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§A contains the proofs for our technical statements in the paper. We present the proofs

for technical statements that we develop in this Appendix in §B. We use the following

identities for the standard normal random variable with cdf Φ(.) and pdf �(.) throughout

the Appendix: �
′
(z) = −z�(z),

∫ v
−∞ z�(z)dz = −�(v) and 1 >

[
�(v)

1−Φ(v)

]2
− v�(v)

1−Φ(v) > 0,

where the last two inequalities are proven in Sampford (1953).

A Main Proofs

Proof of Proposition 1: If the firm does not have the limited liability option, then

�D(KD) is strictly concave in KD and the unique optimal capacity investment level K∗D

and the optimal expected equity value �∗D are given by

K∗D =

⎧⎨⎩
K0
D
.
=

(
�(1+ 1

b
)

(1−D)cD

)−b
if B ≥ 2cDK

0
D

B
2cD

if 2cDK
1
D ≤ B < 2cDK

0
D

K1
D
.
=

(
�(1+ 1

b
)

(1+aD−D)cD

)−b
if B < 2cDK

1
D,

(5)

�∗D =

⎧⎨⎩
2cDK

0
D(1−D)

−(b+1) +B + P if B ≥ 2cDK
0
D

2� B
2cD

+ DB + P if 2cDK
1
D ≤ B < 2cDK

0
D

2cDK
1
D(1+aD−D)

−(b+1) +B(1 + aD) + P if B < 2cDK
1
D

With limited liability, when the firm borrows (KD > B
2cD

), we have lD(KD)
.
= K

−1
b
D (1 + aD − D) 2cD−

KD
(−1− 1

b )[B (1 + aD) + P ] such that the firm is able to pay back the face value of the loan
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if and only if �̃1 + �̃2 is no less than lD(KD). For �̃1 + �̃2 > lD(KD), the optimal equity value

Π∗D > 0, and for �̃1 + �̃2 ≤ lD(KD), Π∗D = 0. We obtain

∂lD(KD)

∂KD
= −1

b
K

(−1
b
−1)

D (1 + aD − D) 2cD +

(
1 +

1

b

)
KD

(−2− 1
b )[B (1 + aD) + P ] > 0. (6)

Therefore, we can identify the unique K l
D < Ku

D such that lD(K l
D)

.
= 2�l and lD(Ku

D)
.
= 2�u.

Since lD(KD) is strictly increasing in KD, we have lD(KD) ≥ 2�u for KD ≥ Ku
D; hence

Π∗D = 0 at each �̃1 + �̃2 and �∗D = 0 for KD ∈ [Ku
D,∞). Therefore, it is sufficient to analyze

the problem for KD ∈ [0,Ku
D). We have three separate cases to consider:

Case 1: For KD ∈
[
0, B

2cD

]
, similar to the no limited liability case, the firm does not

borrow, and the expected equity value of the firm is �∗D = maxKD 2�K
(1+ 1

b )
D + B + P −

2cD (1− D)KD.

Case 2: For KD ∈
[
B

2cD
,K l

D

]
, similar to the no limited liability case, the firm optimally

borrows, and is always able to pay back the face value of the loan.1 The expected equity

value of the firm is �∗D = maxKD 2�K
(1+ 1

b )
D +B(1 + aD) + P − 2cD (1 + aD − D)KD.

Case 3: For KD ∈
(
K l
D,K

u
D

)
the firm always borrows, and for some demand realization,

is not able to pay back the face value of the loan; hence the expected equity value of the

firm is

�∗D = max
KD

∫ ∫
ΥD(�;KD)

[
(�̃1 + �̃2)KD

(1+ 1
b
) − 2cDKD(1 + aD − D) +B(1 + aD) + P

]
f(�1, �2)d�1d�2,

where ΥD(�;KD)
.
= {� : �1 + �2 ≥ lD(KD)} and f(�1, �2) is the joint pdf of �.

