of the PSR problem. We de-
veloped a novel and iterative dual decomposition based approach
that effectively utilized the underlying multi-region structure of the
power grid. We also addressed the challenging problem of extract-
ing a feasible solution providing anytime nature to our approach
by developing a provable approximation technique. Our approach
only requires local message-passing among different grid regions,
resulting in a distributed approach. Using the quality bounds pro-
vided by our approach, we showed that it can achieve near-optimal
solutions on a number of large real-world and synthetic bench-
marks. Our approach is faster and significantly more scalable than
the previous best multiagent approach for the PSR problem. We
also showed empirically that our approach was highly competitive
both in runtime and solution quality against a strong centralized
baseline CPLEX, while retaining all the benefits of a decentralized
approach.
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