Technical Appendix to "Stochastic Capacity Investment and Flexible vs. Dedicated Technology Choice in Imperfect Capital Markets"

Onur BOYABATLI
Singapore Management University, oboyabatli@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research
 Part of the Finance and Financial Management Commons, and the Operations and Supply Chain Management Commons

Citation

BOYABATLI, Onur. Technical Appendix to "Stochastic Capacity Investment and Flexible vs. Dedicated Technology Choice in Imperfect Capital Markets". (2011). Research Collection Lee Kong Chian School Of Business.
Available at: https://ink.library.smu.edu.sg/lkcsb_research/4881

TECHNICAL APPENDIX TO:
 STOCHASTIC CAPACITY INVESTMENT AND FLEXIBLE VERSUS DEDICATED TECHNOLOGY CHOICE IN IMPERFECT CAPITAL MARKETS

Onur Boyabatlı
Lee Kong Chian School of Business, Singapore Management University
oboyabatli@smu.edu.sg
L. Beril Toktay
College of Management, Georgia Institute of Technology
beril.toktay@mgt.gatech.edu

July 2007, Revised 24 June and 25 October 2010, 19 March and 19 May 2011
§A contains the proofs for our technical statements in the paper. We present the proofs for technical statements that we develop in this Appendix in §B. We use the following identities for the standard normal random variable with $\operatorname{cdf} \Phi($.$) and \operatorname{pdf} \phi($.$) throughout$ the Appendix: $\phi^{\prime}(z)=-z \phi(z), \int_{-\infty}^{v} z \phi(z) d z=-\phi(v)$ and $1>\left[\frac{\phi(v)}{1-\Phi(v)}\right]^{2}-\frac{v \phi(v)}{1-\Phi(v)}>0$, where the last two inequalities are proven in Sampford (1953).

A Main Proofs

Proof of Proposition 1: If the firm does not have the limited liability option, then $\pi_{D}\left(K_{D}\right)$ is strictly concave in K_{D} and the unique optimal capacity investment level K_{D}^{*} and the optimal expected equity value π_{D}^{*} are given by

$$
\begin{align*}
& K_{D}^{*}= \begin{cases}K_{D}^{0} \doteq\left(\frac{\bar{\xi}\left(1+\frac{1}{b}\right)}{\left(1-\gamma_{D}\right) c_{D}}\right)^{-b} & \text { if } B \geq 2 c_{D} K_{D}^{0} \\
\frac{B}{2 c_{D}} & \text { if } 2 c_{D} K_{D}^{1} \leq B<2 c_{D} K_{D}^{0} \\
K_{D}^{1} \doteq\left(\frac{\bar{\xi}\left(1+\frac{1}{b}\right)}{\left(1+a_{D}-\gamma_{D}\right) c_{D}}\right)^{-b} & \text { if } B<2 c_{D} K_{D}^{1},\end{cases} \tag{5}\\
& \pi_{D}^{*}= \begin{cases}\frac{2 c_{D} K_{D}^{0}\left(1-\gamma_{D}\right)}{--(b+1)}+B+P & \text { if } B \geq 2 c_{D} K_{D}^{0} \\
2 \bar{\xi} \frac{B}{2 c_{D}}+\gamma_{D} B+P & \text { if } 2 c_{D} K_{D}^{1} \leq B<2 c_{D} K_{D}^{0} \\
\frac{2 c_{D} K_{D}^{1}\left(1+a_{D}-\gamma_{D}\right)}{-(b+1)}+B\left(1+a_{D}\right)+P & \text { if } B<2 c_{D} K_{D}^{1}\end{cases}
\end{align*}
$$

With limited liability, when the firm borrows $\left(K_{D}>\frac{B}{2 c_{D}}\right)$, we have $l_{D}\left(K_{D}\right) \doteq K_{D}^{\frac{-1}{b}}\left(1+a_{D}-\gamma_{D}\right) 2 c_{D}-$ $K_{D}{ }^{\left(-1-\frac{1}{b}\right)}\left[B\left(1+a_{D}\right)+P\right]$ such that the firm is able to pay back the face value of the loan
if and only if $\tilde{\xi}_{1}+\tilde{\xi}_{2}$ is no less than $l_{D}\left(K_{D}\right)$. For $\tilde{\xi}_{1}+\tilde{\xi}_{2}>l_{D}\left(K_{D}\right)$, the optimal equity value $\Pi_{D}^{*}>0$, and for $\tilde{\xi}_{1}+\tilde{\xi}_{2} \leq l_{D}\left(K_{D}\right), \Pi_{D}^{*}=0$. We obtain

$$
\begin{equation*}
\frac{\partial l_{D}\left(K_{D}\right)}{\partial K_{D}}=-\frac{1}{b} K_{D}^{\left(\frac{-1}{b}-1\right)}\left(1+a_{D}-\gamma_{D}\right) 2 c_{D}+\left(1+\frac{1}{b}\right) K_{D}\left(-2-\frac{1}{b}\right)\left[B\left(1+a_{D}\right)+P\right]>0 . \tag{6}
\end{equation*}
$$

Therefore, we can identify the unique $K_{D}^{l}<K_{D}^{u}$ such that $l_{D}\left(K_{D}^{l}\right) \doteq 2 \xi^{l}$ and $l_{D}\left(K_{D}^{u}\right) \doteq 2 \xi^{u}$. Since $l_{D}\left(K_{D}\right)$ is strictly increasing in K_{D}, we have $l_{D}\left(K_{D}\right) \geq 2 \xi^{u}$ for $K_{D} \geq K_{D}^{u}$; hence $\Pi_{D}^{*}=0$ at each $\tilde{\xi}_{1}+\tilde{\xi}_{2}$ and $\pi_{D}^{*}=0$ for $K_{D} \in\left[K_{D}^{u}, \infty\right)$. Therefore, it is sufficient to analyze the problem for $K_{D} \in\left[0, K_{D}^{u}\right)$. We have three separate cases to consider:
Case 1: For $K_{D} \in\left[0, \frac{B}{2 c_{D}}\right]$, similar to the no limited liability case, the firm does not borrow, and the expected equity value of the firm is $\pi_{D}^{*}=\max _{K_{D}} 2 \bar{\xi} K_{D}^{\left(1+\frac{1}{b}\right)}+B+P-$ $2 c_{D}\left(1-\gamma_{D}\right) K_{D}$.
Case 2: For $K_{D} \in\left[\frac{B}{2 c_{D}}, K_{D}^{l}\right]$, similar to the no limited liability case, the firm optimally borrows, and is always able to pay back the face value of the loan. ${ }^{1}$ The expected equity value of the firm is $\pi_{D}^{*}=\max _{K_{D}} 2 \bar{\xi} K_{D}^{\left(1+\frac{1}{b}\right)}+B\left(1+a_{D}\right)+P-2 c_{D}\left(1+a_{D}-\gamma_{D}\right) K_{D}$.
Case 3: For $K_{D} \in\left(K_{D}^{l}, K_{D}^{u}\right)$ the firm always borrows, and for some demand realization, is not able to pay back the face value of the loan; hence the expected equity value of the firm is
$\pi_{D}^{*}=\max _{K_{D}} \iint_{\Upsilon_{D}\left(\xi ; K_{D}\right)}\left[\left(\tilde{\xi}_{1}+\tilde{\xi}_{2}\right) K_{D}{ }^{\left(1+\frac{1}{b}\right)}-2 c_{D} K_{D}\left(1+a_{D}-\gamma_{D}\right)+B\left(1+a_{D}\right)+P\right] f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}$, where $\Upsilon_{D}\left(\boldsymbol{\xi} ; K_{D}\right) \doteq\left\{\boldsymbol{\xi}: \xi_{1}+\xi_{2} \geq l_{D}\left(K_{D}\right)\right\}$ and $f\left(\xi_{1}, \xi_{2}\right)$ is the joint pdf of $\boldsymbol{\xi}$.

