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Abstract

This study investigates the origins of variation in the structures of interorganiza-
tional networks across industries. We combine empirical analyses of existing
interorganizational networks in six industries with an agent-based simulation
model of network emergence. Using data on technology partnerships from
1983 to 1999 between firms in the automotive, biotechnology and pharmaceu-
ticals, chemicals, microelectronics, new materials, and telecommunications
industries, we find that differences in technological dynamism across industries
and the concomitant demands for value creation engender variations in firms’
collaborative behaviors. On average, firms in technologically dynamic industries
pursue more-open ego networks, which fosters access to new and diverse
resources that help sustain continuous innovation. In contrast, firms in techno-
logically stable industries on average pursue more-closed ego networks, which
fosters reliable collaboration and helps preserve existing resources. We show
that because of the observed cross-industry differences in firms’ collaborative
behaviors, the emergent industry-wide networks take on distinct structural
forms. Technologically stable industries feature clan networks, characterized by
low network connectedness and rather strong community structures.
Technologically dynamic industries feature community networks, characterized
by high network connectedness and medium-to-strong community structures.
Convention networks, which feature high network connectedness and weak
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community structures, were not evident among the empirical networks we
examined. Taken together, our findings advance an environmental contingency
theory of network formation, which proposes a close association between the
characteristics of actors’ environment and the processes of network formation
among actors.

Keywords: network structure, interorganizational networks, network emer-
gence, technological dynamism

Studies investigating how social structure shapes the behaviors and outcomes
of actors constitute a vibrant area of organizational research. Prior work on the
social structures of corporate actors has indicated that the structure of an inter-
organizational network helps explain a range of collective outcomes of organiza-
tions, such as the diffusion of norms, knowledge, or other resources (Rogers,
2003; Uzzi and Spiro, 2005). Furthermore, recent studies have suggested that
networks in different interorganizational settings often show distinct structural
properties. For example, studies of partnership networks among firms have
demonstrated that the industry-wide structures of these networks differ across
industries on a number of important dimensions (Rosenkopf and Schilling,
2007). Yet despite mounting evidence that the variations in industry-wide net-
works help explain firms’ collective outcomes, there are limited insights regard-
ing why interorganizational networks vary across different industrial contexts.
Without a systematic understanding of the antecedents of variation in industry-
wide network structures, it may be difficult to link the properties of these net-
works to the collective outcomes they engender for firms in different industries.

In this paper, we examine the industry-wide networks of technology partner-
ships among firms and explore why their structural properties differ across
industries. Industry-wide networks represent the interlinked structures of firms’
ego networks (i.e., the focal firm and its contacts, as well as the connections
among the contacts) and thus capture the overall system of firms and their
partnership ties in a given industry. Networks of technology partnerships are
critical for the transfer of knowledge and resources among organizations, and
they have been shown to affect a range of private and collective outcomes
(e.g., Owen-Smith and Powell, 2004). Furthermore, partnership networks con-
stitute a highly dynamic setting in which firms constantly reshape their ties due
to the economic imperatives of value creation. These dynamics have been
demonstrated as highly consequential for the emergent industry-wide network
structures (Powell et al., 2005).

We seek to advance existing theory by exploring whether and to what
extent variations in firms’ collaborative behaviors across industries help explain
the variation in industry-wide networks. We thus aim to understand why and
how firms’ collaborative behaviors differ across industries and whether these
differences sufficiently explain the emergence of distinct industry-wide net-
works. We accomplish these interrelated goals by conducting two studies. In
the first study, we examine whether the differences in demands for value cre-
ation lead to a significant variation in the collaborative behaviors of firms across
six industries. Although a range of behaviors can characterize the formation of
interorganizational systems, we focus on those behaviors that have received
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particular attention in the past, specifically, how firms pursue either closed or
open ego networks. Pursuing a closed ego network entails forming ties to part-
ners that are connected to one another, while pursuing an open ego network
involves forming ties to partners that are not connected (Burt, 1992).

