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Efficient Collective Spatial Keyword Query
Processing on Road Networks

Yunjun Gao, Member, IEEE, Jingwen Zhao, Baihua Zheng, Member, IEEE, and Gang Chen

Abstract—The collective spatial keyword query (CSKQ), an im-
portant variant of spatial keyword queries, aims to find a set of the
objects that collectively cover users’ queried keywords, and those
objects are close to the query location and have small inter-object
distances. Existing works only focus on the CSKQ problem in
the Euclidean space, although we observe that, in many real-life
applications, the closeness of two spatial objects is measured by
their road network distance. Thus, existing methods cannot solve
the problem of network-based CSKQ efficiently. In this paper, we
study the problem of collective spatial keyword query processing
on road networks, where the objects are located on a predefined
road network. We first prove that this problem is NP-complete,
and then we propose two approximate algorithms with provable
approximation bounds and one exact algorithm, for supporting
CSKQ on road networks efficiently. Extensive experiments using
real datasets demonstrate the efficiency and accuracy of our pre-
sented algorithms.

Index Terms—Algorithm, collective, road network, spatial
keyword query.

I. INTRODUCTION

MOBILE social media with geo-location applications are
catching on fast and are bringing the technology to the

next level. The availability of both location information and rich
contents of textual information creates a large number of new
applications, such as recommender systems. The spatial key-
word query has received much attention from both industry and
research communities, due to the popularity of geo-positioning
technologies.

Collective spatial keyword query (CSKQ), which aims to
retrieve a set of the objects that collectively cover users’ queried
keywords with the minimum cost, has attracted lots of attention
from academia [4], [16]. Nonetheless, to the best of our knowl-
edge, existing efforts on CSKQ find the objects in the Euclidean
space, and thus, they cannot be directly applied to retrieve the
objects on the road network. In real life applications, Point
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Fig. 1. Example of CSKQ in Euclidean spaces and road networks respectively.
(a) POIs in a Euclidean space. (b) POIs on a road network. (c) POI description.

of Interests (POIs) are located on a predefined road network,
and the computation cost of the road network distance is much
higher than that in the Euclidean space. Therefore, it is critical
to handle this problem on road networks. In this paper, we
study a new form of CSKQ, namely, collective spatial keyword
queries on road networks (CSKQ on road networks). Given
a set of objects with each associated with a set of keywords,
a CSKQ on road network returns a set of the objects that
collectively cover queried keywords, with those objects being
close to a query location and meanwhile close to each other. An
example is shown in Fig. 1, where Fig. 1(a) and (b) depicts
eight objects in a Euclidean space and on a road network
respectively, with the keywords associated with each object
listed in Fig. 1(c). Given a query q having the query position
denoted by a triangle and the queried keywords set as t2 and
t5, the result set in the Euclidean space is {o2, o3}, which is
totally different from the result set {o5, o6} in the network
space. This is because the distance metrics utilized to evaluate
the proximity between objects in the Euclidean space and in the
network space are distinct, and the objects that are close in
the Euclidean space are not necessarily close to each other in
the road network.

CSKQ on road networks is useful in real life applications, es-
pecially in decision making and travel planning. As an example,
Hilton would like to attract more customers by promoting a
few hotel packages, e.g., the relaxing package includes five
days hotel stayed at Hilton, world-class shopping experiences,
memorable dining experiences, and unique garden spa experi-
ences within working distance. In this case, users’ need cannot
be satisfied by a single object, but a set of objects. As another
example, a conference organizer intends to impress the partici-
pants of the conference by offering various packages to satisfy

1524-9050 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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different participants’ needs, e.g., an economy package contains
a budget hotel and a few low-cost restaurants close to the con-
ference venue, and a luxurious package includes a five-star
hotel and a few high-end restaurants close to the conference
venue. It is also observed that the conference organizer should
find out a set of objects to meet various needs. Motivated by
these, we dedicate this paper to process CSKQ on road networks.

Existing efforts on CSKQ is Euclidean space based methods,
and they utilize a Euclidean space index (e.g., IR-tree) to store
the objects, which is not suitable for network based CSKQ.
The reason behind is that the Euclidean based methods have
to calculate all the distances among POIs and the distances
from the query point to the POIs, as well as the computation
cost (O(n log n)) of the road network distance is much higher
than that (O(1)) in the Euclidean space. In view of this, we
adopt a Connectivity-Clustered Access Method [22] (CCAM)
index to address our studied problem, and propose efficient
pruning strategies and algorithms based on the road network
to reduce the computation times of the road network distances.
As demonstrated in our extensive empirical study, they show
excellent performance.

In brief, the key contributions of this paper are threefold:

• We formally define the problem of CSKQ on road net-
works. With strict verification, we show that this problem
is NP-complete. There is, to our knowledge, no priori
work on the problem.

• We develop two approximate algorithms with proved
approximation bounds and one exact algorithm to support
CSKQ processing on road networks.

• We conduct comprehensive experiments on real datasets
to verify the accuracy and efficiency of our algorithms.

The rest of this paper is organized as follows. Section II
reviews related work. Section III formalizes our problem, and
presents the index structure employed to store the objects and
the road network. In Sections IV and V, we elaborate two
approximate algorithms and one exact algorithm, respectively.
Considerable experimental results and our findings are reported
in Section VI. Finally, Section VII concludes the paper with
some directions for future work.

II. RELATED WORK

In this section, we survey the existing work related to spatial
keyword search, including indexes and query models for spatial
keyword queries.

A. Spatial Keyword Indexes

Spatial keyword retrieval has been intensively studied in
recent years. In general, there are three types of spatial keyword
queries, including Boolean spatial keyword query, ranked spa-
tial keyword query, and Boolean range spatial keyword query.
Please refer to [1], [6] for comprehensive surveys. A Boolean
spatial keyword query finds the objects that contain all the
queried keywords, sorted by their distances (e.g., the Euclidean
distance) to a specified query object. To answer this query,
many efficient index structures have been developed in the

literature, e.g., spatial keyword index [5], information retrieval
R-tree [10], BR-tree [15], inverted linear quad-tree [33], and
spatial inverted index [23]. They tightly integrate spatial index
(e.g., R-tree) and textual indexing (e.g., bitmap). In these in-
dices, every entry in a tree node stores a keyword summary field
that concisely summarizes the keywords for the entry.

The ranked spatial keyword query is to rank the objects based
on some ranking functions that consider both the spatial prox-
imity from an object to a query point (evaluated by the distance)
and the textual similarity between the object and the queried
keywords. Representative indexes contain the IR-tree [14] and
inverted R-tree [9], [25], which augment an R-tree [11] with
inverted files, and the spatial inverted index [19] that maps
every keyword to an aR-tree. After a simple transformation,
these indices can also tackle Boolean spatial keyword retrieval.
In addition, the Boolean range spatial keyword query, where
the target is to retrieve all the objects that include the queried
keywords and meanwhile are located into a given query region,
is well studied in the literature [7], [8], [12], [21], [24].