Let $g_{D}\left(K_{D}\right)$ denote the objective function in the overall optimization problem and $g_{D}^{i}\left(K_{D}\right)$ denote the objective function in case i. It is easy to establish that $g_{D}\left(K_{D}\right)$ is continuous at the boundaries $K_{D}=\frac{B}{2 c_{D}}$ and $K_{D}=K_{D}^{l}$; and hence $g_{D}\left(K_{D}\right)$ is continuous in K_{D}. It follows from (5) that $g_{D}\left(K_{D}\right)$ is strictly concave in K_{D} for $K_{D} \in\left[0, K_{D}^{l}\right]$ and has a kink at $K_{D}=\frac{B}{2 c_{D}}$. We obtain
$\frac{\partial g_{D}^{3}\left(K_{D}\right)}{\partial K_{D}}=\iint_{\Upsilon_{D}\left(\boldsymbol{\xi} ; K_{D}\right)}\left[\left(1+\frac{1}{b}\right)\left(\xi_{1}+\xi_{2}\right) K_{D}^{\left(\frac{1}{b}\right)}-2\left(1+a_{D}-\gamma_{D}\right) c_{D}\right] f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}$.
It is easy to verify that $\left.\frac{\partial g_{D}^{2}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{l}-}=\left.\frac{\partial g_{D}^{3}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{l}+}$; hence $g_{D}\left(K_{D}\right)$ does not have a kink at $K_{D}=K_{D}^{l}$. Define $G\left(K_{D}, \boldsymbol{\xi}\right) \doteq\left(1+\frac{1}{b}\right)\left(\xi_{1}+\xi_{2}\right) K_{D}^{\left(\frac{1}{b}\right)}-2\left(1+a_{D}-\gamma_{D}\right) c_{D}$ as the integrand of (7) (without the density function). Note that $G\left(K_{D}, \boldsymbol{\xi}\right)$ is increasing in

[^0]ξ_{i} for $i=1,2$, and decreasing in K_{D}. We define $\hat{K}_{D} \doteq\left(\frac{\xi^{u}\left(1+\frac{1}{b}\right)}{\left(1+a_{D}-\gamma_{D}\right) c_{D}}\right)^{-b}$. We have $l_{D}\left(\hat{K}_{D}\right)=2\left(1+\frac{1}{b}\right) \xi^{u}\left[1-\frac{B\left(1+a_{D}\right)+P}{2 \hat{K}_{D}\left(1+a_{D}-\gamma_{D}\right) c_{D}}\right]<2 \xi^{u}$, thus $\hat{K}_{D}<K_{D}^{u}$ and is in the feasible region of K_{D}. Note that for $\boldsymbol{\xi}^{u^{\prime}} \doteq\left(\xi^{u}, \xi^{u}\right), G_{D}\left(\hat{K}_{D}, \boldsymbol{\xi}^{u}\right)=0$. Since $\left(\xi_{1}+\xi_{2}\right)$ takes its maximum value at $\boldsymbol{\xi}=\boldsymbol{\xi}^{\boldsymbol{u}}$, and $G_{D}\left(K_{D}, \boldsymbol{\xi}\right)$ is strictly increasing in ξ_{i} for $i \in\{1,2\}$, we have $G_{D}\left(K_{D}, \boldsymbol{\xi}\right)<0$ for $\boldsymbol{\xi} \in \Upsilon_{D}\left(\boldsymbol{\xi}, \hat{K}_{D}\right)$. Therefore $\left.\frac{\partial g_{D}^{3}\left(K_{D}\right)}{\partial K_{D}}\right|_{\hat{K}_{D}}<0$. Since $G_{D}\left(K_{D}, \boldsymbol{\xi}\right)$ is strictly decreasing in $K_{D}, \frac{\partial g_{D}^{3}\left(K_{D}\right)}{\partial K_{D}}<0$ for $K_{D} \in\left[\hat{K}_{D}, K_{D}^{u}\right)$.

In summary, $g_{D}\left(K_{D}\right)$ is strictly concave in K_{D} for $K_{D} \in\left[0, K_{D}^{l}\right]$ (with a kink at $K_{D}=$ $\left.\frac{B}{2 c_{D}}\right)$, and is strictly decreasing in K_{D} for $K_{D} \in\left[\hat{K}_{D}, K_{D}^{u}\right)$. It follows that $g_{D}\left(K_{D}\right)$ will be unimodal if $K_{D}^{l} \geq \hat{K}_{D}$. Since $\frac{\partial l_{D}\left(K_{D}\right)}{\partial K_{D}}>0$ (from (6)), this is equivalent to $l_{D}\left(\hat{K}_{D}\right) \leq 2 \xi^{l}$, which gives us $B \geq B_{D}^{h}$. In this case, K_{D}^{*} is in the strictly concave part and is unique. K_{D}^{*} is identical to (5).
Proof of Proposition 2: In the proof of Proposition 1, we already established that the stage-1 objective function $g_{D}\left(K_{D}\right)$ is strictly concave in K_{D} for $K_{D} \in\left[0, K_{D}^{l}\right]$ and strictly decreasing in K_{D} for $K_{D} \in\left[\hat{K}_{D}, K_{D}^{u}\right)$. We obtain $\left.\frac{\partial g_{D}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{l}}=\frac{\left(1+\frac{1}{b}\right) 2 \bar{\xi}}{\left(K_{D}^{l}\right)^{-1 / b}}\left[1-\left(\frac{K_{D}^{l}}{K_{D}^{1}}\right)^{-\frac{1}{b}}\right]$ where $K_{D}^{1}=\left(\frac{\bar{\xi}\left(1+\frac{1}{b}\right)}{\left(1+a_{D}-\gamma_{D}\right) c_{D}}\right)^{-b}$. It follows that $\left.\frac{\partial g_{D}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{l}}>0$ if and only if $K_{D}^{l}<K_{D}^{1}$. In this case $g_{D}\left(K_{D}\right)$ is strictly increasing for $K_{D} \in\left[0, K_{D}^{l}\right]$ and strictly decreasing in K_{D} for $K_{D} \in\left[\hat{K}_{D}, K_{D}^{u}\right)$. Since $g_{D}\left(K_{D}\right)$ is continuous in K_{D}, there exists at least one $K_{D}^{*} \in\left(K_{D}^{l}, K_{D}^{u}\right)$ such that $\left.\frac{\partial g_{D}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{*}}=0 . M P_{D}\left(K_{D}\right)$ characterizes this first-ordercondition. Since $\frac{\partial l_{D}\left(K_{D}\right)}{\partial K_{D}}>0\left(\right.$ from (6)), $K_{D}^{l}<K_{D}^{1}$ is equivalent to $l_{D}\left(K_{D}^{1}\right)>2 \xi^{l}$, which gives $B<B_{D}^{l}$.