Building on prior findings on the contribution of open and closed ego net-
works to firm advantages across different industrial contexts (Rowley,
Behrens, and Krackhardt, 2000), our first study postulates that firms’ collabora-
tive behaviors are associated with the requirements of value creation imposed
by the technological regime of an industry, in particular, its technological dyna-
mism, which reflects the extent to which resident firms emphasize invest-
ments in research and development (R&D) (Chan, Lakonishok, and Sougiannis,
2001). In technologically dynamic industries firms are apt to be driven to pursue
more diverse resources and knowledge as critical inputs to innovation, and
doing so should be best enabled by open ego network structures. In contrast,
in technologically stable industries firms should be driven to preserve their
existing resources and ensure reliable cooperation, which are best enabled by
closed ego network structures. We anticipate that, on average, firms in techno-
logically dynamic industries will display stronger tendencies toward open ego
networks than those in technologically stable industries. We test these argu-
ments using a longitudinal dataset on the formation of interfirm R&D partner-
ships in six industries from 1983 to 1999, which covers a wide range of
industrial environments characterized by a varying emphasis on R&D, including
the automotive industry, biotechnology and pharmaceuticals, chemicals, micro-
electronics, new materials, and telecommunications.

In the second study, we construct an agent-based model of network emer-
gence to examine whether the variation in firm-level behaviors is sufficient to
explain the structural differences in industry-wide networks. The model oper-
ates under the conditions of varying technological dynamism across different
industrial contexts. This feature helps us determine whether, in the presence
of other forces driving interfirm ties, the variation in firms’ collaborative beha-
viors along the continuum of closed to open ego networks explains the emer-
gence of distinct industry-wide network properties. The agent-based model
positions us to better address the aggregate complexity of firms’ interactions,
which may be complicated by varying collaborative preferences of firms as well
as by possible exogenous perturbations. This approach is particularly fruitful
because industry-wide networks represent highly dynamic systems that are
shaped by the interactions among multiple firms. Such systems exhibit aggre-
gate properties that cannot be predicted from the behaviors of individual firms.
Moreover, the processes by which these networks form may be nonlinear,
thus obscuring the link between micro-level behaviors and macro-level struc-
tures (Skvoretz, 2002; Davis, Eisenhardt, and Bingham, 2009). In addition, this
approach allows us to capture the overall variation in network forms by offering
a general typology of interorganizational systems in relation to their
environment.

STUDY 1: TECHNOLOGICAL DYNAMISM AND THE FORMATION OF
INTERORGANIZATIONAL TIES

A key insight from prior studies of complex social systems is that interactions
among individual actors as they form new network ties are critical in shaping
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the properties of the emergent social system (Coleman, 1990). This general
insight implies that depending on how individual firms form their collaborative
ties with partners, different industry-wide networks may emerge. Admittedly,
in forming new partnership ties firms may exhibit a range of behaviors. Yet
recent research indicates that one of the central differentiators is the extent to
which firms pursue either more-closed or more-open ego networks (Li and
Rowley, 2002; Rosenkopf and Padula, 2008; Ahuja, Polidoro, and Mitchell,
2009; Sytch, Tatarynowicz, and Gulati, 2012). A closed ego network results
when a firm forms ties to the partners of its current partners, while an open
ego network results when a firm forms ties to alters that are unconnected to
its current partners.

A particularly intriguing insight into the formation of closed and open ego
networks is that they may be driven by fundamentally different strategic moti-
vations on the part of firms. Pursuing closed ego networks has been linked to
ensuring reliable collaboration and preserving existing resources. Because infor-
mation on other firms is distributed imperfectly and the costs of partner search
and selection are high, firms often prefer to connect to alters about whom they
can obtain private information through shared third-party ties (Gulati, 1995).
Furthermore, having a third party in common begets a situation in which the
two partners do not necessarily bear the full costs of the partnership. A com-
mon third party may offer effective recourse in conflict situations and protec-
tion against opportunistic pursuits (Larson, 1992). Finally, by enabling quick
diffusion of reputational insights, closed ego networks can make it costly for
partners to engage in self-seeking behaviors to the detriment of the focal firm
(Greif, 1989; Ahuja, 2000). These features of closed ego networks can make
them particularly effective in ensuring reliable collaboration and minimizing the
transaction costs of partnering.

In contrast, the central motivation for pursuing open ego networks is that
such structures enable more-entrepreneurial firms to acquire diverse informa-
tion, knowledge, and resources (Burt, 1992). Alters that are not connected to
one another are believed to represent distinct network regions with diverse
technical knowledge and information endowments (Sytch and Tatarynowicz,
2014a). Firms’ innovation activities often entail recombining existing knowledge
elements (Schumpeter, 1934), and open networks can enable firms to leverage
such diversity to pursue superior innovation outcomes. This access to diverse
information is largely unavailable to firms in closed ego networks because ties
between similar firms (Powell et al., 2005; Ahuja, Polidoro, and Mitchell, 2009)
and the increased knowledge and information sharing among densely intercon-
nected firms (Lazer and Friedman, 2007; Gulati, Sytch, and Tatarynowicz, 2012)
typically result in greater homogeneity of the available knowledge and informa-
tion pools.

