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Abstract

A Bayesian test statistic is proposed to assess the model specification after the
model is estimated by Bayesian MCMC methods. The proposed approach does not
require an alternative model to be specified and is applicable to a variety of mod-
els, including latent variable models, structural dynamic choice models, and dynamics
stochastic general equilibrium (DSGE) models, for which frequentist methods are diffi -
cult to use. The properties of the test statistic are established and its implementation
is discussed. The test is easy to use and the test statistic can be calculated from
MCMC outputs even when there are latent variables. The method is illustrated using
a dynamic factor model, a DSGE model and a stochastic volatility model.

JEL classification: C11, C12, G12
Keywords: EM algorithm; Specification test; Latent variable models; Markov chain
Monte Carlo; Dynamic factor; DSGE; Stochastic volatility.

1 Introduction

Economic theory has long been used to justify a particular choice of econometric mod-

els. These so-called structural econometric models are often based on a set of economic

assumptions used to develop the underlying economic theory. When some of the assump-

tions are invalid, the corresponding structural econometric models may be misspecified. In

many cases, economic theory may not be available and the choice of econometric models
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School, Wuhan University, Wuhan, 430072, China. Jun Yu, School of Economics and Lee Kong Chian
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may be arbitrary. Consequently, models in a reduced form are used and reduced form

models are vulnerable to specification errors.

In general misspecification of econometric models can potentially lead to inconsistent

estimation, which in turn may have serious implications for statistical inferences such as

hypothesis testing and out-of-sample forecasting and for economic decision makings such

as policy recommendation and investment decision. Consequently and not surprisingly, a

considerable amount of strenuous effort has been devoted in econometrics to detect model

misspecification.

One strand of the literature on specification tests unifies under the m-test of Newey

(1985), Tauchen (1985) and White (1987). These tests include as a special case of the

Lagrangian multiplier (LM) test, the tests of Sargan (1958) and Hansen (1982), the tests

of Cox (1961, 1962), the Hausman (1978) test, the information matrix test of White

(1982), the conditional moment test of Newey (1985), the IOS test of Presnell and Boos

(2004). These tests are in the frequentist paradigm, typically requiring parameters in the

null hypothesis be estimated by the maximum likelihood (ML) method, or by generalized

method of moments (GMM).

Another strand of the literature is based on tests that rely on the distances between

nonparametric and parameter counterparts. The idea originated from the Kolmogorov-

Smirnov test or the closely related family such as the Cramer-von Mises and Andersen-

Darling tests. Examples in this case include Eubank and Spiegelman (1990), Wooldrige

(1992), Fan and Li (1996), Gozalo (1993), Zheng (2000), Aït-Sahalia (1996), and Hong

and Li (2005). All the tests in this category are also in the frequentist paradigm, but

requiring either a nonparametric estimate of a function or a nonparametric estimate of a

density (either a marginal density or a conditional density).

For many widely used models in economics, such as latent variable models, structural

dynamic choice models (Imai, Jain and Ching, 2009) and dynamic stochastic general

equilibrium models (DSGE), it is not easy to obtain the ML estimate or construct a

nonparametric estimate. In some cases, even when a frequentist method is available,

a Bayesian method is preferred as it can take into account of strong priors imposed by

researchers to shrink the unrestricted model towards a parsimonious specification. Typical

examples where researchers would like to impose strong priors include Bayesian VAR

models (Karlsson, 2015), DSGE models (An and Schorfheide, 2006), the estimation of

a large dimensional covariance matrix (Ledoit and Wolf, 2004). Not surprisingly, it is

diffi cult to apply any of the specification tests mentioned above. On the other hand,

there has been an increasing interest in using Bayesian methods to estimate econometric

models. With the advancement of the Markov chain Monte Carlo (MCMC) algorithms

and the rapid growth in computer capability, fitting models of increasing complexity has
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become easier and easier.

Given the increasing popularity of Bayesian MCMC methods in practical applications,

it is therefore natural to introduce a Bayesian test to assess the goodness-of-fit of candidate

models. Unfortunately, model specification test is a challenge task in the Bayesian para-

digm. Perhaps the most obvious Bayesian way to assess the goodness-of-fit of the model

is to compare the posterior model probability in consideration with that of a competing

model. This can be achieved by using, for example, Bayes factors (BFs), although BFs are

not free of problems. However, it is often not clear how to specify the alternative model

and empirical researchers may simply wish to know if the model she employs is adequate

or not after the model is estimated without worrying about any alternative model.

The question we ask in the present paper is, after the model is estimated by a Bayesian

approach, how we can assess the validity of the model specification. The main purpose

of this paper is to introduce a Bayesian approach to test model specification without

specifying an alternative model. The proposed Bayesian test statistic is the Bayesian

version of the IOSa test of Presnell and Boos (2004). Properties of our test statistic

are established. We show how to compute the test statistic from MCMC output when

there are latent variables in the model for which the likelihood function does not have a

closed-form expression. We also show how the Bayesian credible intervals can be used to

implement our method.

The paper is organized as follows. Section 2 briefly reviews the literature on the

specification tests. Section 3 proposes the new Bayesian test statistic and establishes the

properties of the proposed test. In Section 4, we discuss how to compute the test statistic

from the MCMC output for latent variable models. Section 5 illustrates the new method

using three real examples. Section 6 concludes the paper. Appendix collects the proof of

the theoretical results in the paper and derives the quantities that are needed to compute

the test statistic.

2 Specification Tests: A Literature Review

To begin, let y = (y1, . . . , yn) denote observed variables from a probability measure P0 on

the probability space (Ω, F, P0). Let model P be a collection of candidate models indexed

by parameters θ whose dimension is p. Denote P indexed by θ by Pθ. Following White

(1987), if there exists θ, such that P0 ∈ Pθ, we say the model P is correctly specified.

However, if for all θ, P0 /∈ Pθ, we say the model P is misspecified. We would like to test

the null hypothesis that the model in concern is correctly specified.

One of the earliest specification tests is based on the informative matrix equivalence
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due to White (1982). Let p(y|θ) denote the likelihood function of model P and

s(y,θ) := ∂ log p(y|θ)/∂θ, h(y,θ) := ∂2 log p(y|θ)/∂θ∂θ′,

H(θ) :=

∫
h(y,θ)p(y|θ)dy, J(θ) :=

∫
s(y,θ)s′(y,θ)p(y|θ)dy.

Under the null hypothesis that the model is correctly specified, it is well-known that

H(θ) + J(θ) = 0. Define

d(y,θ) := vech
[
h(y,θ) + s(y,θ)s′(y,θ)

]
,

where vech is the column-wise vectorization with the upper portion excluded. Hence,

d(y,θ) = (dk(y,θ)) is a q (= p(p+ 1)/2) dimensional vector. Let y = (y1, . . . , yn) denote

the iid observations and

Ĥ(θ̂) :=
1

n

n∑
t=1

h(yt, θ̂), Ĵ(θ̂) :=
1

n

n∑
t=1

s(yt, θ̂)s′(yt, θ̂),

where θ̂ is the maximum likelihood estimator (MLE) of θ. Let

Dn(θ̂) =
1

n

n∑
t=1

d(yt, θ̂),

Ḋn(θ̂) =
1

n

n∑
t=1

∂d(yt, θ̂)

∂θ
,

where Dn(θ̂) is a q-dimensional vector and Ḋn(θ̂) is a q×p matrix. White (1982) proposed
the following information matrix test

IMT = nDn(θ̂)V −1n (θ̂)Dn(θ̂), (1)

where Vn(θ̂) = 1
n

∑n
t=1

[
d(yt, θ̂)− Ḋn(θ̂)Ĥ−1(θ̂)s(yt, θ̂)

] [
d(yt, θ̂)− Ḋn(θ̂)Ĥ−1(θ̂)s(yt, θ̂)

]′
.

Under a set of regularity conditions, White (1982) showed that IMT
d→ χ2(q) under the

null hypothesis. White (1987) extended the method to cover dynamic models. Lancaster

(1984) pointed out that the covariance matrix of the information matrix test can be

estimated without computing the third derivatives of the density function analytically.