To prove that $K_{D}^{*} \in\left(K_{D}^{1}, K_{D}^{u}\right)$, it is sufficient to show that $\frac{\partial g_{D}\left(K_{D}\right)}{\partial K_{D}}>0$ for $K_{D} \in$ $\left(K_{D}^{l}, K_{D}^{1}\right]$. For $K_{D}>K_{D}^{l}$, as follows from (7), we have

$$
\frac{\partial g_{D}\left(K_{D}\right)}{\partial K_{D}}=\left(1+\frac{1}{b}\right) K_{D}^{\frac{1}{b}} \iint_{\Upsilon_{D}\left(\boldsymbol{\xi} ; K_{D}\right)}\left[\xi_{1}+\xi_{2}-2 \bar{\xi}\left(\frac{K}{K^{1}}\right)^{-\frac{1}{b}}\right] f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}
$$

Let $H_{D}\left(K_{D}\right) \doteq \iint_{\Upsilon_{D}\left(\xi ; K_{D}\right)}\left[\xi_{1}+\xi_{2}-2 \bar{\xi}\left(\frac{K}{K^{1}}\right)^{-\frac{1}{b}}\right] f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}$. Note that, for $K_{D}>$ $K_{D}^{l}, H_{D}\left(K_{D}\right)$ and $\frac{\partial g_{D}\left(K_{D}\right)}{\partial K_{D}}$ have the same sign, so we can use $H_{D}\left(K_{D}\right)$ to characterize the sign of $\frac{\partial g_{D}^{3}\left(K_{D}\right)}{\partial K_{D}}$. Define $M_{D}\left(K_{D}, \boldsymbol{\xi}\right) \doteq \xi_{1}+\xi_{2}-2 \bar{\xi}\left(\frac{K}{K^{1}}\right)^{-\frac{1}{b}}$ as the integrand in $H_{D}\left(K_{D}\right)$ (without the density function). For $\boldsymbol{\xi}$ such that $\xi_{1}+\xi_{2}=l_{D}\left(K_{D}\right)$, we obtain $M\left(K_{D}, \boldsymbol{\xi}\right)=$ $K_{D}^{-\frac{1}{b}}\left[\frac{2\left(1+a_{D}-\gamma_{D}\right) c_{D}}{(b+1)}-\frac{B\left(1+a_{D}\right)+P}{K_{D}}\right]<0$ since $b<-1$. As $M_{D}\left(K_{D}, \boldsymbol{\xi}\right)$ is strictly increasing in ξ_{i} for $i \in\{1,2\}, M_{D}\left(K_{D}, \boldsymbol{\xi}\right)<0$ for $\boldsymbol{\xi}$ such that $\xi_{1}+\xi_{2}<l_{D}\left(K_{D}\right)$. Therefore, we have $H_{D}\left(K_{D}\right)>\iint\left[\xi_{1}+\xi_{2}-2 \bar{\xi}\left(\frac{K_{D}}{K_{D}^{1}}\right)^{-\frac{1}{b}}\right] f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}=2 \bar{\xi}\left[1-\left(\frac{K_{D}}{K_{D}^{1}}\right)^{-\frac{1}{b}}\right]$. For $K_{D} \leq$
K_{D}^{1}, we have $2 \bar{\xi}\left[1-\left(\frac{K_{D}}{K_{D}^{1}}\right)^{-\frac{1}{b}}\right] \geq 0$; and hence $H_{D}\left(K_{D}\right)>0$ for $K_{D} \in\left(K_{D}^{l}, K_{D}^{1}\right]$.
Proof of Proposition 3: The stage-1 objective function $g_{D}\left(K_{D}\right)$ is strictly concave in K_{D} for $K_{D} \in\left[0, K_{D}^{l}\right]$ (and strictly increasing at $K_{D}=0$) and strictly decreasing in K_{D} for $K \in\left[\hat{K}_{D}, K_{D}^{u}\right)$. If π_{D} is unimodal in K_{D}, thus $g_{D}\left(K_{D}\right)$ is unimodal in K_{D}, it follows that

1. If $\left.\frac{\partial g_{D}^{2}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{l}} \leq 0$, then the unique K_{D}^{*} is characterized by the strictly concave part (similar to Proposition 1).
2. If $\left.\frac{\partial g_{D}^{2}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{l}}>0$, then the unique K_{D}^{*} is characterized by $M P_{D}\left(K_{D}^{*}\right)=0$ as defined in Proposition 2. Let \bar{K}_{D} denote the optimal solution in this case. From Proposition 2, we have $\bar{K}_{D} \geq K_{D}^{1}$.

As it follows from the proof of Proposition 2, $\left.\frac{\partial g_{D}^{2}\left(K_{D}\right)}{\partial K_{D}}\right|_{K_{D}^{l}}>0$ is equivalent to $B<B_{D}^{l}$. The optimal expected equity value of the firm, π_{D}^{*}, follows directly.

