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Abstract—The problem of information source detection, whose
goal is to identify the source of a piece of information from
a diffusion process (e.g., computer virus, rumor, epidemic, and
so on), has attracted ever-increasing attention from research
community in recent years. Although various methods have been
proposed, such as those based on centrality, spectral and belief
propagation, the existing solutions still suffer from high time com-
plexity and inadequate effectiveness. To this end, we revisit this
problem in the paper and present a comprehensive study from
the perspective of likelihood approximation. Different from many
previous works, we consider both infected and uninfected nodes to
estimate the likelihood for the detection. Specifically, we propose a
Maximum A Posteriori (MAP) estimator to detect the information
source for general graphs with rumor centrality as the prior.
To further improve the efficiency, we design two approximate
estimators, namely Brute Force Search Approximation (BFSA)
and Greedy Search Bound Approximation (GSBA). BFSA tries to
traverse the permitted permutations and directly computes the
likelihood, while GSBA exploits a strategy of greedy search to
find a surrogate upper bound of the probabilities of permitted
permutations for a given node, and derives an approximate MAP
estimator. Extensive experiments on several network data sets
clearly demonstrate the effectiveness of our methods in detecting
the single information source.

Keywords—information source detection; maximum a posteri-
ori; likelihood approximation; greedy search;

I. INTRODUCTION

The boom of research on information network analysis,
especially those on information diffusion such as influence
maximization [16], [21], has brought ever-increasing attention
to the topic of information source detection [33], which aims
to identify the information source based on a single snapshot
of the infected network (e.g., opinion, computer virus, rumor
and epidemic). Its wide range of applications include epidemic
outbreak prevention, Internet virus source identification and
rumor source tracing in social networks [9], [12], [26], [29].

The research challenges of this problem come from a
number of aspects: First, information diffusion is characteristic
of high dynamicity and a great variety of patterns when
initiated from different sources [14]. Second, the actual in-
formation diffusion model, which is often latent, has become
the modelling target for many well-received pieces of works,
such as Susceptible-Infected-Recovered (SIR) Model [17] and
Independent Cascade (IC) Model [10]. Third, each diffusion
process produces an infection sequence, giving out not only
who are affected but also when each infection takes place.
Unfortunately, the infection sequence is typically unavailable
for the purpose of source detection. Nevertheless, various
methods have been introduced along the years to overcome
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Fig. 1. A snapshot of the information diffusion on a toy graph, where black
nodes are infected and others are not.

these challenges and detect the source of an diffusion for
different situations, including methods based on centrality [15],
[28], spectral [9], belief propagation [1], [2], [22], and so on.

Despite all the research efforts, existing methods are still
deemed inadequate due to their high computational complexity
and yet-to-be-improved effectiveness. Therefore, in this paper
we revisit the problem of information source detection and
present a comprehensive study from a different perspective of
likelihood approximation. The intuition behind our method is
that uninfected (or susceptible) nodes also provide important
insight for detecting the source. We illustrate this point with
Figure 1 which shows a snapshot of an information diffusion
example on an undirected graph. Since node 2 has two
uninfected neighbors node 3 and node 5, if node 2 is indeed
the source, node 3 and 5 would be more likely to be infected.
Therefore, the presence of these two uninfected neighbors
reduces the probability of node 2 being the source. Although
this has been noticed by some work [22], [26], we exploit
this intuition along a different direction.

Specifically, we first derive a Maximum A Posteriori
(MAP) estimator to detect the information source for general
graphs, which selects a node with the maximal posterior
probability as the detected source. The Susceptible-Infected
(S) model [26], [28] is used to describe the process of
information diffusion, which is a variant of SIR. It assumes that
every node has two potential states, namely susceptible and
infected. The MAP estimator applies rumor centrality [28] as
the prior because Comin et al. [6] have shown that the source
node tends to have higher centrality measurement values. Then
we infer the exact formation of likelihood for general graphs,
based on the hypothesis that the likelihood equals to the sum
of probabilities of all permitted permutations starting with a
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node. A permitted permutation [28] is corresponding to the
node infection sequence which is generated by an information
diffusion. For example, in Figure 1, {1,2,4} is a permitted
permutation if node 1 is the source. Combining the above prior
and likelihood, we obtain the MAP estimator.

While a theoretically optimal MAP estimator is obtainable
by enumerating all the permitted permutations, for greater
efficiency , we design two approximate estimators, Brute Force
Search Approximation (BFSA) and Greedy Search Bound
Approximation (GSBA). Inspired by Shah and Zaman [28],
BFSA uses a breadth-first search tree to estimate the span-
ning tree, and then enumerates the corresponding permitted
permutations to get the approximate likelihood. Yet BFSA is
still time-consuming as their research results have shown the
factorial complexity of the number of permitted permutations
for general trees. We therefore further propose GSBA which
uses an upper bound to approximate the probabilities of
permitted permutations starting with any given node v. This
bound can be used to estimate the likelihood given that v
is the source. To find this upper bound, GSBA exploits a
strategy of greedy search to find a surrogate bound, which
effectively avoids the enumeration of permitted permutations
and drastically reduces the computational complexity. The
experimental results on several network data sets validate the
effectiveness of our methods.