Dhaene and Hoorelbeke (2004) suggested using the bootstrap method to estimate the

covariance matrix. Moreover, it is well documented that the χ2 distribution can be a

poor approximation in finite sample so that the test statistic suffers from a serious size

distortion; see Orme (1990), Chesher and Spady (1991), Davidson and Mackinnon (1992),

Horowitz (1994). To improve the finite sample performance of IMT , Chesher and Spady

(1991) used the high-order Edgeworth expansion to obtain better critical values while

Horowitz (1994) advocated the use of bootstrap methods to obtain better critical values.
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To deal with the diffi culties associated with the information matrix test, Presnell and

Boos (2004) proposed an “in-and-out” likelihood ratio (IOS) test for models with iid

observations. Let θ̂(t) be the MLE of θ when the t-th observation, yt, is deleted from the

whole sample. From the predictive perspective, the single likelihood p
(
yt, θ̂(t)

)
can be

regarded as the predictive likelihood by the other observations. Presnell and Boos (2004)

defined the “in-and-out”likelihood ratio test as:

IOS = log

∏n
t=1 p(yt, θ̂)∏n

t=1 p
(
yt, θ̂(t)

) =
n∑
t=1

[
log p(yt|θ̂)− log p

(
yt, θ̂(t)

)]
,

and showed that the asymptotic form of IOS is

IOSa = tr
[
−Ĥ−1(θ̂)Ĵ(θ̂)

]
,

and IOS−IOSa = op(n
−1/2). Under the null hypothesis, IOSa

p→ tr
[
−H−1(θ0)J(θ0)

]
=

p. Under a set of regularity conditions, Presnell and Boos (2004) further showed that

both n1/2 (IOS − p) and n1/2 (IOSa − p) converge to a normal distribution under the null
hypothesis.

Note that IOSa is the same as the penalty term of the well-known information criterion,

TIC, proposed by Takeuchi (1976). When the dimension of θ is high, to compute IOSa, one

has to calculate the inverse of Ĥ(θ̂) which may be computationally demanding. Another

important feature of the IOS test is that it only deals with iid models. It is not clear how

to implement the IOS test when the iid assumption breaks down.

It is not necessary to base a specification test on maximum likelihood (ML) estimation.

Newey (1985) developed a class of specification tests based on a finite set of moment

conditions and the GMM estimator. Under some regularity conditions, the test statistic

of Newey follows asymptotically a χ2 distribution. It was shown that his test includes as

a special case of the tests of Hausman (1978) and Hansen (1982).

Specification of a stationary dynamic model implicitly implies a distributional assump-

tion for the marginal density and that for the conditional density. Not surprisingly, many

specification tests check the validity of these distributional assumptions based on the

Kolmogorov-Smirnov test or the closely related family such as the Cramer-von Mises and

Andersen-Darling tests. Examples include Zheng (2000), Andrews (1997), Corradi and

Swanson (2004), Aït-Sahalia (1996), and Hong and Li (2005). For example, Aït-Sahalia

(1996) compares the parametric marginal density implied by the assumed continuous time

model to the marginal density estimated nonparametrically. The nonparametric test of

Hong and Li (2005) is based on the transition density.

The literature is much less extensive on Bayesian specification tests although Bayesian

MCMC methods have been used more and more frequently for model estimation in prac-
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tice. A notable exception is the Bayesian χ2 test of Johnson (2004). Geweke and Mc-

Cauland (2001) outlines some essentials of Baysian specification analysis. In this paper

we propose a Bayesian specification test that is widely applicable and easy to implement.

3 A New Bayesian Approach for Specification Test

The problem concerned in this paper is to assess the specification of a candidate model

given that the model is estimated by MCMC without worrying about any competing

model. Before proposing the test, we need to introduce some notations. Let yt :=

(y1, . . . , yt), and

s(yt,θ) :=
∂ log p(yt|θ)

∂θ
, h(yt,θ) :=

∂2 log p(yt|θ)

∂θ∂θ′
,

st(θ) := s(yt,θ)− s(yt−1,θ), ht(θ) := h(yt,θ)− h(yt−1,θ),

Ĵ(θ) :=
1

n

n∑
t=1

st(θ)s′t(θ), Ĥ(θ) :=
1

n

n∑
t=1

ht(θ),

Ln(θ) := log p(θ|y), L(k)n (θ) := ∂k log p(θ|y)/∂θk.

In this paper, we assume that the following mild regularity conditions are satisfied.

Assumption 1: Let θ̂ is the posterior mode such that L(1)n (θ̂) = 0. For any ε > 0,

there exists an integer N1 and some δ > 0 such that for when n > N1 and θ ∈ H(θ̂, δ) =

{θ : ||θ − θ̂|| ≤ δ}, L(2)n (θ) is negative definite.

Assumption 2: The largest eigenvalue of [−L(2)n (θ̂)]−1 tends to zero as n→∞.
Assumption 3: For any ε > 0, there exists an integer N2 and some δ > 0 such that

for any n > max{N1, N2} and θ ∈ H(θ̂, δ) = {θ : ||θ − θ̂|| ≤ δ}, L(2)n (θ) satisfies the

following inequality

−A(ε) ≤ L(2)n (θ)L−(2)n (θ̂)− Ip ≤ A(ε),

where Ip is a p-dimensional identity matrix, A(ε) is a positive semidefinite symmetric

matrix whose largest eigenvalue goes to zero as ε → 0. A ≤ B means that Aij ≤ Bij for

all i, j.

Assumption 4: For any δ > 0, as n→∞,∫
Ω−H(θ̂,δ)

p(θ|y)dθ
p−→ 0,

where Ω is the support space of θ.

Assumption 5: Let g(y) be the true data generating process (DGP), and denote θ0
∈ Θ ⊂ Rp the pseudo-true value that minimizes the Kullback-Leibler (KL) loss between

the DGP and the parametric model,

θ0 = arg min
θ

∫
log

g(y)

p(y|θ)
g(y)dy.
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For any sequence kn → 0,

sup
||θ−θ0||<kn

n−1
n∑
i=1

||ht (θ)− ht (θ0) ||
p−→ 0.

Furthermore, it is assumed that

sup
||θ−θ0||<kn

[
sup
t≤n
||ht(θ)||

]
= op(n),

1
n

∑
||ht(θ0)|| = Op(1) and supt≤n n

−1/2||st(θ0)||
p−→ 0

Assumption 6: The prior p(θ) is Op(1).

Remark 3.1 The regularity conditions 1-4 have been used to develop the Bayesian large

sample theory; see, for example, Chen (1985), Kim (1994, 1998), Geweke (2005). Based

on these assumptions, Li et al. (2014) showed that,

θ̄ = E [θ|y] =

∫
p(θ|y)θdθ = θ̂ + op(n

−1/2),

V (θ̂) = −L−(2)n (θ̂) + op(n
−1),

where V (θ̃) = E
[
(θ − θ̃)(θ − θ̃)

′ |y
]

=
∫

(θ − θ̃)(θ − θ̃)
′
p(θ|y)dθ for any estimator θ̃.

Assumption 5 is fairly standard regularity conditions about the Hessians for misspecified

models; see Müller (2013).

The new Bayesian test statistic is defined as:

BIMT = n

∫
(θ − θ̄)′Ĵ(θ̄)(θ − θ̄)p(θ|y)dθ. (2)

Let g(θ) := n(θ− θ̄)′Ĵ(θ̄)(θ− θ̄) be the normalized distance measure between θ and θ̄

where the distance is in a quadratic form with Ĵ being the weighting matrix. Clearly, the

proposed test statistic is the posterior mean of g(θ). When the observed-data likelihood

function has a close-form expression, its first order derivatives should be easy to compute

and hence it is easy to compute BIMT from the MCMC output. When the observed-data

likelihood function does not have a close-form expression, we will discuss how to compute

BIMT from the MCMC output below. Let us first establish some properties of BIMT.

Theorem 3.1 Under Assumptions 1-6, we have

BIMT = IOSa + op(1).

Corollary 3.2 Under the null hypothesis that the model is correctly specified, as n→∞,
BIMT

p→ p where p is the dimension of parameter θ.
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Remark 3.2 According to Theorem 3.1, BIMT may be regarded as the Bayesian version

of IOSa of Presnell and Boos (2004). However, there are two important advantage in our

statistic over the IOSa test. The first is that there is no need to invert Î(θ̂). Inversion of

Î(θ̂) may be diffi cult when the dimension of θ̂ is high. The second is that our test is not

only applicable to the iid case but also to the dependent case.

The intuition why BIMT is asymptotically equivalent to IOSa is because E
[
n(θ − θ̄)(θ − θ̄)|y

]
=

−Ĥ−1(θ̂)+op(1). When the model is correctly specified, −Ĥ(θ0) = Ĵ(θ0) and BIMT
p→ p.

When the model is misspecified, it is expectd that −Ĥ(θ0) 6= Ĵ(θ0), and hence, BIMT

should be different from p.

To implement the BIMT test, threshold values are needed. Unfortunately, since it is a

challenge to obtain the finite sample distribution of BIMT in closed-form or the asymptotic

distribution of BIMT, obtaining critical values is diffi cult. A brute force method is to

get the threshold values based on Monte Carlo simulations. The detailed steps can be

summarized as follows:

Step 1: Set θ0 = θ̄, based on the model considered, we generate n random observations

from the candiate model, then run the MCMC simulations based on simulated data and

the candidate model.