Given the fundamental tradeoff between the benefits and costs of closed
and open ego networks, we expect that firms’ collaborative behaviors may vary
depending on the environmental requirements for value creation. It is possible
that slow-paced and technologically stable industrial settings in which firms
focus on the preservation and incremental growth of the existing resource base
will tend to engender more-closed ego networks. In such industries, closed
ego networks may help ensure collaborative continuity via high levels of trust
and reputational lock-ins, both of which can help firms preserve their existing
resources. In contrast, firms in technologically dynamic industries may lean
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toward more-open ego networks in which opportunities to leverage heteroge-
neous knowledge from diverse partners may outweigh the benefits of resource
preservation. This argument builds in part on the work of Rowley, Behrens, and
Krackhardt (2000), who showed that closed ego networks provide greater per-
formance benefits in the rather slow-paced steel industry than in the more
dynamic semiconductor industry, which is characterized by significantly greater
innovation demands.

Three points are worth noting with respect to this argument. First, to distin-
guish between closed and open ego networks, firms need not necessarily act
as astute networkers. Instead of tracing their own network position or that of a
potential partner, organizational agents may select partners based on the
demands for value creation imposed by their industry. For example, in highly
dynamic industries with innovation at the core of competitive advantage, firms
may be driven to select partners who can provide unique and diverse skills,
knowledge, and resources. Organizational agents may identify such partners by
monitoring other firms’ innovation activities, including new product announce-
ments and patent grants. As firms reach out to partners with distinct technolo-
gical profiles, particularly those that reside in more distant parts of the network
relative to their existing contacts, they may eventually form more-open ego
networks.

Less technologically dynamic industries, in contrast, may drive firms to
emphasize lower transaction costs and the preservation of existing resources
while downplaying the potential rewards of continuous innovation. Under these
conditions, a key criterion for partner selection may be the moral hazard that
comes along with a new partnership. A potential partner’s reliability, in turn,
may be easily gauged based on information provided by a firm’s existing or past
contacts. Sharing a third-party connection with a potential collaborator can thus
provide assurance of reliable collaboration through both thorough selection and
a reputational lock-in; furthermore, parties can reasonably expect the common
contact to act as a mediator in emerging disputes (Black, 1976), precluding the
escalation of conflict and further reducing transaction costs. These motivations
may drive firms in industries characterized by stable technological regimes into
closed ego networks.

Second, our argument concentrates on firms’ average tendencies to form
open or closed ego networks across industries, and we naturally examine the
entire spectrum of firms’ collaborative behaviors and the resulting ego-network
positions. We thus do not rule out the possibility of encountering firms with
hybrid network positions combining both closed and open ego-network beha-
viors (Sytch, Tatarynowicz, and Gulati, 2012). Third, it is important to note that
our argument about how firms’ collaborative behaviors vary across different
industrial contexts focuses on (a) capturing firms’ average tendencies toward
open or closed ego networks in a given industry and (b) comparing those aver-
age tendencies across industries. Accordingly, we expect that the collaborative
behaviors of individual firms may vary both within a given industry and over
time, and we incorporate such firm-level heterogeneities in our analysis. That
said, we anticipate that the differences in firms’ average behaviors across
industries should be associated with the cross-industry variations in technologi-
cal regimes. The arguments advanced above lead us to formulate the following
hypothesis:
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Hypothesis 1: Firms’ pursuit of open and closed ego networks is associated with the
technological regime prevailing in their industry, such that firms in technologically
stable industries will form more-closed ego networks while firms in technologi-
cally dynamic industries will form more-open ego networks.

