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Abstract. Mining user behavior patterns in social networks is of great
importance in user behavior analysis, targeted marketing, churn predic-
tion and other applications. However, less effort has been made to study
the evolution of user behavior in social communities. In particular, users
join and leave communities over time. How to automatically detect the
online community transitions of individual users is a research problem of
immense practical value yet with great technical challenges. In this pa-
per, we propose an algorithm based on the Minimum Description Length
(MDL) principle to trace the evolution of community transition of indi-
vidual users, adaptive to the noisy behavior. Experiments on real data
sets demonstrate the efficiency and effectiveness of our proposed method.

1 Introduction

Recent years have witnessed the growth of community detection as one of the ma-
jor directions in social network mining. A community can be defined as a group
of users sharing some common properties. As users migrate from a community
to another, communities could form and dissolve. As a result, social networks
in real life are highly dynamic with evolving communities. In this paper, we are
particularly interested in the discovery of community transition of individual
users in social networks. This study is important for understanding user be-
havior patterns, which can be used to support many real-life applications. For
example, in targeted marketing, users’ migration to another online community
often foretells the emergence of new interests and, accordingly, new opportunities
for marketing [1, 2]. Similar applications can also be found in churn prediction in
which the detection of community transition within a sliding window could indi-
cate a user’s potential service switch. Furthermore, the discovery of impending
migration is useful in social identity linkage across social networks [3].

Unfortunately, most of the existing methods on community mining assume
an underlying social network which is static [4–9]. Though there are some re-
cent studies to investigate the dynamics of social networks [10–13] and model
dynamic communities based on community structure, most of them do not ex-
amine user interaction, which is in fact one of the most important dynamics of a
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social network [14]. For instance, in a social network like Twitter, interactions of
tweeting and retweeting form conversations, which propagate information within
and across communities. In this paper, we define a sequence of individual inter-
action networks snapshots to model dynamic communities.

To the best of our knowledge, very few studies have been devoted to the
problem of discovering community transitions. The problem is challenging in
that (I) The transition between communities is, in general, an irregular and
infrequent event for an individual user, which adds an extra degree of difficulty
for detection due to the absence of regular patterns; and (II) A single observed
interaction may not substantiate a user’s immediate inclination. For example, the
chat with an insurance agent does not always indicate that the user is inclined
to buy insurance.

Fig. 1. The proposed framework

In summary, we make the following contributions in this work. We formalize
the problem of community transition discovery for social network users. A trajec-
tory is built to represent users’ community evolution. We propose an automatic
trajectory segmentation method based on the principle of Minimum Description
Length (MDL) [15], which frees our solution from user-defined parameters such
as the number of segments or the threshold to report a transition. Furthermore,
our method can detect transitions in a noisy environment by replacing the noise
with the underlying real observation. The framework of our method is illustrated
in Figure 1. The experiments demonstrate the efficiency and effectiveness of our
approach in discovering the community transition on real datasets.

The remainder of the paper is organized as follows. In Section 2, we define
the underlying interaction network, community evolutionary trajectory and tra-
jectory segmentation. Then we design an encoding scheme to determine a good
segmentation of the community evolutionary trajectory in Section 3. Section 4
presents the corresponding algorithms, and we report the experimental results in
Section 5. Section 6 reviews the related work and Section 7 concludes the paper.
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2 Problem Statement

In this section, we present the preliminaries and formulate the problem.
Consider a graph, G, consisting of a set, V (G), of |V (G)| nodes (|V (G)| ≥ 2)

and a set, E(G), of edges linking pairs of nodes, e(ui, uj) ∈ E(G) for ui, uj ∈
V (G). We term a graph G as an ego network if a node u0 ∈ V (G) satisfying for
any e(u0, ui) ∈ E(G), there exists ui ∈ V (G). Given a set Σ = {ς1, ς2, . . . , ςk} of
labels, a labeling function, L(V ) �→ Σ, maps nodes in G to labels in Σ.

Given such an underlying ego network G, we define aij as an interaction
between two users ui and uj, which is attached with a weight representing the
frequency of interactions between the two users. Such interactions, for example,
can be emails or replies.