Step 2: Based on the MCMC output, compute Ĵ
(
θ̄
(1)
)
and BIMT(1) = n

∫
(θ −

θ̄
(1)

)′Ĵ(θ̄
(1)

)(θ − θ̄(1))p(θ|y)dθ, where θ̄(1) is the posterior mean of θ calculated from the

MCMC output.

Step 3: Repeat Step 2 and Step 3 for anotherM simulated paths and obtain BIMT(m),

m = 1, . . . ,M .

Step 4: Based on
{
BIMT (m)

}
,m = 1, . . . ,M , we obtain the threshold values at

certain probability levels.

This brute force method fits the same model to simulated data by MCMC forM times

and hence is time-consuming. If the computing cost is not a concern, we recommend the

use of this method for obtaining the critical values. However, if the computational cost is

too high, we propose an alternative method to do the specification test based on BIMT.

To do so, we first obtain the asymptotic distribution of g(θ).

Theorem 3.3 Under Assumptions 1-6 and the null hypothesis, as n→∞, the posterior
distribution of g(θ) converges to χ2(p).

Remark 3.3 Since BIMT is the posterior mean of g(θ) that converges to χ2(p) under

the null hypothesis, at the significance level of α,1 we can get a Bayesian credible interval

from the asymptotic distribution χ2(p) such as [qα/2, q1−α/2] where qα/2 and q1−α/2 are

1The usual choice of significance level is 1%, 5% and 10%.
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the α/2 and 1 − α/2 quantitles of χ2(p).2 With the usual choice of significance level

(say 1%, 5% or 10%), under the null hypothesis, [qα/2, q1−α/2] includes p and, hence,

BMIT asymptotically. Therefore, if BIMT takes a value outside of [qα/2, q1−α/2], the model

under the null hypothesis must be misspecified. However, BIMT takes a value inside of

[qα/2, q1−α/2], no conclusion can be made.

4 Latent Variable Models

Given the wide range of applications of latent variable models, we now discuss how to

compute BIMT for latent variable models after they are estimated by MCMC. To introduce

a latent variable model, let y = (y1, . . . , yn) denote observed variables and z = (z1, . . . , zn)

denote latent variables. The model is given by{
yt = F (zt, ut,θ)
zt = G(zt−1, vt,θ)

. (3)

The first equation that relates yt to zt is the observation equation where ut is the error

term whose distribution is given. The second equation that determines the dynamic of

the latent variable is the state equation where vt is the error term whose distribution is

also given. When the distribution of ut and vt is Gaussian or the functional form of F

and G is linear, the model is referred to as the linear Gaussian state space model. When

the distribution of ut or vt is non-Gaussian or the functional form of F or G is nonlinear,

the model is often referred to as the nonlinear non-Gaussian state space model in the

literature.

Let p(y|θ) be the observed-data likelihood function, and p(y, z|θ) the complete-data

likelihood function. Obviously these two functions are related to each other by

p(y|θ) =

∫
p(y, z|θ)dz. (4)

The complete-data likelihood function p(y, z|θ) can be expressed as p(y|z,θ)p(z|θ). Usu-

ally analytical expressions for p(y|z,θ) and p(z|θ) are given by the specification of the

model. In particular, the observation equation gives the analytical expression for p(y|z,θ)

while the state equation gives the analytical expression for p(z|θ). However, in general

the integral in (4) does not have an analytical expression. Consequently, the statistical

inferences, such as estimation and hypothesis testing, are diffi cult to implement if they

are based on the ML approach. For linear Gaussian state space models, p(y|θ) and its

derivatives with respect to θ can be computed numerically by the Kalman filter. For

nonlinear non-Gaussian state space models, other methods are needed to compute p(y|θ)

and the derivatives.
2That is P (χ2(p) < qα/2) = α/2 and P (χ2(p) > q1−α/2) = α/2.
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The latent variables models can be effi ciently and easily estimated in the Bayesian

framework using MCMC techniques. Let p(θ) be the prior distribution of θ, and p(θ|y)

the posterior distribution of θ. The goal of the Bayesian inference is to obtain p(θ|y).

The data augmentation strategy of Tanner and Wong (1987), that expands the parameter

space with the latent variable z, is a Bayesian method that uses a MCMC algorithm

to generate random samples from the joint posterior distribution p(θ, z|y). Geweke et

al. (2011) reviews algorithms, examples and references for Bayesian estimation of latent

variable models.

To implement our test, we still need to calculate p(y|θ) and its derivatives with respect

to θ. It is important to point out that there is no need to optimize p(y|θ) in our test.

Since there is no analytical expression for the observed-data likelihood function for many

latent variable models, in this section, we show how to use the EM algorithm, the Kalman

filter, and the particle filters to calculate p(y|θ) and its derivatives with respect to θ.

4.0.1 Computing BIMT by the EM algorithm

The EM algorithm is a powerful tool to deal with latent variable models. Instead of

maximizing the observed-data likelihood function, the EM algorithm maximizes the so-

called Q function given by

Q(θ|θ(r)) = E
θ(r)
{Lc(y,z|θ)|y,θ(r)}, (5)

where Lc(y,z|θ) := p(y, z|θ) is the complete-data likelihood function. The Q-function
is the conditional expectation of Lc(y,z|θ) with respect to the conditional distribution

p(z|y,θ(r)) where θ(r) is a current fit of the parameter. The EM algorithm consists of

two steps: the expectation (E) step and the maximization (M) step. The E-step evaluates

Q(θ|θ(r)). The M-step determines a θ(r) that maximizes Q(θ|θ(r)). Under some mild
regularity conditions, for large enough r, {θ(r)} obtained from the EM algorithm is the

MLE, θ̂. For more details about the EM algorithm, see Dempster et al. (1977).

Although the EM algorithm is a good approach to dealing with latent variable models,

the numerical optimization in the M-step is often unstable. Not surprisingly, the EM algo-

rithm has been less popular to estimate latent variables models compared with the MCMC

techniques. However, we will show that, without using the numerical optimization in the

M-step, the theoretical properties of the EM algorithm can facilitate the computation of

the proposed test for latent variable models.

Since p(y|θ) and s(y,θ) are not analytically available for latent variable models, we

propose to use the EM algorithm to compute s(y,θ). For any θ and θ
∗
in Θ, it was shown
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in Dempster et al. (1977) that

s(y,θ) =
∂Lo(y,θ)

∂θ
=
∂Q(θ|θ∗)

∂θ
|θ=θ∗ = E(z|y,θ)

{
∂Lc(y,z,θ)

∂θ

}
=

∫
∂Lc(y,z,θ)

∂θ
p(z|y,θ)dz.

If the analytical form of the Q-function is available, we can replace the first derivatives of
the log-likelihood function log p(y|θ) with the first derivatives of the Q-function. A more
general approach to evaluating the Q-function is to use the following formula based on the
MCMC output:

s(y,θ) ≈ 1

M

M∑
m=1

{
∂ log p(y, z(m)|θ)

∂θ

}
,

where {z(m),m = 1, 2, . . . ,M} is a random sample simulated from the posterior distribu-

tion p(z|y,θ).

Although EM algorithm is a very general approach for analyzing latent variable models,

it is very cumbersome to deal with dynamic latent variable models, such as, state space

models. This is because we have to compute the s(y1:t,θ) recursively where the posterior

sampling has to be implemented for n times (Doucet and Shephard, 2012). As a result, it

is computationally demanding although some parallel computing techniques may be used.

Alternatively, one can compute s(y,θ) using the Kalman filter and the particle filters.

4.0.2 Computing BIMT by the Kalman filter

In economics, many time series models can be represented by a linear Gaussian state space

form. The Kalman filter is an effi cient recursive method for computing the optimal linear

forecasts in such models. It also gives the exact likelihood function of the model. Here,

we only present the basic idea of the Kalman filter for analyzing liner state space models.

One may refer to Harvey (1989) for the detailed textbook treatment.

Consider a general linear state space models,

zt = Tzt−1 +Rεt,

yt = D + Czt + ξt,

where εt ∼ N (0, Q), ξt ∼ N (0, H), T is ns×ns, R is ns×ne, D is n× 1, C is n×ns, Q is
ne × ne, H is n× n. These six coeffi cient matrices are functions of a vector of parameters
θ which is nq × 1.

Let ys = (y1, y2, . . . , ys), zst = E (zt|ys), Σs
t = E{(zt − zst ) (zt − zst )

′ |ys}. With the
initial conditions, z00 and Σ00, for t = 1, 2, . . . , n, the Kalman filter recursively implements

11



the following steps

zt−1t = Tzt−1t−1 ,

Σt−1
t = TΣt−1

t−1T
′ +RQR′,

and

ztt = zt−1t +Kt

(
yt −D − Czt−1t

)
,

Σt
t = [Ins −KtC] Σt−1

t ,

where

Kt = Σt−1
t C ′

[
CΣt−1

t C ′ +H
]−1

.