Let gD(KD) denote the objective function in the overall optimization problem and

giD(KD) denote the objective function in case i. It is easy to establish that gD(KD) is

continuous at the boundaries KD = B
2cD

and KD = K l
D; and hence gD(KD) is continuous

in KD. It follows from (5) that gD(KD) is strictly concave in KD for KD ∈
[
0,K l

D

]
and

has a kink at KD = B
2cD

. We obtain

∂g3
D(KD)

∂KD
=

∫ ∫
ΥD(�;KD)

[(
1 +

1

b

)
(�1 + �2)K

( 1
b )

D − 2 (1 + aD − D) cD

]
f(�1, �2)d�1d�2. (7)

It is easy to verify that
∂g2D(KD)
∂KD

∣
Kl
D
− =

∂g3D(KD)
∂KD

∣
Kl
D

+ ; hence gD(KD) does not have a

kink at KD = K l
D. Define G(KD, �)

.
=
(
1 + 1

b

)
(�1 + �2)K

( 1
b )

D − 2 (1 + aD − D) cD as

the integrand of (7) (without the density function). Note that G(KD, �) is increasing in

1It can be shown that for �l ≥ 0 and D ≥ 0, Kl
D ≥ B

2cD
, where the equality only holds if �l = 0 and

D = 0.
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�i for i = 1, 2, and decreasing in KD. We define K̂D
.
=

(
�u(1+ 1

b )
(1+aD−D)cD

)−b
. We have

lD(K̂D) = 2
(
1 + 1

b

)
�u
[
1− B(1+aD)+P

2K̂D(1+aD−D)cD

]
< 2�u, thus K̂D < Ku

D and is in the feasible

region of KD. Note that for �u′
.
= (�u, �u), GD

(
K̂D, �

u
)

= 0. Since (�1 + �2) takes its

maximum value at � = �u, and GD(KD, �) is strictly increasing in �i for i ∈ {1, 2}, we have

GD(KD, �) < 0 for � ∈ ΥD(�, K̂D). Therefore
∂g3D(KD)
∂KD

∣K̂D < 0. Since GD(KD, �) is strictly

decreasing in KD,
∂g3D(KD)
∂KD

< 0 for KD ∈
[
K̂D,K

u
D

)
.

In summary, gD(KD) is strictly concave in KD for KD ∈
[
0,K l

D

]
(with a kink at KD =

B
2cD

), and is strictly decreasing in KD for KD ∈
[
K̂D,K

u
D

)
. It follows that gD(KD) will be

unimodal if K l
D ≥ K̂D. Since ∂lD(KD)

∂KD
> 0 (from (6)), this is equivalent to lD(K̂D) ≤ 2�l,

which gives us B ≥ Bℎ
D. In this case, K∗D is in the strictly concave part and is unique. K∗D

is identical to (5).

Proof of Proposition 2: In the proof of Proposition 1, we already established that the

stage-1 objective function gD(KD) is strictly concave in KD for KD ∈
[
0,K l

D

]
and strictly

decreasing in KD for KD ∈
[
K̂D,K

u
D

)
. We obtain ∂gD(KD)

∂KD

∣∣∣
Kl
D

=
(1+ 1

b )2�

(Kl
D)
−1/b

[
1−

(
Kl
D

K1
D

)− 1
b

]
where K1

D =

(
�(1+ 1

b )
(1+aD−D)cD

)−b
. It follows that ∂gD(KD)

∂KD
∣Kl

D
> 0 if and only if K l

D < K1
D.

In this case gD(KD) is strictly increasing for KD ∈
[
0,K l

D

]
and strictly decreasing in

KD for KD ∈
[
K̂D,K

u
D

)
. Since gD(KD) is continuous in KD, there exists at least one

K∗D ∈
(
K l
D,K

u
D

)
such that ∂gD(KD)

∂KD

∣∣∣
K∗D

= 0. MPD(KD) characterizes this first-order-

condition. Since ∂lD(KD)
∂KD

> 0 (from (6)), K l
D < K1

D is equivalent to lD(K1
D) > 2�l, which

gives B < Bl
D.