Consider an ego network G which is evolving over time, we use G(t) to repre-
sent G at t-timestamp. Given a network snapshot G(t), we use a |V (t)| × |V (t)|
matrix to represent an interaction network I(t) = G(t), where an element a

(t)
ij

is a weight of the edge e(t)(ui, uj) ∈ E(G(t)) at timestamp t, and each user

ui ∈ V (G(t)) is associated with a set of labels Σ
(t)
ui .

In this paper, community is defined as the subgroup of users sharing the same
properties, then we group the users with a same label into a community. Given
a sequence of interaction network snapshots, i.e., I = {I(1), I(2), ..., I(t)}, the n(i)

communities detected at i-th snapshot are denoted byC(i) = {C(i)
1 , C

(i)
2 , ..., C

(i)
ni },

where C
(i)
j ∈ C(i) is a subgraph of I(i). The members V (C

(i)
j ) within C

(i)
j share a

same label, such as school, location, gender, thuswehave the label ofC
(i)
j ,L(C

(i)
j ) =

⋂
L(V (C

(i)
j )), L(C

(i)
j ) �= L(C

(i)
j′ ) for j �= j′. As a user that interacts more often

with a community hasmore to do with that community and therefore we introduce
the notion of dominant community which denotes the community with maximal
interactions.

Definition 1 (Dominant Community). The community which has the
maximal interactions with user u0 at i-timestamp is defined as the dominant
community D(i). We define the community activity to measure the frequency of
interactions, which is computed as the ratio of intra-community interactions to
the total number of interactions at i-timestamp, i.e.,

CA(C
(i)
j ) =

∑
um,un∈V (C

(i)
j )

a
(i)
mn

∑
um,un∈I(i) a

(i)
mn

, (1)

where the minimum is 0 indicating no interaction within this community,
while the maximum is 1 representing no interaction outside this community.

Tracking dominant communities along the sequence of interaction network
snapshots enables to discover valuable knowledge about the behavior evolution
regarding to communities in social network. To motivate this, we construct a
community evolutionary trajectory using the sequence of dominant communities.
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Definition 2 (Community Evolutionary Trajectory). A community evo-
lutionary trajectory of length t for user u0 is a sequence consisting of t dominant
communities, i.e.,

T := {L1, L2, ..., Lt}, (2)

where each trajectory element Li is the label of the dominant community D(i).

There are two reasons to construct the evolutionary trajectory using dominant
communities: 1) The communities within which the users interact frequently are
more important, which reveals stronger correlation between users and communi-
ties. 2) Community evolution trajectory provides an efficient method to study the
community evolution. Traditional algorithms with regard to community evolu-
tion problems are of high computational complexity. Tracking how communities
evolve over time based on sequence reduces the complexity by mapping complex
graph structure into a community label, which is more efficient, especially in
large social networks.

In order to track the evolution of communities transitions, we partition the
community trajectory into a finite set of segments, and each segment has the
maximal discriminating power. The goodness measurement of the segmentation
will be made precisely in the next section, which formulates our cost objective
function.

Definition 3 (Community Trajectory Partitions). For a trajectory T of
length t, Li with 0 < i ≤ t denotes its i-element. A trajectory segment is denoted
by Li...j for 0 < i ≤ j ≤ t. The set of consecutive communities which are
assigned into the p-th segment 1 ≤ p ≤ n is denoted by Tp. The partitions do
not overlap, in the sense that Tp

⋂
Tp′ = � for p �= p′. Given two consecutive

communities T1 = Li...j, T2 = Lj+1...k, the labels of two segments are denoted by
L(T1) = Li

⋃
...Lj, L(T2) = Lj+1

⋃
...Lk, respectively. We say that a community

transition has occurred if L(T1)
⋂
(T2)

L(T1)
⋃
(T2)

< ε, and we call j + 1 a change point.