The observed-data log-likelihood is given by

log p(y|θ) = −
n∑
t=1

[
n

2
log 2π +

1

2
log |Ft|+

1

2

(
yt −D − Czt−1t

)′
F−1t

(
yt −D − Czt−1t

)]

= −
n∑
t=1

[
n

2
log 2π +

1

2
log |Ft|+

1

2
ω′tF

−1
t ωt

]
,

where Ft = CP t−1t C ′ + H, ωt = yt −D − Czt−1t . Clearly, log p(y|θ) has to be calculated

recursively since Ft and zt−1t are only available recursively. Similarly, st(θ) has to be

computed recursively. To calculate st(θ) and the first order derivatives of s(yt,θ), we

need to calculate the first order derivatives of |Ft|, ω′tF−1t ωt recursively. In Appendix 4,

we gives the expression of the relevant first order derivatives that are used to compute

BIMT.

4.0.3 Computing BIMT by particle filters

In practice, the phenomenon of non-Gaussianity or non-linearity is often found. Conse-

quently, the nonlinear non-Gausian state space models have been widely used in empirical

works. However, they cannot be analyzed using the Kalman filter. Instead, one can use

another recursive filtering algorithm known as particle filters. We only present the basic

idea of particle filters here and refer the reader to recent review papers on particle filter

by Doucet and Johansen (2009) and Creal (2012) for greater details.

Let zt+1|zt ∼ f (zt+1|zt,θ) and yt|zt ∼ g (yt|zt,θ). Let the initial density of z be µ (z|θ).

The joint density of
(
zt,yt

)
is

p
(
zt,yt|θ

)
= µ (z1|θ)

t∏
k=2

f (zk|zk−1,θ)
t∏

k=1

g (yk|zk,θ) ,

12



and hence

p
(
yt|θ

)
=

∫
p
(
zt,yt|θ

)
dzt.

For nonlinear and non-Gaussian state space models, neither p
(
zt|yt,θ

)
nor p

(
yt|θ

)
are

available in closed-form. The goal here is to calculate p
(
zt|yt,θ

)
, p
(
yt|θ

)
, and s(yt,θ)

sequentially for t = 1, . . . , n. The idea of the using particle filters is to approximate the

conditional probability distribution p
(
zt|yt,θ

)
dzt by its empirical measure. An example

of particle filters is the Sequential Important Sampling and Resampling (SISR) algorithm

which iterates the following step for i = 1, . . . , N ,

Step 1: At t = 1, z(i)1 ∼ µ (·) ,

w1

(
z1(i)

)
=
µ
(
z
(i)
1 |θ

)
g
(
y1|z(i)1 ,θ

)
q1

(
z
(i)
1

) , W
(i)
1 =

w1
(
z1(i)

)∑N
i=1w1

(
z1(i)

) ,
z1(i) = z

(i)
1 . Resample

(
W
(i)
1 , z1(i)

)
to obtain new particles

(
1
N , z̃

1(i)
)
.

Step 2: At t ≥ 2, z
(i)
t ∼ qn

(
·|z̃t−1(i)

)
,

wt

(
zt(i)

)
=
f
(
z
(i)
t |z̃

(i)
t−1,θ

)
g
(
yt|z̃(i)t ,θ

)
qt

(
z
(i)
t |z̃t−1(i)

) , W
(i)
t =

wt
(
zt(i)

)∑N
i=1wt

(
zt(i)

) ,
zt(i) =

(
z̃t−1(i), z

(i)
t

)
. Resample

(
W
(i)
t , zt(i)

)
to obtain new particles

(
1
N , z̃

t(i)
)
.

Step 3: Approximate the conditional distribution pθ
(
dzt|yt,θ

)
by its empirical mea-

sure

p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t δzt(i)

(
dzt
)
or p̃θ

(
dzt|yt,θ

)
=

1

N

N∑
i=1

δz̃t(i)
(
dzt
)
,

and

p̂
(
yt|yt−1,θ

)
=

1

N

N∑
i=1

wt

(
zt(i)

)
,

where N is the number of particles and qt (·|·) is the proposal density.
With the empirical measures

{
p̂
(
dzt|yt,θ

)}
t=1:n

, we can approximate the integral

It =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt,

by

Ît =

∫
ϕt
(
zt
)
p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t ϕt

(
zt(i)

)
,

for t = 1, · · · , n, where ϕt
(
zt
)
is the target function. If one chooses ϕt

(
zt
)

= ∂ log p
(
zt,yt|θ

)
/∂θ,

then it is easy to show that

13



s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt.

Therefore, s(yt,θ) can be obtained recursively.

Based on the different proposal density qt (·|·), different particle filtering algorithms
have been proposed in the literature, including the bootstrap particle filters of Gordon et

al. (1993) and the auxiliary particle filters of Pitt and Shephard (1999). In this paper,

we use the auxiliary particle filters to compute s(yt,θ) and the proposed test statistic.

Appendix 5 gives the details about how to compute s(yt,θ) using the particle filters.

5 Empirical Examples

We now illustrate the proposed test to do specification analysis in three real examples.

The first example is the well-known dynamic factor model. This is a linear state space

model and the Kalman filter can be used to compute the proposed test statistic. The

second is the linearized DSGE model. The third is the stochastic volatility model. This

is a nonlinear non-Gaussian state space model and we use the particle filters to compute

the test statistic.

5.1 A dynamic factor model

Stock and Watson (1992) developed a single-factor model to explain the comovements in

many macroeconomic variables for the purpose of building a coincident economic indica-

tor. Let Y1t, Y2t, Y3t, Y4t be the logarithmic industrial production, personal income less

transfer payments, total manufacturing and trade sales, and employees on nonagricultural

payrolls. Stock and Watson (1992) considered the following dynamic factor model in the

first difference form,

∆Yit = Di + γi∆Ct + eit, i = 1, 2, 3,

∆Y4t = D4 + γ40∆Ct + γ41∆Ct−1 + γ42∆Ct−2 + γ43∆Ct−3 + e4t,

(∆Ct − δ) = φ1 (∆Ct−1 − δ) + φ2 (∆Ct−2 − δ) + wt, wt
i.i.d.∼ N (0, 1) ,

eit = ψi1eit−1 + ψi2eit−2 + εit, εit
i.i.d.∼ N

(
0, σ2i

)
, i = 1, 2, 3, 4,

where ∆Ct is the common factor. To avoid the identification problem, the model in the

deviation form was considered,

∆yit = γi∆ct + eit, i = 1, 2, 3,

∆y4t = γ40∆ct + γ41∆ct−1 + γ42∆ct−2 + γ43∆ct−3 + e4t,

∆ct = φ1∆ct−1 + φ2∆ct−2 + wt, wt
i.i.d.∼ N (0, 1) ,

eit = ψi1eit−1 + ψi2eit−2 + εit, εit
i.i.d.∼ N

(
0, σ2i

)
, i = 1, 2, 3, 4,
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where ∆yit = Yit −∆Y i and ∆ct = ∆Ct − δ. Following Kim and Nelson (1999), a state

space representation of the model is given by


∆y1t
∆y2t
∆y3t
∆y4t

 =


γ1 0 0 0 1 0 0 0 0 0 0 0
γ2 0 0 0 0 0 1 0 0 0 0 0
γ3 0 0 0 0 0 0 0 1 0 0 0
γ40 0 0 0 0 0 0 0 0 0 1 0





∆ct
∆ct−1
∆ct−2
∆ct−3
e1t
e1t−1
e2t
e2t−1
e3t
e3t−1
e4t
e4t−1



,

and

∆ct
∆ct−1
∆ct−2
∆ct−3
e1t
e1t−1
e2t
e2t−1
e3t
e3t−1
e4t
e4t−1



=



φ1 φ2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 ψ11 ψ12 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 ψ21 ψ22 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 ψ31 ψ32 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 ψ41 ψ42
0 0 0 0 0 0 0 0 0 0 1 0





∆ct
∆ct−1
∆ct−2
∆ct−3
e1t
e1t−1
e2t
e2t−1
e3t
e3t−1
e4t
e4t−1



+



wt
0
0
0
ε1t
0
ε2t
0
ε3t
0
ε4t
0



,

where the parameter vector

θ =
(
γ1, γ2, γ3, γ40, γ41, γ42, γ43, φ1, φ2, ψ11, ψ12, ψ21, ψ22, ψ31, ψ32, ψ41, ψ42, σ

2
1, σ

2
2, σ

2
3, σ

2
4

)′
.