It is worth noting that, all the approaches mentioned above
are unsuitable for CSKQ processing on road networks because
they focus on spatial keyword queries in Euclidean space
instead of road networks.

B. Query Models for Spatial Keyword Queries

Various forms of spatial keyword queries have also been
explored intensively [18], [28], [32]. A collective spatial key-
word query (CSKQ) [4], [16], [29], [31] finds a set of the
objects that collectively cover the queried keywords. Cao et al.
[4] consider two cost functions to handle this query, and
prove that both are NP-complete. They propose approximate
algorithms with provable approximation bounds, and exact
algorithms for two sub-problems. In [16], Long et al. present
the improved algorithms for such query, and also investigate a
new instantiation of the CSKQ.

Wu et al. [27] study continuously moving spatial keyword
retrieval, which finds the objects that can meet users’ spatio-
textual constraints, and guarantees that users have an exact
result at any time. Lu et al. [17] explore reverse spatial and
textual nearest neighbor search, in which the goal is to retrieve
all the objects that take a specified query object as one of their
k most spatio-textual similar objects. A spatial keyword query
on a road network [2], [20], [34] aims to find the objects based
on their spatio-textual similarity to the query object, and those
objects are located on the road network.

A joint spatial keyword query [26] explores the problem
of jointly processing multiple spatial keyword queries, and
employs the IR-tree and the WIBR-tree as the index structure.
A location-aware top-k prestige-based text retrieval [3] aims
to retrieve the k spatial web objects according to not only
the spatial-textual information but also the presence of nearby
objects relevant to the query.

Last but not least, there are still many variations of spatial key-
word queries, such as preference-based top-k spatial keyword
query [30], direction-aware spatial keyword search [13], to name
just a few. It is worth mentioning that, all the aforementioned
works are fundamentally different from our studied problem.
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TABLE I
SYMBOLS AND DESCRIPTION

Fig. 2. Example of a road network.

III. PRELIMINARIES

In this section, we first formalize the problem of collective
spatial keyword queries on road networks, and prove that it is
NP-complete. Then, we introduce a CCAM [22] index structure
employed in this paper as a disk-based index to store objects on
a specified road network. Table I summarizes the symbols used
frequently throughout the paper.

A. Problem Formulation

A road network is defined as an undirected weighted graph
G = (N,E,W ), where N is a set of vertices/nodes, E is a
set of edges, and W is a set of edge weights which represent
the length of the edges. A point of interest (POI) is an object
which contains both spatial and textual information. A spatial
description of a POI captures its location on the road network,
expressed in the form of tuple (ni, nj, dist). Here, ni and nj

denote the nodes of edge ei,j in which a POI is located on, and
dist refers to the distance from the POI to a node ni along the
edge ei,j . In this paper, we suppose i < j. If the shortest path
distance from a POI to the node is 0, then a node of the road
network may include a POI; otherwise it does not include one.
Given two objects m and n, the shortest path distance between
m and n is denoted as d(m,n). For instance, Fig. 2 shows an
example of a road network. Nodes are denoted by squares, POIs
are denoted by solid dots, and the digit next to a POI in an edge
ei,j represents the distance from the POI to ni. Take POI o1
in Fig. 2 as an example. The position of o1 can be denoted as
(n2, n3, 1.0), indicating that o1 lies on the edge e2,3, and it is
1.0 unit away from the node n2. The distance of the shortest
path from o1 to o6 is computed as d(o1, o6) = d(o1, n3) +
d(n3, n4) + d(n4, o6).

We then formally define the problem of collective spatial
keyword queries on road networks in Definition 1.

Definition 1 (CSKQ on Road Networks): Given a set D of
POIs and a query point q = {q.l, q.key} where q.l denotes a
query location, and q.key is a set of queried keywords, let ∪ V

represent the union of object sets with each V consisting of a set
of the objects that collectively cover the queried keywords, i.e.,
∀V ∈ ∪V, q.key ⊆ ∪o∈V o.key ∧ ∀ o ∈ V, q.key �⊂ ∪o′∈V −{o}
o′.key. A collective spatial keyword query on road networks
aims to find a set OPT of objects, such that OPT ∈ ∪V ∧
∀V ∈ ∪V −OPT,COST(OPT ) ≤ COST(V ) with function
COST( ) defined in Equation (1).1

COST(V ) = α×max
o∈V

d(q, o) + (1 − α)× max
o1,o2∈V

d(o1, o2)

(1)
�

In Equation (1), maxo∈V d(q, o) is the maximum network
distance from a query point q to any object in V , and
max01,02∈V d(o1, o2) is the maximum network distance be-
tween any two POIs in V . α(∈ [0, 1]) is a user specified
parameter that balances the relative importance between
maxo∈V d(q, o) and maxo1,o2∈V d(o1, o2). Intuitively, if users
prefer the objects in V that are close to each other, α is assigned
smaller than 0.5. In contrast, if users prefer the objects in
V that are close to the query location, α is assigned bigger
than 0.5. However, users may feel confused if we ask them
for the value of α when they issue a query. It could be more
intuitively to give a distance constraint (e.g., retrieve the POIs
that are within a maximum distance dmax) for the users. In this
case, we explain how the value of α should be chosen based
on the distance constraint dmax. Specifically, given a CSKQ
q, we first assign α = 0.5 and then find a set V of objects
for q. Its cost is COST(V ) = 0.5 ×maxo∈V d(q, o) + 0.5 ×
maxo1,o2∈V d(o1, o2) according to Definition 1. If users prefer
all the objects that are inside the maximum distance dmax, in
the extreme case, a set V ′ of objects is returned such that the
shortest path distances from all the objects in V ′ to q (namely,
maxo∈V ′ d(q, o)) are dmax, and the inter-object distance
(i.e., maxo1,o2∈V ′ d(o1, o2)) is 0. Hence, we have COST(V ′) =
α×maxo∈V ′ d(q, o) = α× dmax. If V ′ is a better choice than
V , we have COST(V ) > COST(V ′), i.e., COST(V ) > α×
dmax. Finally, we have α < COST(V )/dmax. In other words,
if users choose a value smaller than COST(V )/dmax for α, it is
guaranteed that our algorithms return the proper result for q.

Without loss of generality, in this paper, we give equal
weights to the two components as with [4], [16], indicating that
maxo∈V d(q, o) and maxo1,o2∈V d(o1, o2) are equally impor-
tant. Nonetheless, the proposed algorithms remain applicable
when α is enabled. Based on Definition 1, we prove that the
CSKQ on road networks is NP-complete in Lemma 1 below.

