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AARPA: Combining Mobile and Power-line Sensing for Fine-grained Appliance
Usage and Energy Monitoring

Nirmalya Roy∗, Nilavra Pathak∗, Archan Misra‡
∗Information Systems, University of Maryland Baltimore County

† School of Information Systems, Singapore Management University
nroy@umbc.edu, nilavra1@umbc.edu, archanm@smu.edu.sg

Abstract—To promote energy-efficient operations in residen-
tial and office buildings, non-intrusive load monitoring (NILM)
techniques have been proposed to infer the fine-grained power
consumption and usage patterns of appliances from power-
line measurement data. Fine-grained monitoring of everyday
appliances (such as toasters and coffee makers) can not only
promote energy-efficient building operations, but also provide
unique insights into the context and activities of individuals.
Current building-level NILM techniques are unable to identify
the consumption characteristics of relatively low-load appli-
ances, whereas smart-plug based solutions incur significant
deployment and maintenance costs. In this paper, we investigate
an intermediate architecture, where smart circuit breakers pro-
vide measurements of aggregate power consumption at room
(or section) level granularity. We then investigate techniques
to identify the usage and energy consumption of individual
appliances from such measurements. We first develop a novel
correlation-based approach called CBPA to identify individual
appliances based on both their unique transient and steady-
state power signatures. While promising, CBPA fails when the
set of candidate appliances is too large. To further improve the
accuracy of appliance level usage estimation, we then propose
a hybrid system called AARPA, which uses mobile sensing
to first infer high-level activities of daily living (ADLs), and
then uses knowledge of such ADLs to effectively reduce the
set of candidate appliances that potentially contribute to the
aggregate readings at any point. We evaluate two variants of
this algorithm, and show, using real-life data traces gathered
from 10 domestic users, that our fusion of mobile and power-
line sensing is very promising: it identified all devices that were
used in each data trace, and it identified the usage duration
and energy consumption of low-load consumer appliances with
∼ 87% accuracy.

Keywords: energy, plug loads, green building, mobile

application

I. INTRODUCTION

There is widespread interest in developing solutions that

provide knowledge of the fine-grained usage and power

consumption of everyday appliances (such as coffee makers

and televisions) in residential buildings. Such interest is pri-

marily driven by recent interest in energy-efficient building

operations, especially as empirical evidence suggests that

empowering consumers with greater awareness of their en-

ergy consumption patterns can result in 5-20% reduction in

electricity usage [17][18]. However, we believe that, besides

this energy-related benefit, the ability to precisely capture the

usage profile of everyday consumer appliances also provides

insight into an individual’s context, at a fine granularity that

existing approaches (typically based on mobile sensing [25])

simply cannot provide. For example, while past approaches

such as [5], [15] can help classify activities such as

“making dinner” or “watching TV”, appliance monitoring

can additionally indicate that the ‘toaster was used today’

(revealing details about the food items consumed) or ‘the

specific TV channel watched’ [23].

This paper thus explores the technical feasibility of a

vision where the sensing capabilities of body-worn per-

vasive devices are combined with the power-line sensing

of appliance usage to provide significantly greater insight

into the daily activities (formally called Activities of Daily

Living or ADLs) of individuals, especially in their residential

environments. While the empirical investigations carried

out in this paper utilize smartphones (that may or may

not be always carried around inside a home), an eventual

embodiment will likely rely on wearable devices (e.g., smart-

watches, smart-bracelets [26]) that are now gaining wider

market acceptance and that a user will likely wear almost-

continuously [27].

In this paper, we first use real-life measurement studies

to develop an enhanced Correlation-Based Power Analytics

algorithm, called CBPA, that applies correlation over both

macroscopic and microscopic power consumption features,

to identify the total usage duration, and the total energy con-
sumption, of individual devices, from such circuit-breaker

level aggregated data. While CBPA helps to successfully

disaggregate room-level power data into individual devices

in some practical cases of interest, its accuracy diminishes

if the candidate set of possible low-load devices becomes

modestly large. Accordingly, we then explore a joint sensor

fusion approach, that combines mobile plus power-line sens-

ing data, to first obtain a smaller, filtered set of candidate

appliances whose cumulative power consumption is reflected

in the reading of the smart circuit breaker. We provide

two different variants of this ADL-driven approach, called

Activity-Aware Room-level Power Analytics (AARPA), one

rule-based and the other probabilistically-weighted, and then

use real-world usage traces to establish their efficacy. Our

work thus establishes how a joint fusion of mobile-sensing
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based ADL recognition and room-level power-line consump-
tion data can provide a practical solution that (a) helps

capture the energy consumption characteristics of low-load,

commonly-used domestic appliances and (b) provides useful

additional context about the lifestyle habits and context of

an individual.