To carry out Bayesian test of the hypothesis, we use the data that consist of the four

coincident variables of U.S. from January 1959 to January 1995. The priors of parameters

are specified as in Kim and Nelson (1999), we draw 10,000 samples from the posterior

distribution, discard the first 2,000 as build-in period, and store the remaining samples

as effective observations. The analytical derivatives of the linear Gaussian state space

model are derived in Appendix 4. Based on the 80,00 random observations, we get BIMT

= 74.3761.

To test whether this model is misspecified or not, based on the χ2(p) distribution with

p = 21, the symmetric credible interval is [11.59, 32.67] at the 10% significance level,

[10.28, 35.48] at the 5% significance level, and [8.03, 41.40] at the 1% significance level.

15



Obviously BIMT falls outside of the credible intervals and rejects the null hypothesis at

the three significance levels, suggesting that the model is misspecified.

5.2 Specification test in DSGE models

DSGE models are microfounded and optimization-based. They have become very popular

in maceroeconomics over the last 30 years. Estimation and evaluation of the DSGE models

require one to solve them and then to construct a linear or nonlinear state-space approx-

imation. Bayesian time series methods have been widely applied to estimate the DSGE

models. For a linear Gaussian approximation, the Kalman filter can be used to compute

the likelihood function numerically; see Schorfheide (2001), Lubik and Schorfheide (2006),

An and Schorfheide (2007). For a non-linear non-Gaussian approximation, Fernández-

Villaverde and Rubio-Ramírez (2005) used the particle filter to calculate the likelihood

numerically.

In this example, following An and Schorfheide (2007), we adopt a linear Gaussian

approximation. We estimate a simple DSGE model of Clarida, Gali and Gertler (1999),

which is also used in Andrews and Mikusheva (2013) to study the weak identification

problem in DSGE models. The model is given by

bEtπt+1 + κxt − πt + εt = 0,

−[rt − Etπt+1 − ρ∆at] + Etxt+1 − xt = 0,

λrt−1 + (1− λ)φππt + (1− λ)φxxt + ut = rt,

∆at = ρ∆at−1 + εa,t,

∆ut = δ∆ut−1 + εu,t.

where πt, rt, xt are the output growth rate, the inflation rate, and the interest rate,

respectively, ∆at and ∆ut are the unobserved shocks, and

(εt, εa,t, εu,t)
′ ∼ iidN (0,Σ) with Σ = diag(σ2, σ2a, σ

2
u).

Following Andrews and Mikusheva (2013), we set b = 0.99.

The data are from Lubik and Schorfheide (2006) with πt, rt, xt being quaterly U.S.

series on the GDP growth rates, the inflation rates, and the nominal interest rates from

the first quarter of 1983 to the last quarter of 2002. The priors are the same as in Smets

and Wouters (2007).

To aviod the well-documented weak identification problem in DSGE models (see, for

example, Canova and sala (2009), Guerron-Quintana, Inoue and Kilian (2013), Iskrev

(2010), and Mavroeidis (2005)), we fix parameters φx = 2.28, φπ = 2.02, λ = 0.898, κ =
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0.1 as they are potential sources of weak identification (Andrews and Mikusheva, 2013).

Following Schorfheide (2001), we estimate the model by the random walk Metropolis-

Hasting algorithm in the MATLAB-based DYNARE package (Adjemian et al., 2011). We

draw 20,000 random observations from the posterior distribution with the first 10,000

draws being discarded as burning-in observations. All the quantities needed to compute

BIMT are derived in Appendix 6. Based on the 10,000 random observations, we get BIMT

= 50.1630.

To test whether this model is misspecified, based on the χ2(p) distribution with p = 5,

the symmetric credible interval is [1.145, 11.070] at the 10% significance level, [0.831,

12.833] at the 5% significance level, and [0.412, 16.750] at the 1% significance level. Ob-

viously BIMT falls outside of the credible intervals and rejects the null hypothesis at the

three significance levels, suggesting that the model is misspecified.

5.3 A stochastic volatility model

The stochastic volatility (SV) model introduced by Tauchen and Pitts (1983) and Talyor

(1982) is used to describe financial time series. The SV model involves two noise processes,

one for the observation, and one for the latent volatility. Given that the heavy tails

are usually found in distributions of returns, following Abanto-Valle et al. (2010), we

generalized the SV model with the normal distribution to the SV model with scale mixtures

of normal distributions (SV-SMN):

yt|ht = exp (ht/2)λ
−1/2
t ut, ut

i.i.d.∼ N (0, 1) , λt
i.i.d.∼ Γ

(υ
2
,
υ

2

)
, t = 1, . . . , n,

ht|ht−1, µ, φ, τ2 = µ+ φ (ht−1 − µ) + τνt, νt
i.i.d.∼ N (0, 1) , t = 1, . . . , n,

where yt is the return at time t, ht is the return volatility at period t, ut and vt are

uncorrelated, and h0 = µ, υ = 3.

To carry out Bayesian test of the hypothesis, we fit the SV-SMN model to mean-

corrected daily returns on Pound/Dollar exchange rates from 01/10/81 to 28/06/85. We

first estimate the model using the Bayesian MCMC method using the following vague

priors:

µ ∼ N [0, 100], φ ∼ Beta[1, 1], τ−2 ∼ Γ [0.001, 0.001] .

We draw 110,000 from the posterior distribution and discard the first 10,000 as burning-in

observations, and store the remaining samples as effective observations. On the basis of

particle filters, using the approach shown in Appendix 5, we can compute out the Bayesian

test statistic. Based on the 10,000 random observations, we can get BIMT = 38.7143.

To test whether this model is misspecified, based on the χ2(p) distribution with p = 3,

the symmetrical credible interval is [0.3518, 7.8147] at the 10% significance level, [0.2158,
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9.3484] at the 5% significance level, and [0.0717, 12.8382] at the 1% significance level.

Obviously we reject the null hypothesis that the model is correctly specified at the three

significance levels.

6 Conclusions

In this paper, we have proposed a new Bayesian test statistic to assess the adequacy of

specification of a model after the model is estimated by Bayesian MCMC methods. The

test statistic is a Bayesian mean of a quadratic form. Under the regularity conditions, we

show that it asymptotically approaches the IOSa statistic of Presnell and Boos (2004).

The main advantages of the new statistic can be summarized as follows: (1) it is quite

general and can be applied to a variety of models, including models that are diffi cult to

estimate by frequentist methods such as models with latent variable; (2) it is easy to

compute; (3) there is no need to specify an alternative hypothesis. We illustrate the new

method in the context of three popular models, the dynamic factor model, the DSGE

model and the heavy tailed stochastic volatility model. We can reject the single factor

model, the simple DSGE model and the heavy tailed stochastic volatility model using real

data.

7 Appendix

7.1 Appendix 1: Proof of Theorem 3.1

Under Assumption 6, we get

1

n
L(2)n (θ) =

1

n

∂2 log p(y|θ)

∂θ∂θ′
+

1

n

∂2 log p(θ)

∂θ∂θ′
=

1

n

∂2 log p(y|θ)

∂θ∂θ′
+Op(n

−1) = Ĥ(θ) + op(1),

Using the first order Taylor expansion, for t = 1, 2, . . . , n, we can have

st(θ̂) = st(θ0) + ht(θ̃0)(θ̂ − θ0),

where θ̃0 lies on the segment between θ̂ and θ0. Then, we can get that

st(θ̂)st(θ̂)′ =
[
st(θ0) + ht(θ̃0)(θ̂ − θ0)

] [
st(θ0) + ht(θ̃0)(θ̂ − θ0)

]′
= st(θ0)st(θ0)

′ + 2ht(θ̃)(θ̂ − θ0)st(θ0)′ + ht(θ̃0)(θ̂ − θ0)(θ̂ − θ0)′ht(θ̃0).

Since θ̂ is the consistent estimator of θ0, there exists a real sequence kn → 0 such that

θ̃0 ∈ {θ : ||θ − θ0|| ≤ kn} for enough large n. According to Assumption 5, we can get

1

n

n∑
t=1

ht(θ̃0) =
1

n

n∑
t=1

ht(θ0) + op(1) = Op(1).
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Let θ̂ML be the ML estimator of θ. Using the Taylor expansion, p(θ) = Op(1), we get

0 =
∂ ln p(y, θ̂)

∂θ
=
∂ ln p(y, θ̂ML)

∂θ
+
∂2 ln p(y, θ̃ML)

∂θ∂θ′
(θ̂ − θ̂ML),

where θ̃ML lies on the segment between θ̂ and θ̂ML. Thus, under the regularity conditions,

we have

θ̂ − θ̂ML =

[
∂2 ln p(y, θ̃ML)

∂θ∂θ′

]−1
∂ ln p(y, θ̂ML)

∂θ

= L−(2)n

(
θ̃ML

)[∂ ln p(y|θ̂ML)

∂θ
+
∂ ln p(θ̂ML)

∂θ

]

= L−(2)n

(
θ̃ML

)[
0 +

∂ ln p(θ̂ML)

∂θ

]
= Op(n

−1)Op(1) = Op(n
−1).