Data

To test hypothesis 1, we used data on the technology partnerships between
firms in the automotive, biotechnology and pharmaceuticals, chemicals, micro-
electronics, new materials, and telecommunications industries. The breadth of
our sample allowed us to capture significant variation in technological dyna-
mism across industries and thus positioned us to examine whether and to
what extent this variation could explain differences in the collaborative beha-
viors of firms. To examine firms’ collaborative behaviors, we traced interfirm
partnerships formed between 1983 and 1999 in each industry in our sample.
Because collaborative partnerships were rare before 1980 (Hagedoorn, 1996),
focusing on this period enabled us to provide a detailed account of the colla-
borative history of each industry. We obtained partnership data from the
MERIT–CATI database, which is among the most well-established and fre-
quently used sources of empirical data on technology partnerships (e.g.,
Hagedoorn, 1993; Gulati, 1995; Gomes-Casseres, Hagedoorn, and Jaffe, 2006).
This database tracks a broad range of partnerships that entail knowledge
exchange and development of new products or technologies, including joint
ventures, contractual agreements, R&D consortia, and licensing deals
(Rosenkopf and Schilling, 2007). Our data included 8,810 distinct technology
partnerships formed by 4,400 firms.

From these data, we reconstructed the industry-wide structures of partner-
ship networks using standard empirical procedures. More than 95 percent of
partnerships in our data were bilateral, and we treated them accordingly as dya-
dic relationships. We decomposed the remaining multilateral partnerships into
sets of dyadic ties (Stuart, 1998). Because information on partnership termina-
tions was limited, we built on prior work that suggested that interorganizational
partnerships last an average of five years (e.g., Kogut, 1988a; Gulati and
Gargiulo, 1999; Stuart, 2000; Lavie and Rosenkopf, 2006). To reproduce the evo-
lution of each interorganizational system in our data from 1987 to 1999, we thus
reconstructed 13 annual network structures for each of the six industries.1

Measures

Dependent variable: Closed vs. open ego networks. To differentiate
between closed and open ego networks, we relied on Burt’s (1992) measure
of ego-network constraint, defined as ci = P

j

(εij + P
k

εikεkj )
2. Here, εij indicates

1 Note that some prior studies of interorganizational networks considered a broader spectrum of

interfirm ties and used other sampling strategies. For example, in their study of interorganizational

networks in biotechnology and pharmaceuticals, Powell et al. (2005) examined various financing,

sales, and marketing agreements among dedicated biotechnology companies, while excluding ties

between pharmaceutical firms. Nonetheless, their network showed some remarkable similarities to

the interorganizational system mapped here, including high levels of network connectedness (see

their footnote 17) and some discernible community structure (see their footnote 13). We thank

Jason Owen-Smith for providing us with additional data that facilitated these comparisons.
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the fraction of i’s ties with j, εik indicates the fraction of i’s ties with k, and εkj

indicates the fraction of k’s ties with j. This index increases as ego’s contacts
become more connected to one another and decreases as they become more
separated from one another. Because the pursuit of closed ego networks
involves forming ties to partners that are connected to one another, firms that
exhibit this behavior should have higher levels of constraint. In contrast, firms
with ties to partners that are not directly connected to one another should have
lower levels of constraint.

Using this measure, we constructed two complementary sets of dependent
variables. First, we estimated how likely an average firm is to pursue a more-
open (versus a more-closed) ego network. In measuring these behaviors, we
focused only on those firms that formed at least one new partnership in any
given year. Doing so enabled us to get closer to capturing the agency of the
focal firm, in contrast to the changes in ego networks that could be the result
of new partnerships not involving ego (Sytch, Tatarynowicz, and Gulati, 2012).
For each of these firms, we first estimated the probability of forming a more-
open ego network in any year (pi). Figure 1 demonstrates this procedure.
Suppose that from t = 0 to t = 3, firm A increased its constraint twice (from t =
0 to t = 1, and from t = 1 to t = 2) and lowered it once (from t = 2 to t = 3).
This means that A’s propensity to form a more-open ego network was pA = (0
+ 0 + 1)/3 = 0.33. Using the same approach, we estimated B’s and C’s pro-
pensities as pB = 0.66 and pC = 0, respectively. We then checked the distribu-
tion of pi values for firms in each industry against a number of commonly
known distribution functions. The results indicated that the best fit is provided
by using two discrete parameters: (a) the fraction of firms with zero probability
of forming open ego networks at any time (fracp=0) and (b) the average prob-
ability that the remaining firms will form open ego networks (p).

Second, we specified a time-variant firm-level dependent variable constraint
change, defined as ci,t – ci,t+1, in which ci,t and ci,t+1 denote the focal firm’s
ego-network constraint in years t and t+ 1, respectively. A positive value indi-
cated the pursuit of a more-open ego network, whereas a negative value indi-
cated the pursuit of a more-closed ego network.