Lemma 1: The collective spatial keyword query on road
networks is NP-complete.

Proof: Consider the Boolean satisfiability (SAT) prob-
lem. The SAT problem is the problem of determining whether
there is an interpretation satisfying a given Boolean formula.
Consider a conjunction normal form (CNF) Φ = C1 ∧C2 ∧
· · · ∧ Ci ∧ · · · ∧ Cn. An instance of clause Ci can be denoted
as Ci = xi1 ∨−xi2 ∨ · · · ∨ −xij ∨ · · · ∨ xim, in which xij is a
variant of set {x1, x2, . . . , xm} denoted as a positive character,
and −xij is denoted by a negative character. The length of the

1COST( ) function is application-dependent, and it can vary accordingly to
serve different application needs.
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Fig. 3. The CCAM index structure on the road network shown in Fig. 4.

Fig. 4. A running example. (a) Road network and POIs. (b) The keywords of
objects.

clause Ci is denoted as m, meaning that Ci has m characters.
For any clause Ci, if there is a positive character xij , we say
Ci is satisfied. An SAT problem is actually the problem of deter-
mining whether there is an interpretation satisfying the CNF.

Next, we reduce the SAT problem to CSKQ on road net-
works. Each clause Ci is reduced to a queried keyword, and
xj is reduced to a POI o ∈ V . Thus, xij represents the i-th
keyword in the j-th object. In this case, a CNF can be denoted
as: q.key= (x11 ∨ −x12 ∨ x13 ∨ · · · ∨ x1m) ∧ (−x21 ∨ x22 ∨
x23 ∨ · · · ∨ x2m) ∧ · · · ∧ (xn1 ∨ xn2 ∨ xn3 ∨ · · · ∨ x1m), in-
dicating that the first keyword exists in o1, o3, . . . , om, the
second keyword exists in o2, o3, . . . , om, and so on. Hence,
there is a solution for the SAT problem that satisfies the CNF
if and only if there is a solution to our problem studied in this
paper. �

B. Index Structure

Although memory space becomes bigger and cheaper, we
still employ a disk-based CCAM index structure to store the
objects on road networks such that we can tackle the CSKQ
on road networks for larger datasets. The CCAM index struc-
ture is to group network nodes based on their connectivity
and distances, as proposed in [22]. Fig. 3 depicts a graphical
illustration of an adjacency file, and a points file along with the
index for our example road network is shown in Fig. 4. CCAM
index structure allows efficient access to the adjacency lists and
POIs that are stored in the adjacency file and the points file,
respectively. A B+-tree is employed to facilitate efficient access
to adjacency files.

All the POIs on the same edge form one group, and the points
file is used to collect and store POI groups. For every group, we

need to maintain the edge where the group of POIs are located
and the number of POIs. Subsequently, for each POI p on this
edge, we store p’s ID, p’s associated set of keywords, and the
distance from p to the node with smaller ID. A group of POIs
are preserved in ascending order of their offset distances to the
node having smaller ID. Given a node ni, all its adjacent nodes
form ni’s adjacency list. At the beginning of the adjacency list,
we maintain the total number of ni’s adjacent nodes. Then, for
every adjacent node nj , we store its ID, the edge distance bet-
ween nodesni andnj, and a pointer to its POI group in the points
file. If there is no POI on this edge, a NULL pointer is kept.

IV. APPROXIMATE ALGORITHMS

Recall that the CSKQ on road networks is NP-complete.
Thus, it is expected that the performance of an exact algorithm
might not be good, in terms of running time and I/O cost.
In light of this, we present two approximate algorithms with
guaranteed approximation errors in this section.

A. Network Expansion Based Algorithm

For a specified query object q = {q.l, q.key}, the main idea
of the network expansion based (NEB) algorithm is to find a set
of POIs that are close to the given query location q.l and cover
the queried keywords q.key. Algorithm 1 shows the pseudo-code
of NEB algorithm. NEB first locates the edgeei,j that q is located
(line 2). A min-priority queue U is utilized to keep tracks of
the edges that have been visited, and such edges are sorted in
ascending order of their distances to q. Whenever a POI o having
o.key ∩ q.key �= ∅ is retrieved, o is added to a result set V ,
and q.key is updated to (q.key − o.key) (lines 8–10). The
expansion proceeds until q.key is empty, meaning that all the
queried keywords have been fully covered by the POIs in
the result set V (line 11), and the approximate result set V is
returned (line 12). We proceed to illustrate an example to show
the procedure of NEB algorithm.

Algorithm 1 NEB Algorithm: NEB (C, q)

Input: a CCAM index structure C on a dataset D, a query
object q in the form of {q.l, q.key}

Output: an approximate result set V
1: V ← ∅

2: locate the edge ei,j that q is located on (assume q is closer
to ni)

3: U ← {(eq,i, eq,i.d), (eq,j , eq,j .d)} // edges in U are sorted
in ascending order of their distance to q.l

4: while not U .IsEmpty( ) do
5: ea,b ← U .dequeue( )
6: for each edge eb,c unvisited in the edge set E do
7: U.enqueue(eb,c, d(q, nc))
8: for each POI o on ea,b do
9: if q.key ∩ o.key �= ∅ then

10: V ← V ∪ {o} and q.key ← q.key − o.key
11: if q.key = ∅ then break
12: return V
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Example 1: In Fig. 4, we depict a road network and the
lengths of edges. Each rectangle represents a node, and every cir-
cle denotes the POI together with its keywords and the distance
to the node with smaller ID. Given a query object q located at
node n6 with queried keywords q.key = {t1, t2, t3}, the closest
POI to q.l is o1, which contains keyword t2. Thus, o1 is added to
V , and q.key is updated to {t1, t3}. The next nearest object is o2,
and q.key is updated to {t3}. Then, o3 is found, and q.key is up-
dated to ∅. Here, NEB algorithm stops with COST(V ) = 3.5 +
6.5 = 10. Finally, the approximate result set V = {o1, o2, o3}
is returned. �

Next, we prove thatCOST(V ) of the approximate result set V
returned by NEB algorithm is at most 3 times of COST(OPT ),
and the time complexity of NEB algorithm is O(|q.key| ·
log |E|), as stated in Lemma 2 and Lemma 3, respectively.

Lemma 2: The cost of the approximate result set V returned
by NEB algorithm is at most 3 times of the cost of the optimal
result set OPT , i.e., COST(V ) ≤ 3 × COST(OPT ).

