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Abstract
Growing interest in quantified self has led to the
popularity of lifelogging applications. In particular, health
and wellness related applications have seen an upsurge
with the advent of wearables such as the Fitbit. In this
paper, we focus on the quality of sleep that directly
impacts the overall wellness of individuals. In particular, in
this work, we present a first of its kind study that (1)
unobtrusively quantifies the quality of sleep and (2) seeks
to identify attributing aspects of our daily lives such as an
individual’s usage of apps throughout the day and his/her
physical environment that may affect sleep. We use real
life, in-situ smartphone data from 400+ undergraduate
students over an observation period of 15 months, and
present our initial observations.

Introduction
The availability of a multitude of sensors and applications
have enabled smartphones to be more than mere
communication devices. Lifelogging applications such as
BeWell [8] have become increasingly popular amongst
users in that they objectively account for the user’s
activities and behavior (e.g., sleep duration, walk duration,
etc.) and provide insights into the user’s life, and in
certain cases, recommend behavioral and lifestyle changes.

The quality of sleep of individuals, over short and long



term, have direct health and wellness implications [1].
Further, prior studies [12, 13] have shown strong
correlation between the quality of sleep and the contexts
an individual is subjected to over the course of the day.
Such contexts include, but are not limited to, the physical
environment of the user, his/her interactions with social
groups, and applications a user accesses (which relates to
the content a user consumes). The availability of sensing
and logging on the smartphone allows us to unobtrusively
monitor such contexts, and understand which of these
contexts may affect the quality of sleep. An equally
interesting problem is of identifying if the amount or
quality of sleep a person gets the prior night affects his
behavior the next day.

In this work, we address the former problem and make the
following contributions:

1. provide a set of heuristics for quantifying sleep
duration and disturbances during sleep for deriving
quality of sleep based on the PSQI index [4],

2. present a first of its kind study to understand the
effects of App usage on sleep considering both the
category of the App and the temporal effects (e.g.,
recency of usage), and

3. present preliminary evidence that users’ App usage
and other physical contexts can indeed influence the
quality of sleep.

In the sections to follow, we provide a brief summary of
related work, describe the methodology and the dataset
used followed by our analyses. We conclude with a
discussion on the limitations of our current study and
plans for future work.

Related Work
In this section, we briefly describe recent works in
monitoring and prediction of sleep quality, in the Ubicomp
domain.

Sleep Quality Monitoring: Prior work in this area have
focused on detecting and capturing sleep disturbances
using sensors on the smartphone such as the microphone
(to sense sleep disturbances such as coughing and
snoring) [9, 7, 5], light (to sense darkness) [9, 7, 5], and
the accelerometer (for movement of the phone indicating
the user’s awaken state) [9]. Further, in [5], the authors
use the duration of phone usage to detect the onset of a
user falling asleep.In StudentLife[14], they infer the
bedtime, wake up time and sleep duration of college
students from their phone sensor data and daily activities
over a 10 week long period. Similar to [5], in our work, we
use App usage-based heuristics to approximate the user’s
duration of sleep and disturbances. Contrary to these
works, in addition to monitoring sleep quality, our work
aims to understand factors that affect the quality of sleep.
We use the PSQI scoring method to derive sleep quality
indices similar to that of [7].

Sleep Quality Prediction: SleepMiner[2] seeks to
predict sleep quality based on contextual information such
as human postures, positions and ambience (sound and
light). This work is the closest to our work, but differs in
that we focus on user behavior such as his/her app usage,
social interactions and physical environment such as
work/home that may affect sleep quality. We believe that
the two works are complementary. To the best of our
knowledge, our work is the first of its kind to understand
the effects of Apps used (content consumed) on sleep
quality, unobtrusively.



Methodology
In this work, we pose the problem of labeling the quality
of a sleep episode as a classification task. We hypothesize
that the quality of sleep depends on the independent
variables: (1) user’s App usage, (2) physical environment,
and (3) social interactions. In the following subsections,
we describe our approach and the dataset used.