To sum up, our contributions are listed as follows.

e  We derive a Maximum A Posteriori estimator to detect
the information source for general graphs. We show
that we can obtain a theoretically optimal MAP esti-
mator by enumerating all the permitted permutations.

e To improve the efficiency, we develop two approx-
imation variants for the MAP estimator, namely
Brute Force Search Approximation and Greedy Search
Bound Approximation.

e  We conduct comprehensive experiments on three net-
works to validate the effectiveness of our methods.
The experimental results clearly demonstrate the ef-
fectiveness of our proposed approaches for single
information source detection by outperforming the
baselines .

Roadmap. The remainder of this paper is organized as follows.
Section II provides a brief review of related works. Then we
introduce some preliminaries of information source detection
in Section III. Section IV and V give the details of our
methods. In Section VI, we report the experimental results.
Finally, we conclude the paper and discuss some future works
in Section VII.

II. RELATED WORK

In general, research work related to our problem can be
discussed by two categories: information diffusion modeling
and information source detection.

Information Diffusion Modeling. It is a fundamental problem
to model information diffusion process, which has attracted
research efforts from various communities including epidemi-
ology, ethnography, and sociology [32]. Kermack and McK-
endrick introduced the Susceptible-Infected-Recovered (SIR)
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model to describe epidemic spreading [17]. The model as-
sumes that every node has three possible states, i.e., suscep-
tible, infected, and recovered. Once a susceptible node is in-
fected, it can further infect its susceptible neighbors, but it may
recover and never be infected again. Note that the Susceptible-
Infected (SI) model used in this paper supposes that infected
nodes would never recover, which is a special case of SIR. In
social network analysis, Independent Cascade (IC) Model [10]
and Linear Threshold (LT) Model [11] are widely used to
characterise the information diffusion in social networks. Other
models such as Susceptible-Infected-Susceptible (SIS) Model
and models for diffusion of innovations can be found in [32].

Information Source Detection. Various methods (e.g., those
based on centrality, spectral, belief propagation, and so on)
have been proposed to identify the diffusion source for dif-
ferent situations. For example, Shah and Zaman [28], [29]
are among the first to consider this problem. They proposed
the notion of rumor centrality to implement the Maximum
Likelihood Estimation for single rumor source detection under
the SI model. For a node, its rumor centrality is the number
of infection sequences which can span the given infected
subgraph. We can see rumor centrality only considers the
utility of infected nodes to detect the source. Under a specific
continuous-time epidemic process, Pinto et al. [25] studied the
problem when only a small fraction of nodes, instead of the
whole graph, can be observed. Zhu and Ying [33] developed
a sample-path-based approach to detect the source under the
SIR model. The source is supposed to be the root of a sample
path which is the node most likely resulting in the infected
subgraph. They proved that for a tree graph, the output of
their method is a Jordan center [15], which minimizes the
maximum distance from a node to others. Dong et al. [7]
explored the Maximum A Posteriori (MAP) estimation with
different settings of the prior. For instance, the suspects may
be all the infected nodes, or at most k infected nodes.

Recently, Lokhov et al. [22] made use of the infected
and uninfected nodes to detect the source and introduced a
time-consuming yet effective inference algorithm based on
dynamic message passing (DMP) equations. It first uses DMP
to estimate the marginal probability of a given node to be in
a given state, and then exploits a mean-field-type approach
to approximate the likelihood. Altarelli et al. [2] conducted
Bayesian inference for this problem on a factor graph under
the SIR model. They derived belief propagation (BP) equations
for the probability distribution of system states conditioned
on some observations, which is more accurate than DMP.
They further considered this problem with noisy observations
in [1]. Wang et al. [30] addressed the problem of rumor source
detection with multiple independent observations, under the SI
model. For trees, they found that multiple independent obser-
vations can dramatically increase the detection probability.

In addition, many researchers focused on detecting multiple
information sources. Prakash et al. [26] started to explore
the detection of multiple information sources under the SI
model. They applied the Minimum Description Length (MDL)
principle to automatically decide the number of source nodes,
and then identified the best source nodes according to ex-
oneration of infected nodes with many uninfected neighbors.
Subsequently, Fioriti and Chinnici [9] proposed to use the node
dynamical importance to estimate nodes’ age, and designed



a spectral technique to predict the sources of an outbreak.
Dynamical importance of a node is the reduction of the largest
eigenvalue of the adjacent matrix after it is removed from the
network [27]. Luo et al. [23] extended rumor centrality for
multiple sources detection, and they also tried to estimate the
infection regions (i.e., nodes infected by each source).