We now prove that π_{D}^{*} decreases in a_{D}. We have two cases to consider:
Case 1: $2 c_{D} K_{D}^{1}\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]\left[1-\frac{\gamma_{D}}{1+a_{D}}\right]-\frac{P}{1+a_{D}} \leq B<2 c_{D} K_{D}^{1}$
The firm's optimal expected equity value is given by $\pi_{D}^{*}=\frac{2\left(1+a_{D}-\gamma_{D}\right) c_{D} K_{D}^{1}\left(a_{D}\right)}{-(b+1)}+B(1+$ $\left.a_{D}\right)+P$ where $K_{D}^{1}\left(a_{D}\right)=\left(\frac{\bar{\xi}\left(1+\frac{1}{b}\right)}{\left(1+a_{D}-\gamma_{D}\right) c_{D}}\right)^{-b}$. We obtain $\frac{\partial \pi_{D}^{*}}{\partial a_{D}}=-2 c_{D} K_{D}^{1}\left(a_{D}\right)+B<0$ as follows from the definition of Case 1.
Case 2: $0 \leq B<2 c_{D} K_{D}^{1}\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]\left[1-\frac{\gamma_{D}}{1+a_{D}}\right]-\frac{P}{1+a_{D}}$
The firm's optimal expected equity value is given by
$\pi_{D}^{*}=\iint_{\Upsilon_{D}\left(\xi ; \bar{K}_{D}\right)}\left[\left(\tilde{\xi}_{1}+\tilde{\xi}_{2}\right) \bar{K}_{D}^{\left(1+\frac{1}{b}\right)}-2 c_{D} \bar{K}_{D}\left(1+a_{D}-\gamma_{D}\right)+B\left(1+a_{D}\right)+P\right] f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}$.
Note that $\frac{\partial \pi_{D}^{*}\left(\bar{K}_{D}\right)}{\partial a_{D}}=\left.\frac{\partial \pi_{D}\left(K_{D}\right)}{\partial a_{D}}\right|_{\bar{K}_{D}}+\left.\frac{\partial \pi_{D}\left(K_{D}\right)}{\partial K_{D}}\right|_{\bar{K}_{D}} \frac{\partial \bar{K}_{D}}{\partial a_{D}}$. Since $\left.\frac{\partial \pi_{D}\left(K_{D}\right)}{\partial K_{D}}\right|_{\bar{K}_{D}}=0$, we obtain

$$
\left.\frac{\partial \pi_{D}\left(K_{D}\right)}{\partial a_{D}}\right|_{\bar{K}_{D}}=\iint_{\Upsilon_{D}\left(\xi ; \bar{K}_{D}\right)}\left[-2 c_{D} \bar{K}_{D}+B\right] f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}<0
$$

as follows from $K_{D}^{1}<\bar{K}_{D}$ and the definition of Case 2.
Lemma A. 1 If $b \geq-2$ and $\boldsymbol{\xi}$ has a bivariate normal distribution, then π_{D} is unimodal in K_{D}.
Proof of Proposition 4: We define $S^{1}\left(a_{D}\right) \doteq 2 c_{D} K_{D}^{0}\left(1-\gamma_{D}\right)^{-b}\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right] \frac{\left(1+a_{D}-\gamma_{D}\right)^{(b+1)}}{\left(1+a_{D}\right)}$ such that for a given a_{D}, for $B \geq S^{1}\left(a_{D}\right)$, the firm uses a secured loan (and invests in $\left.K_{D}^{*}\left(a_{D}\right)=K_{D}^{1}\left(a_{D}\right)\right)$ without default possibility. $B \geq S^{1}\left(a_{D}\right)$ is equivalent to $d_{D}\left(K_{D}^{1}\right) \leq 2 \xi^{l}$. Hence, both the default cost and the expected loss due to the unsecured part of the loan
are 0 in (4). We define $S^{2}\left(a_{D}\right) \doteq S^{1}\left(a_{D}\right)-\frac{P}{\left(1+a_{D}\right)}$ such that for $S^{1}\left(a_{D}\right)>B \geq S^{2}\left(a_{D}\right)$, the firm uses a secured loan (and invests in $K_{D}^{*}\left(a_{D}\right)=K_{D}^{1}\left(a_{D}\right)$) with default possibility. $B \geq S^{2}\left(a_{D}\right)$ is equivalent to $l_{D}\left(K_{D}^{1}\right) \leq 2 \xi^{l}$. Hence, the default cost is strictly positive but the expected loss due to the unsecured part of the loan is 0 in (4). For $B<S^{2}\left(a_{D}\right)$, the firm optimally borrows to invest in $K_{D}^{*}(a)=\bar{K}_{D}\left(a_{D}\right)$. In this case, the firm uses an unsecured loan and both the default cost and the expected loss due to the unsecured part of the loan are strictly positive in (4).

In summary, for any given a_{D}, the ordering of B and thresholds $S^{1}\left(a_{D}\right)$ and $S^{2}\left(a_{D}\right)$ determine the optimal borrowing level of the firm, and hence the form of $\Lambda_{D}\left(a_{D}\right)$. We obtain $\frac{\partial S^{1}\left(a_{D}\right)}{\partial a_{D}}<0$ for $a_{D} \in\left[0, a_{D}^{\max }\right)$ thus, we can analyze the problem in two cases.
Case 1: $B \geq S^{1}(0)=2 c_{D} K_{D}^{0}\left(1-\gamma_{D}\right)\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]$.
As $S^{1}\left(a_{D}\right)$ is strictly decreasing, we have $B \geq S^{1}\left(a_{D}\right)$ (and hence $\left.B>S^{2}\left(a_{D}\right)\right) \forall a_{D} \in$ $\left[0, a_{D}^{\max }\right)$. Therefore, we have $\Lambda_{D}\left(a_{D}\right)=\left(2 c_{D} K_{D}^{1}\left(a_{D}\right)-B\right) a_{D}$ for $0 \leq a_{D}<a_{D}^{\max }$.
Case 2: $B<S^{1}(0)=2 c_{D} K_{D}^{0}\left(1-\gamma_{D}\right)\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]$.
In this case, the ordering of B and $S^{2}\left(a_{D}\right)$ is important in characterizing $\Lambda_{D}\left(a_{D}\right)$. We have $S^{2}(0)=2 c_{D} K_{D}^{0}\left(1-\gamma_{D}\right)\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]-P$ and we obtain
$\frac{\partial S^{2}\left(a_{D}\right)}{\partial a_{D}}=\frac{1}{\left(1+a_{D}\right)^{2}}\left[P-2 c_{D} K^{0}\left(1-\gamma_{D}\right)^{-b}\left(1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right)\left(1+a_{D}-\gamma_{D}\right)^{b}\left[-b\left(1+a_{D}\right)-\gamma_{D}\right]\right]$
Notice that $S^{2}(0)$ is positive (negative) if P is less (greater) than $2 c_{D} K_{D}^{0}\left(1-\gamma_{D}\right)\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]$. Since $\left(1+a_{D}-\gamma_{D}\right)^{b}\left[-b\left(1+a_{D}\right)-\gamma_{D}\right]$ is strictly decreasing in a_{D}, for $P \geq 2 c_{D} K_{D}^{0}(-b-$ $\left.\gamma_{D}\right)\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]$, we have $\frac{\partial S^{2}\left(a_{D}\right)}{\partial a_{D}} \geq 0$ for $a_{D} \geq 0$. For $P<2 c_{D} K_{D}^{0}\left(-b-\gamma_{D}\right)\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]$, there exists a unique \underline{a}_{D} such that $\frac{\partial S^{2}\left(a_{D}\right)}{\partial a_{D}} \leq 0$ for $a_{D} \leq \underline{a}_{D}$ and $\frac{\partial S^{2}\left(a_{D}\right)}{\partial a_{D}}>0$ for $a_{D}>\underline{a}_{D}$. Since the signs of $S^{2}(0)$ and $\frac{\partial S^{2}\left(a_{D}\right)}{\partial a_{D}}$ depend on P, we have three subcases. Before analyzing them, we first present a Lemma that we will use throughout the rest of the proof.