Overall Methodology
We expect the independent variables under consideration
to affect sleep quality in a number of ways. For instance,
the Apps used by the user during the day can be of
different categories such as news, gaming or social Apps.
More use of social Apps may mean that the user
communicates with his friends/family more which is a sign
of wellbeing. Also, one could reason that gaming Apps
require more alertness from the user as opposed to a
News or infotainment App. Further, the requirement for
such alertness closer to sleeping time, may or may not
influence sleep differently than such requirements over the
entire day. Similarly, we suspect that environmental
changes, for example, whether a user spent more or less
time at work may influence sleep at different levels. Also,
the interactions a user has with his peers/friends in the
physical world may also impact sleep quality – for example,
more time spent with a friend in the evening may elevate
the user’s happiness level thereby resulting in a more
comfortable sleep. We go through the following key steps:

Step 1: Feature Extraction – For the three independent
variables, we further identify features (as listed in Table 1)
and extract features for each (user, day) pair.

Step 2: Feature Selection – We perform a principal
component analysis to identify which among the features
are useful in explaining the variance observed and for
reduction of dimensionality.

Step 3: Classification – We classify the quality of an
episode i of user u as Qi,u ∈ S where S is the set of
discrete quality levels. S = {Good,Bad} and S =
{V eryGood,Good,ModeratelyGood,Moderately
Poor, Poor, V eryPoor} for the cases of binary and
multi-class classification, respectively. We use a J4.8
classifier (decision tree) for this purpose as our primary
goal is to which features are associated with changes in
sleep quality. We consider the episodes at a daily
granularity, i.e., behavior over day i affects quality of sleep
for day i, and the evaluations in this work do not account
for cumulative effects. We defer this for future work.

Feature Class Features

App Usage

Total Usage
Usage by Category(5)
Usage 1 hour prior to sleep
Usage 4 hours prior to sleep

Physical Environment
Work (in-campus) time
Outside-class time
group-context outside-class

Table 1: Feature class and corresponding features extracted

Dataset Description
We use in-situ, continuous smartphone data from over
400 users over a period of 15 months (January 2014 to
March 2015), who are opt-in participants of LiveLabs [10],
as part of a larger, live testbed effort. The participants are
students of the Singapore Management University of
whom 54% are males, 34% are females and 12% are
unknown. Among these 14% are freshmen, 16% are
sophomores, 20% are junior students and 50% are senior
students. The students belong to six different schools –
Social Science (9.8%), Economics (11.42%), Accountancy
(13.76%), Business (32.98%), Law (5.71%) and
Information Systems (25.97%). In total, across all users,



there are records of 26,718 nights of sleep (see Table 2).Feature Class No. of Ob-
servations

Sleep Quality 26,718
App Usage 26,718
Physical Environ-
ment

37,772

Table 2: Granularity of dataset

Figure 1: Distribution of Sleep
Duration

Figure 2: Distribution of Time
of Sleep

Feature Extraction
Sleep Quality
The Pittsburgh Sleep Quality Index (PSQI) is a
cumulative score of 7 components as described in [4].
From accessibility logs from the smartphone, we deduce
three of the seven components, namely, (1) sleep
duration, (2) duration of disturbance during sleep and (3)
the overall sleep efficiency, which we use to arrive at the
sleep quality score of each sleep episode.

From the accessibility logs of the phones, we infer the
longest periods of inactivity as representative of the
approximate time a user was asleep. Further, short bursts
of usage, during a period of inactivity is considered as
disturbances during the sleep. For example, a user who’s
asleep could receive a notification through the Messaging
App from a friend, and the user wakes up to respond. In
addition, we also consider the time user spends in
snoozing and resetting the alarm before finally waking up,
also as a form of sleep disturbance. We describe below
our heuristics in detail.