To prove that K∗D ∈
(
K1
D,K

u
D

)
, it is sufficient to show that ∂gD(KD)

∂KD
> 0 for KD ∈(

K l
D,K

1
D

]
. For KD > K l

D, as follows from (7), we have

∂gD(KD)

∂KD
=

(
1 +

1

b

)
K

1
b
D

∫ ∫
ΥD(�;KD)

[
�1 + �2 − 2�

(
K

K1

)− 1
b

]
f(�1, �2)d�1d�2

Let HD(KD)
.
=
∫ ∫

ΥD(�;KD)

[
�1 + �2 − 2�

(
K
K1

)− 1
b

]
f(�1, �2)d�1d�2. Note that, for KD >

K l
D, HD(KD) and ∂gD(KD)

∂KD
have the same sign, so we can use HD(KD) to characterize the

sign of
∂g3D(KD)
∂KD

. Define MD(KD, �)
.
= �1 + �2 − 2�

(
K
K1

)− 1
b as the integrand in HD(KD)

(without the density function). For � such that �1 + �2 = lD(KD), we obtain M(KD, �) =

K
− 1
b

D

[
2(1+aD−D)cD

(b+1) − B(1+aD)+P
KD

]
< 0 since b < −1. As MD(KD, �) is strictly increasing

in �i for i ∈ {1, 2}, MD(KD, �) < 0 for � such that �1 + �2 < lD(KD). Therefore, we have

HD(KD) >
∫ ∫ [

�1 + �2 − 2�
(
KD
K1
D

)− 1
b

]
f(�1, �2)d�1d�2 = 2�

[
1−

(
KD
K1
D

)− 1
b

]
. For KD ≤
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K1
D, we have 2�

[
1−

(
KD
K1
D

)− 1
b

]
≥ 0; and hence HD(KD) > 0 for KD ∈

(
K l
D,K

1
D

]
.

Proof of Proposition 3: The stage-1 objective function gD(KD) is strictly concave in

KD for KD ∈
[
0,K l

D

]
(and strictly increasing at KD = 0) and strictly decreasing in KD for

K ∈
[
K̂D,K

u
D

)
. If �D is unimodal in KD, thus gD(KD) is unimodal in KD, it follows that

1. If
∂g2D(KD)
∂KD

∣Kl
D
≤ 0, then the unique K∗D is characterized by the strictly concave part

(similar to Proposition 1).

2. If
∂g2D(KD)
∂KD

∣Kl
D
> 0, then the unique K∗D is characterized by MPD(K∗D) = 0 as defined

in Proposition 2. Let KD denote the optimal solution in this case. From Proposition

2, we have KD ≥ K1
D.

As it follows from the proof of Proposition 2,
∂g2D(KD)
∂KD

∣∣∣
Kl
D

> 0 is equivalent to B < Bl
D.

The optimal expected equity value of the firm, �∗D, follows directly.

We now prove that �∗D decreases in aD. We have two cases to consider:

Case 1: 2cDK
1
D

[
1− �l

�(1+ 1
b )

] [
1− D

1+aD

]
− P

1+aD
≤ B < 2cDK

1
D

The firm’s optimal expected equity value is given by �∗D =
2(1+aD−D)cDK

1
D(aD)

−(b+1) + B(1 +

aD) + P where K1
D(aD) =

(
�(1+ 1

b
)

(1+aD−D)cD

)−b
. We obtain

∂�∗D
∂aD

= −2cDK
1
D(aD) + B < 0 as

follows from the definition of Case 1.

Case 2: 0 ≤ B < 2cDK
1
D

[
1− �l

�(1+ 1
b )

] [
1− D

1+aD

]
− P

1+aD

The firm’s optimal expected equity value is given by

�∗D =

∫ ∫
ΥD(�;KD)

[
(�̃1 + �̃2)KD

(1+ 1
b
) − 2cDKD(1 + aD − D) +B(1 + aD) + P

]
f(�1, �2)d�1d�2.