II. RELATED WORK

Our work touches on several areas starting from context-

aware power signature analysis to building energy manage-

ment based on plug load meters.

Appliance Power Signature Analysis: Non-intrusive load

monitoring (NILM) algorithm was initially proposed by

Hart [6] for discerning individual appliance power con-

sumption from total power measurements. The initial tech-

nique proposed a cluster analysis approach, over a two-

dimensional signature space of real and reactive power.

However, the data acquisition system required for the ob-

taining and storing reactive power measurements is costly.

The heuristic end-use load profile algorithm proposed in [13]

records the occurrence, timing, and magnitude of large

spikes in powerline and disaggregates only relatively large

loads, e.g., air conditioners, using a 15 mins sampling

dataset, which inevitably limits the range of other consumer

appliances that could be detected.

Green Building Energy Management using Plug Load
Meters: A building energy auditing network based on Wire-

less AC plug-load meter [14] smart plugs has been proposed

in [4]. The MIT plug power meter platform provides appar-

ent power measurements for profiling a load over a short or

long time scales [10]. A growing interest for building energy

monitoring system has been noticed recently in industry as

well due to the several startups, such as EnergyHub [1] and

Greenbox [2]. A non-intrusive approach that employs ma-

chine learning on data collected from infrastructure sensors,

such as magnetic sensors, has been proposed to infer fine-

grained power usage in home [8]. PowerPedia enables users

to identify and compare the consumption of the plug-level

domestic appliances through a smart phone app [20].

Smartphone and Sensor based Energy Prediction: An

iPhone App called Beware [3] provides the user information

on energy consumption of entire home. It can detect the

electricity consumption of different devices and notify the

user if the devices use more energy than expected. Energy

Lens [11] provides deeper real time visibility of plug-load

energy consumption in buildings. It uses the mobile phone

to provide a consumer with real-time energy analytics. [12]

proposed an ad hoc sensor system that can monitor appliance

power usage by exploiting multi-sensor fusion and unsuper-

vised machine learning algorithms. In summary, plug-load

meter based approaches can easily achieve a detailed device-

level energy footprint but for a steep deployment, operating

and maintenance costs [21]. Our approach is synergistic

with studies in [5], which employed activity recognition,

principally using infrastructural sensors, to estimate the

aggregate energy consumption in a smart home environment.

In contrast, we focus on using mobile sensing for more

practical recognition of Activities of Daily Living (ADL),

and focus on estimating the energy consumption at a finer,

individual appliance-level, granularity.

III. APPLIANCE SIGNATURE ANALYSIS

Given our focus on identifying relatively low (or medium)

load devices, we first present a brief empirical study of the

power consumption characteristics of some typical devices.

The goal here is to establish that even everyday appliances

with seemingly similar power profiles often posses unique

temporal characteristics, that we can hope to leverage while

attempting to disambiguate the consumption of multiple

devices. The absolute values of the instantaneous power

readings are not of prime relevance, as: (i) precise readings,

as well as temporal patterns, will clearly vary across de-

vice manufacturers and models, and (ii) individual absolute

values are hard to tease out from a power consumption

measurement that is a sum of a large number of individual

appliances/devices. More specifically, we study the similari-

ties and differences in the power consumption pattern of one

device pair with relatively quite similar behavior:

Refrigerator vs. steam iron: While seemingly quite different

in their operation (and role in a consumer’s daily life), both

exhibit a cyclic pattern of power consumption: the fridge

due to duty cycling of its compressor, with the iron due to

intermittent deactivation by the thermostat. Accordingly, our

comparison deliberately looks at worst-case scenarios where

device pairs have highly similar behavior–other pairings of

these 4 devices will be much easier to identify and separate.