Computing duration of sleep: The longest period of
inactivity during late evening to morning hours (of the
following day) is likely the duration for which the user is
asleep. However, we observe in our data that users tend
to interact with their phones for short durations during
this period resulting m chunks of reasonably long periods
of inactivity separated by short periods of activity, Tgap

(e.g., 15 minutes). For our purpose, we consider the top-3
(m = 3) longest periods of inactivity, and merge two
adjoining periods as a single continuous inactivity period,
Tsleep, if the time separation between the pair of inactivity
periods is less than or equal to 10 minutes (Tgap = 10).
As such, the total separation time becomes the time for

which the user’s sleep was disturbed, Tdisturbance, whose
maximum is 2 X Tgap. We plot the distribution of the
duration of sleep episodes in Figure 1 where the x-axis is
the duration in hours and the y-axis show the frequency
and CDF. We observe that at least 60% of the episodes
were of duration that is less than or equal to 7 hours.
Further, we also infer the time at which the user went to
sleep and woke up as the start time and end time of
Tsleep, respectively. Figure 2 shows the distribution of the
hour of the day at which users went to bed, as observed in
our data.

Computing alarm snooze time: We observe instances
of the Clock App being used multiple times during
morning hours suggestive of the users’ habit of snoozing
(and resetting) the alarm consecutively (the details of how
the App usage details are extracted is outlined in a later
section). We consider snoozing as part of disturbed sleep.
Among the 13,255 instances of “alarm between 3 AM to
noon (pertaining to 306 users), for 9239 of the instances
(70%), the user woke up after the first time the alarm set
off. Out of the remaining 30%, 48% of the instances had
a total “snooze” time of at least 30 minutes. We
observed that over 47.5% of the users had 20% or higher
fraction of individual sleeping instances that were
disturbed (See Figure 3).

Computing sleep quality score: The PSQI rates each
of the seven components on a scale from 0 to 3 where a
higher score indicates poorer quality of sleep. We
compute the overall sleep efficiency as the ratio of
duration of sleep to the sum of sleep duration and sleep
disturbance. To arrive at the final sleep quality score, we
sum the three individual scores and scale by a factor of
7/3. As PSQI recommends, we use a quality threshold of
5 to label individual sleep episodes as Good vs. Poor.



App Usage
In this sub-section, we describe how we extracted app
usage related features from raw accessibility logs and
screen ON/OFF times. For each (day, user) pair for
which we have a sleep time record, we consider the apps
the user had used from the time he/she woke up the
previous day till the time he/she slept, and not necessarily
according to the calendar definition of a “day”. To
illustrate, for example, if a user had woken up on 1st
January, 2014 at 8 AM, and went to bed on 2nd January,
2014 at 1 AM, then the usage of apps is considered
between these two time points (and not the app usage
during 1st January, 2014 alone) for day =1st January,
2014. As such, the extraction of app usage has a
dependency on the “time to bed” feature from the
previous sub-section.

Figure 3: CDF of proportion of
disturbed sleep episodes for
individual users.

We consider usage over three time windows: (1) the
entire day (totalusage), (2) four hours prior to sleeping
(4hbefore), and (3) one hour prior to sleeping
(1hbefore). We hypothesize that the effect of app usage
on sleep quality, if any, would be more significant as it is
closer to sleep time.

For each window, we further segment the usage by
category of the App. We hypothesize that certain
categories of Apps (e.g., Games) would have a more
significant effect on sleep quality than others (e.g.,
Lifestyle apps).

Extracting app usage duration: The LiveLabs database
consists of two data sources that we used to infer the
individual App usage durations. First, the “Profile State”
dataset consists of changes of device profile which
captures 17 different state changes to the device. This
includes timestamped state changes such as device display
ON (state = 5) and device display OFF (state = 6)

among others. By collecting pairs of display ON and OFF
times, we infer the times for which a user’s device was
“awake”.

Second, during the times for which the device was
“awake”, we consult the “Accessibility” dataset to infer
durations of App usage. The “Accessibility” dataset
consists of timestamped events such as when a user
touches the screen, types in a text box, clicks a button,
etc 1. In effect, this is a dataset consisting of the user’s
active interactions with the device (and does not consider
Apps and services that run in the background such as
Email sync). We batch consecutive interactions with the
same App together, and consider the difference between
the first and the last interaction as the duration of use for
that App.