Note that
∂�∗D(KD)
∂aD

= ∂�D(KD)
∂aD

∣∣∣
KD

+ ∂�D(KD)
∂KD

∣∣∣
KD

∂KD
∂aD

. Since ∂�D(KD)
∂KD

∣∣∣
KD

= 0, we obtain

∂�D(KD)

∂aD

∣∣∣∣
KD

=

∫ ∫
ΥD(�;KD)

[
−2cDKD +B

]
f(�1, �2)d�1d�2 < 0

as follows from K1
D < KD and the definition of Case 2.

Lemma A.1 If b ≥ −2 and � has a bivariate normal distribution, then �D is unimodal in

KD.

Proof of Proposition 4: We define S1(aD)
.
= 2cDK

0
D (1− D)−b

[
1− �l

�(1+ 1
b )

]
(1+aD−D)(b+1)

(1+aD)

such that for a given aD, for B ≥ S1(aD), the firm uses a secured loan (and invests in

K∗D(aD) = K1
D(aD)) without default possibility. B ≥ S1(aD) is equivalent to dD(K1

D) ≤ 2�l.

Hence, both the default cost and the expected loss due to the unsecured part of the loan
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are 0 in (4). We define S2(aD)
.
= S1(aD) − P

(1+aD) such that for S1(aD) > B ≥ S2(aD),

the firm uses a secured loan (and invests in K∗D(aD) = K1
D(aD)) with default possibility.

B ≥ S2(aD) is equivalent to lD(K1
D) ≤ 2�l. Hence, the default cost is strictly positive but

the expected loss due to the unsecured part of the loan is 0 in (4). For B < S2(aD), the firm

optimally borrows to invest in K∗D(a) = KD(aD). In this case, the firm uses an unsecured

loan and both the default cost and the expected loss due to the unsecured part of the loan

are strictly positive in (4).

In summary, for any given aD, the ordering of B and thresholds S1(aD) and S2(aD)

determine the optimal borrowing level of the firm, and hence the form of ΛD(aD). We

obtain ∂S1(aD)
∂aD

< 0 for aD ∈ [0, amaxD ) thus, we can analyze the problem in two cases.

Case 1: B ≥ S1(0) = 2cDK
0
D(1− D)

[
1− �l

�(1+ 1
b )

]
.

As S1(aD) is strictly decreasing, we have B ≥ S1(aD) (and hence B > S2(aD)) ∀aD ∈

[0, amaxD ). Therefore, we have ΛD(aD) = (2cDK
1
D(aD)−B)aD for 0 ≤ aD < amaxD .

Case 2: B < S1(0) = 2cDK
0
D(1− D)

[
1− �l

�(1+ 1
b )

]
.

In this case, the ordering of B and S2(aD) is important in characterizing ΛD(aD). We have

S2(0) = 2cDK
0
D(1− D)

[
1− �l

�(1+ 1
b )

]
− P and we obtain

∂S2(aD)

∂aD
=

1

(1 + aD)2

[
P − 2cDK

0 (1− D)−b
(

1− �l

�
(
1 + 1

b

)) (1 + aD − D)b [−b(1 + aD)− D]

]

Notice that S2(0) is positive (negative) if P is less (greater) than 2cDK
0
D(1−D)

[
1− �l

�(1+ 1
b )

]
.

Since (1 + aD − D)b [−b(1 + aD)− D] is strictly decreasing in aD, for P ≥ 2cDK
0
D(−b −

D)

[
1− �l

�(1+ 1
b )

]
, we have ∂S2(aD)

∂aD
≥ 0 for aD ≥ 0. For P < 2cDK

0
D(−b−D)

[
1− �l

�(1+ 1
b )

]
,

there exists a unique aD such that ∂S2(aD)
∂aD

≤ 0 for aD ≤ aD and ∂S2(aD)
∂aD

> 0 for aD > aD.