The measurements are conducted using Moteware Smart

Plugs (ACMe) [14], running in an TinyOS environment with

an Ubuntu 12.04.3 LTS system (additional details of our

measurement experiments will be provided in experimental

section).
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Figure 1. Refrigerator Power Con-
sumption
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Figure 2. Steam Iron Power Con-
sumption

Fig. 1 and 2 plots the power consumption pattern of the

fridge against that of the steam iron. It should be clear that

the consumption behavior exhibits the following similarities:

(i) both devices exhibit a very cyclical consumption pattern,

with each device being duty cycled for a significant fraction

of the time (the fridge having its compressor turned off,

while the iron having its heating coil turned off); (ii) both

devices having significantly lower (at least 80%) lower



power consumption during the “off” period of each duty

cycle, and (iii) both devices have a longer transient duty

cycle (with the fridge’s compressor being active to initially

reach the pre-set temperature and the iron’s heating coil

warming up to reach the desired temperature), as they ramp

up from an initial state.

However, a finer-grained inspection of the patterns reveal

some clear and insightful differences:

• The time period for the duty cycle is nearly constant

for the fridge, while it exhibits irregular variation in the

case of the steam iron. However, the “on” period for

each duty cycle is fairly constant for both the fridge and

the iron. This is really an artefact of the irregular pattern

of human usage of the iron, in contrast with the fridge

where human interaction is much less frequent and the

behavior of the compressor is much more ‘regular’.

• Besides the variability, the average value of the time

periods are markedly different. The time period for one

cycle of the fridge is approx 38-40 minutes, while it is

much shorter in the case of the iron (1-1.5 minutes).

• Finally, the power consumption during the “off” period

of the duty cycle is quite different–it is essentially about

0.5W for the fridge, but around 3W for the iron.

The readings suggest that employing a technique that

looks not just at initial transients, but over the regular

operation cycle of each device, should be able to discrim-

inate between these two devices, by taking advantage of

their different temporal evolution patterns. Based on these

insights, we now present our proposed CBPA algorithm,

which seeks to utilize such temporal signatures in the power

consumption characteristics of each individual device.

IV. CORRELATION-BASED POWER ANALYTICS

The CBPA algorithm proposes to identify both the set of

devices/appliances being used, and their individual power

consumption, by exploiting both the microscopic and macro-
scopic features present in the time series of the total power

consumption. Microscopic refers to the specific temporal

nature of the signal waveforms and harmonics (e.g., as used

in [9]), whereas macroscopic refers to power changes, etc as

studied in [6]. However, capturing such microscopic features

can itself present challenges–for example, to accurately

capture harmonics, the Circuit Breaker needs to utilize a

higher sampling rate, which in turn poses data transmission

bandwidth and storage challenges. Similarly, monitoring the

reactive power from the appliances is also a computationally

intensive task [9]. To alleviate these problems, [9] proposed

to use only transient signals for harmonic analysis. However,

we are interested in not just detecting appliances via analyses

of their transients, but also estimating their total energy

consumption, implying that we need to analyze the steady-

state operations as well.

To utilize the signatures present in both transient and

steady-state phases of power consumption, our proposed

CBPA utilizes a signal waveform analysis technique based

on Cross-correlation [7], which captures the similarity of

two waveforms as a function of a time-lag applied to one

of them. Cross-correlation analysis is often used to detect

the presence of a short-duration time series within a longer-

duration signal. Mathematically, the cross-correlation (xcorr)

sequence, defined between two jointly stationary random

processes, xn and yn, with −∞ < n < ∞, is represented

as:

Rxy(m) = E{xn+my∗n} = E{xny
∗
n−m} (1)

where E{.} is the expected value operator. xcorr(x,y) returns

the cross-correlation sequence as a vector of size (2×N −
1) vector, where x and y are length N vectors (N > 1).

For continuous-valued signals, xcorr is computed via the

convolution of two signals, by integrating as follows:

y(t) = x(t)× h(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ (2)

We then apply the correlation technique mentioned above

to try and identify each individual appliance from the total

load measurements. A key aspect of our methodology lies

in our modeling and use of both the transient and steady-

state phases: in particular, peaks in the correlation function

often help to identify distinct ‘events’ associated with each

appliance (e.g., a fridge’s compressor turning off or on); such

peaks correspond to key transient characteristics. However,

having isolated these peaks, we then model the steady state

load as well to compute the energy consumed over the entire

steady-state.