Based on the above definition, the partition of a sequence can be regarded
as a 1-dimensional classificaiton problem, and the best partition is a set of ho-
mogeneous segments, within which there exists the communities with the same
label. We treat a community evolutionary trajectory as a sequence, an encod-
ing scheme is proposed to describe the sequence. As a perfect segment is the
repetitions of the same character, we can use fewer characters to describe the
sequence, which leads to a smaller encoding cost. According to the Minimal De-
scription Length (MDL) principle, the best encoding scheme is the one which
leads to the minimal encoding cost. The problem of finding a good partition can
be converted to the problem of determining a good encoding method. Thus, we
define the problem as follows:

The goal: Given a community evolutionary trajectory T , find the best par-
tition P (T ) by identifying a set of change points, which leads to the minimal
encoding cost.
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3 Methodology

To achieve the goal that finding the best partition with minimal encoding cost,
a lossless encoding scheme is introduced. Consider a lossless compressor that
output s′ from s, s′ can be seen as another description of s. If s′ is shorter
than s, then s′ is a better description than s, which gives a smaller encod-
ing cost. Given a community evolutionary trajectory, our target is to identify
a set of change points that leads to the optimal partition. The problem can
be rephrased as to pick up the unreasonable change points. The unreasonable
change points mainly consist of the noisy ones. For example, given a trajec-
tory T = NNNUNNNAUUUUUUU , the first occurring “U” and “A” can
be considered as such noisy change points, and the optimal partition should
be {{NNNUNNNA}, {UUUUUUU}}. Under the MDL principle, we design a
cost objective function with two parts, the first one is the cost to encode the
optimal segmentation, and the second is the cost to identify the unreasonable
change points.

3.1 Segment Encoding

We start by converting the trajectory into a sequence whose elements are nu-
merical characters. Let Num be the function that maps each community la-
bel to a numerical character Li �→ Char(j). For example, given a trajectory
T = NNNNNSNNUUUU , and Num maps each label to a character as follows:
(S, 0), (N, 1), (U, 2), so that we have the corresponding sequence S = Num(T ) =
111110112222. After converting the trajectory, we introduce how to encode the
trajectory segments.

As our goal is to decompose the trajectory into best segments, each segment
can be seen as a repetition of some characters. For example, given an input
sequence: S = 111110112222, our encoding schema partitions this sequence into
five consecutive segments: P (S) = {{11111}, {0}, {11}, {2222}}. A segment can
be encoded into two fields, encoding the repeating character symbol into one
field, and the length of the segment in the other:

– CharSp(j): the repeating character of segment Sp,
– Len(Sp): the length of segment Sp.

Note that, CharSp(j) and Len(Sp) is constant, which has no effect on the final
segmentation. To facilitate the encoding, we define the entropy for a sequence
under a partition Sp as

E(S) = −
∑

x∈S

p(x) log p(x), (3)

where x is the element in S, p(x) is the probability of x that appears in
S. E(S) measures how homogeneous the sequence is. The minimum of E(S) is
0 when all the elements are the same, and the maximum is log |S| when the
sequence is a pure random sequence. Thus, we obtain the segment encoding cost
as the follows:
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Definition 4 (Segments Encoding Cost)

CSp =
∑

SP

m+ E(S), (4)

where m is the number of bits needed to encode a segment. The cost is a sum of
encoding cost of all the segments.

3.2 Identifying the Unreasonable Change Points

Given a trajectory with a set of change points, the cost of identifying the change
point is heavily related to the occurrence frequency of the corresponding com-
munity. For instance, given a trajectory T = NNNUNNNAUUUUUUU , ob-
viously, the cost of identifying the time that “A” appears as an unreasonable
change point is much less than the one to identify the first time “U” appears,
as we need to consider eight candidate “U” in order to identify. Thus it leads
to more cost to substitute the community which occurs frequently in the trajec-
tory. It is also sound to interpret this with our problem statement, more penalty
should be given to treat a frequently occurring community as a noise. The encod-
ing scheme for a substitution is encoded in a way similar as a segment encoding,
which includes:

– SubSp(k, k′): the substitution of character k′ for k,
– PosSp(k): the position of character k in the sequence.

Similarly, the description complexity for substitution T is constant, which
is equal to the encoding cost of a segment. Thus, we obtain the substitution
encoding cost as the follows:

Definition 5
CSb =

∑

Sb

m, (5)

where m is the number of bits needed to encode a substitution. The cost is a sum
of encoding cost of all the substitutions.