Since the signs of S2(0) and ∂S2(aD)
∂aD

depend on P , we have three subcases. Before analyzing

them, we first present a Lemma that we will use throughout the rest of the proof.

Lemma A.2 We have B ≥ S1 (amaxD ) > S2 (amaxD ), ∀B ≥ 0.

Subcase 2.1: P ≥ 2cDK
0
D

[
1− �l

�(1+ 1
b )

]
(−b− D).

In this case, we have S2(0) < 0 and ∂S2(aD)
∂aD

≥ 0, ∀aD. For amaxD =

[(
2cDK

0
D

B

)− 1
b − 1

]
(1− D),

we obtain S2(amaxD ) < 0. Hence, for aD ∈ [0, amaxD ), we have S2(aD) < 0 < B. It follows that

the firm always uses a secured loan (and invests in K1
D(aD)). For B < S1(0) (which follows

from the definition of Case 2), since S1(aD) is strictly decreasing in aD and B ≥ S1(amaxD )

(from Lemma A.2), it follows that there exists a unique adD, as defined by S1(adD)
.
= B

36



(where the superscript d refers to “default”). We have B < S1(aD) for aD < adD, and the

firm uses a secured loan with default possibility, and B ≥ S1(aD) for aD ≥ adD, the firm

uses a secured loan without default possibility. Therefore, ΛD(aD) is characterized by

ΛD(aD) =

⎧⎨⎩ (2cDK
1
D(aD)−B)aD − F (dD(K1

D(aD)))S if 0 ≤ aD < adD

(2cDK
1
D(aD)−B)aD if adD ≤ aD < amaxD .

,

Subcase 2.2: 2cDK
0
D

[
1− �l

�(1+ 1
b )

]
(1− D) ≤ P < 2cDK

0
D

[
1− �l

�(1+ 1
b )

]
(−b− D).

We have S2(0) ≤ 0, and S2(aD) is first strictly decreasing, and then strictly increasing in

a. We obtain S2(amaxD ) < 0; hence S2(aD) < 0 for aD ∈ [0, amaxD ) in this case. Therefore

ΛD(aD) is identical to subcase 2.1.

Subcase 2.3: 2cDK
0
D

[
1− �l

�(1+ 1
b )

]
(1− D) > P

We have S2(0) > 0, and S2(aD) is first strictly decreasing, and then strictly increasing in

aD.

If B ≥ S2(0) (and B < S1(0) by definition of Case 2), since B ≥ S1 (amaxD ) > S2 (amaxD )

(from Lemma A.2), ΛD(aD) is characterized in a similar fashion to the other two subcases.

If B < S2(0), as S2(aD) is first strictly decreasing, and then strictly increasing in aD and

B ≥ S1 (amaxD ) > S2 (amaxD ) (from Lemma A.2), there exists a unique alD ∈ [0, amaxD ), as

defined in S2(alD)
.
= B (where the superscript l refers to “limited liability”). We have

B < S2(aD) for aD < alD and B ≥ S2(aD) for aD ≥ alD. Since S2(aD) = S1(aD)− P
1+aD

, it

follows that alD ≤ adD, with equality only holding for P = 0. Therefore, we have the following

three regions: For aD < alD(< adD), we have B < S2(aD)(and B < S1(aD)), the firm uses

an unsecured loan; for alD ≤ aD < adD, we have S2(aD) ≤ B < S1(aD), and the firm uses

a secured loan with default possibility; and for aD ≥ adD, we have S2(aD) < S1(aD) ≤ B,

and the firm uses a secured loan without default possibility.