Extracting app category: The accessibility logs contain
the name of the App, its package name, and the class
associated with the accessibility event. However, this does
not provide any labeling of the category of the App. To
this end, we wrote a Python-based crawler to scrape the
“genre” of the app based on its package name, off the
Google PlayStore webpage, for a total of 3600+ unique
Apps used by the LiveLabs participants. For example, for
an App with package name com.rovio.angrybirdsrio, the
crawler downloads the page https://play.google.com/

store/apps/details?id=com.rovio.angrybirdsrio, and
the html tag span with attribute itemprop equal to genre
is scraped using the Beautiful Soup library. The PlayStore
categorizes Apps as one of 26 general categories or 18
game categories.

As most users do not use Apps belonging to all 44

1http://developer.android.com/reference/android/
accessibilityservice/AccessibilityService.html

https://play.google.com/store/apps/details?id=com.rovio.angrybirdsrio
https://play.google.com/store/apps/details?id=com.rovio.angrybirdsrio
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html


categories, we grouped the App categories into ten
representative categories. For the analyses presented in
the remainder of the paper, we use only the four-most
popular categories amongst our participants which are,
namely, Reading, Social, Entertainment, Information and
Games.

Physical Environment
To understand the effects of changes in the user’s physical
environment on sleep quality, we identified and considered
two physical aspects of our daily lives: (1) working and
(2) socializing. In the context of students, we proxy
working as the time they spend in-campus. As our
observation period spans 15 months, we have data from
both session time (Jan to April and Aug to Nov) and
break time (May to July and December). Likewise, we
proxy socializing as the amount of time the students spent
with their friends/peers outside class hours.

Figure 4: Distribution of Time in
Campus

Work time: As part of the LiveLabs testbed effort [10],
an indoor localization system has been operational
campus-wide since August, 2013. This captures the
location on-campus of any device that connects to the
campus WiFi, with a location accuracy of 6 - 8 meters,
approximately every 2-3 minutes. With this level of
granularity users can be localized to logical sections within
the buildings with reasonable accuracy. A section is a
semantic location such as a seminar room or meeting
room. In total, there are 167 such sections across the
campus.

For each user for whom we have sleep quality and App
usage data, we infer the time spent in campus as the
difference in time between the first and last record of
indoor location for each day. Here, we hypothesize that
people spending lesser time in campus (or spending less
time at work) results in better quality of sleep. In

Figure 4, we plot the density (y-axis) of the amount of
time students spent on-campus (x-axis) with a bandwidth
parameter set to 15 minutes. As this contains both
session and break times, we observe two peaks: one
occurs during break times near zero, and the other around
6 hours during session times. Interestingly, we also
observe that this distribution has a non-negligible long tail
suggesting that there are times when students stay
on-campus for very long times.

Social time: We use the state-of-the-art group detection
system, GruMon[11], to extract durations and locations at
which the students spent time with friends/peers. We
segment the groups as small (2-3 students), medium (4-7
people) and large (greater than 7). In particular, we look
at the periods for which the students were alone or in
groups (of various sizes), outside of class hours. Class
hours and non-class hours are understood based on the
semantics of the location – i.e., if a student is in a
seminar room or class room, then the student is assumed
to be in-class. We hypothesize that students having more
social time would have a much better sleep quality than
those spending most of the time alone in campus.

Feature Selection
We performed a principal component analysis (PCA) to
understand, out of the 24 app usage and physical
environment features, which features were important in
explaining the variance to both (1) reduce dimensionality
and (2) select features that were important to the analysis.

To this end, we applied PCA on the App usage features
and physical environment features, separately.

App usage features: We first perform PCA on the six
total usage features: (1) total app usage time, (2) total
social app usage time, (3) total reading app usage time,



(4) total game app usage time, (5) total entertainment
app usage time, and (6) total information app usage time.
We specified a value of six for the number of components
(assuming each feature is independent) and observed the
proportion of variance explained by each factor. Table 3
lists the proportion of variance explained by each of the 6
orthogonal components. We observe that only five of the
components are needed to explain the variance in entirety,
and the proportions explained by the 5 components
(specified as PC1 through PC5) are significant.