Independent variable. The central independent variable of interest was
industry-level RDI, defined as the R&D intensity of a focal firm’s industry in year

Figure 1. Firm’s propensity to pursue a more-open ego network.

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

cA = 0.4 cA = 0.6 cA = 0.8 cA = 0.7

Firm A: pA = 1/3 = 0.33

cB = 0.7 cB = 0.6 cB = 0.5 cB = 0.8
Firm B: pB = 2/3 = 0.66

cC = 0.1 cC = 0.3 cC = 0.7 cC = 1.0
Firm C: pC = 0/3 = 0
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t. In line with prior research, we used this index to estimate the technological
dynamism of each industry in our sample (Chan, Lakonishok, and Sougiannis,
2001). The index was specified as firms’ aggregate R&D spending per year
divided by firms’ total assets. Extant research indicates that technologically
dynamic industries should exhibit higher levels of RDI because their competi-
tive dynamics are largely driven by innovation and technological change (Chan,
Lakonishok, and Sougiannis, 2001; Rosenkopf and Schilling, 2007). We
obtained data on firms’ R&D spending from COMPUSTAT and Orbis. Table 1
shows the average RDI measured for each of the six industries along with the
fraction of firms with zero propensity for open ego networks (fracp=0) and the
average propensity of the remaining firms to create open networks (p). The val-
ues indicate noticeable differences in technological dynamism across the six
industries.2

Control variables. We controlled for a range of other possible determinants
of a firm’s collaborative behavior, all lagged by one year with respect to the
dependent variable. We first included a control for industry maturity, defined as
the five-year average yearly growth rate in the number of firms in an industry.
We specified this variable as

1=5
Xt + 2

y = t�2

(ny � ny�1)=ny�1

where y = t is the focal year and ny is the total number of firms operating in the
industry in year y (cf. Klepper and Graddy, 1990; McGahan and Silverman,
2001). Lower growth rates generally characterize mature industries facing
diminishing market opportunities and growing consolidation. In contrast, higher
rates are typically associated with younger industries. We obtained the yearly
counts of firms by industry from the CRSP database. Second, we controlled for
the competitive intensity of an industry using the Herfindahl–Hirschman index
of industry concentration (Hirschman, 1964). For each industry and year, we
defined this index as the sum of squares of the annual sales of the largest 50

Table 1. Average R&D Intensity for Sample Industries

Industry fracp = 0 p RDI

Automotive 0.808 0.343 0.039

Biotech & pharma 0.630 0.406 0.075

Chemicals 0.787 0.314 0.038

Microelectronics 0.760 0.433 0.050

New materials 0.832 0.247 0.031

Telecom 0.764 0.352 0.048

2 In additional analyses, we explored the variation in RDI for a larger sample of industries, including

software and the Internet, aerospace and defense, and the consumer goods industry, in addition to

our focal six sectors. To do so, we drew on R&D data for 1,000 public companies over the period

2005–2011 provided by Booz & Company’s Global Innovation 1000 study. These additional results

confirmed our original rank ordering of industries in terms of their RDI.
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firms. Third, we controlled for network size, which captured the total number
of firms present in the network in year t, and for network average degree,
which captured the average number of network ties per firm in year t. These
control variables accounted for the possibility that both larger and sparser inter-
organizational networks could make it structurally easier for firms to pursue
more-open ego networks.

In addition, we controlled for a number of behavioral determinants at the
level of the focal firm. First, to capture the firm’s market performance and
financial condition, we included a control for its sales and return on assets
(ROA) in year t. Second, we controlled for firm-level R&D intensity, defined as
the ratio of a firm’s R&D spending in year t to its total assets. This control
helped us account for the possibility that the formation of an open ego network
could reflect the firm’s own technological dynamism, rather than the dynamism
of its environment. Third, to account for the characteristics of a firm’s current
ego network, we controlled for the firm-level network constraint in year t using
the previously introduced measure of ego-network constraint. The sales and
firm-level R&D intensity controls were entered into the model as logged terms
due to their skewed distributions over firms. Finally, to account for any unob-
served time effects, we entered a set of 11 year fixed effects, with 1987 speci-
fied as the default year.