Proof of Proposition 5: Since this equilibrium is relevant for firms that may default

but use a secured loan (Case ii of Proposition 4) and firms that may use an unsecured loan

(Case iii of Proposition 4); we will analyze these two cases separately. At equilibria where

the firm uses a secured loan with default possibility, the creditor’s expected return with the

dedicated technology is given by

ΛD(aD) =
(

2cDK̇
1
D −B

)
ȧD − S × Pr

(
�1 + �2 < dD(K̇1

D)
)
,

where dD(K̇1
D) = 2�

(
1 + 1

b

) [
1− B(1+ȧD)

2cDK̇
1
D(1+ȧD−D)

]
. Since � has a bivariate normal dis-

tribution, �1 + �2 is normally distributed with mean � = 2� and standard deviation

� = �
√

2(1 + �). Since b < −1 and B < 2cDK̇
1
D[1 − D], we obtain dD(K̇1

D) < �. We
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have Pr
(
�1 + �2 < dD(K̇1

D)
)

= Φ
(
dD(K̇1

D)−�
�

)
where Φ(.) is the cdf of the standard nor-

mal random variable.

For firms that may default but use a secured loan (Case ii of Proposition 4), for any

aD ∈
[
0, adD

)
, we obtain

∂ΛD(aD)

�
= −BC �

(
dD(K1

D)− �
�

)(
�− dD(K1

D)

�2

)
∂�

∂�
< 0,

∂ΛD(aD)

�
= −BC �

(
dD(K1

D)− �
�

)(
�− dD(K1

D)

�2

)
∂�

∂�
< 0

where �(.) is the density function of the standard normal random variable, as follows from

∂
∂�� = �

� > 0, ∂
∂�� =

√
2(1 + �) > 0, and dD(K1

D) < �. From the Pareto-optimality of the

equilibrium, i.e. ȧD is the minimum aD that satisfies ΛD(aD) = 0, it follows that with an

increase in � or �, ȧD increases.

For firms that may use an unsecured loan, since ȧD ∈ [alD, a
d
D), it follows from above

that ∂
∂�ΛD(aD)

∣∣
ȧD

< 0 for � ∈ {�, �}. In fact, ΛD(aD) is decreasing in � or � for any

ȧD ∈ [alD, a
d
D), but we cannot characterize the effect of � or � on ΛD(aD) for aD ∈

[
0, alD

)
.

Let ȧD(�) denote the equilibrium financing cost for a given � ∈ {�, �}. With a small

increment in � from �0 to �1, we can guarantee that ΛD(aD; �1) < 0 for ∀ aD < ȧD(�0)

because i) ΛD(aD; �0) < 0 for ∀ aD < ȧD(�0) from the definition of the equilibrium, and ii)∣∣ ∂
∂�ΛD(aD)

∣∣ and
∣∣∣ ∂
∂aD

ΛD(aD)
∣∣∣ are bounded. Therefore ȧD increases (locally) in � ∈ {�, �}.

Since for a given aD, �∗D is independent of � ∈ {�, �}, we have ∂ ˙�D
∂� =

∂�∗D
∂aD

∣∣∣
ȧD

∂ ˙aD
∂� . From

Proposition 3, we have
∂�∗D
∂aD

< 0, hence ∂ ˙�D
∂� < 0. Similarly, K̇D = K1

D(ȧD) is independent

of � ∈ {�, �}; hence we have ∂K̇D
∂� =

∂K1
D(aD)
∂aD

∣∣∣
ȧD

∂ ˙aD
∂� . Since K1

D(aD) decreases in aD, we

have ∂K̇D
∂� < 0 for � ∈ {�, �}.

Lemma A.3 If b ≥ −2 and � has a bivariate normal distribution, then for a given financing

cost aD with the dedicated technology, for the firm that uses an unsecured loan, K∗D and �∗D

increase in � and �, and decrease in aD.

Lemma A.4 If b ≥ −2 and � has a bivariate normal distribution, when the firm uses an

unsecured loan with the dedicated technology, the creditor’s net gain from secured lending

and its expected loss due to the unsecured part of the loan increase in � and �. Its expected

default cost increases in � and � if dD(KD(aD)) ≤ 2�.