Proof: Let d = maxo∈V d(q, o). For any two objects o1,
o2 ∈ V , the shortest path from o1 to q and the shortest path
from q to o2 form a path from o1 to o2 with the length bounded
by 2d. Consequently, we have maxo1,o2∈V d(o1, o2) ≤ 2d and
COST(V )=maxo∈V d(q, o)+ maxo1,o2∈V d(o1, o2) ≤ 3d. On
the other hand, we have COST(OPT ) ≥ d. This is because, if
COST(OPT ) = maxo∈OPT d(q, o)+ maxo1,o2∈OPT d(o1, o2)
is smaller than d, we havemaxo∈OPT d(q, o) < d, meaning that
NEB algorithm terminates before reaching a POI o with d(o,
q)=d, which contradicts with our assumption that d=maxo∈V
d(q, o). Thus, COST(V ) ≤ d + 2 × d ≤ 3 × COST(OPT )
holds. �

Lemma 3: The time complexity of NEB algorithm is
O(|q.key| · log |E|).

Proof: For every queried keyword t, NEB algorithm finds
the nearest POI containing t, and all those POIs form a result set
V . Since NEB algorithm expands the road network only once
and it utilizes a link list to store the edges of a road network, the
time complexity of NEB algorithm is O(|q.key| · log |E|). �

NEB minimizes the distances from a query location to
answer POIs. Nevertheless, it does not take into account the
proximity between POIs, and hence, maxo1,o2∈V d(o1, o2) in
Equation (1) might not be optimized. The intuition behind NEB
algorithm is that POIs that are close to the query location may
be close to each other as well.

B. Iterative NEB Based Algorithm

Without the consideration of the proximity of the objects in
V , NEB algorithm has a loose approximation bound. In this
section, we propose another approximate algorithm, namely,
iterative NEB based (INB) algorithm, which has a tighter
approximation bound. INB considers both the road network
distance from a query location to each object in V and the inter-
POI network distances between the objects in V .

The pseudo-code of INB algorithm is shown in Algorithm 2.
Given a query object q, INB first invokes NEB algorithm to
obtain an original result set V , and COST(V ) serves as the
initial minimal cost (lines 1–2). Let oe be a POI in V that
is the farthest to q, and keye be the set of queried keywords

exclusively contributed by oe, i.e., maxo∈V d(q, o) = d(oe, q)
and keye = oe.key ∩ (q.key − ∪o∈(V −oe)o.key) (lines 3–4).
Note that, based on NEB, POI oe is actually the closest object
to q that contains the set of queried keywords keye. INB then
issues a new query qe at the location of oe with original queried
keywords, i.e., qe.l = oe.l and qe.key = q.key. NEB is called
again to find the result set Ve for the new query qe, and the
cost of Ve is denoted as COST(Ve). If COST(Ve) < COST(V ),
Ve becomes the current best result set for the query object
q (lines 8–9). Then, the algorithm retrieves incrementally the
next nearest POI o′e to q.l with its keywords crossing keye. For
each such o′e, INB issues a new query q′e at o′e with q′e.l = o′e.l
and q′e.key = q.key, and uses NEB to find the approximate
result set V ′

e . It then compares V ′
e against V , and replaces V

with V ′
e if COST(V ′

e) < COST(V ) (lines 5–12). The above
process repeats until all the POIs o having o.key ∩ keye �= ∅

and d(o, q) < COST(V ) are evaluated. Finally, INB returns the
result set V (line 13).

Algorithm 2 INB Algorithm: INB (C, q)

Input: a CCAM index structure C on a dataset D, a query
object q in the form of {q.l, q.key}

Output: an approximate result set V
1: V ← NEB(C, q)
2: COST(V ) ← the cost of V
3: oe ← the furthest POI to q.l in V
4: keye ← oe.key ∩ q.key − ∪o.key (for all o(�= oe) ∈ V )
5: while d(q, oe) < COST(V ) do
6: qe.l ← oe.l and qe.key ← q.key
7: V e ← NEB(C, qe) and COST(Ve) ← the cost of Ve

8: if COST(Ve) < COST(V ) then
9: COST(V ) ← COST(Ve) and V ← Ve

10: if all the POIs o with o.key ∩ keye �= ∅ have been
evaluated then

11: break
12: else oe ← the next nearest POI o to q.l with o.key ∩

keye �= ∅

13: return V

Example 2: Recall that the query object q and the road net-
work in Example 1. {o1, o2, o3} is returned by NEB algorithm
as the initial result set V with oe = o3 and keye = {t3}. A new
query object qe is created at the position of o3, and NEB(C, qe)
is invoked. Ve = {o1, o2, o3} is returned, and COST(Ve) =
3.5 + 6.5 = 10. o6 is the next nearest POI to q.l containing key-
word t3, and thus, the next result set for q is Ve = {o5, o6, o10}
with COST(Ve) = 5.5 + 3 = 8.5. Result set V and COST(V )
are updated. In the next iteration, oe is updated to o4, and
{o4, o5, o7} is returned as Ve with COST(Ve) = 9 + 3.5 =
12.5. Then, o8 is retrieved as the next oe. Since d(q, o8) =
11 > COST(V ), the algorithm terminates. V = {o5, o6, o10} is
returned as the final query result. �

Next, we study the approximation bound of INB algorithm.
Lemma 4: For any two POIs, o1 and o2, if they both are con-

nected with a POI o, we have d(o1, o2) ≤ d(o1, o) + d(o, o2).
Proof: Obviously, if the shortest path from o1 to o2 pas-

ses o, we have: d(o1, o2) = d(o1, o) + d(o, o2). Otherwise, we
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have d(o1, o2) ≤ d(o1, o) + d(o, o2) according to the triangle
inequality. �

Lemma 5: Let V be the result set returned by NEB algorithm
with COST(V ). For any POI o ∈ D, if d(q, o) ≥ COST(V ), o
cannot contribute to OPT.

Proof: Assume, to the contrary, that o with d(q, o)≥
COST(V ) belongs to OPT, i.e., d(q, o) ≥ COST(V ) and o ∈
OPT . Then, we have COST(OPT ) > maxo′∈OPT d(q, o′) ≥
d(q, o) ≥ COST(V ), which contradicts the fact that COST
(OPT ) ≤ COST(V ). Consequently, our assumption is invalid,
and the proof completes. �

Based on Lemma 5, we can prune the objects with their
network distances to q no less than COST(V ), which offers
the theoretical explanation of the code depicted in line 5 of
Algorithm 2. It is also clear that COST(OPT ) ≤ COST(V ).
In the following, we prove the lower bound of COST(OPT ).