Given a community evolutionary sequence S, our goal is to partition it into
a number of segments, and compress each segment which leads to a minimal
encoding cost. The total encoding cost is the sum of the segments encoding cost
and the cost of all the substitutions. We formulate the total encoding cost in the
following:

Definition 6 (Total Encoding Cost)

C =
∑

Sp

CSp +
∑

Sb

CSb , (6)

where CSp is the encoding cost of p-th partition, and CSb is the encoding cost of
b-th substitution.

In the next section, we present a search algorithm to find the optimal solution,
based on the cost objective function.
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4 Algorithm

In this section, based on the encoding scheme and cost function introduced in
section 3, an algorithm is introduced to find the optimal segmentation in the
presence of noise. Algorithm 1 is to find all the change points existing in the
trajectory. The change point is a point in the trajectory that is different from
the one located in the immediate left/right. The algorithm we apply to find
the optimal segmentation is basically to substitute some unreasonable change
points in order to find the optimal partition under the measurement of the cost
function. Algorithm 2 presents the approximate algorithm to achieve the target.
Basically, we use Depth-First Search (DFS) to search for the optimal partition
from the answer space. Procedure OP presents the search logic with one node in
the search tree. Given the current partition, OP constructs the change point sets
for both two directions, PL and PR. Then OP tries to substitute each of them
with the character which makes it distinguished, i.e., the substitution merges
one change point into the segment left or right to it. After the substitution, OP
computes the encoding cost of the new partition. If the encoding cost is smaller
than the value of the original partition passed to OP, OP is recursively called
with the new partition. Global value minCost and minString are used to store
the answer. They are kept updating during the whole search procedure, with the
minimal cost and its corresponding partition.

Algorithm 1. Find potential change
points (left)

1: procedure FCPL(S, P )
2: P ← �
3: cur ← S0

4: for i ← 1, |S| do
5: if cur �= Si then
6: cur = Si

7: P ← P
⋃
Si

8: end if
9: end for

10: end procedure

Algorithm 2. Find optimal partition

1: optimalStr = S
2: minCost = Cost(S)
3: procedure OP(S)
4: PL ← FCPL(S)
5: PR ← FCPR(S)
6: min = Cost(S)
7: for each p in PL(PR) do
8: p′ ← the point locates in

the immediate left(right) of p
9: S′ ← Substitute(S, p, p′)

10: cost = Cost(S′)
11: if cost � min then return
12: else
13: if cost < minCost

then
14: optimalStr = S′

15: minCost = cost
16: end if
17: OP(S′)
18: end if
19: end for
20: end procedure
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5 Experimental Results

In this section, we will evaluate our method on real, large social network datasets.
We perform the experiments on a PC with a Intel(R) Core(TM) i5-2300 2.80GHz
CPU and 12GB RAM and the algorithm is implemented with JAVA.

Table 1. The statistics of Renren dataset

Max Avg
Number of Communities/User 10 2
Number of Timestamps/User 1105 580

5.1 Dataset

We conduct our study on the Renren Network dataset1. Renren Network is a
leading social networking service in China, which is similar as Facebook. As Ren-
ren is one of the largest real name based social network in China, and Renren
user provides a list of education background in their profiles, thus we can ob-
serve the evolution of their communities through the observation of interactions
with different groups of friends along with the evolution of users’ identities. The
dataset consists of more than 16 million replies to 6,437 users’ status posts, and
the profile information of 690,926 unique users are involved in the dataset.

The interaction network snapshot I(t) is constructed from the observed reply
messages, each edge in the network corresponding to a reply between two users.
We use a window size of one day to construct the interaction network snapshots,
and then generate the community evolutionary trajectory based on the network
snapshots. The education and occupation information are chosen as the labels
of users, and each label is associated with a time period constraint. The users
with the same label are grouped into a community in each network snapshot,
the community with the maximal community activity is selected as the element
of the trajectory. The statistics of Renren dataset is shown in Table 1.

5.2 Effectiveness

In this subsection, we evaluate the effectiveness of our method for finding optimal
segmentation in the following two experiments.