Lemma A. 2 We have $B \geq S^{1}\left(a_{D}^{\max }\right)>S^{2}\left(a_{D}^{\max }\right), \forall B \geq 0$.
Subcase 2.1: $P \geq 2 c_{D} K_{D}^{0}\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]\left(-b-\gamma_{D}\right)$.
In this case, we have $S^{2}(0)<0$ and $\frac{\partial S^{2}\left(a_{D}\right)}{\partial a_{D}} \geq 0, \forall a_{D}$. For $a_{D}^{\max }=\left[\left(\frac{2 c_{D} K_{D}^{0}}{B}\right)^{-\frac{1}{b}}-1\right]\left(1-\gamma_{D}\right)$, we obtain $S^{2}\left(a_{D}^{\max }\right)<0$. Hence, for $a_{D} \in\left[0, a_{D}^{\max }\right)$, we have $S^{2}\left(a_{D}\right)<0<B$. It follows that the firm always uses a secured loan (and invests in $K_{D}^{1}\left(a_{D}\right)$). For $B<S^{1}(0)$ (which follows from the definition of Case 2), since $S^{1}\left(a_{D}\right)$ is strictly decreasing in a_{D} and $B \geq S^{1}\left(a_{D}^{\max }\right)$ (from Lemma A.2), it follows that there exists a unique a_{D}^{d}, as defined by $S^{1}\left(a_{D}^{d}\right) \doteq B$
(where the superscript d refers to "default"). We have $B<S^{1}\left(a_{D}\right)$ for $a_{D}<a_{D}^{d}$, and the firm uses a secured loan with default possibility, and $B \geq S^{1}\left(a_{D}\right)$ for $a_{D} \geq a_{D}^{d}$, the firm uses a secured loan without default possibility. Therefore, $\Lambda_{D}\left(a_{D}\right)$ is characterized by

$$
\Lambda_{D}\left(a_{D}\right)=\left\{\begin{array}{lll}
\left(2 c_{D} K_{D}^{1}\left(a_{D}\right)-B\right) a_{D}-F\left(d_{D}\left(K_{D}^{1}\left(a_{D}\right)\right)\right) S & \text { if } & 0 \leq a_{D}<a_{D}^{d} \\
\left(2 c_{D} K_{D}^{1}\left(a_{D}\right)-B\right) a_{D} & \text { if } & a_{D}^{d} \leq a_{D}<a_{D}^{\max } .
\end{array},\right.
$$

Subcase 2.2: $2 c_{D} K_{D}^{0}\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]\left(1-\gamma_{D}\right) \leq P<2 c_{D} K_{D}^{0}\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]\left(-b-\gamma_{D}\right)$.
We have $S^{2}(0) \leq 0$, and $S^{2}\left(a_{D}\right)$ is first strictly decreasing, and then strictly increasing in a. We obtain $S^{2}\left(a_{D}^{\max }\right)<0$; hence $S^{2}\left(a_{D}\right)<0$ for $a_{D} \in\left[0, a_{D}^{\max }\right)$ in this case. Therefore $\Lambda_{D}\left(a_{D}\right)$ is identical to subcase 2.1.
Subcase 2.3: $2 c_{D} K_{D}^{0}\left[1-\frac{\xi^{l}}{\bar{\xi}\left(1+\frac{1}{b}\right)}\right]\left(1-\gamma_{D}\right)>P$
We have $S^{2}(0)>0$, and $S^{2}\left(a_{D}\right)$ is first strictly decreasing, and then strictly increasing in a_{D}.
If $B \geq S^{2}(0)$ (and $B<S^{1}(0)$ by definition of Case 2$)$, since $B \geq S^{1}\left(a_{D}^{\max }\right)>S^{2}\left(a_{D}^{\max }\right)$ (from Lemma A.2), $\Lambda_{D}\left(a_{D}\right)$ is characterized in a similar fashion to the other two subcases. If $B<S^{2}(0)$, as $S^{2}\left(a_{D}\right)$ is first strictly decreasing, and then strictly increasing in a_{D} and $B \geq S^{1}\left(a_{D}^{\max }\right)>S^{2}\left(a_{D}^{\max }\right)$ (from Lemma A.2), there exists a unique $a_{D}^{l} \in\left[0, a_{D}^{\max }\right)$, as defined in $S^{2}\left(a_{D}^{l}\right) \doteq B$ (where the superscript l refers to "limited liability"). We have $B<S^{2}\left(a_{D}\right)$ for $a_{D}<a_{D}^{l}$ and $B \geq S^{2}\left(a_{D}\right)$ for $a_{D} \geq a_{D}^{l}$. Since $S^{2}\left(a_{D}\right)=S^{1}\left(a_{D}\right)-\frac{P}{1+a_{D}}$, it follows that $a_{D}^{l} \leq a_{D}^{d}$, with equality only holding for $P=0$. Therefore, we have the following three regions: For $a_{D}<a_{D}^{l}\left(<a_{D}^{d}\right)$, we have $B<S^{2}\left(a_{D}\right)$ (and $B<S^{1}\left(a_{D}\right)$), the firm uses an unsecured loan; for $a_{D}^{l} \leq a_{D}<a_{D}^{d}$, we have $S^{2}\left(a_{D}\right) \leq B<S^{1}\left(a_{D}\right)$, and the firm uses a secured loan with default possibility; and for $a_{D} \geq a_{D}^{d}$, we have $S^{2}\left(a_{D}\right)<S^{1}\left(a_{D}\right) \leq B$, and the firm uses a secured loan without default possibility.
Proof of Proposition 5: Since this equilibrium is relevant for firms that may default but use a secured loan (Case $i i$ of Proposition 4) and firms that may use an unsecured loan (Case $i i i$ of Proposition 4); we will analyze these two cases separately. At equilibria where the firm uses a secured loan with default possibility, the creditor's expected return with the dedicated technology is given by

$$
\Lambda_{D}\left(a_{D}\right)=\left(2 c_{D} \dot{K}_{D}^{1}-B\right) \dot{a}_{D}-S \times \operatorname{Pr}\left(\xi_{1}+\xi_{2}<d_{D}\left(\dot{K}_{D}^{1}\right)\right)
$$