Analysis

Hypothesis 1 predicted that firms in technologically dynamic industries are
likely to form more-open ego networks, while firms in technologically stable
industries are likely to form more-closed ego networks. To test this hypothesis,
we used two types of analyses. First, we conducted a correlation analysis to
test the relationship between industry-level RDI and firms’ average, time-
invariant propensity to form more-open ego networks as estimated by fracp=0

and p. Second, we conducted a regression analysis to estimate the time-
varying collaborative behavior of any active firm in the industry (as measured by
the firm’s constraint change from t to t+ 1) as a function of industry-level RDI.
In addition, the regression analysis allowed us to control for a range of other
determinants of firms’ collaborative behaviors, including the potential effect of
industry maturity.

Table 2. Descriptive Statistics and Bivariate Correlations

Variable Mean S.D. 1 2 3 4 5 6 7 8

DV Constraint change .169 .235

1. Sales (log) 7.779 3.079

2. ROA − .014 .274 .473

3. Firm-level RDI (log) .257 .509 − .699 − .566

4. Network constraint .480 .348 − .275 − .082 .128

5. Network size 328.658 148.865 − .371 − .204 .359 − .022

6. Network avg. degree 3.973 .646 .153 .089 − .183 − .210 − .368

7. Industry concentration .201 .155 − .031 .014 .008 − .039 .195 − .098

8. Industry-level RDI .054 .020 − .443 − .216 .462 − .033 .642 − .166 .038

9. Industry maturity .030 .019 − .052 − .024 .066 .093 − .063 − .251 .473 .058
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Given the nested structure of the data, we estimated a multilevel mixed-
effects regression model that mitigates the risk of biased parameter estimates
and incorrect standard errors (Snijders and Bosker, 1999). Specifically, we
applied a three-level model with the firm’s constraint change in a given year
specified at Level 1 and random intercepts specified at the firm level (Level 2)
and the industry level (Level 3). Additional analyses indicated that adding ran-
dom coefficients at any level does not improve model fit. Table 2 reports the
descriptive statistics and correlations for the independent and control variables.
The mean variance inflation factor (VIF) of 1.83 suggested that multicollinearity
did not pose a serious concern (Belsey, Kuh, and Welsch, 1980).

Results

The correlation between fracp=0 and RDI is –.99 (p < .001), and the correlation
between p and RDI is .75 (p < .10). These results support our expectation that
firms should generally pursue more-open ego networks in those industries that
are characterized by higher levels of technological dynamism, as measured by
industry-level RDI. The results of the regression analysis in table 3, in turn,
demonstrate that the effect of industry-level RDI on a firm’s propensity to form
more-open ego networks is positive and statistically significant (b = 1.769, p <

.01). This evidence further supports our hypothesis and the findings of the cor-
relation analysis. Notably, this effect holds even after accounting for the effects
of industry maturity (i.e., the corresponding coefficient is statistically

Table 3. Three-level Mixed-effects Regression with Random Intercepts (N = 1,253)*

Variable Model

Constant − 0.136••

(0.061)

Sales (log) 0.001

(0.002)

ROA 0.017

(0.017)

Firm-level RDI (log) 0.009

(0.012)

Network constraint 0.550•••

(0.012)

Network size − 0.000

(0.000)

Network avg. degree 0.002

(0.011)

Industry concentration 0.030

(0.039)

Year fixed effects Included

Industry-level RDI 1.769•••

(0.585)

Industry maturity 0.733

(2.113)

Log-likelihood 654.6

•
p < .10; ••p < .05; •••p < .01.

* DV: Firm-level constraint change from year t to t+1; standard errors are in parentheses.
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insignificant), the focal firm’s R&D intensity, firm size, financial condition, and
the firm’s current ego-network position.3

Discussion

The results of Study 1 show that firms’ collaborative behaviors differ signifi-
cantly across industries, in line with the observed variations in the industries’
technological regimes. As predicted by our theory, we found that higher levels
of technological dynamism provide a greater drive for firms to pursue more-
open ego networks as compared with more-stable industrial environments, in
which firms were found to generally pursue more-closed ego networks. Study
1, however, stops short of exploring whether the demonstrated firm-level varia-
tions lead to the emergence of distinct network properties at the industry level.
Building on the results of Study 1, we address this question in Study 2, explor-
ing to what extent the properties of the emergent industry-wide networks dif-
fer as firms respond to the variable innovation demands of their industries by
pursuing either more-open or more-closed ego networks.