Lemma 6: Given a query object q and an approximate result
set V found by NEB algorithm, let oe be a POI in V that is the
farthest to q, and keye be the set of queried keywords exclu-
sively contributed by oe, i.e., keye ⊆ (q.key ∩ oe.key) ∧ ∀ o(�=
oe) ∈ V, o.key ∩ keye = ∅. Assume that oa is a POI in OPT
with oa.key ∩ keye �= ∅, and of is the furthest POI to oa in the
set Va that is returned by NEB(C, q(oa.l, q.key)). It holds that
COST(OPT ) ≥ d(q, oa) + d(oa, of ).

Proof: Obviously, d(q, oa) ≤ maxo∈OPT d(q, o), and it
refers to the lower bound of the maximum network distance
from q to any POI in OPT . Then, we explain why d(oa, of )
represents the lower bound of the inter-POI network distance
of OPT . Va is returned by NEB(C, q(oa.l, q.key)), and POI
of in Va must contain at least one exclusive queried keyword
tf , i.e., tf ∈q.key ∧ tf ⊆ of .key ∧ ∀ o(�=of ) ∈ V, tf �∈ o.key.
Based on NEB, POI of is the one closest to oa that has the key-
word tf . In other words, let object ob be the POI in OPT that
contains the queried keyword tf , and we have maxo1,o2∈OPT

d(o1, o2) ≥ d(oa, ob) ≥ d(oa, of ). As a result, d(oa, of ) is the
lower bound of the maximum inter-POI network distance.
Hence, COST(OPT ) ≥ d(q, oa) + d(oa, of ) holds, and the
proof completes. �

Next, we analyze the lower and upper bounds of COST(Ve).
Lemma 7: Given a query object q and an approximate

result set V found by NEB algorithm, let oe be the POI in
V that is the farthest to q, and keye be the set of queried
keywords exclusively contributed by oe, i.e., keye ⊆ q.key ∩
oe.key ∧ ∀ o(�= oe) ∈ V, o.key ∩ keye = ∅. Let Ve denote the
approximate result set retrieved by NEB when the query object
is located at the position of oe, and of be the furthest POI from
oe in Ve. It holds that:

d(q, oe) + d(oe, of ) ≤ COST(Ve) ≤ d(q, oe) + 3 × d(oe, of ).

Proof: We prove this inequation in two steps below:

(1) As d(q, oe) ≤ maxo∈Ve
d(q, o), it is the lower bound of

the maximum network distance from q to any POI in Ve,
and d(oe, of ) ≤ maxo1,o2∈Ve

d(o1, o2), and thus, it is the
lower bound of the maximum inter-POI network distance.
Hence, d(q, oe) + d(oe, of ) ≤ COST(Ve) holds.

(2) Since both of and oe are connected to q, we have d(q,
oe) + d(oe, of ) ≥ d(q, of ) according to Lemma 4. Simi-

larly, for any POI o in Ve, we have d(q, oe) + d(oe, o) ≥
d(q, o). Therefore, we have maxo∈Ve

d(q, o)≤d(q, oe)+
d(oe, o)≤d(q, oe)+d(oe, of ), indicating that d(q, oe)+
d(oe, of ) is the upper bound of the maximum network
distance from any POI in Ve to q. Also, we know that the
upper bound of inter-POI network distance is 2×d(oe, of ),
because of is the furthest POI from oe in the approximate
result set Ve returned by NEB when the query object is
located at the position of oe, i.e., maxo1,o2∈Ve

d(o1, o2) ≤
2×d(oe, of ). Consequently, COST(Ve)=maxo∈Ve

d(q,
o)+maxo1,o2∈Ve

d(o1, o2)≤d(q, oe)+d(oe, of )+2×d(oe,
of ) = d(q, oe) + 3 × d(oe, of ). The proof completes. �

We have proved the lower and upper bounds of both approxi-
mate result set and optimal result set. In the sequel, we show that
INB algorithm gives a 2-factor approximation for the CSKQ on
road networks.

Lemma 8: Given a query object q on a road network, let V be
the approximate result set returned by INB algorithm, and OPT
be the optimal result set, it is guaranteed that COST(V ) ≤ 2 ×
COST(OPT ).

Proof: Assume that V1 is the result set returned by NEB
algorithm. Let oe in V1 be the furthest POI to q, and keye the
set of exclusively queried keywords covered by oe, i.e., keye ⊆
q.key ∩ oe.key ∧ ∀ o(�= oe) ∈ V1, o.key ∩ keye = ∅. NEB al-
gorithm guarantees that oe is the nearest POI to q that con-
tains keywords set keye. Let Ve be the approximate result set
returned by NEB for the same query issued at the POI oe. In
addition, we assume that OPT is the optimal result set, and
V is the approximate result set for the query object q returned
by INB. Based on INB, we have COST(V ) ≤ COST(V1). On
the other hand, we are for sure that COST(V1) ≤ 3d with d =
maxo∈V1

d(q, o). Thus, we have COST(V ) ≤ COST(V1) ≤
3d(q, oe) as oe ∈ V1.

Based on Lemma 6, we are certainly that COST(OPT ) ≥
d(q, oa) + d(oa, of ), with oa the POI in OPT having oa.key ∩
keye �= ∅, and of the furthest POI to oa in Va returned by NEB
algorithm for the same query object issued at oa.

Based on what we present above, we have:

COST(V )

COST(OPT )
≤ 3d(q, oe)

d(q, oa) + d(oa, of )

= 2 +
3d(q, oe)− 2 (d(q, oa) + d(oa, of ))

d(q, oa) + d(oa, of )

(1) If 3d(q, oe) ≤ 2(d(q, oa) + d(oa, of )), then COST(V )/
COST(OPT ) ≤ 2.

(2) Otherwise, 3d(q, oe) > 2(d(q, oa) + d(oa, of )). Based
on NEB algorithm, it is guaranteed that the POI oe is the
closest POI to q containing keyword set keye, i.e., d(q,
oa) ≥ d(q, oe). In other words, 3d(q, oe) > 2(d(q, oa) +
d(oa, of )) → 3d(q, oa) ≥ 3d(q, oe)>2(d(q, oa) + d(oa,
of ))→d(q, oa)>2d(oa, of ). On the other hand, we know
thatd(q, oa)≤COST(OPT )≤COST(V ), and hence, it is
certainly that POI satisfies the condition listed in lines 10–
12 of Algorithm 2, and NEB is invoked for the query ob-
ject located at oa. Let Va denote the approximate result
set returned by NEB for the query object located at oa, and
thus, we have COST(OPT ) ≤ COST(V ) ≤ COST(Va).
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According to Lemma 7, we have COST(Va)≤d(q,
oa)+3d(oa, of ). Based on the above discussion, we have

COST(V )

COST(OPT )
≤ d(q, oa) + 3 × d(oa, of )

d(q, oa) + d(oa, of )

= 2 +
d(oa, of )− d(q, oa)

d(q, oa) + d(oa, of )

≤ 2 +
0.5 × d(q, oa)− d(q, oa)

d(q, oa) + d(oa, of )

= 2 − 0.5 × d(q, oa)

d(q, oa) + d(oa, of )
≤ 2

Therefore, the proof completes. �
INB algorithm gives a 2-factor approximation for the CSKQ

on road networks. Specifically, INB algorithm enhances NEB
algorithm by iterating NEB algorithm and obtaining multiple
approximate result sets. Among all the approximate result sets,
it returns the one with the smallest cost. Thus, the approximate
solution returned by INB algorithm is no worse than the one
returned by NEB algorithm. In addition, the time complexity of
INB algorithm is as follows.