where $d_{D}\left(\dot{K}_{D}^{1}\right)=2 \bar{\xi}\left(1+\frac{1}{b}\right)\left[1-\frac{B\left(1+\dot{a}_{D}\right)}{2 c_{D} \dot{K}_{D}^{1}\left(1+\dot{a}_{D}-\gamma_{D}\right)}\right]$. Since $\boldsymbol{\xi}$ has a bivariate normal distribution, $\xi_{1}+\xi_{2}$ is normally distributed with mean $\bar{\mu}=2 \bar{\xi}$ and standard deviation $\bar{\sigma}=\sigma \sqrt{2(1+\rho)}$. Since $b<-1$ and $B<2 c_{D} \dot{K}_{D}^{1}\left[1-\gamma_{D}\right]$, we obtain $d_{D}\left(\dot{K}_{D}^{1}\right)<\bar{\mu}$. We
have $\operatorname{Pr}\left(\xi_{1}+\xi_{2}<d_{D}\left(\dot{K}_{D}^{1}\right)\right)=\Phi\left(\frac{d_{D}\left(\dot{K}_{D}^{1}\right)-\bar{\mu}}{\bar{\sigma}}\right)$ where $\Phi($.$) is the cdf of the standard nor-$ mal random variable.

For firms that may default but use a secured loan (Case $i i$ of Proposition 4), for any $a_{D} \in\left[0, a_{D}^{d}\right)$, we obtain

$$
\begin{aligned}
& \frac{\partial \Lambda_{D}\left(a_{D}\right)}{\rho}=-B C \phi\left(\frac{d_{D}\left(K_{D}^{1}\right)-\bar{\mu}}{\bar{\sigma}}\right)\left(\frac{\bar{\mu}-d_{D}\left(K_{D}^{1}\right)}{\bar{\sigma}^{2}}\right) \frac{\partial \bar{\sigma}}{\partial \rho}<0, \\
& \frac{\partial \Lambda_{D}\left(a_{D}\right)}{\sigma}=-B C \phi\left(\frac{d_{D}\left(K_{D}^{1}\right)-\bar{\mu}}{\bar{\sigma}}\right)\left(\frac{\bar{\mu}-d_{D}\left(K_{D}^{1}\right)}{\bar{\sigma}^{2}}\right) \frac{\partial \bar{\sigma}}{\partial \sigma}<0
\end{aligned}
$$

where $\phi($.$) is the density function of the standard normal random variable, as follows from$ $\frac{\partial}{\partial \rho} \bar{\sigma}=\frac{\sigma}{\bar{\sigma}}>0, \frac{\partial}{\partial \sigma} \bar{\sigma}=\sqrt{2(1+\rho)}>0$, and $d_{D}\left(K_{D}^{1}\right)<\bar{\mu}$. From the Pareto-optimality of the equilibrium, i.e. \dot{a}_{D} is the minimum a_{D} that satisfies $\Lambda_{D}\left(a_{D}\right)=0$, it follows that with an increase in σ or ρ, \dot{a}_{D} increases.

For firms that may use an unsecured loan, since $\dot{a}_{D} \in\left[a_{D}^{l}, a_{D}^{d}\right)$, it follows from above that $\left.\frac{\partial}{\partial \tau} \Lambda_{D}\left(a_{D}\right)\right|_{\dot{a}_{D}}<0$ for $\tau \in\{\sigma, \rho\}$. In fact, $\Lambda_{D}\left(a_{D}\right)$ is decreasing in σ or ρ for any $\dot{a}_{D} \in\left[a_{D}^{l}, a_{D}^{d}\right)$, but we cannot characterize the effect of σ or ρ on $\Lambda_{D}\left(a_{D}\right)$ for $a_{D} \in\left[0, a_{D}^{l}\right)$. Let $\dot{a}_{D}(\tau)$ denote the equilibrium financing cost for a given $\tau \in\{\sigma, \rho\}$. With a small increment in τ from τ_{0} to τ_{1}, we can guarantee that $\Lambda_{D}\left(a_{D} ; \tau_{1}\right)<0$ for $\forall a_{D}<\dot{a}_{D}\left(\tau_{0}\right)$ because i) $\Lambda_{D}\left(a_{D} ; \tau_{0}\right)<0$ for $\forall a_{D}<\dot{a}_{D}\left(\tau_{0}\right)$ from the definition of the equilibrium, and ii) $\left|\frac{\partial}{\partial \tau} \Lambda_{D}\left(a_{D}\right)\right|$ and $\left|\frac{\partial}{\partial a_{D}} \Lambda_{D}\left(a_{D}\right)\right|$ are bounded. Therefore \dot{a}_{D} increases (locally) in $\tau \in\{\sigma, \rho\}$.

Since for a given a_{D}, π_{D}^{*} is independent of $\tau \in\{\sigma, \rho\}$, we have $\frac{\partial \pi_{D}}{\partial \tau}=\left.\frac{\partial \pi_{D}^{*}}{\partial a_{D}}\right|_{\dot{a}_{D}} \frac{\partial a_{D}^{\prime}}{\partial \tau}$. From Proposition 3, we have $\frac{\partial \pi_{D}^{*}}{\partial a_{D}}<0$, hence $\frac{\partial \pi_{D}^{\prime}}{\partial \tau}<0$. Similarly, $\dot{K}_{D}=K_{D}^{1}\left(\dot{a}_{D}\right)$ is independent of $\tau \in\{\sigma, \rho\}$; hence we have $\frac{\partial \dot{K}_{D}}{\partial \tau}=\left.\frac{\partial K_{D}^{1}\left(a_{D}\right)}{\partial a_{D}}\right|_{\dot{a}_{D}} \frac{\partial a_{D}}{\partial \tau}$. Since $K_{D}^{1}\left(a_{D}\right)$ decreases in a_{D}, we have $\frac{\partial \dot{K_{D}}}{\partial \tau}<0$ for $\tau \in\{\sigma, \rho\}$.

Lemma A. 3 If $b \geq-2$ and $\boldsymbol{\xi}$ has a bivariate normal distribution, then for a given financing cost a_{D} with the dedicated technology, for the firm that uses an unsecured loan, K_{D}^{*} and π_{D}^{*} increase in σ and ρ, and decrease in a_{D}.

Lemma A. 4 If $b \geq-2$ and $\boldsymbol{\xi}$ has a bivariate normal distribution, when the firm uses an unsecured loan with the dedicated technology, the creditor's net gain from secured lending and its expected loss due to the unsecured part of the loan increase in σ and ρ. Its expected default cost increases in σ and ρ if $d_{D}\left(\bar{K}_{D}\left(a_{D}\right)\right) \leq 2 \bar{\xi}$.