STUDY 2: ORIGINS OF DISTINCT INTERORGANIZATIONAL
NETWORK FORMS

Network analysts have devised a comprehensive set of concepts to describe
the structural properties of social systems (Wasserman and Faust, 1994).
Within this vast array of concepts, the network’s connectedness (through ties
between actors) and its community structure (the distribution of those ties in
the network) stand out as fundamental for understanding how social systems
shape actors’ outcomes. Scholars have observed that high network connected-
ness and strong community structure (see figure 2) help explain a range of
dynamic network processes, such as the diffusion of innovations (Wejnert,
2002), exchange of information (Dodds, Muhamad, and Watts, 2003), social
influence (Moody, 2001), or the spread of infectious diseases (Anderson and
May, 1991). In interorganizational networks, both concepts have been linked to
the adoption of innovations, diffusion of governance practices, and dissemina-
tion of knowledge among firms (e.g., Davis and Greve, 1997; Reagans and
McEvily, 2003; Rogers, 2003).

Network connectedness reflects the extent to which network actors can
reach one another via network ties (see graphs A and B in figure 2). High net-
work connectedness indicates that most firms can access one another via a
network path of some length. This feature supports the flows of knowledge,
information, and influence among firms. In contrast, low connectedness indi-
cates that most firms are structurally isolated from one another and are thus
inhibited from accessing other firms’ knowledge and resources.

Unlike connectedness, community structure captures the distribution (rather
than existence) of network ties throughout the network (Granovetter, 1973;
Girvan and Newman, 2002; Sytch and Tatarynowicz, 2014a). Strong community

3 We also examined the possibility that more mature industries could be characterized by more den-

sely interconnected partnership systems. Such dense networks could make it more difficult for

firms to pursue more-open ego networks. Our analyses revealed that the empirical networks ana-

lyzed in the present study are characterized by statistically similar density levels, which rules out

the possibility that our results could be driven by network density.
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structure (see graph D in figure 2) signals that the distribution of ties is uneven
and that the network is characterized by the presence of many relatively small
groups (or communities) of densely interconnected firms. In contrast, weak
community structure (see graph C of figure 2) suggests a more homogenous
distribution of ties, such that no particularly dense groups can be distinguished.
Network community structure has been linked to a variety of collective out-
comes of actors. For example, strong network communities have been shown
to enable the development of unique pools of knowledge shared among firms
(Sytch and Tatarynowicz, 2014a) and to act as vehicles of cohesion, social
norms, and social influence (Moody and White, 2003; Rogers, 2003; Greve,
2009). Some studies have also suggested that strong network communities
are among the key conditions necessary to withstand the homogeneity pres-
sures and sustain sufficient levels of knowledge diversity to thrive in creative
environments (Uzzi and Spiro, 2005; Lazer and Friedman, 2007; Gulati, Sytch,
and Tatarynowicz, 2012).

Holding all other network properties constant, we can expect that in sparsely
connected partnership systems (Rosenkopf and Schilling, 2007) the formation
of more-open ego networks should lead to higher levels of network connected-
ness but weaker community structures. As firms extend their partnerships
more broadly, the number of globally dispersed ties should go up while the
number of locally placed ties should go down, increasing the system’s connect-
edness. Yet in sparsely connected systems, network communities generally
tend to be weaker by virtue of containing fewer local ties. As such, the process
of redistributing ties across the broader industry-wide network may come at
the expense of locally dense communities. By the same token, sparse

Figure 2. Network connectedness and community structure.
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interorganizational systems may be subject to opposite pressures in those
industries in which firms generally pursue more-closed ego networks. In those
industries firms tend to place their ties in more-proximate parts of the overall
network, so the emergent industry-wide system should be characterized by a
stronger community structure but lower network connectedness. Similar trade-
offs were anticipated in some formal representations of network dynamics in
interpersonal settings (Rapoport, 1957; Skvoretz, Fararo, and Agneessens,
2004) and in empirical work on the dynamics of interfirm networks (Gulati,
Sytch, and Tatarynowicz, 2012).

When applied to stylized low-density networks, the argument regarding the
tradeoff between community structure and network connectedness could per-
haps be derived analytically. But our specific question, which is posed in the
context of real-world partnership systems, is significantly more complex than
that. First, although we know that the formation of open and closed ego net-
works varies across industries, it remains an empirical question to what extent
this variation can lead to observable differences in the emergent industry-wide
networks. Should the variation in firms’ collaborative behaviors across indus-
tries not be strong enough, the relationship between firms’ behaviors and the
emergent industry-wide networks could ultimately be weak.