Lemma 9: The time complexity of INB algorithm is O(|ot +
1| · |q.key| · log |E|).

Proof: Given a query object q and an approximate result
set V found by NEB, let oe be the POI in V that is the farthest
to q, and keye be the set of queried keywords exclusively
contributed by oe. Assume that there are |ot| POIs in the dataset
whose keyword sets are overlapped with keye. In the worst
case, the while-loop in INB algorithm (lines 5–12) has to be
executed |ot| times. Based on Lemma 3, we know that the time
complexity of NEB algorithm is O(|q.key| · log |E|). Hence,
the total cost of INB is O(|ot + 1| · |q.key| · log |E|), with 1 for
NEB called in line 2 of Algorithm 2. The proof completes. �

V. EXACT ALGORITHM

We have proved that the CSKQ on road networks is NP-
complete. Therefore, it is a challenge to develop an exact algo-
rithm. However, the time cost of exact algorithm is acceptable
when the queried keyword set is small (e.g., |q.key| = 3 or
|q.key| = 4), and it is desirable to find the optimal result set
in some applications. As a result, in this section, we propose an
exact algorithm, i.e., the sliding window (SW) algorithm, for
processing the CSKQ on road networks.

Before presenting SW algorithm, we first give a brute force
algorithm since it serves as the basis of SW. A brute-force
algorithm is to first retrieve the POIs that contain at least one
queried keyword, then consider all the combinations formed by
those POIs, and finally return the result set with the minimum
cost. To be more specific, in the first step, NEB algorithm is
called to find an approximate result set V , and COST(V ) serves
as the upper bound of COST(OPT ). A min-priority queue
Qtmp is used to maintain the POIs having the network distances
from the POIs to q are smaller than COST(V ) and meanwhile
their keywords overlap with the queried keywords, i.e., ∀ o ∈
Qtmp, d(o, q) < COST(V ) ∧ o.key ∩ q.key �= ∅. In addition,
we also maintain another auxiliary list set, i.e., L[ ], with

each list L[i] storing the POIs o in Qtmp whose keyword sets
include the i-th queried keyword, i.e.,∀ o ∈ L[i], q.key[i] ∈
o.key. Here, we use q.key[i] to refer to the i-th queried keyword
in q.key. A set V ′ = ∪i∈[1,|q.key|]oi with oi ∈ L[i] forms a
result set. We evaluate all possible V ′s and the one with the
smallest cost is guaranteed to be the optimal result. Assume that
there are |q.key| queried keywords, and for every queried key-
word, there are n POIs containing that keyword and meanwhile
having their network distances to q bounded by COST(V ).
Then, this brute-force algorithm needs to evaluate as many as
n|q.key| result sets. This also inspires us that we have to cut
down the value of n if we want to improve search performance,
since |q.key| is specified by the query. One efficient way to
reduce the value of n is to use a tighter bound COST(V ). Our
SW algorithm is motivated by this observation.

The basic idea of SW algorithm is that, the POIs in the
min-priority queue Qtmp are ordered based on their network
distances to q, and the adjacent POIs in Qtmp shall have similar
distances to q. According to this property, we assume that
these adjacent POIs might form a result set with few cost. SW
algorithm is to scan the POIs in Qtmp based on sliding windows
even though the size of sliding window in SW algorithm is not
fixed. The main objective is to find a result set V with relatively
small cost early in order to prune away all the POIs with their
distances to q larger than COST(V ). After checking all the
result sets formed by adjacent POIs in Qtmp, we evaluate the
remaining combinations like the brute-force algorithm does.
As demonstrated in our experimental evaluation (presented
in Section VI), SW algorithm can reduce the number of the
combinations evaluated.

Algorithm 3 shows the pseudo-code of SW algorithm. It first
initializes all the parameters (line 1). Qtmp is a min-priority
queue that keeps all the POIs that may contribute to the result
set, sorted in ascending order of their network distances to q.
L[ ] is a set of |q.key| lists, and each list L[i] maintains the set
of POIs in Qtmp whose keyword sets contain the i-th queried
keyword q.key[i]. Sk is a keyword set that is the union of the
keywords of all the POIs in current result set V ′. Parameters
start and end refer to the start and end positions of current
sliding window along the queue Qtmp, respectively. Parameter
flag is a Boolean indicator whose value decides whether the net-
work expansion shall be stopped. The algorithm then locates the
query object q on one edge ei,j , and inserts edge eq,i and edge
eq,j as initial edges into a queue U . U is a min-priority queue
that maintains the set of edges we are going to explore next
in order to expand the network (lines 2–3). Later, SW invokes
NEB algorithm to find an approximate result set V , and the cost
of V serves as the upper bound of COST(OPT ) (line 4). There-
after, SW employs a while-loop to perform sliding window
based scanning for the POIs maintained in Qtmp (lines 5–27).
It first checks whether the current sliding window has reached
the end of Qtmp via checking Qtmp[end]. If the end is reached
(i.e., Qtmp[end] = NULL), the network expansion is triggered
(lines 7–18). SW expands the network, and visits the edges
that have the distances to q shorter than COST(V ). If at least
one POI o having o.key overlapped with the queried keywords
is retrieved (i.e., q.key ∩ o.key �= ∅), the expansion can be
terminated (lines 13–15).
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Algorithm 3 Sliding Window algorithm: SW(C, q)

Input: a CCAM index structure C on a dataset D, a query
object q in the form of {q.l, q.key}

Output: an optimal result set OPT
1: Qtmp ← ∅, L[ ] ← ∅, Sk ← ∅, start ← 0, end ← 0,

flag ← false, V ′ ← ∅

2: locate the edge ei,j that q is located on(assume q is closer
to ni)

3: U ← {(eq,i, eq,i.d), (eq,j , eq,j.d)} // edges in U are sorted
in ascending order of their distances to q.l