A. Generating Individual Power Signatures

In our approach, we first individually measure the load

behavior (i.e., the characteristic power consumption curve)

for each appliance, and thus create a device-specific model
or signature of the power consumption. For obtaining the

characteristic power consumption of a device or appliance,

the device was plugged into an ACMe plug load me-

ter, and monitored for a duration long enough to capture

both transient and steady-state phases. We wrote a generic

code to collect the relevant characteristic information from

these measurements. For example, for the case of a mini-

refrigerator, the fridge was left on for at least three compres-

sor ON cycles. In this case, the characteristic information

retrieved includes (i) the characteristic energy value when

the compressor is ON, (ii) average energy consumption value

when the compressor is OFF, (iii) time period of one cycle

comprising both successive compressor ON and OFF states,

and (iv) the energy consumption during the transient period

of the compressor turning OFF. Similarly, generic codes are

implemented for collecting characteristic power curves from

other respective devices. To generate accurate characteristic

curves, it is important to not only measure for a sufficiently

long duration, but to also avoid usage artefact during the

measurement phase.



B. Feasibility of the CBPA Approach

To test the possible use of the correlation-based CBPA

approach, we utilize a real dataset collected using the Smart

Plug over a 10 hours time period (614 mins) as shown in

Fig. 3 from the appliances described below. To generate the

ground truth about the device usage, we also collected the

precise usage times of each device. a) Mini-Refrigerator is

ON from 0 to 614 minutes, b) Fluorescent lamp is ON from

104 to 448 minutes, c) Mobile charger is ON from 145 to

344 minutes, d) Steam Iron is ON from 396 to 440 minutes,

e) Table Fan is ON at level 1 speed from 416 to 494 minutes,

at level 2 speed from 495 to 531 minutes, at level 3 speed

from 532 to 573 minutes.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140
Total Consumption

Time (Minutes)

P
o
w

e
r 

C
o
n
s
u
m

p
ti
o
n
(W

a
tt
)

Figure 3. Aggregated
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tor Correlation Analy-
sis Curve

Fig. 3 plots the aggregate load, as measured by the plug

load meter. To evaluate the effectiveness of our proposed

CBPA technique, we start by trying to separate out the en-

ergy consumptions of refrigerator. For this we use correlation

between the aggregate data set and characteristic curve gen-

erated by one of the load modeling function corresponding

to refrigerator. Wherever there is a close enough match of

aggregate data set curve (Fig. 3) and refrigerator charac-

teristic power consumption curve (Fig. 4), peaks are gen-

erated at those points (Fig. 5). These peak points represent

the location wherever refrigerator’s Compressor ON state’s

consumption is present. Accordingly, we simply retrieve the

consumption profile from the refrigerator’s signature and

align the consumption curve to those specific time instances;

we then subtract the refrigerator’s resulting estimated con-

sumption pattern from the total power measurement to

get the aggregated consumption of the residual devices,

namely the steam iron, the mobile charger, the lamp and the

fan. By similarly applying the correlation-based technique

iteratively, we recover the energy consumption for both the

steam iron and for the mobile telephone charger. Finally, we

repeat the process to separate out the consumption patterns

of the lamp and the fan. This approach proved to be fairly

successful for this somewhat arbitrary mix of appliances,

enabling us to recover the energy consumption and usage

times for each appliance fairly accurately. As an illustration

(to provide a unified view, detailed numerical results are

deferred to experimental section), Fig. 6 shows the ground
truth total energy consumption excluding the refrigerator,

whereas Fig. 7 shows the total energy consumption exclud-

ing the CBPA-computed energy consumption of the fridge.

While this approach is successful in some cases, it turns

out to be incapable of accurately estimating the energy

consumption for many other combinations of appliances–in

general, larger the set of possible appliances, the poorer the

result. Motivated by these empirical observations, we next

look into the AARPA approach of first using mobile sensing

to infer an individual’s ADL context, and using such context

to reduce the set of appliances likely being used.
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Figure 6. Total Power Consump-
tion excl. Refrigerator (Ground
Truth)
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V. ACTIVITY-AWARE ROOM-LEVEL POWER ANALYSIS

Our key idea is to leverage upon the large body of work

on pervasive/mobile sensing, for inferring both low-level

locomotive context [16], as well as high-level ADLs [15].