Proof of Remark 2 The form of $\bar{c}_{D}^{P}\left(c_{F}\right)$ follows from a direct comparison of $\dot{\pi}_{D}$ and $\dot{\pi}_{F}$ in perfect capital markets. Since $\gamma_{F} \geq \gamma_{D}$ by assumption, to prove $\bar{c}_{D}^{P}\left(c_{F}\right) \leq c_{F}$ it is sufficient
to show $\mathbb{E}^{-b}\left[\left(\xi_{1}^{-b}+\xi_{2}^{-b}\right)^{-\frac{1}{b}}\right] \geq 2 \bar{\xi}^{-b}$. From Hardy et. al (1988, p.146), if $d \in(0,1)$ and X, Y are non-negative random variables then the following is true: $\mathbb{E}^{1 / d}\left[(X+Y)^{d}\right] \geq$ $\mathbb{E}^{1 / d}\left[X^{d}\right]+\mathbb{E}^{1 / d}\left[Y^{d}\right]$ where equality only holds when X and Y are effectively proportional, i.e. $X=\lambda Y$. In $\bar{c}_{D}^{P}\left(c_{F}\right)$, we have $d=-\frac{1}{b} \in(0,1)$ and $\boldsymbol{\xi} \geq \boldsymbol{\xi}^{l} \geq \mathbf{0}$, replacing X with ξ_{1}^{-b} and Y with ξ_{2}^{-b} gives the desired result. Notice that $\bar{c}_{D}^{P}\left(c_{F}\right)=c_{F}$ only if $\xi_{1}=\xi_{2}$ (since we focus on the symmetric bivariate distribution) and $\gamma_{F}=\gamma_{D} . \xi_{1}=\xi_{2}$ is only possible if either $\boldsymbol{\xi}$ is deterministic or $\rho=1$.

B Proofs for Supporting Lemmas

Proof of Lemma A.1: Since $\boldsymbol{\xi}$ has a bivariate normal distribution, $\psi \doteq \xi_{1}+\xi_{2}$ is normally distributed with mean $\bar{\mu}=2 \bar{\xi}$ and standard deviation $\bar{\sigma}=\sigma \sqrt{2(1+\rho)}$. Let $F($.$) denote the cdf of \psi$, and $\bar{F}()=.1-F($.$) . By using \psi$, as follows from the proof of Proposition 2; for $K_{D} \geq K_{D}^{l}$, we have $\operatorname{sgn}\left(\frac{\partial g_{D}^{3}\left(K_{D}\right)}{\partial K_{D}}\right)=\operatorname{sgn}\left(H_{D}\left(K_{D}\right)\right)$ where $H_{D}\left(K_{D}\right)=\int_{l_{D}\left(K_{D}\right)}^{\xi^{u}}\left[\psi-2 \bar{\xi}\left(\frac{K_{D}}{K_{D}^{1}}\right)^{-\frac{1}{b}}\right] f(\psi) d \psi$. Therefore we will focus on $H_{D}\left(K_{D}\right)$ to prove the unimodality of $g_{D}\left(K_{D}\right)$. From integration by parts, we obtain
$H_{D}\left(K_{D}\right)=\int_{l_{D}\left(K_{D}\right)}^{2 \xi^{u}} \bar{F}(\psi) d \psi-\bar{F}\left(l_{D}\left(K_{D}\right)\right)\left[K_{D}^{-\frac{1}{b}}\left(\frac{2\left(1+a_{D}-\gamma_{D}\right) c_{D}}{-(b+1)}+\frac{B\left(1+a_{D}\right)+P}{K_{D}}\right)\right]$.
Define $\Delta\left(K_{D}\right) \doteq K_{D}^{-\frac{1}{b}}\left(\frac{2\left(1+a_{D}-\gamma_{D}\right) c_{D}}{-(b+1)}+\frac{B\left(1+a_{D}\right)+P}{K_{D}}\right)$. We obtain

$$
\frac{\partial \Delta\left(K_{D}\right)}{\partial K_{D}}=\left(1+\frac{1}{b}\right) K_{D}^{-1}\left(l_{D}\left(K_{D}\right)+\frac{-b(b+2)}{(b+1)^{2}} 2\left(1+a_{D}-\gamma_{D}\right) c_{D} K_{D}^{-\frac{1}{b}}\right) .
$$

Note that for $K_{D}>K_{D}^{l}, l_{D}\left(K_{D}\right)>2 \xi^{l} \geq 0$; hence for $b \geq-2$ the second term is positive and $\frac{\partial \Delta\left(K_{D}\right)}{\partial K_{D}}>0$ for $K_{D}>K_{D}^{l}$. We obtain $H_{D}\left(K_{D}\right)=\bar{F}\left(l_{D}\left(K_{D}\right)\right)\left[\frac{\int_{l_{D}\left(K_{D}\right)}^{2 \xi^{u}} \bar{F}(\psi) d \psi}{\bar{F}\left(l_{D}\left(K_{D}\right)\right)}-\Delta\left(K_{D}\right)\right]$. As $\Delta\left(K_{D}\right)$ is increasing in K_{D}, if we can show that $\frac{\int_{l_{D}}^{2 \xi^{u}} \overline{\left.K_{D}\right)} \bar{F}(\psi) d \psi}{\bar{F}\left(l_{D}\left(K_{D}\right)\right)}$ is decreasing in K_{D}, then for $K_{D}>K_{D}^{l}, H_{D}\left(K_{D}\right)$ can only change sign once, which is from positive to negative.

We now show that $\frac{\int_{l_{D}\left(K_{D}\right)}^{\xi^{u}} \bar{F}(\psi) d \psi}{\bar{F}\left(l_{D}\left(K_{D}\right)\right)}$ is decreasing in K_{D}. Since ψ is normally distributed with mean $\bar{\mu}$ and standard deviation $\bar{\sigma}$, by using the standard normal random variable, this expression can be written as
$\frac{-1}{\left[1-\Phi\left(\frac{l_{D}\left(K_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\right]^{2}} \frac{\partial l_{D}\left(K_{D}\right)}{\partial K_{D}}\left[\left[1-\Phi\left(\frac{l_{D}\left(K_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\right]^{2}-\phi\left(\frac{l_{D}\left(K_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right) \int_{\frac{l_{D}\left(K_{D}\right)-\bar{\mu}}{\bar{\sigma}}}^{\infty}(1-\Phi(z)) d z\right]$
where $\Phi($.$) and \phi($.$) are the cdf and pdf of the standard normal random variable respectively.$ Since $\frac{\partial l_{D}\left(K_{D}\right)}{\partial K_{D}}>0$, it is sufficient to show that the last term in parenthesis is positive. Let
$v=\frac{l_{D}\left(K_{D}\right)-\bar{\mu}}{\bar{\sigma}}$. Using integration by parts, we obtain $\int_{v}^{\infty}(1-\Phi(z)) d z=\phi(v)-v(1-\Phi(v))$. Substituting this in (8), it is sufficient to show that $1>\left[\frac{\phi(v)}{1-\Phi(v)}\right]^{2}-\frac{v \phi(v)}{1-\Phi(v)}$ which directly follows from Sampford (1953).
Proof of Lemma A.3: For a given a_{D}, the optimal expected equity value π_{D}^{*} is given by