Intuitively, information source detection can be viewed as
the reverse process of information diffusion [16]. Lappas et
al. [18] defined a similar problem, k-Effectors, which selects
a set of k active nodes that can best explain the observed
activation states in social networks. They proved that the k-
Effectors(0) problem is NP-complete under the IC model, and
gave two approximate solutions. Nguyen et al. [24] studied
the k-Suspector problem which aims to find the top &£ most
suspected sources of misinformation, and claimed NP-hardness
of the problem under the IC model. Gundecha et al. [12]
tried to seek the provenance of information for a few known
recipients by recovering the information propagation paths in
social media. Feng et al. [8] studied the problem of recover-
ing other unknown recipients and seeking the provenance of
information based on a few known recipients. They exploited
frequent pattern propensity and node centrality measures to
find important nodes.

In spite of all these existing work, we approach the problem
of information source detection by maximizing a posteriori
from a different perspective. Our solution makes full use
of both the infected nodes and their uninfected neighbors,
like [26], but from a different perspective. We assume that
every infected node could be the source and use node centrality
as the prior probability. Then we infer the exact formation of
the likelihood for general graphs.

III. PRELIMINARIES

In this section, we will introduce some preliminaries about
information source detection, and give the problem formula-
tion, and then revisit Rumor Centrality.

A. Problem Definition

Let G(V, E) denote the undirected network, where V' is
the node set and E is the edge set. The information (such
as opinion, rumor and epidemic) will spread on this network
under a contagious information diffusion model. In this paper,
we assume the information source consists of a single node,
and apply the Susceptible-Infected (SI) model to describe the
diffusion. Some important terms and notations are listed in
Table I for easy reference.

SI is a variant of the popular Susceptible-Infected-
Recovered model [17]. It assumes that every node has two
possible states: susceptible and infected. Once a node 7 is
infected (or receive the information), it will remain infected
and never recover. Meanwhile, the node ¢ will spread the infor-
mation to its susceptible neighboring node j with probability
Aij. All \;;’s are supposed to be independent. [3], [26]. In the
following, we assume that \;; = A for convenience without
loss of generality.

After the information has spread on the network for some
time, there are N infected nodes, denoted by V7, including
the source node. These nodes and their inter-edges E; can
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TABLE L TERMS AND NOTATIONS

Notations Description
G=G(V,E) an undirected graph
Gr=G1(Vi,Er) an infected subgraph of G
v* the real information source
] the detected source
o a permitted permutation
o(l,...,i—1) the first ¢ — 1 nodes of o
R(v,Gr) rumor centrality of node v
Gs(U) a spanning graph of a node set U
N(U) neighbors of a node set U
dU) degree of a node set U
E(v,U) set of bridging edges between v and the node
set U
Q(v, Gr) set of permitted permutations starting with

v and spanning G.

span an infected subgraph G;(Vi, E;) of G(V,E), which
are referred to as G; and G, respectively. Gy is connected
because the information diffusion model is contagious. For
example, recall the snapshot of information diffusion on the
toy graph in Figure 1. Node 1, 2 and 4 are infected while others
are susceptible. Therefore, the problem of information source
detection is defined as follows [28].

Problem Definition 1 (Information Source Detection):
Given an undirected graph G(V,E) and a snapshot of the
infected subgraph Gj(V;,E;) at some time stamp, the
problem of Information Source Detection is to find the single
information source v* among all those infected nodes.

B. Rumor Centrality

After the information diffusion starts, it generates an in-
fection node sequence o = {v1,...,on} (I < i < N),
where v; € V7 is the i-th infected node (i.e., o(i) = v;). This
sequence corresponds to a permutation of N nodes, which is
referred to as the permitted permutation in [28], and vice versa.
This means that a permutation is permitted if it exactly matches
the topological constrain specified by G ;. For example, if node
4 is the information source in Figure 1, {4,2,1} is a permitted
permutation, but {4,1,2} is not because node 2 must be infected
before node 1. Note that we also use o to denote the nodes
appearing in the sequence without ambiguity.

If Gy is a general tree, Shah and Zaman [28] have shown
that Rumor Centrality of node v, i.e., the number of permitted
permutations starting with v, denoted as R(v, Gy), is defined

as
N!
R(UaGI) = H T

ueGy ~ Y

M

where v is a node of G and 7). is the number of nodes in the
subtree rooted at u with v as the source. This centrality has
been used to design a Maximum Likelihood Estimator (MLE)
to estimate the likelihood probability P(G|v* = v) given that
node v is the information source.