Proportion
of variance
explained

PC1 0.34
PC2 0.17
PC3 0.17
PC4 0.16
PC5 0.16
PC6 0.0

Table 3: Proportion of variance
explained by principal
components for total app usage
features.

Further, we observed the factor loadings of the 6 features
after varimax based rotation (See Table 4). Interestingly,
we observe that the total app usage and social app usage
features load heavily (0.85 and 0.99, respectively) on the
first component, and the remaining 4 features each load
to heavily (1.0) on separate components. We believe that
the reason for both total and social app usage features to
load heavily on the same component is because app usage
is heavily biased by social app usage – most students use
social apps heavily in comparison with other categories of
apps. This is consistent with previous studies on app
usage [3].

We repeated the same for the 4hbefore and 1hbefore
features, separately, and found that the results from the
PCA analysis were consistent with the above finding.
Henceforth, we dropped the total app usage feature from
feature set (resulting in 5 features per time window).

Physical environment features: We performed PCA on
the six physical environment features: (1) time in-campus,
(2) time outside class, (3) time alone outside class, (4)
time in small groups outside class, (5) time in
medium-sized groups outside class and (6) time in large
groups outside class. We observed that only four
orthogonal components can explain more than 98% of the

variance. In Table 5, we list the factor loadings of the
features on the four components (RC1 through RC4).
Interestingly, we observe that the four features related to
the social context load heavily on four orthogonal
components. We also note that the time in campus and
time outside classes load on the same factor as time alone
outside classes. Henceforth, we club these three features
together and call them collectively as “time in campus”.

RC1 RC2 RC3 RC4 RC5

Total app usage 0.85 0.37 0.27 0.19 0.17
Social app usage 0.99 -0.08 -0.04 -0.03 -0.05
Reading app usage 0.04 0.00 0.01 0.00 1.00
Game app usage 0.08 1.00 -0.01 0.00 -0.01
Entertainment
app usage

0.08 0.00 1.00 0.00 0.00

Information app
usage

0.06 0.00 0.00 1.00 0.00

Table 4: Factor loadings of total app usage features.

RC1 RC2 RC3 RC4

Time in campus 0.54 0.44 0.34 0.30
Time outside classes 0.63 0.51 0.40 0.40
Time alone outside classes 0.97 0.19 0.12 0.07
Time in small groups out-
side classes

0.23 0.95 0.15 0.09

Time in medium-sized
groups outside classes

0.16 0.16 0.97 0.09

Time in large groups out-
side classes

0.11 0.10 0.09 0.98

Table 5: Factor loadings of physical environment features.

Experimental Evaluation
Here, we present results from our preliminary evaluations
for the cases of binary and multi-class classification. We
normalize duration measurements of features (App usage



and physical environment) by total usage or total time
spent in campus, respectively, prior to classification.

Binary classification: For our experimental evaluation
we used the J4.8 decision tree classifier in Weka 2 to
determine which among the set of features would be
correlated with sleep quality by classifying into two
different classes ’Good’ and ’Poor’. We ran the classifier
separately on the four sets of features: (1) physical
environment features, (2) App usage features over the
day, (3) App usage features 4 hours before sleep, and (4)
App usage features 1 hour before sleep.

Figure 5: Sleep Quality vs.
Physical Environment

Figure 6: Overall App Usage by
Category

Figure 5 shows the decision tree obtained after running
the J4.8 classifier with physical environment features. We
make the following observations:

1. Spending fewer hours in the campus is associated
with good quality sleep (recall of 0.981); we note
that students generally spend long hours in campus
towards the end of the semester working on projects
and studying for exams which could be indicative of
stress in students.

2. In students staying longer than 11hours, we observe
poor quality of sleep if they spend most of their
time (95%) studying in classes/seminar rooms.
Further, in cases where students spent more than
95% of their time outside classes, those who spent
their time alone for less than 15% of the time were
associated with good quality sleep.

3. In general, students who spent extremely long hours
in campus (e.g., ≥ 885 mins) were observe to have
suffered from bad quality of sleep.