4: V ← NEB(C, q) and COST(V ) ← the cost of V
5: while d(q, head(U)) < COST(V ) do
6: while q.key �⊂ Sk do
7: if Qtmp[end] = NULL then // network expansion
8: while U is not empty and flag is false do
9: ea,b ← U.dequeue()

10: if d(q, na)≥COST(V ) and d(q, nb) ≥ COST(V )
then break

11: for each unvisited edge eb,c that is adjacent to
edge ea,b do

12: U.enqueue(eb,c, d(q, nc))
13: for each POI o on ea,b do
14: if d(q, o) < COST(V ) and q.key ∩ o.key �= ∅

then
15: Qtmp.enqueue(o) and flag ← true
16: for each queried keyword ti in q.key do
17: if ti ∈ o.key then L[i].enqueue(o)
18: flag ← false
19: else // sliding window based POIs scanning
20: o ← Qtmp[end] and end ← end+ 1
21: if (q.key − Sk) ∩ o.key �= ∅ then
22: V ′ ← V ′ ∪ o and Sk ← o.key ∪ Sk

23: if q.key �⊂ Sk then continue
24: else if (COST(V ′)← the cost ofV ′) < COST(V )

then
25: COST(V ) ← COST(V ′) and V ← V ′

26: else break
27: start ← start+ 1, end ← start, Sk ← ∅, V ′ ← ∅

28: while not all the combinations are considered do
29: pick one POI from each L[t] to form one result set V ′

30: if the result set V ′ has not been considered then
31: if COST(V ′) < COST(V ) then
32: COST(V ) ← COST(V ′) and V ← V ′

33: OPT ← V
34: return OPT

Otherwise, the end of Qtmp is not yet reached, and SW
incrementally grows end to increase the size of current sliding
window (lines 19–26). Note that, initially, parameters start and
end both refer to the same element in Qtmp, and the size of the
sliding window is only one. Then, every time, when the algo-
rithm invokes the inner while-loop (lines 6–26) to increase end
value by 1, it also grows the size of the sliding window by 1.
This process proceeds until the POIs retrieved during the cur-
rent sliding window can cover all the queried keywords (i.e.,
q.key ⊆ Sk). It then verifies the current result set V ′, and

Fig. 5. The procedure of SW algorithm.

V ′ replaces the currently best result set V if COST(V ′) <
COST(V ) (lines 24–25). We re-start the above process by
trying a new sliding window started at position start+ 1 (line
27), and repeat the previous process.

After checking the adjacent POIs in Qtmp, we also need to
check other result sets in order to guarantee the accuracy of
SW algorithm. The algorithm picks one POI from each list in
L[ ] to form a result set V ′ that has not yet been evaluated, and
replaces currently best result set V if COST(V ′) < COST(V )
(lines 28–32). Here, we adopt an idea to reduce the times of
network expansion when computing the maximal road network
distances among objects. Specifically, for each object o ∈ L[i],
SW algorithm expands the road network at the location of o
until all the other objects o′ ∈ ∪j=1,2...|q.key|∧j �=iL[j] are vis-
ited. In this manner, SW algorithm maintains all the road
network distances between the objects in L[ ], and decreases the

times of network expansion from
∏|q.key|

j=1 L[j] to
∑|q.key|

j=1 L[j].
Finally, the result set OPT is returned (line 34), and it is
guaranteed to be the optimal solution since the algorithm has
evaluated all the possible result sets.

Example 3: We utilize an example to illustrate how SW
algorithm can support exact CSKQ processing on road net-
works. Assume that a query q is issued, as shown in Example 1.
SW first initializes all the parameters, locates q on node n6,
and invokes NEB algorithm to find an approximate result set
V (= {o1, o2, o3}) with COST(V ) = 10 serving as the upper
bound. Then, it starts the while-loop to gradually expand the
network and adds POIs to Qtmp. Fig. 5 depicts the contents
of Qtmp at different iterations, where we also label the start
and end positions of the sliding window for every iteration to
facilitate understanding.

Next, the algorithm retrieves the POIs that contain the que-
ried keywords and inserts them into Qtmp. As listed in the first
line in Fig. 5, the first result set is {o1, o2, o3} and COST(V ) =
10. As d(q, o3) = 3.5 < 10, SW continues. start points to the
next POI in Qtmp, and end points to o3. However, the queried
keywords are not covered by the keywords of the objects that lie
between start and end. Thus, the next nearest POIs, i.e. o6, o5,
o10, are inserted into Qtmp, and end points to o10. It is observed
that the keywords of the result set {o2, o3, o10} cover the que-
ried keywords, and COST(V ′)=5.5+9=14.5. The next result
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sets are {o3, o5, o10} with COST(V ′) = 5.5 + 9 = 14.5 and
{o6, o5, o10} with COST(V ′) = 5.5 + 3 = 8.5. Since 8.5 <
COST(V ), {o6, o5, o10} is updated as the current optimal result
set. In the following steps, we have the result set {o5, o10, o4}
with COST(V ′)=7+6.5=13.5, {o10, o9, o4}with COST(V ′)=
7 + 7 = 14, and {o9, o4} with COST(V ′) = 7 + 7 = 14. In the
next iteration, o7 is added to Qtmp. Nevertheless, d(q, o7)=
9 > 8.5, and hence, SW algorithm dequeues the last POI. It
divides Qtmp into L[i] such that L[keyword = t1] = {o2, o5,
o9}, L[keyword = t2] = {o1, o10, o9}, and L[keyword = t3] =
{o3, o6, o4}. SW algorithm computes the cost of the rest of the
combinations, e.g., {o2, o1, o3}, {o2, o1, o6}, and so on. Finally,
the SW algorithm chooses the set {o6, o9} as the optimal result
set with the smallest COST(OPT ) = 8. �

Compared with the aforementioned brute-force algorithm,
SW algorithm is expected to find a tighter upper bound earlier,
which helps to limit the portion of the network we have to ex-
plore and cut down the number of result sets we have to
evaluate. Also, it does not introduce any additional cost. How-
ever, due to the complexity of the query, it is inevitable to
conduct extensive search. Last but not least, we analyze the time
complexity of SW algorithm below.

Lemma 10: The time complexity of SW algorithm is
O(|D||q.key| · |E| log |E|).

Proof: In the worst case, the time complexity of SW
algorithm is O(|D||q.key| · |E| log |E|), which corresponds to
the size of the result set containing all possible qualified sets,
and thus, the proof completes. �

VI. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed algorithms in terms of both efficiency and accuracy. In
what follows, we first describe our experimental settings in
Section VI-A, and then, we present the experimental results
of our approximate algorithms NEB and INB and our exact
algorithm SW in Section VI-B.