Although rumor centrality is effective, it has two lim-
itations. First, it only considers the infected subgraph and
neglects other susceptible nodes which are also important for
detecting the information source. For example, in Figure 1,
R(1,G;) = R(4,Gr) =1, R(2,Gy) = 2. So node 2 is more



likely to be the source according to rumor centrality no matter
how many neighbors Gy has. But node 2 has two uninfected
neighbors, node 3 and 5. If node 2 is the source, node 3 and
5 are more likely to be infected. Therefore, node 3 and 5 have
reduced the chance of node 2 as the source, when we consider
the global states of all nodes.

Second, rumor centrality assumes that the probabilities of
all permitted permutation are equal for general graphs. It is
easy to show that this assumption is not valid when the degrees
of nodes are different, especially for graphs with loops.

To overcome these limitations and improve the accuracy
for the detection, we propose a Maximum a Posteriori (MAP)
estimator. It uses rumor centrality as the prior probability
P(v* v), and then accurately infer the probability of a
permitted permutation to obtain the likelihood P(G|v* = v),
which takes into account of the effects of both infected and
uninfected nodes.

IV. MAXIMUM A POSTERIORI ESTIMATION

Based on Bayes Theorem, we can derive the posterior
probability of node v being the real source given the infected
subgraph G as follows.

P(G|v* = v)P(v*
Plv* = 0|Gr) =
(v =lG) mten
_ P(Gilv* = 0)P(v* =)
ZuEGl P(G1|U* = u)
x P(Gy|v* = v)P(v* =),
because the denominator P(G7) is the sum of values appearing

in the numerator and can be regarded as the normalization
constant to be removed [5].

v)

(@)

Given G, we can select the node maximizing the above
posterior as the detected source. This is the following maxi-
mum a posteriori estimator.

0 = arg max P(v* = v|Gy)

veGT
v)P(v*

3

).

Next we will derive the prior probability and likelihood in
Equation (2), respectively.

= arg max P(Gr|v*

A. Deriving the Prior

Although many works assume every node has the same
prior to be the source [28], [22], [30], Comin et al. [6] have
shown that the source node tends to have higher centrality
measurement values. Therefore, we choose rumor centrality
as the prior.

R(Ua GI)
Luev, Blu, Gr)
x R(v,Gy).
For general graphs, we apply the following method used in [28]
to compute R(v, Gy),
R(v,Gy) = R(v, Tyss(v)) 3)
where Tyf4(v) is a breadth-first search spanning tree starting

with v. It uses the rumor centrality of T} ¢s(v) to approximate
R(v,Gy) of a graph.

P(v* =v) = @
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B. Deriving the Likelihood

Formally, let G5(U), N(U) and d(U) be the spanning
graph, the neighbor set and degree of a node set U, respec-
tively. A spanning graph of a node set consists of these nodes
and inter-edges among them. Note that G4(o) is the spanning
graph of nodes appearing in the permitted permutation o. Let

Qv,Gr) ={olo(1) =v,Gs(0) = G} 6)

denote the set of permitted permutations each of which
starts with v and could span the infected subgraph Gj.
Let E(v,U) = {(v,u)|(v,u) € E,u € U} be the set
of bridging edges between v and the node set U. For
example, in Figure 1, G,({1,2,4}) = G, N({1,2})
{3,4,5}, d({1,2}) = 4, Q2,G1) = {{2,1,4},{2,4,1}},
E(3,{1,2}) ={(3,1),(3,2)}.

For an infection sequence or permitted permutation o €
Q(v, Gr), we have

_|E(wo(L,...i— 1))

P(o(i) =ulo(1,...,i— do. 1)

1)

)

where u is a neighbor of o(1,...,i — 1). It is the probability
that « is selected to be the i-th infected node from the
neighbors of the first ¢ — 1 nodes of o. This means that every
u € N(o(l,...,i — 1)) has the probability to be the next
infected node, which is proportional to the number of back
edges E(u,o(l,...,4 — 1) between w and o(1,...,7 — 1),
as we assume that )\;; = A. For example, in Figure 1,
P(c(3) =3|o(1l) =2,0(2) =1) =2/4=0.5.

Accordingly, we can expand P(o|v* = v) and get the
following based on Equation (7).
P(o|v* =v)
=P(o(2)|o(1))---P(a(N)[o(1,...,N —1))
_|B(@),0()  |B@(N),o(L,...,N 1)
d(o(1)) dlo(1,...,N —1)) ®)
[ Bt o, i = 1)
s dle(l,..i=1)) 7
where
d(o(1,...,i—1))
j=i—1 ©)
= (d(a(5)) = 2|E(0(4),0(L,...,5 = 1)),
j=1
since every infected mnode contributes d(o(j)) —
2|E(o(j),0(1,...,j5 —1))| new edges to the diffusion.

When the graph is a tree, every node has only one path to
connect with others. This means |E(o(j),0(1,...,5j—1))] =
1. Thus Equation (8) becomes the following succinct form.