Proof of Remark 2 The form of cPD(cF ) follows from a direct comparison of �̇D and �̇F in

perfect capital markets. Since F ≥ D by assumption, to prove cPD(cF ) ≤ cF it is sufficient
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to show E−b
[(
�−b1 + �−b2

)− 1
b

]
≥ 2�

−b
. From Hardy et. al (1988, p.146), if d ∈ (0, 1)

and X,Y are non-negative random variables then the following is true: E1/d
[
(X + Y )d

]
≥

E1/d
[
Xd
]
+E1/d

[
Y d
]

where equality only holds when X and Y are effectively proportional,

i.e. X = �Y . In cPD(cF ), we have d = −1
b ∈ (0, 1) and � ≥ �l ≥ 0, replacing X with �−b1 and

Y with �−b2 gives the desired result. Notice that cPD(cF ) = cF only if �1 = �2 (since we focus

on the symmetric bivariate distribution) and F = D. �1 = �2 is only possible if either �

is deterministic or � = 1.

B Proofs for Supporting Lemmas

Proof of Lemma A.1: Since � has a bivariate normal distribution,  
.
= �1 + �2

is normally distributed with mean � = 2� and standard deviation � = �
√

2(1 + �).

Let F (.) denote the cdf of  , and F (.) = 1 − F (.). By using  , as follows from the

proof of Proposition 2; for KD ≥ K l
D, we have sgn

(
∂g3D(KD)
∂KD

)
= sgn(HD(KD)) where

HD(KD) =
∫ �u
lD(KD)

[
 − 2�

(
KD
K1
D

)− 1
b

]
f( )d . Therefore we will focus on HD(KD) to

prove the unimodality of gD(KD). From integration by parts, we obtain

HD(KD) =

∫ 2�u

lD(KD)
F ( )d − F (lD(KD))

[
K
− 1
b

D

(
2 (1 + aD − D) cD

− (b+ 1)
+
B(1 + aD) + P

KD

)]
.

Define Δ(KD)
.
= K

− 1
b

D

(
2(1+aD−D)cD
−(b+1) + B(1+aD)+P

KD

)
. We obtain

∂Δ(KD)

∂KD
=

(
1 +

1

b

)
K−1
D

(
lD(KD) +

−b(b+ 2)

(b+ 1)2 2 (1 + aD − D) cDK
− 1
b

D

)
.

Note that forKD > K l
D, lD(KD) > 2�l ≥ 0; hence for b ≥ −2 the second term is positive and

∂Δ(KD)
∂KD

> 0 for KD > K l
D. We obtain HD(KD) = F (lD(KD))

[∫ 2�u

lD(KD)
F ( )d 

F (lD(KD))
−Δ(KD)

]
.

As Δ(KD) is increasing in KD, if we can show that

∫ 2�u

lD(KD)
F ( )d 

F (lD(KD))
is decreasing in KD, then

for KD > K l
D, HD(KD) can only change sign once, which is from positive to negative.

We now show that

∫ 2�u

lD(KD)
F ( )d 

F (lD(KD))
is decreasing in KD. Since  is normally distributed

with mean � and standard deviation �, by using the standard normal random variable, this

expression can be written as

−1[
1− Φ

(
lD(KD)−�

�

)]2

∂lD(KD)

∂KD

[[
1− Φ

(
lD(KD)− �

�

)]2

− �
(
lD(KD)− �

�

)∫ ∞
lD(KD)−�

�

(1− Φ(z))dz

]
(8)

where Φ(.) and �(.) are the cdf and pdf of the standard normal random variable respectively.

Since ∂lD(KD)
∂KD

> 0, it is sufficient to show that the last term in parenthesis is positive. Let
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v = lD(KD)−�
� . Using integration by parts, we obtain

∫∞
v (1−Φ(z))dz = �(v)− v(1−Φ(v)).

Substituting this in (8), it is sufficient to show that 1 >
[

�(v)
1−Φ(v)

]2
− v�(v)

1−Φ(v) which directly

follows from Sampford (1953).