To be clear, this paper does not attempt to innovate in

the domain of activity recognition, but instead borrows

prior techniques that (i) apply a hierarchical classification

model [15] to detect various ADLs and (ii) uses Wi-Fi

measurement data to determine an individual’s location at

room-level granularity [19]. Mobile phones themselves have

also been used as part of systems for energy attribution

in green buildings (e.g., [11]), but more as an information

presentation platform, rather than a sensing device.

A. Appliance-Aware Activity Model

As the second-stage of the AARPA framework, we then

attempt to derive the set of appliances associated with

each such ADL. More specifically, we use a-priori training

data to associate each element e, e ∈ A, with a set of

appliances that the individual is likely to use (or, more

generally, have the appliance be turned on for at least

a portion of the overall activity duration) while engaging

in that activity. Accordingly, the key element of AARPA

involves a mapping from each element e → S(e), where

S(e) is a subset of the overall set of appliances S=

{microwave, toaster, steamiron, TV . . .}. Once we have

the smaller set S(e), we then apply the CBPA technique

described earlier, using this set S(e) and the overall power



consumption data obtained from the corresponding Smart

Circuit Breaker. In this paper, we propose and explore two-

variants of AARPA, that differ in the way the set S(e), for

each ADL e, is represented and used:

• Rules based: In this approach, called RPA, we collect

the total set of appliances used (over the training phase)

by an individual when engaging in a specific ADL.

More specifically, the set S(e) for any ADL e consists

of all the appliances used during any instance of e, even

if the appliance may have been used only in a small set

of such instances, or for a very small duration.

• Usage Weighted: In this approach, called WPA, we

compute the probability (or likelihood) w(e, i) of a spe-

cific appliance i being used during a specific instance

of ADL e, by observing and computing the average

fraction of time that i is observed to be used during

each instance of e. In this case, the CBPA algorithm

is modified to use not just the absolute maximum

correlation value described previously, but instead mul-

tiplies the correlation value of each appliance with its

corresponding likelihood w(e, i). The WPA technique

can be viewed as a Bayesian analogue of RPA, with

the identification of a specific appliance being weighted

by the a priori likelihood of that appliance being used

during a specific ADL.

Fig. 8 provides the high-level pseudocode for the overall

AARPA technique, summarizing both the RPA and WPA

variants. (For RPA, the w(e, i) values are all set to 1.) Next

we shall use empirical investigations to study the bene-

fits and performance characteristics of these two AARPA

variants, and compare them with the baseline version of

CBPA (which includes in the candidate set any appliance

attached to the circuit breaker from which the total power

consumption details are obtained).

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we report on our experiments that investi-

gate the benefit of the proposed (AARPA) techniques. Our

experiments are conducted with real-life data traces of (i)

appliance power consumption and (ii) smartphone sensor

readings while participating in ADLs, collected from 10
users living in typical apartments and town home complexes.
A. Smart Plug Setup and Data Collection

The Moteware ACMe [14] was used as a plug load meter

in this work. The ACMe is based around a Texas Instruments

MSP430 microcontroller where power is monitored by an

SPI-controlled Analog Devices ADE7753 power monitoring

IC, attached with a Hall Effect sensor. The ACMe was

plugged into an electrical wall socket; while an individual

device was then directly plugged into this plug, an extension

cord was used to connect multiple devices. The plug load

meter measured and transmitted the power consumption data

in watts (volt-amps), along with a timestamp, at a frequency

of 16 Hz, both through a serial and wireless interface to the

Procedure AARPA (input: aggregate power data (P)
output: appliance identification & power enumeration)
1. Empirically calculate appliance usage based weighting

factor from trace data;
1.1 For (e ∈ A) & (i ∈ S) {

1.1.1 Compute w(e, i) =
dei∑m

i=1
dei

where w(e, i) is the usage weighting factor of eth

activity with ith appliance and dei is the usage time
duration of ith appliance in association with eth

activity.
2. End-For
3. RP = P; // residual total power
4. For (i ∈ S) {
5. Compute correlation δi = xcorr(RP, i);//convolution
6. End-for
7. Pick the appliance î with highest correlation based on

δi × w(e,i)√∑
w(e,i)2

;

//correlation multiplied by a normalized weighting
//factor

8. Subtract appliance î from S(e) //set-theoretic
and its characteristic power from RP

9. Go to step 7 and repeat the process until S(e) = φ.

Figure 8. The AARPA Algorithm

basestation, which generated a corresponding .csv file for

subsequent analysis.