1
N j=i—1 .
[[: 25— (dlo(s))
which is used for deriving the rumor centrality in [29].

Notice that the likelihood P(Gy|v* = v) is the sum of
probabilities of all permitted permutations which begin with

P(ojv* =v) = ~ 2)7 (10)



v [28]. Therefore, it can be decomposed as follows.
P(Gilv* =v) = Z
ceQ(v,Gr)
N . .
Z H |E(a(z),a(1,...,z—1))|'
d(o(1,...,i—1))

oceQ(v,Gr) 1=2

P(olv* =v)

an

After substituting Equation (4) and (11) into (2), we obtain the
following formation of the posterior probability.

P(v* = v|Gy)

D,0(l,....i=1)| (12

N
|E(a(i),
xR, G > ]I d(o(1,...,i—1))

ceQ(v,Gr) 1=2

It is clear that it indeed considers the states of both infected
and susceptible nodes, and computes the probability for every
permitted permutation from the global perspective.

In fact, when all nodes are infected (i.e., G; = G), the
MAP estimator defined by the above equation degenerates
into the Maximum Likelihood Estimator in [28]. Because if
G1 = G and v is the source, the information must follow one
permitted permutation of (v, G1) to spread such that the sum,
P(G|v* = v), in Equation (11) equals to 1. In other words,
when G; = G, every node could be the source and infect all
the others as long as the information spreads for a sufficiently
long period of time. At this moment, we can only use the prior
knowledge depicted by rumor centrality in IV-A to distinguish
these nodes.

If enumerating all the permitted permutations, Equa-
tion (12) says that we can get the theoretically optimal MAP
estimator. Yet Equation (1) has shown the factorial complexity
of the number of permitted permutations even for general trees,
not to mention for general graphs. We will show how to get
the approximate estimators to speed up the detection.

V. APPROXIMATE MAP ESTIMATOR

We propose two MAP approximation estimators in this
section, namely Brute Force Search Approximation and Greedy
Search Bound Approximation.

A. Brute Force Search Approximation

Brute Force Search Approximation (BFSA) tries to enu-
merate all the permitted permutations and get the MAP estima-
tor. Algorithm 1 shows the pseudo codes. Specifically, it first
initializes the likelihood, gets the breadth-first search spanning
tree and the prior R(v,G) for every infected node, from
line 1 to 4. Then it calls Algorithm 2 to generate permitted
permutations and obtains the likelihood. Finally, it gets the
detected source by MAP according to Equation (3).

Algorithm 2 extends Heap’s permutation generating algo-
rithm [13]. During the generating process, it prunes the search-
ing branches that do not follow the topological constrain by
line 6. That means if o[p] is a descendant of o [¢] in Ty z5(o[1]),
we can swap them to get a new permitted permutation.

BFSA can get the optimal MAP estimator for general
trees, but may miss some permitted permutations for graphs
with loops. Nevertheless, we will show the effectiveness of
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Algorithm 1: Brute Force Search Approximation(G,G )

input : G - the undirected graph
G - the infected subgrpah
output: ¢ - the detected source
1 for v € V; do
2 P(Grlv* =v) =0;
3 get the breadth first search spanning tree Ty zs(v);
4 get R(v, Gr) by Equation (5);
5 o = an array of Vr;
6 getLikelihoodByBFSA(o,1,N);
7 get v by Equation (3) and (11);
8 return U;

Algorithm 2: getLikelihoodByBFSA(o, p, q)

input : o - the infected node array
p - the starting index
q - the end index
1 if p == ¢ then
get P(o|v* = v) by Equation (8);
P(Gy|v* = v) += P(o|v* = v);

else

A7

for i =p;i < gq;++i do

6 if o[p] is a node of the subtree rooted at oli] of
Tyrs(o[1]) then

7 swap(a[p], o[i]);

8

9

getLikelihoodByBFSA(o,p + 1, q);
swap(a[p], o[i]);

BFSA for source detection in the experiment part. However,

its time complexity is exorbitantly high. To further improve the

efficiency, we propose the following approximate estimator.

B. Greedy Search Bound Approximation

The basic idea of Greedy Search Bound Approximation
(GSBA) is to find the upper bound of the appearinggenerative
probability of a permitted permutation, and then to reduce the
computational complexity of computing the likelihood.

Recall that Q(v, Gy) is the set of permitted permutations
beginning with v. Among Q(v, G), there must be a permu-
tation o such that its appearing probability P(c|v* =v) in
Equation (8) is maximal, which we denote as o, ... Therefore,
we have

P(o|v" = v) <P(oy,[0" =)

13)

N v ; v .
-1 |E(0800(1), 0000 (1, ... i — 1))]
s dlohe (. i-1)

More importantly, if we adopt the permitted permutation
generation method in Algorithm 2, there exists the following
approximation,

v, Gr)| = R(v, Gr).