Proof of Lemma A.3: For a given aD, the optimal expected equity value �∗D is given by[
1− Φ

(
lD(KD)− �

�

)][
�K

(1+ 1
b
)

D +B(1 + aD) + P − 2(1 + aD)cDKD

]
+ �K

(1+ 1
b
)

D �

(
lD(KD)− �

�

)
.

where � = 2� and � = �
√

2(1 + �). Since � is increasing in � or �, it is sufficient to analyze

the impact of �. We have
∂�∗D
∂� = ∂�D

∂KD

∣∣∣
KD

∂KD
∂� + ∂�D

∂�

∣∣∣
KD

where the first term is zero from

the optimality of K. We obtain ∂�D
∂�

∣∣∣
KD

= K
(1+ 1

b
)

D �
(
l(KD)−�

�

)
> 0.

ForK∗D = KD, sinceKD is the unique maximizer, we have sgn
(
∂KD
∂�

)
= sgn

(
∂MPD(KD)

∂�

∣∣∣
KD

)
.

Using the optimality condition[
1− Φ

(
lD(KD)− �

�

)][
(1 +

1

b
)�K

1
b
D − 2(1 + aD)cD

]
= −(1 +

1

b
)�K

1
b
D�

(
lD(KD)− �

�

)
, (9)

we obtain ∂MPD(KD)
∂�

∣∣∣
KD

= (1+1
b )K

1
b
D�
(
lD(KD)−�

�

)⎡⎣( lD(KD)−�
�

)2
+ 1−

�

(
lD(KD)−�

�

)(
lD(KD)−�

�

)
1−Φ

(
lD(KD)−�

�

)
⎤⎦.

Let z =
(
lD(KD)−�

�

)
. We need to show that 1 > z

[
�(z)

1−Φ(z) − z
]
. It follows from Sampford

(1953) that
[

�(z)
1−Φ(z) − z

]
< 1−Φ(z)

�(z) ; therefore it is sufficient to show 1 > z(1−Φ(z))
�(z) which also

follows from Sampford (1953).

For the impact of ȧD on KD, we have sgn
(
∂KD
∂aD

)
= sgn

(
∂MPD(KD)

∂aD

∣∣∣
KD

)
. Using the

optimality condition in (9), we obtain ∂MPD(KD)
∂aD

∣∣∣
KD

=

[
1− Φ

(
lD(KD)− �

�

)]

×

⎡⎢⎣−2cD + (1 +
1

b
)K

1
b
D

∂lD(KD)

∂aD

⎡⎢⎣
⎛⎝ �

(
lD(KD)−�

�

)
1− Φ

(
lD(KD)−�

�

)
⎞⎠2

−
�
(
lD(KD)−�

�

)(
lD(KD)−�

�

)
1− Φ

(
lD(KD)−�

�

)
⎤⎥⎦
⎤⎥⎦ .

Denoting Y as the last expression in brackets and using ∂lD(KD)
∂aD

= K
−1
b
D

[
2cD − B

KD

]
, the

desired result follows because −2cD + (1 + 1
b )
[
2cD − B

KD

]
Y < 0 as Y < 1 from Sampford

(1953).

Proof of Lemma A.4: We only provide the proof for the expected loss due to the

unsecured part of the loan. The proofs for the default risk and the net gain from secured

lending can be obtained in a similar fashion, and are omitted. Since � is increasing in � or

�, it is sufficient to analyze the impact of �. By using the standard normal random variable,

40



the expected loss due to the unsecured part of the loan can be written as

Φ

(
lD(KD)− �

�

)[
KD(1 + aD)2cD − �K

(1+ 1
b
)

D −B(1 + aD)− P
]

+ ��

(
lD(KD)− �

�

)
K

(1+ 1
b
)

D .

Taking the derivative with respect to �, and using the optimality condition in (9), the

derivative with respect to � is given by �
(
lD(KD)−�

�

)
K

(1+ 1
b
)

D + ∂KD
∂�

[
2(1 + aD)cD − �K

1
b
D

]
.

This term is positive because ∂KD
∂� > 0 from Lemma A.3 and the last expression is positive

from the optimality condition in (9).
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