2http://www.cs.waikato.ac.nz/ml/weka/

Figures 6,7 and 8 illustrate the decision trees for the
overall, 4hbefore and 1hbefore cases, respectively. We
observe that (1) certain categories of Apps positively
influence quality of sleep, and (2) using Apps close to bed
time (e.g., 1hbefore) adversely affects the quality, as
hypothesized. We make the following observations:

1. Low usage of social Apps (e.g., less than 1% of the
time) shows association with good quality of sleep
(recall of 0.998); one reason could be that those
who spend less time on social Apps may actually be
those who spend more time socializing in the
physical world, maintaining healthy relationships.

2. The Gaming, Reading and Social Apps tend to show
positive or negative association with sleep quality
depending on the proportion of time spent and the
time of usage.

3. Although, using social Apps over the entire day
shows negative association with sleep quality, we
observe that more usage correlates with good sleep
quality when used within 4 hours before sleep.

4. App usage 4 hours and 1 hour prior to sleep has
contradicting effects on sleep quality. Using Reading
and Gaming Apps within 1 hour to bed correlates
with poor quality of sleep whereas using them
slightly earlier correlates with good quality sleep.
This finding is consistent with recent work in
psychology [6].

In Table 6, we summarize the precision and recall values
of classifying “Good” quality of sleep. Overall, we observe
very high recall and average precision.

http://www.cs.waikato.ac.nz/ml/weka/


Precision Recall F-
Measure

Physical Environment 0.607 0.981 0.75
Overall App Usage 0.636 0.998 0.777
1hbefore 0.603 1 0.752
4hbefore 0.609 0.983 0.752

Table 6: Precision, Recall, F-measure values of Good sleep
quality classification.

Figure 7: App Usage Within 4
hours before sleep

Figure 8: App Usage Within 1
hour before sleep

Threats to validity: Other than the contexts considered
here, it is reasonable to assume that more obvious
sleep-related factors such as the time a person goes to
bed may affect sleep quality. We compute the deviation in
time to bed, for each user, each day, from his mean time
to bed and regressed over sleep quality. However, we
observed that the deviation in time to bed only explains
0.215% of the variance in sleep quality.

Multi-class classification: Based on the final sleep
scores (0,2.3, 4.67, 7.0, 9.33 and 16.33) that we obtained,
we quantize sleep quality into 6 levels. In all the cases,
the size of the decision tree increased and the overall
F-measure value decreased. But for the classes ’Good’ and
’Moderately Poor’, the F-measure was higher compared to
other classes and thus, suggesting that the decision tree
could better classify sleep quality for these two classes.

Discussion & Conclusion
We briefly describe the limitations in the current study
and our plans for future.

Limitations: One of the key advantages of our
methodology is the ability to understand sleep quality
unobtrusively. However, this also suffers from a number of
drawbacks that can affect the validity of our analysis. The
measurement of sleep time is based on the assumption

that users check their phones before going to sleep and
check their phones as soon as they wake up. This
assumption may be less accurate for demographics other
than students. Another drawback is that sleep
disturbances can be measured only if a user interacts with
the phone when he wakes up in the middle of the night.

Future work: Currently, we aggregate the sleep episodes
across all users. However, a more precise evaluation would
be person-centric as each individual is likely to be
fundamentally different. We plan to perform
person-centric analyses to identify which factors affect
sleep quality for each individual user. Further, other
factors such as the amount of physical activity a user gets
during the day, the places a user visits outside of home
and work, and socializing are known to influence the
positive affect of people and hence may contribute towards
better sleep quality. We intend to include these factors in
future work. Preliminary analyses on the secondary
problem, whether sleep quality of prior night affects an
individual’s behavior the following day, were inconclusive.
However, we intend to investigate the problem further.

Concluding remarks: In this work, we presented the first
of its kind study, to the best of our knowledge, on
understanding what factors affect sleep quality, from
unobtrusive measurements. We focused on the influence
of App usage and physical environment changes and
identified whether the different aspects of daily life
positively (or otherwise) correlate with quality of sleep.
Although the analyses and results presented are
preliminary, we believe that this work has the potential to
open up new research questions in the space of personal
health, quantified self, ubiquitous computing, and
machine learning.
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