B. Android-based App Development and Data Collection

We designed an application to collect accelerometer and

gyroscope data from an Android based Google Nexus smart

phone device for monitoring the activity and appliance usage

behavior of a typical user. It also asks the user to manually

tag the semantic name of the location (such as bedroom,

kitchen, living room etc) and the specific activity being

performed to aid in labeling the data, as well as the (start,

stop) times of individual appliances. The resulting data was

stored in ARFF file format, for subsequent processing using

the Weka toolkit [22]. We collected samples of ten users

from six homes performing a variety of both kitchen-related

ADLs (such as making breakfast, preparing dinner and

washing dishes) and living-room related ADLs (watching

TV, etc.). We collected samples for time periods between five

to sixty minutes based on a specific activity, with sensor data

collected at 80 Hz. While conducting each ADL, the users

were free to place the smartphone in the on-body position

of their choice.

C. Activity-Aware Power Signature Analysis

We investigate the issue of whether this activity-aware

power signature analytics approach really helps to improve

the detection and measurement of multiple appliances’

power consumption. In particular, we experimented with

3 different strategies, which differ in whether or not, and

how, they use of the additional room-level activity informa-

tion to reduce the set of candidate appliances used in the

CBPA algorithm. For each algorithm, we computed both

the duration error (the difference between the ground-truth

usage duration and that reported by AARPA), and the energy



consumption error (the difference between the ground-truth

and the AARPA output).

Exhaustive Power Analysis (EPA): In this approach, we

consider all appliances in a particular location as members

of the candidate set, without regard for their use during a

specific ADL. For example, for the kitchen area, the set

consists of all of the appliances: {microwave, toaster, coffee

maker, boiler, hand mixer, and a grinder}, even if the user

is “making breakfast” and has never used a hand mixer

during this ADL. For this set of appliances, we note that

the characteristics of the hand mixer were very similar to

that of the coffee-maker, making disambiguation via CBPA

very difficult. Overall, the EPA approach resulted in fairly

high errors (see Table I for details), with average (across

all appliances) duration and energy consumption errors of

≈ 35% and 36% respectively.

Rule-based Power Analysis (RPA): In this approach, as

explained earlier, the candidate set of appliances was defined

a-priori for each separate ADL. For example, using ground-

truth data about usage patterns, the “making breakfast” ADL

is associated with the smaller appliance set: {microwave,

toaster, coffee maker, and boiler}, and excludes the {hand

mixer, grinder} devices. The resulting duration and energy

consumption errors are lower than that achieved by EPA

(about 31% and 22%) respectively.

Weighted Power Analysis (WPA): In this weighted-based

approach, we additionally compute a usage weight for each

candidate appliance (identified by the RPA process), as

shown in Line 1.1.1 of Algorithm in Fig. 8, and use this

weight to boost the correlation value. In this case, the aver-

age errors in duration and energy consumption are sharply

reduced, to approx. 12% and 13% respectively, attesting to

the promise of this approach.
Table I

PERFORMANCE METRIC

Power Start/End Total Energy
Analytics Time Consumption
Methods Error (%) (Joule) Error (%)

EPA 34.78 36.17

RPA 31.25 22.12

WPA 11.74 13.27

VII. CONCLUSION

In this work, we have advocated an intermediate approach

for NILM-based monitoring of both the usage episodes
and energy consumption of relatively low-load domestic

appliances, that utilizes smart circuit breakers to measure

the total power consumption at room (or sections) level

granularity. We have developed a novel correlation-based

analytics algorithm, CBPA, to identify the precise usage

duration of, and the overall energy consumed by, appliances

such as table fans and coffee makers based on both their

steady-state and transient power characteristics. To overcome

CBPA’s limitations when the set of candidate appliances

becomes moderately large, we then propose an analytics ap-

proach, called AARPA, that fuses pervasive/mobile sensing

and high-level ADL recognition with such circuit breaker-

level power readings. AARPA employs mobile sensing to

first obtain a reduced set of candidate appliances likely to

be used during an ongoing ADL episode, before applying the

CBPA technique. Results from a set of 10 users show that

a probabilistically-weighted variation of CBPA shows great

promise in identifying the usage of such everyday appliances

very accurately (every appliance usage episode was correctly

inferred), and provides fairly accurate estimates (average

error of around 13%) of both their usage duration and energy

consumption.
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