Note that the above is exact when the graph is a tree.
Combining Equation (13) and (14) with (12), we get an upper
bound approximation of the posterior like

P(v* = v|Gp) < R*(v,G1)P(a;,

max

14)

5)

|v* = ).



Accordingly, the MAP estimator of Equation (3) changes into

¥ = arg max B*(v, Gr)P(07,,.[v" =v).  (16)

We denote it as maximum a posteriori upper-bound (MAP-ub).

v

Now the only issue left is how to find o7}, .. and get the
upper bound. When o(1,...,7 — 1) is given, if exploiting the
greedy search strategy to select w € N(o(1,...,i— 1)) to be
the i-th infected node such that w 1s maximal,
we can get a permitted permutation O'g;. IR we set oy, as a
surrogate of o, .., and the estimator of Equation (16) becomes

max?®

0 = arg max R*(v, Gr)P(ogsv" = v). a7

So far, we get the final greedy search bound approximation.
The pseudo codes of GSBA is mostly like BFSA’s, except for
line 6 and 7. GSBA will get the likelihood approximation by
Algorithm 3 and detect the source according to the estimator
in Equation (17). Its computational complexity is O(N?).

Algorithm 3: getLikelihoodByGSBA(G)
input : G - the infected subgrpah

1 for v € G; do

2 =2

3 initialize an empty queue Q;

4 add v into Q;

5 while i < N do

6 u = remove the first node of Q;

7 compute Equation (7);

8 insert every unvisited neighbor w of u into @
according to the descending order of
|E(w,o(1,...,i—1))],

do(1,..5)  °
9 ++i;

For every node in Vj, Algorithm 3 uses the greedy search
to find oy,. When inserting a new node into the queue @), we
use the concept of insertion sort to ensure that the first node
of () has the maximal probability to be the next infected node.

Its effectiveness will be shown in the experiment section.

GSBA is a trade-off between effectiveness and efficiency to
approximate the likelihood. We left it to future work to explore
other algorithms to find o, .. such as dynamic programing.

max

VI. EXPERIMENT

In this section, we present experimental results to compare
our methods with some baselines with respect to single in-
formation source detection on different networks under three
evaluation measures.

A. Datasets

Our datasets are simulations about information diffusion
on three networks, namely Scale-Free, Power-Grid and Wiki-
Vote. This kind of datasets is widely used in the litera-
ture [28], [22]. Specifically, a scale-free network is a connected
graph, whose degree distribution nearly follows a power law.
We generate it by Barabasi-Albert (BA) Model [4]. Power-
Grid [31] is an undirected network containing information
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about the power grid of the Western States of the United
States of America!. Wiki-Vote [19] is a who-voted-who graph
on Wikipedia?, downloaded from Stanford Network Analysis
Project (SNAP) [20]. We assume that node w and v has an
undirected edge if there is an edge between them in the original
network. As we said in Section III-A, an infected graph should
be connected. So we remove the disconnected nodes and keep
the maximal connected component. After this filtering, their
statistical information are listed in Table II

TABLE II. STATISTICS OF OUR DATA SETS
Network Scale-Free  Power-Grid — Wiki-Vote
Number of nodes 500 4,941 7,066
Number of edges 764 6,594 100, 736

To simulate the information diffusion on a graph G, we
adopt the following two strategies to run the aforementioned
SI model with \;; = X for Vi, j, respectively.

e Random test. We randomly select a node as the
infection source from G.

e Full test. We let each node has a chance to be the
source, because every node can be the source in real
scenarios.

After selecting a source node, we run the SI model until the
number of infected nodes equals to a given value. Repeat this
process, and finally we have M infected subgraphs with a
given size for each graph. For random test, we let M = 100,
while for full test, M = |V|, where |V| is the node number of
G. Indeed, full test can validate the stability of a method more
accurately. But we only use full test to compare RG, DC, JC,
RC, Rl and DI with GSBA in this paper, because others are
time-consuming.

B. Baselines and Evaluation Measures

To validate our methods, namely Brute Force Search Ap-
proximation (BFSA) and Greedy Search Bound Approxima-
tion (GSBA), we compare them with the following methods.

D
2)

Random Guess (RG). It randomly selects an infected
node as the source.