Hence, according to the standard ML likelihood theory, θ̂ is also the consistent estimator

of θ0. From the standard ML theory, we know that θ0 = θ̂ML + Op(n
−1/2), hence,

θ0 = θ̂ +Op(n
−1) +Op(n

−1/2) = θ̂ +Op(n
−1/2).

Then, we can show that

1

n
||

n∑
t=1

st(θ̂)st(θ̂)′ −
n∑
t=1

st(θ0)st(θ0)
′|| = 1

n
||

n∑
t=1

[
st(θ̂)st(θ̂)′ − st(θ0)st(θ0)′

]
||

≤ 1

n

n∑
t=1

||2ht(θ̃0)(θ̂ − θ0)st(θ0)′||+
1

n

n∑
t=1

||ht(θ̃0)(θ̂ − θ0)(θ̂ − θ0)′ht(θ̃0)||

≤
[

1

n

n∑
t=1

||ht(θ̃0)||
][

2||(θ̂ − θ0)|| sup
t≤n
||st(θ0)′||

]

+

[
1

n

n∑
t=1

||ht(θ̃0)||
] [
||(θ̂ − θ0)||2 sup

t≤n
||ht(θ̃0)||

]
= 2Op(1)Op

(
n−1/2

)
op

(
n1/2

)
+Op(1)Op

(
n−1

)
op (n) = op(1)

1√
n

sup
t≤n
||st(θ̂)− st(θ0)|| =

1√
n

sup
t≤n
||ht(θ̃0)(θ̂ − θ0)|| =

[
1√
n
||(θ̂ − θ0)|| sup

t≤n
||ht(θ̃0)||

]
=

1√
n
Op(n

−1/2)op(n) = op(1).

Hence, using Assumption 6, we can get that

Ĵ(θ̂) =
1

n

n∑
t=1

st(θ̂)st(θ̂t)
′ =

1

n

n∑
t=1

st(θ0)st(θ0)
′ + op(1) = Op(1)

1√
n

sup
t≤n
||st(θ̂)|| = 1√

n
sup
t≤n
||st(θ0)||+ op(1) = op(1)
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Similarly, using the first order Taylor expansion for st(θ̄), we have

st(θ̄) = st(θ0) + ht(θ̃)(θ̄ − θ0),

where θ̃ lies on the segment between θ̄ and θ0. It is noted that θ0 = θ̂ + Op(n
−1/2) and

θ̄ = θ̂+op(n
−1/2). Hence, θ̄ = θ0+Op(n

−1/2) = θ0+op(1) so that θ̄ is also the consistent

estimator of θ0, there exists a real sequence kn → 0 such that θ̃ ∈ {θ : ||θ−θ0|| ≤ kn} for
large enough n. Hence, similarly with above proof, we can get

Ĵ(θ̄) =
1

n

n∑
t=1

st(θ̄)st(θ̄t)
′ =

1

n

n∑
t=1

st(θ0)st(θ0)
′ + op(1) = Op(1).

Furthermore, using the first order Taylor expansion, we have

st(θ̄) = st(θ̂) + ht(θ̃1)(θ̄ − θ̂),

where θ̃1 lies on the segment between θ̄ and θ̂. Then, we have

st(θ̄)st(θ̄)′ =
[
st(θ̂) + ht(θ̃1)(θ̄ − θ̂)

] [
st(θ̂) + ht(θ̃1)(θ̄ − θ̂)

]′
= st(θ̂)st(θ̂)′ + 2ht(θ̃)(θ̄ − θ̂)st(θ̂)′ + ht(θ̃1)(θ̄ − θ̂)(θ̄ − θ̂)′ht(θ̃1).

Using Remark 3.1, we can show that

1

n
||

n∑
t=1

st(θ̄)st(θ̄)′ −
n∑
t=1

st(θ̂)st(θ̂)′|| = 1

n
||

n∑
t=1

[
st(θ̄)st(θ̄)′ − st(θ̂)st(θ̂)′

]
||

≤ 1

n

n∑
t=1

||2ht(θ̃1)(θ̄ − θ̂)st(θ̂)′||+ 1

n

n∑
t=1

||ht(θ̃1)(θ̄ − θ̂)(θ̄ − θ̂)′ht(θ̃1)||

≤
[

1

n

n∑
t=1

||ht(θ̃1)||
] [

2||(θ̄ − θ̂)|| sup
t≤n
||st(θ̂)′||

]

+

[
1

n

n∑
t=1

||ht(θ̃1)||
] [
||(θ̄ − θ̂)||2 sup

t≤n
||ht(θ̃1)||

]
= 2Op(1)op

(
n−1/2

)
op

(
n1/2

)
+Op(1)op

(
n−1

)
op (n) = op(1).

Then, we get

Ĵ(θ̄) =
1

n

n∑
t=1

st(θ̄)st(θ̄t)
′ =

1

n

n∑
t=1

st(θ̂)st(θ̂)′ + op(1) = Op(1)

According to Assumption 5, we get

Ĥ(θ̂) =
1

n

n∑
t=1

ht(θ̂) =
1

n

n∑
t=1

ht(θ0) + op(1) = Op(1).
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Furthermore, using Remark 3.1 once again, we get

E
[
(θ − θ̄)(θ − θ̄)′|y

]
= E

[
(θ − θ̂ + θ̂ − θ̄)(θ − θ̂ + θ̂ − θ̄)′|y

]
= E

[
(θ − θ̂)(θ − θ̂)′|y

]
+ 2E

[
(θ − θ̂)|y

]
(θ̂ − θ̄) + (θ̂ − θ̄)(θ̂ − θ̄)′

= E
[
(θ − θ̂)(θ − θ̂)′|y

]
+ 2(θ̄ − θ̂)(θ̂ − θ̄) + (θ̂ − θ̄)(θ̂ − θ̄)′

= E
[
(θ − θ̂)(θ − θ̂)′|y

]
− (θ̂ − θ̄)(θ̂ − θ̄)′

= −L−(2)n (θ̂) + op(n
−1) + op(n

− 1
2 )op(n

− 1
2 )

= −
[
nĤ(θ̂)

]−1
+ op(n

−1)

= − 1

n
Ĥ−1(θ̂) + op(n

−1).

Hence, using Remark 3.1 once again, we have

BIMT = ntr
{

Ĵ(θ̄)E
[
(θ − θ̄)(θ − θ̄)′|y

]}
= ntr

{
Ĵ(θ̄)E

[
(θ − θ̄)(θ − θ̄)′|y

]}
= ntr

{[
Ĵ(θ̂) + op(1)

]
E
[
(θ − θ̄)(θ − θ̄)′|y

]}
= tr

{[
Ĵ(θ̂) + op(1)

]
E
[
n(θ − θ̄)(θ − θ̄)′|y

]}
= tr

{[
Ĵ(θ̂) + op(1)

] [
−Ĥ−1(θ̂) + op(1)

]}
= −tr

[
Ĵ(θ̂)Ĥ−1(θ̂)

]
+ tr

[
Ĵ(θ̂)op(1)

]
+ tr

[
Ĥ−1(θ̂)op(1)

]
+ op(1)

= tr
[
−Ĵ(θ̂)Ĥ−1(θ̂)

]
+ op(1) = IOSa + op(1).

Theorem 3.1 is proven.

7.2 Appendix 2: Proof of Corollary 3.2

When the model is correctly specified, the pseudo-true value θ0 is the true value. Let

H(θ0) =
∫

Ĥ(θ0)g(y)dy. Using the central limit theorem, we get Ĥ(θ0) = H(θ0) + op(1).

Furthermore, by Theorem 3.1, we get Ĥ(θ0) = Ĥ(θ̂) + op(1) and

− 1

n
Ĥ−1(θ̂) = − 1

n

[
Ĥ(θ0) + op(1)

]−1
+ op(n

−1)

= − 1

n

[
Ĥ(θ0)

]−1
+ op(n

−1)

= − 1

n
[H(θ0) + op(1)]−1 + op(n

−1)

= − 1

n
[H(θ0)]

−1 + op(n
−1).

Hence, we can get that H(θ0) = O(1).
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Let J(θ0) =
∫

Ĵ(θ0)g(y)dy. Using the central limit theorem, we get Ĵ(θ0) = J(θ0) +

op(1). Then, using Assumption 5 and Theorem 3.1, we get

Ĵ(θ̂) =
1

n

n∑
t=1

st(θ̂)st(θ̂)′ = Ĵ(θ0) + op(1),

and J(θ0) = O(1).