$$
\left[1-\Phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\right]\left[\bar{\mu} \bar{K}_{D}^{\left(1+\frac{1}{b}\right)}+B\left(1+a_{D}\right)+P-2\left(1+a_{D}\right) c_{D} \bar{K}_{D}\right]+\bar{\sigma} \bar{K}_{D}^{\left(1+\frac{1}{b}\right)} \phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right) .
$$

where $\bar{\mu}=2 \bar{\xi}$ and $\bar{\sigma}=\sigma \sqrt{2(1+\rho)}$. Since $\bar{\sigma}$ is increasing in σ or ρ, it is sufficient to analyze the impact of $\bar{\sigma}$. We have $\frac{\partial \pi_{D}^{*}}{\partial \bar{\sigma}}=\left.\frac{\partial \pi_{D}}{\partial K_{D}}\right|_{\bar{K}_{D}} \frac{\partial K_{D}}{\partial \bar{\sigma}}+\left.\frac{\partial \pi_{D}}{\partial \bar{\sigma}}\right|_{\bar{K}_{D}}$ where the first term is zero from the optimality of \bar{K}. We obtain $\left.\frac{\partial \pi_{D}}{\partial \bar{\sigma}}\right|_{\bar{K}_{D}}=\bar{K}_{D}^{\left(1+\frac{1}{b}\right)} \phi\left(\frac{l\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)>0$.

For $K_{D}^{*}=\bar{K}_{D}$, since \bar{K}_{D} is the unique maximizer, we have $\operatorname{sgn}\left(\frac{\partial \bar{K}_{D}}{\partial \bar{\sigma}}\right)=\operatorname{sgn}\left(\left.\frac{\partial M P_{D}\left(K_{D}\right)}{\partial \bar{\sigma}}\right|_{\bar{K}_{D}}\right)$. Using the optimality condition
$\left[1-\Phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\right]\left[\left(1+\frac{1}{b}\right) \bar{\mu} \bar{K}_{D}^{\frac{1}{b}}-2\left(1+a_{D}\right) c_{D}\right]=-\left(1+\frac{1}{b}\right) \bar{\sigma} \bar{K}_{D}^{\frac{1}{b}} \phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)$,
we obtain $\left.\frac{\partial M P_{D}\left(K_{D}\right)}{\partial \bar{\sigma}}\right|_{\bar{K}_{D}}=\left(1+\frac{1}{b}\right) \bar{K}_{D}^{\frac{1}{b}} \phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\left[\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)^{2}+1-\frac{\phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)}{1-\Phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)}\right]$.
Let $z=\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)$. We need to show that $1>z\left[\frac{\phi(z)}{1-\Phi(z)}-z\right]$. It follows from Sampford (1953) that $\left[\frac{\phi(z)}{1-\Phi(z)}-z\right]<\frac{1-\Phi(z)}{\phi(z)}$; therefore it is sufficient to show $1>\frac{z(1-\Phi(z))}{\phi(z)}$ which also follows from Sampford (1953).

For the impact of \dot{a}_{D} on \bar{K}_{D}, we have $\operatorname{sgn}\left(\frac{\partial \bar{K}_{D}}{\partial a_{D}}\right)=\operatorname{sgn}\left(\left.\frac{\partial M P_{D}\left(K_{D}\right)}{\partial a_{D}}\right|_{\bar{K}_{D}}\right)$. Using the optimality condition in (9), we obtain $\left.\frac{\partial M P_{D}\left(K_{D}\right)}{\partial a_{D}}\right|_{\bar{K}_{D}}=$

$$
\begin{aligned}
& {\left[1-\Phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\right] } \\
\times & {\left[-2 c_{D}+\left(1+\frac{1}{b}\right) \bar{K}_{D}^{\frac{1}{b}} \frac{\partial l_{D}\left(\bar{K}_{D}\right)}{\partial a_{D}}\left[\left(\frac{\phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)}{1-\Phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)}\right)^{2}-\frac{\phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)}{1-\Phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)}\right]\right] . }
\end{aligned}
$$

Denoting Y as the last expression in brackets and using $\frac{\partial l_{D}\left(\bar{K}_{D}\right)}{\partial a_{D}}=K_{D}^{\frac{-1}{b}}\left[2 c_{D}-\frac{B}{\bar{K}_{D}}\right]$, the desired result follows because $-2 c_{D}+\left(1+\frac{1}{b}\right)\left[2 c_{D}-\frac{B}{\bar{K}_{D}}\right] Y<0$ as $Y<1$ from Sampford (1953).

Proof of Lemma A.4: We only provide the proof for the expected loss due to the unsecured part of the loan. The proofs for the default risk and the net gain from secured lending can be obtained in a similar fashion, and are omitted. Since $\bar{\sigma}$ is increasing in σ or ρ, it is sufficient to analyze the impact of $\bar{\sigma}$. By using the standard normal random variable,
the expected loss due to the unsecured part of the loan can be written as
$\Phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right)\left[\bar{K}_{D}\left(1+a_{D}\right) 2 c_{D}-\bar{\mu} \bar{K}_{D}^{\left(1+\frac{1}{b}\right)}-B\left(1+a_{D}\right)-P\right]+\bar{\sigma} \phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right) \bar{K}_{D}^{\left(1+\frac{1}{b}\right)}$.
Taking the derivative with respect to $\bar{\sigma}$, and using the optimality condition in (9), the derivative with respect to $\bar{\sigma}$ is given by $\phi\left(\frac{l_{D}\left(\bar{K}_{D}\right)-\bar{\mu}}{\bar{\sigma}}\right) \bar{K}_{D}^{\left(1+\frac{1}{b}\right)}+\frac{\partial \bar{K}_{D}}{\partial \bar{\sigma}}\left[2\left(1+a_{D}\right) c_{D}-\bar{\mu} \bar{K}_{D}^{\frac{1}{b}}\right]$. This term is positive because $\frac{\partial \bar{K}_{D}}{\partial \bar{\sigma}}>0$ from Lemma A. 3 and the last expression is positive from the optimality condition in (9).

C References

Hardy, G., J.E. Littlewood, G. Polya. 1988. Inequalities. Cambridge Press, NY.
Sampford, M.R. 1953. Some inequalities on Mill's ratio and related functions. The Annals of Mathematical Statistics 24 130-132.

[^0]: ${ }^{1}$ It can be shown that for $\xi^{l} \geq 0$ and $\gamma_{D} \geq 0, K_{D}^{l} \geq \frac{B}{2 c_{D}}$, where the equality only holds if $\xi^{l}=0$ and $\gamma_{D}=0$.