Distance Center (DC). It selects an infected node
which has the minimal distance centrality as the
source. Distance centrality is a sum of the shortest
distance from a node to any others. [28]

Jordan Center (JC). It selects an infected node which
minimizes the maximum distance to others as the
source. [15]

Rumor Center (RC). It selects an infected node
which has the maximal rumor centrality as the source.
Rumor centrality is defined as Equation (1). [28]
NETSLEUTH (NS). Suppose that L(G) is the Lapla-
cian matrix corresponding to GG, and L 4 is a subma-
trix of L(G) corresponding to the infected subgraph
Gr. It first gets an eigenvector of L4 corresponding
to the smallest eigenvalue, and then selects an in-
fected node which is corresponding to the maximal
component of the eigenvector as the source. [26]

3)

4)

5)

Uhttp://konect.uni-koblenz.de/networks/opsahl-powergrid
Zhttp://www.wikipedia.org/



Detection Rate

Detection Error

7 8
Number of infected nodes, N

7 8
Number of infected nodes, N

Fig. 2. Random test performance on Scale-Free Network with A = 0.2.

Detection Rate

Fig. 3.

o
IS

o
%)

o

Detection Rate
R

o

Detection Error

7 8
Number of infected nodes, N

| HERG EEIDC [JC [JRC[JRI MMD! BB GSBA

3.5

| [EERG HEDC @JC [CJRC CIRIMMD! MEGSBA
3k

7 8
Number of infected nodes, N

Random test performance on Scale-Free Network with A = 0.5.

Normalized Ranking
o
o

o
S

o
N

o

0

o
@

o
N

0

[EERG IIDC EJC CJRC C_JDMP D! Ml GSBA IMIBFSA|

Number of infected ncdes N

EERG HlIDC [ JC CJRCJoMP D! Il GSBA IEBFSA|

5 6 9 10

Number of infected nodes, N

IRG IlDC []JC [CJRC DI -GSBA)»

Detection Error
o = N
Q-9 D 9

10

60 10

20 30 40 50
Number of infected nodes, N

Fig. 4. Full test performance on Scale-Free Network with A = 0.5.

6)

7

8)

Reverse Infection (RIl). The algorithm lets every in-
fected node broadcast its identity to the neighbors.
Once a node receives a new identity, it will record
the arriving time, and then broadcasts the identity to
its neighbors. At last, the node which has received
all the identities and the sum of their arriving times
is minimal, is selected as the source. [33]

Dynamic Message Passing (DMP). The algorithm
uses DMP equations to estimate the marginal proba-
bility of a given node to be in a given state, and then
exploits a mean-field-type approach to approximate
the likelihood. It selects an infected node correspond-
ing to the maximal likelihood as the source. [22]
Dynamic Importance (D). This is a method of the
spectral family. It selects an infected node which has
the maximal reduction of the largest eigenvalue of the
adjacent matrix after it is removed from the network,
as the source. [9]

Note that Lokhov et al. [22] have shown DMP is the state of
the art among these methods.

We apply the following three widely used measures to
evaluate the performance of different methods [28], [24], [22].

Let v* be the real source and ¥ be the detected source.
e  Detection Rate. It is defined as
. Mt
Detection Rate = —— 18
R (18)

20 30 40 50
Number of infected nodes, N
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Normalized Ranking

60 60

10 20 30 40 50
Number of infected nodes, N

where M is the running number of tests and My is
the number of tests which detect the source correctly.

e  Detection Error. It is the average shortest distance
between v* and 0.
e Normalized Ranking. We rank the infected nodes in

descending order by the probability to be the source.
Normalized Ranking is defined as

Ranking(v*) — 1

N ;19

Normalized Ranking =

where N; is the number of infected nodes and
Ranking(v*) is the ranking of v* in the sorted list.

To some degree, Detection Rate can reflect the detection
precision of a method, and Detection Error shows how far the
detected source is away from the real sources on the network,
while Normalized Ranking can validate the accuracy that a
method sorts the real source. Note that the larger Detection
Rate is , the better performance the corresponding method
achieves, but Detection Error and Normalized Ranking are
opposite. Normalized Ranking is not applicable to NS and RI,
because they do not assign a score to each node so that we
cannot sort the infected nodes.

In the following, we will show the performance of these
methods under different settings.
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C. Results on Scale-Free Network

In this subsection, we conduct experiments under three
settings, namely random test with A = 0.2 or A = 0.5, and
full test with A = 0.5. For random test, N € [5,10], while
N € [10,60] for full test. The results are shown in Fig 2, 3
and 4. We can have the following observations.

First, for all tests, our methods (GSBA and BFSA) achieve
better performance than Rumor Centrality (RC) under all
the three measures. The reason is that our methods consider
the uninfected nodes to infer the probabilities of permitted
permutations for general graphs. This proves once more that
uninfected nodes are also helpful for detecting the source.