When the model is correctly specified, according to the information matrix equality,

we have J(θ0) = −H(θ0) (White, 1996). Therefore, we get

BIMT = tr
[
−Ĵ(θ̂)Ĥ−1(θ̂)

]
+ op(1)

= tr
{
−
[
Ĵ(θ0) + op(1)

] [
H−1(θ0) + op(1)

]}
+ op(1)

= tr
{
− [J(θ0) + op(1)]

[
H−1(θ0) + op(1)

]}
+ op(1)

= tr
[
−J(θ0)H

−1(θ0)
]

+ tr [−J(θ0)op(1)] + tr
[
−op(1)H−1(θ0)

]
= tr

[
−J(θ0)H

−1(θ0)
]

+ op(1) = p+ op(1).

Corollary 3.2 is proven.

7.3 Appendix 3: Proof of Theorem 3.3

According to Theorem 3.1 and Corollary 3.2, we get

Ĵ(θ̄) =
1

n

n∑
t=1

st(θ̄)st(θ̄t)
′ =

1

n

n∑
t=1

st(θ̂)st(θ̂t)
′ + op(1)

=
1

n

n∑
t=1

st(θ0)st(θ0)
′ + op(1) = J(θ0) + op(1),

where J(θ0) =
∫

Ĵ(θ0)g(y)dy. According to Assumption 5, we get

Ĥ(θ̂) =
1

n

n∑
t=1

ht(θ̂) =
1

n

n∑
t=1

ht(θ0) + op(1) = H(θ0) + op(1) = Op(1),

where −H(θ0) =
∫

Ĥ(θ0)g(y)dy.

When the model is correctly specified, according to the information matrix equality,

we have J(θ0) = −H(θ0). Hence, we get

−Ĥ(θ̂) = −H(θ0) + op(1) = J(θ0) + op(1) = Ĵ(θ̄) + op(1).

Using the Bayesian large sample theory, we get
√
n(θ − θ̂) ∼ N

[
0,−L−(2)n (θ̂)

]
so that
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(θ − θ̂) = Op(n
−1/2). Hence, based on Remark 3.1, we get

f(θ|y) = n(θ − θ̄)′Ĵ(θ̄)(θ − θ̄) = n(θ − θ̄)′
[
−Ĥ(θ̂)

]
(θ − θ̄)

= n
(
θ − θ̂ + θ̂ − θ̄

)′ [
−Ĥ(θ̂)

] (
θ − θ̂ + θ̂ − θ̄

)
= n(θ − θ̂)′

[
−Ĥ(θ̂)

]
(θ − θ̂)− 2n(θ̄ − θ̂)′

[
−Ĥ(θ̂)

]
(θ − θ̂) + n(θ̄ − θ̂)′

[
−Ĥ(θ̂)

]
(θ̄ − θ̂)

= n(θ − θ̂)′
[
−Ĥ(θ̂)

]
(θ − θ̂)− nop(n−1/2)OP (1)Op(n

−1/2) + nop(n
−1/2)OP (1)op(n

−1/2)

= n(θ − θ̂)′
[
−Ĥ(θ̂)

]
(θ − θ̂) + op(1)

= n(θ − θ̂)′
[
−L(2)n (θ̂)

]
(θ − θ̂) + op(1)

Using the continuous mapping theorem, we can show that

n(θ − θ̂)′
[
−L(2)n (θ̂)

]
(θ − θ̂) =

√
n(θ − θ̂)′

[
−L(2)n (θ̂)

]√
n(θ − θ̂)

d→ χ2(p).

Hence, we can show that

f(θ|y)
d→ χ2(p).

7.4 Appendix 4: The derivation of BIMT for the linear state space
model

The model latent variables xt are linked to observed yt via a state space system:

xt = T (θ)xt−1 +R (θ) εt,

yt = D (θ) + Z (θ)xt + ξt,

where yt, D are ny × 1, T is ns × ns, R is ns × ne, Z is ny × ns, θ is nq × 1.

Consider the state space system

xt = Txt−1 +Rεt,

yt = D + Zxt + ξt,

where εt ∼ N (0, Q), ξt ∼ N (0, H) .

Let Ys = (y1, y2..., ys), we can define

xst = E (xt|Ys) ,

P st = E{(xt − xst ) (xt − xst )
′ |Ys}.

Then for the linear Gaussian state-space model specified in above equation, with initial

condition x00 and P
0
0 , for t = 1, 2...n, the Kalman Filter algorithm is as follows:

xt−1t = Txt−1t−1,

P t−1t = TP t−1t−1 T
′ +RQR′,
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with

xtt = xt−1t +Kt

(
yt −D − Zxt−1t

)
,

P tt = [Ins −KtZ]P t−1t ,

where

Kt = P t−1t Z ′
[
ZP t−1t Z ′ +H

]−1
.

From the Kalman Filter, the likelihood of the data is as follows:

log ` = −
n∑
t=1

[
ny
2

log 2π +
1

2
log |Ft|+

1

2

(
yt −D − Zxt−1t

)′
F−1t

(
yt −D − Zxt−1t

)]

= −
n∑
t=1

[
ny
2

log 2π +
1

2
log |Ft|+

1

2
ω′tF

−1
t ωt

]
,

where

Ft = Z (θ)P t−1t Z (θ)′ +H (θ) ,

ωt = yt −D (θ)− Z (θ)xt−1t .

Before we get the derivatives of the model, we first introduce some notations from

Magnus and Neudecker (2002) about the matrix derivative.

Definition 7.1 Let F = (fst) be an m×p matrix function of an n× q matrix of variables
X = (xij). Any mp × nq matrix A containing all the partial derivatives such that each

row contains the partial derivatives of one function with respect to all variables, and each

column contains the partial derivatives of all functions with respect to one variable xij, is

called a derivative of F . We define the α-derivative as:

DF (X) =
∂vecF (X)

∂ (vecX)
′ .

In our case, ∂ (vecθ)
′

= ∂θ′ since θ is a vector.

Definition 7.2 Let A be an m× n matrix. There exists a unique mn×mn permutation
matrix Kmn which is defined as:

Kmn · vecA = vec
(
A
′
)
.

Since Kmn is a permutation matrix, it is orthogonal and K−1mn = K
′
mn.
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To compute the first order derivative of the likelihood, we have the following

∂vec (ωt)

∂θ′
= −∂vec (D)

∂θ′
−
(
xt−1′t ⊗ Iny

) ∂vec (C)

∂θ′
− (I1 ⊗ C)

∂vec
(
zt−1t

)
∂θ′

,

∂vec (Ft)

∂θ′
=

((
P t−1t C ′

)′ ⊗ Iny +
(
Iny ⊗

(
CP t−1t

))
Knyns

) ∂vec (C)

∂θ′

+ (C ⊗ C)
∂vec

(
P t−1t

)
∂θ′

+
∂vecH

∂θ′
,

∂vec
(
F−1t

)
∂θ′

= −
((
F−1t

)′ ⊗ F−1t ) ∂vec (Ft)

∂θ′
,

∂vec (log |Ft|)
∂θ′

=
(
vec

[(
F−1t

)′])′ ∂vec (Ft)

∂θ′
,

∂vec
(
ω′tF

−1
t ωt

)
∂θ′

=
[(
F−1t ωt

)′ ⊗ I1]Kny1
∂vec (ωt)

∂θ′
+
(
ω′t ⊗ ω′t

) ∂vec (F−1t )
∂θ′

+
[
I1 ⊗

(
ω′tF

−1
t

)] ∂vec (ωt)

∂θ′
.

In the above equations, the first order derivatives of the matrix D, Z, Q, H, R are easy

to get.

Given the initial conditions P 00 and x
0
0, we have the following recursive equations

∂vec
(
zt−1t

)
∂θ′

= (I1 ⊗ T )
∂vec

(
zt−1t−1

)
∂θ′

+
(
zt−1′t−1 ⊗ Ins

) ∂vec (T )

∂θ′
,

∂vec
(
P t−1t

)
∂θ′

=
((
P t−1t−1 T

′)′ ⊗ Ins) ∂vec (T )

∂θ′
+ (T ⊗ T )

∂vec
(
P t−1t−1

)
∂θ′

+
(
Ins ⊗ TP t−1t−1

)
Knsns

∂vec (T )

∂θ′
+
∂vec (RQR′)

∂θ′
,

∂vec
(
ztt
)

∂θ′
=

∂vec
(
zt−1t

)
∂θ′

+
[(
yt −D − Czt−1t

)′ ⊗ Ins] ∂vec (Kt)

∂θ′

− (I1 ⊗Kt)
∂vec (D)

∂θ′
−
(
zt−1′t ⊗Kt

) ∂vec (C)

∂θ′
− (I1 ⊗KtC)

∂vec
(
zt−1t

)
∂θ′

,

∂vec
(
P tt
)

∂θ′
= −

((
CP t−1t

)′ ⊗ Ins) ∂vec (Kt)

∂θ′
−
(
P t−1

′
t ⊗Kt

) ∂vec (C)

∂θ′

+ (Ins ⊗ (Ins −KtC))
∂vec

(
P t−1t

)
∂θ′

,
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where

∂vec (Kt)

∂θ′
=

[(
C ′F−1t

)′ ⊗ Ins] ∂vec (P t−1t

)
∂θ′

+
[(
F−1t

)′ ⊗ P t−1t

]
Knyns

∂vec (C)

∂θ′

+
[
Iny ⊗ P t−1t C ′

] ∂vec (F−1t )
∂θ′

,

and

∂vec (RQR′)

∂θ′
=
[(
RQ′ ⊗ Ins

)
+ (Ins ⊗RQ)Knsne

] ∂vecR
∂θ′

+ (R⊗R)
∂vecQ

∂θ′
.