In the first experiment, we match the reasonable change points identified by
our method with the ground truth provided by the labels in users’ profiles. More
specifically, we compute the smallest difference (day) between the results with
any change point in the ground truth. The variance of the results is reported in
Figure 2. We can observe that most dots locate in the left side, indicating our
method has a high accuracy. Many dots gather in the lower left corner, which
demonstrates our method can detect the transition happened in the latest two

1 www.renren.com
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Fig. 2. Variance distribution of the results

months. The dots in the right part present the cases of low accuracy, which could
be due to the delayed update or data missing of their profiles for some users.
The other reason is due to the short sequence generated from inactive users.
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Fig. 3. Comparison of accuracy with different tolerance windows

Secondly, we estimate our method under different tolerance window. The tol-
erance window is created by moving the change point on the left and right with
the distance of the tolerance value. Then we determine if any change point in
ground truth falls within that window. The comparison of the accuracy with
different tolerance from 7 to 105 days is listed in Figure 3. We can observe an
obvious increase of accuracy along with increase of the tolerance window. The
results show that our method can achieve 60%∼70% accuracy when the window
is smaller than 35 days, and the accuracy can reach to 75%∼87% when the size
of tolerance window is between 47 and 62 days. The results showed in Figure 3
is consist with what we observe in Figure 2.
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Furthermore, we display a comparison of the original trajectory and the tra-
jectory generated by our method in Figure 4. Figure 4(a) shows an example of
the original trajectory, each colour area corresponds to a segment of consecutive
identical dominant communities. A rough transformation of communities can be
observed in Figure 4 (a). Our method substitutes the noise observation with the
underlying real behavior, and nicely generates a set of segments representing a
community evolution as shown in Figure 4 (b): SchoolA → SchoolB → SchoolC.

Fig. 4. Comparison of the original trajectory (a) with the trajectory (b) generated by
our method

5.3 Scalability

We illustrate the running time for different number of snapshots in Figure 5. As
shown in Figure 5, the near linear run time complexity demonstrates the high
scalability of our method.

50
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0 300 600 900
timestamp

ru
nt
im

e

Fig. 5. Runtime (ms) vs number of timestamps (day)

6 Related Work

Several papers have studied on the community evolution in social networks. In
general, we consider three broad class of temporal analysis on online commu-
nities: 1) properties or phenomena of evolving community analysis, 2) stage of
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dynamic community identification, 3) dynamic community detection and the
community changes identification. In the first class work, Leskovec et al. [16]
discovered the shrinking diameter phenomena on time-evolving networks. In the
second class work, Palla et al. [17] quantifies the events in community evolu-
tion: growth, merging, birth, contraction, splitting and death. In the last class
work, Tang et al. [11] proposed a clustering algorithm to mine the evolution
of communities in social network with multiple entities. Aggarawal and Yu [18]
proposed a method to find community changes in dynamic graphs, which re-
quires user-specified parameters. Sun. et al. [19] and Ferlez at al. [20] proposed
a parameter-free framework to discover communities and community changes in
dynamic networks, relying on the MDL principle. Overall, all the above stud-
ies have a drawback that they cannot determine the evolution of users across
communities individually, they all track the evolution of the whole network.

7 Conclusions and Future Work

In this paper, we propose a parameter-free method to discover the community
transition for individual users in dynamic networks. We start by constructing a
trajectory to represent the evolution of communities, then a trajectory segmen-
tation approach is proposed to discover the best partition, based on the MDL
principle. Our method is automatic, which requires no user-specified parameters,
like the threshold of a transition and the number of segments. Furthermore, our
method is adaptive to distinguish between the noise and underlying true behav-
ior. The experiments on real dataset show that our method has a high accuracy
to find the community transitions, and our method is fast and scalable.

Our paper is a preliminary study on the detection of community transition,
which still needs a lot of improvements. First, we should improve the method by
incorporating all the communities evolved in the user’s interactions, and detect-
ing long-term transition and short-term transition. Second, we should enlarge
the experiment by evaluating our method on different datasets, and comparing
some state-of-art methods.
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velopment Authority (MDA) and the Pinnacle Lab at Singapore Management
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