A. Experimental Setup

We use three real road network datasets, namely, Cities of
California (CAL), Oldenburg (OL), and San Joaquin County
(TG), from the Digital Chart of the World Serve. CAL contains
21048 nodes and 21693 edges, OL consists of 6105 nodes and
7029 edges, and TG contains 18257 nodes and 18263 edges. We
then generate randomly the points of interest (POIs), i.e., 86772
POIs for CAL, 14058 POIs for OL, and 23875 POIs for TG.
Since each dataset contains both spatial and textual information,
we extract the textual information from every dataset to form
the vocabulary of that dataset. Vocabularies w.r.t. CAL, OL,
and TG have 64, 64, and 80 keywords, respectively. We assume
that each POI contains one to five keywords selected randomly
from the corresponding vocabulary, with the average number
of keywords per POI being 2.5. We fix the page size to 4096
bytes, and we assume that the server maintains a buffer having
200 pages with LRU being cache replacement policy.

We verify the performance of our proposed algorithms un-
der different number of queried keywords via considering the

TABLE II
NUMBER OF QUERIED KEYWORDS VS. NUMBER OF OBJECTS RETURNED

number of the objects returned by each query, query time, the
number of edge/node accesses, the number of page accesses,
and the accuracy of NEB and INB algorithms. All algorithms
are implemented in C++, and all experiments are conducted
on the PC with an Intel core 2 DUO 2.93 GHz and 4 GB RAM,
running Code::Blocks 12.11 under Linux operating system.
Note that, in each experiment, we report the average over
50 queries generated randomly.

B. Results on CSKQ Processing on Road Networks

First, we investigate the number of the objects returned
by every query when the number of queried keywords (i.e.,
|q.key|) varies. As depicted in Table II, the number of returned
objects grows with the increment of queried keywords. As the
number of queried keywords ascends from 3 to 6, the number
of objects returned changes in the range [3, 6], meaning that
one object only contains one queried keyword. Note that, the
proposed algorithms might find the objects that contain 2 or
more queried keywords, but those objects can not form a result
set with smaller COST(V ), and they are pruned away.

The next set of experiments is to verify the efficiency of the
approximate algorithms NEB and INB and the exact algorithm
SW for CSKQ processing on road networks, with respect to
various number of queried keywords. Fig. 6 plots the query time
(in seconds) when the number of queried keywords grows. It is
observed that, NEB algorithm is several orders of magnitude
faster than INB algorithm, and both of them are better than
SW algorithm, which is consistent with our expectation. The
reason is that for the approximate algorithm, NEB only needs
to evaluate one result set, while INB needs to evaluate multiple
result sets. For the exact algorithm, SW has to find all the pos-
sible result sets and choose the one with the smallest COST(V )
as the final answer. From the analysis in Section V, we know
that the number of possible result sets ascends exponentially
with the growth of queried keywords. Thus, SW algorithm takes
the most query time, and it is more sensitive to the number
of queried keywords. Another observation is that all the query
time of NEB, INB and SW algorithms increases as the number
of queried keywords grows. This is because, when the number
of queried keywords ascends, these algorithms need to retrieve
more objects to cover the queried keywords. It is worth noting
that these phenomena of the algorithms are all consistent with
their time complexities presented previously.

Then, we study the impact of the number of queried key-
words (i.e., |q.key|) on the number of edges or nodes expanded.
Fig. 7 illustrates the experimental results on three datasets.
As expected, for SW algorithm, the number of edges and
nodes expanded increases exponentially with the growth of the
number of keywords, while NEB and INB algorithms perform



478 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2016

Fig. 6. Number of queried keywords vs. query time. (a) CAL. (b) OL. (c) TG.

Fig. 7. Number of queried keywords vs. number of edges/nodes expanded. (a) CAL. (b) OL. (c) TG. (d) CAL. (e) EO. (f) TG.

Fig. 8. Number of queried keywords vs. number of page accesses. (a) CAL. (b) OL. (c) TG.

relatively stable. The reason is that, SW has to verify all the
combinations while NEB and INB only need to evaluate one
and part of all the possible result sets, respectively.

Next, we explore the influence of the number of queried
keywords on the number of page accesses, with experimental
results shown in Fig. 8. We can observe that INB and SW
algorithms access nearly the same number of pages. This is be-
cause, both INB and SW algorithms take the value of COST(V )
returned by NEB algorithm as an upper bound, and they ex-
pand the road network within this upper bound. Although SW
algorithm needs to evaluate all the possible result sets while
INB only needs to evaluate some of them, the page accesses
of the two algorithms are similar with each other since we
maintain a buffer to store the pages with LRU being cache re-
placement policy. It is also observed that NEB algorithm needs
the fewest page accesses because it expands the road networks
only once.

Finally, we inspect the accuracy of approximate algorithms.
Here, accuracy is defined as the ratio of COST(OPT ) to
COST(V ). As depicted in Fig. 9, both NEB and INB algorithms
achieve good accuracy, compared against the optimal result set
returned by SW algorithm. It is observed that, the accuracy
of NEB on CAL and OL grows with the growth of queried
keywords, whereas that on TG remains stable. The reason
is that NEB algorithm retrieves a set of the objects that are
close to the query location and cover the queried keywords.
Due to the randomness, the experimental results on TG are
different from those on CAL and OL. Another observation
is that INB algorithm is able to find more accurate result set
when the number of queried keywords increases. As mentioned
in Section IV, INB algorithm first expands the road network
within the distance of COST(V ) returned by NEB algorithm
to find a set of POIs oe. Then, it issues a new query qe at
every POI, and invokes NEB to find all the possible result sets.
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Fig. 9. Accuracy of NEB and INB algorithms. (a) CAL. (b) OL. (c) TG.

Among result sets, INB algorithm returns the one with the min-
imum value of COST(V ′). If the number of queried keywords
ascends, the value of COST(V ) grows, and INB algorithm
retrieves more POIs accordingly. Thus, INB algorithm calls
NEB algorithm more times and finally returns the result set
having the minimum value of COST(V ′). As a consequence,
the accuracy of INB algorithm becomes better as the number of
queried keywords grows.

VII. CONCLUSION

In this paper, we study the problem of collective spatial key-
word queries on road networks (i.e., CSKQ on road networks),
which retrieves a set of POIs that collectively cover the queried
keywords and have the lowest cost, measured by their shortest
path distances to a specified query position, and the inter-POI
distances between POIs in the set. With strict verification, we
prove that this problem is NP-complete. To address this, we
propose two approximate algorithms with provable approxima-
tion bounds and one exact algorithm for efficiently processing
CSKQ on road networks, and present their corresponding time
complexity. Finally, extensive experiments using real datasets
demonstrate the performance of our proposed algorithms. In
the future, we plan to develop more efficient algorithms for
answering CSKQ on road networks by using pre-computation.
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