The initial condition is given as

x00 = 0,

P 00 = TP 00 T
′ +RQR′.

From the above, we have

vec
(
P 00
)

=
(
In2s − T ⊗ T

)−1
vec

(
RQR′

)
.

Then

∂vec
(
P 00
)

∂θ′
=
[(
TP 00 ⊗ Ins

)
+
(
Ins ⊗ TP 00

)
Knsns

] ∂vec (T )

∂θ′
+(T ⊗ T )

∂vec
(
P 00
)

∂θ′
+
∂vec (RQR′)

∂θ′
.

7.5 Appendix 5: The derivation of BIMT for the nonlinear non-Gaussian
state space model with particle filters

Let ϕt
(
zt
)
be the first order derive of the complete likelihood function with respect to the

parameter θ. This is just the integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt|θ

)
∂θ

=

∫
∂ log p

(
zt,yt|θ

)
∂θ

p
(
zt|yt,θ

)
dzt.

Then we have the following recursive form

ϕt
(
zt
)

= ϕt−1
(
zt−1

)
+ ut (zt, zt−1) ,

where

ϕt
(
zt
)

=
∂ log p

(
zt,yt|θ

)
∂θ

, ut (zt, zt−1) =
∂ log g (yt|zt,θ)

∂θ
+
∂ log fθ (zt|zt−1,θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt,θ) as

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt

=

∫ ∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1p

(
zt|yt,θ

)
dzt

=

∫
St (zt) p

(
zt|yt,θ

)
dzt,
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where

St (zt) =

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1

=

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−2|zt−1,yt−2,θ

)
dzt−2p

(
zt−1|zt,yt−2,θ

)
dzt−1

=

∫
(St−1 (zt−1) + ut (zt, zt−1)) f (zt|zt−1,θ) p

(
zt−1|yt,θ

)
dzt−1∫

f (zt|zt−1,θ) p (zt−1|yt,θ) dzt−1
.

Then we have

Ŝt (zt) =

∑N
j=1W

(j)
t−1f

(
zt|z(i)t−1,θ

)
∑N

j=1 f
(
zt|z(i)t−1,θ

)
St−1 (z(i)t−1)+

∂ log g (yt|zt,θ)

∂θ
+
∂ log f

(
zt|z(i)t−1,θ

)
∂θ


Let ϕt

(
zt
)
be the first order derive of the complete likelihood function with respect to

the parameter θ. This is just the integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt|θ

)
∂θ

=

∫
∂ log p

(
zt,yt|θ

)
∂θ

p
(
zt|yt,θ

)
dzt.

Then we have the following recursive form

ϕt
(
zt
)

= ϕt−1
(
zt−1

)
+ ut (zt, zt−1) ,

where

ϕt
(
zt
)

=
∂ log p

(
zt,yt|θ

)
∂θ

, ut (zt, zt−1) =
∂ log g (yt|zt,θ)

∂θ
+
∂ log fθ (zt|zt−1,θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt,θ) as

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt

=

∫ ∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1p

(
zt|yt,θ

)
dzt

=

∫
St (zt) p

(
zt|yt,θ

)
dzt,

where

St (zt) =

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1

=

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−2|zt−1,yt−2,θ

)
dzt−2p

(
zt−1|zt,yt−2,θ

)
dzt−1

=

∫
(St−1 (zt−1) + ut (zt, zt−1)) f (zt|zt−1,θ) p

(
zt−1|yt,θ

)
dzt−1∫

f (zt|zt−1,θ) p (zt−1|yt,θ) dzt−1
.
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Then we have

Ŝt (zt) =

∑N
j=1W

(j)
t−1f

(
zt|z(i)t−1,θ

)
∑N

j=1 f
(
zt|z(i)t−1,θ

)
St−1 (z(i)t−1)+

∂ log g (yt|zt,θ)

∂θ
+
∂ log f

(
zt|z(i)t−1,θ

)
∂θ


and

ŝ(yt,θ) =

N∑
j=1

W
(j)
t Ŝt

(
z
(j)
t

)
,

where
(
W
(j)
t , z

(i)
t

)
are the particles to approximate p

(
zt|yt

)
dzt. Then the individual

scores is estimated by

ŝt(θ) = ŝ(yt,θ)− ŝ(yt−1,θ).

For the asymptotic properties of ŝt(θ), see Poyiadjis (2011) and Doucet and Shephard

(2012).

7.6 Appendix 6: The derivation of BIMT for the DSGE model

The equilibrium object for a DSGE model is a collection of the nonlinear equations defining

optimality conditions, markets clearing conditions, etc. We follow the standard practice

and linearize these conditions around a steady state. Then, the model can be written as

linear expectation system,

Γ0 (θ)xt = Γ1 (θ)Et [xt+1] + Γ2 (θ)xt−1 + Γ3 (θ) εt, (6)

where xt are the state variables, εt the exogenous shocks, θ the structural parameters of

interest, and {Γ1} matrix functions that map the equilibrium conditions of the model,

where Γ0 (θ) ,Γ1 (θ) ,Γ2 (θ) are ns×ns, Γ3 (θ) is ns×ne. The solution to the system takes

the form of a V AR (1),

xt = T (θ)xt−1 +R (θ) εt, (7)

The mapping from θ to T and R must be solved numerically for all models of interest,

where T is ns × ns, R is ns × ne. The model variables xt are linked to observed yt via a
state space system:

xt = T (θ)xt−1 +R (θ) εt,

yt = D (θ) + Z (θ)xt + ξt,

where yt, D are ny × 1, Z is ny × ns, θ is nq × 1. Then the likelihood function is the same

as in Appendix 4. It is different from the dynamic factor model that T (θ) and R (θ) do

not have closed form in DSGE models.
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Following Iskrev (2008), we can get the first order derivatives of matrix T and R,

substitute (7) into (6), we have

Γ0 (θ)xt = Γ1 (θ)T (θ)xt + Γ2 (θ)xt−1 + Γ3 (θ) εt.

Furthermore

(Γ0 (θ)− Γ1 (θ)T (θ))xt = Γ2 (θ)xt−1 + Γ3 (θ) εt. (8)

From (8)

(Γ0 (θ)− Γ1 (θ)T (θ))xt = (Γ0 (θ)− Γ1 (θ)T (θ))T (θ)xt−1+(Γ0 (θ)− Γ1 (θ)T (θ))R (θ) εt.

(9)

Comparing (8) and (9), we have

(Γ0 (θ)− Γ1 (θ)T (θ))T (θ)− Γ2 (θ) = 0. (10)

(Γ0 (θ)− Γ1 (θ)T (θ))R (θ)− Γ3 (θ) = 0. (11)

Consider Equation(10), we can get the derivatives of matrix T by solving the following

equation

[
(Ins ⊗ Γ0)− (Ins ⊗ Γ1T )−

(
T ′ ⊗ Γ1

)] ∂vec (T )

∂θ′
−

(
T ′2 ⊗ Ins

) ∂vec (Γ1)

∂θ′

+
(
T ′ ⊗ Ins

) ∂vec (Γ0)

∂θ′
− ∂vec (Γ2)

∂θ′
= 0.

From (11), the first order derivatives of matrix R is as follows:

∂vec (R)

∂θ′
= −

(
Γ′3 ⊗ Ins

) (
W
′−1 ⊗W−1

) ∂vec (W )

∂θ′
+
(
Ine ⊗W−1

) ∂vec (Γ3)

∂θ′
.

From Herbst (2011), where

W = Γ0 − Γ1T,

∂vec (W )

∂θ′
=
∂vec (Γ0)

∂θ′
−
(
T ′ ⊗ Ins

) ∂vec (Γ1)

∂θ′
− (Ins ⊗ Γ1)

∂vec (T )

∂θ′
.
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