Second, Fig 2 and 3 clearly show the performance of DMP,
GSBA and BFSA are nearly same with respect to Detection
Rate and Detection Error, and all of them outperform other
methods no matter A equals to 0.2 or 0.5. But our methods
achieve smaller Normalized Ranking than DMP. This means
GSBA and BFSA can sort the real source more accurately.
More importantly, GSBA is far more efficient than DMP
and BFSA. The above indicates the feasibility of maximum
a posteriori upper-bound and the greedy search strategy in
Section V-B. In other words, after selecting rumor centrality
as the prior, determining the likelihood like Section IV can
improve the detection performance drastically.
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Third, comparing the same measures in Fig 2 and 3, we
found that different parameters of the information diffusion
model apparently affect the performance of all methods. For
GSBA and BFSA, the detection performance are better on
scale-free networks with larger A. The reason may be that
scale-free networks with larger A are more compact when we
fix the number of infected nodes.

Fourth, under the strategy of full test, the performance of
all methods change more regularly than ones under random
test. For example, as the number of infected nodes increases,
Detection Rate and Detection Error of all methods shown in
Fig 4 have a tendency of becoming worse.

To sum up, our methods, GSBA and BFSA, can achieve
nearly the same performance with DMP, but GSBA is far more
efficient. These results prove the feasibility of our estimation
approximations in Section V.

D. Results on Power-Grid Network

In the following, we want to display the experimental
results for larger sizes of infected subgraphs. But as mentioned
before, DMP, BFSA and NS are time-consuming, and BFSA
behaves similarly to DMP on scale-free networks. Therefore,
we only compare RG, DC, JC, RC, Rl and DI with GSBA
on Power-Grid and Wiki-Vote in random test, like in full test.
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For random test, N € [50,150], while N € [10,60] for full
test. Fig. 5, 6 and 7 show the results on Power-Grid. We can
get some interesting findings.

First, generally speaking, the results of random test and
full test keep consistent. For example, our method, GSBA,
always achieve the best performance of Detection Error and
Normalized Ranking, for all situations shown in Fig. 5, 6 and 7.
But Detection Rate of full test in Fig. 7 is much more smooth
than those of random test in Fig. 5 and 6.

Second, both of Detection Error and Normalized Ranking
of each method display an obvious regularity, under random
test or full test. For example, Detection Error smoothly be-
comes larger as the number of infected nodes increases, such
as in the middle figure of Fig. 7. While Normalized Ranking
behaves very steadily and basically keeps invariant, which is
an important property. It can be used to measure the ability of
a method ranking the real source as higher as possible. GSBA
has shown its superiority of Normalized Ranking under both
of random test and full test.

Third, Fig. 7 shows that Jordan Centrality (JC) behaves
similarly to GSBA on Detection Rate under full test with A =
0.5, but GSBA achieves better performance of Detection Error
and Normalized Ranking apparently.

To summarize, GSBA always achieves the best perfor-
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mance on the Power-Grid network, especially with respect to
Detection Error and Normalized Ranking. For full test, Jordan
Centrality and GSBA have similar Detection Rate.

E. Results on Wiki-Vote Network

To compare the methods on Wiki-Vote, we apply the same
setting as experiments on Power-Grid. The results are shown
in Fig. 8, 9 and 10. Obviously, we can draw some similar
conclusions as the last subsection, such as the superiority
of GSBA, the consistency of random test and full test, the
increasing tendency of Detection Error and the invariance of
Normalized Ranking with the number of infected nodes becom-
ing larger. Except that, the performance of Rumor Centrality
(RC) and Distance Centrality (DC) are better and more similar
to GSBA’s than Jordan Centrality’s. Let us take N = 50
and A\ = 0.5 as an example. For Power-Grid, the average
diameter of infected subgraphs Gy is 9.5, and the average
ratio of edges to nodes in Gy is 1.2. While for Wiki-Vote,
the average diameter and ratio are 2.7 and 4.7, respectively.
Indeed, the ratio of a tree is less than 1. Therefore, the infected
subgraphs of Power-Grid are more tree-like. This may explain
why RC and DC perform better than JC. In other words,
GSBA > RC > DC > JC on graphs less like trees, where
> means performing better. Besides, Normalized Ranking of
GSBA is extremely less than other methods’.



In conclusion, the above experiments validate the effective-
ness of our methods, especially when measured by Normal-
ized Ranking. These also proves the feasibility of likelihood
approximation like GSBA.

VII. CONCLUSION

In this paper, we revisited the problem of information
source detection from the perspective of likelihood approx-
imation. After deriving the Maximum A Posteriori (MAP)
estimator, we design two approximation approaches, namely
Brute Force Search Approximation (BFSA) and Greedy Search
Bound Approximation (GSBA), to improve the efficiency.
Experiments on several networks clearly show the superiority
of our methods and that GSBA is nearly as effective as BFSA,
but far more efficient.

Two directions are worth exploring as further study. First,
we have so far derived our methods to detect the single
information source under the Susceptible-Infected (SI) model.
It is interesting to extend them to multiple information sources
detection under other models, such as SIR. The second direc-
tion is to explore other more effective approaches to find the
upper bound of likelihood, instead of greedy search.
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