Second, even if we were to assume that the relationship between firms’
varying behaviors and the emergent industry-wide networks is strong, we still
need to examine the precise nature of that relationship to understand exactly
when distinct networks can emerge and what their properties are. Specifically,
we need to identify at which levels of firms’ preferences for open versus
closed ego networks the expected transitions from low to high network con-
nectedness and from strong to weak community structures can occur. It is
entirely possible that both properties may not follow a linear pattern of change
but rather feature more complex, nonlinear transitions. For example, some for-
mal studies of network dynamics in statistical physics have indicated that net-
work connectedness is a rather malleable structural property while changes in
community structure are more difficult to trigger (Newman and Watts, 1999).
Such nonlinear transitions could effectively engender the emergence of inter-
mediate network forms, which could combine high levels of connectedness
and strong community structures.

Considering the complexities of our argument, we therefore abstain from
hypothesizing the emergence of specific network forms linked to particular lev-
els of firms’ propensity for more-open or more-closed ego networks. Instead,
we formulate a general prediction that the observed cross-industry variations in
firms’ collaborative behaviors should give rise to distinct industry-wide networks
characterized by different levels of network connectedness and community
structure:

Hypothesis 2: Firms’ greater propensity to pursue open ego networks across industries
will lead to the emergence of distinct types of industry-wide networks showing signif-
icantly higher levels of network connectedness and weaker community structures.

Methods and Analyses

To test hypothesis 2, we applied a mixed-methods approach that combined
empirical analyses of existing interorganizational networks with agent-based
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modeling. The agent-based model allowed us to perform a series of controlled
experiments in which actual firm behaviors were compared with numerous
counterfactuals, many of which were unobserved in real data. By experiment-
ing along the entire continuum of firms’ collaborative behaviors from closed to
open ego networks, we were able to observe the often complex and nonlinear
effects that relate actors’ micro-behaviors to the emergence of macro-level
social and economic systems (Schelling, 1978). A particular advantage of the
agent-based model in that respect was that it did not impose any strict
assumptions regarding the nature of the hypothesized micro–macro relation-
ships, whether linear or nonlinear.

More fundamentally, the agent-based model enabled us to achieve an
abstract and yet detailed representation of real-world network dynamics, in which
the network’s properties are assumed to co-evolve with actors’ behaviors. This
resulted in an interdependent social system in which the evolving network is not
just shaped by firms’ direct interactions with one another but also by their indirect
interactions through the emergent industry-wide network itself. This modeling
approach reflected a growing emphasis on agent-based simulations in organiza-
tional research that occurs alongside a growing interest in the processes of net-
work emergence and dynamics (Ahuja, Soda, and Zaheer, 2012). The empirical
element in our approach allowed us to use real-world data both to calibrate the
simulation model analytically and to validate it against empirical evidence. While
helping us to trace the complex dynamics of network emergence directly, the
mixed-methods approach thus also positioned us well to explore how strongly
the networks observed empirically differ from one another, as well as how
strongly they differ from other possible networks that are predicted by the model
but are not directly observed in our data (Bonabeau, 2002).

Analysis of industry-wide network properties. We assessed the variation
in industry-wide network properties using the concepts of network connected-
ness and community structure illustrated in figure 2. We defined network con-
nectedness formally as

C =
X

k

(nk=N)2

in which nk is the size of the kth network component, and N is the size of the
entire network. This index captures how many components are in the network
and how they vary in terms of sizes. The possible values range from close to 0
for a highly disconnected network that contains many small components to 1
for a fully connected network that contains one large component.

To measure community structure, we used the well-known method of
Girvan and Newman (2002).4 This method detects communities by computing
the network’s modularity index, defined as

4 Our conceptualization of network communities builds on the structural accounts of communities

as dense and cohesive social groups whose members are closer to each other than to other actors

in the system (e.g., Laumann, Galaskiewicz, and Marsden, 1978; Laumann and Marsden, 1979).

This view is consistent with prior studies that built on the behavioral account of communities as

interactional fields (Kaufman, 1959; Turk, 1970; Kasarda and Janowitz, 1974), in which network

communities were considered as being shaped by local interactions and the resulting social proximi-

ties among actors.
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Q = 1=e
X

k

(ekk � ekkf g)

Here, e is the total number of ties in the network, ekk is the number of ties in
the kth community, and ekkf g is the expected number of ties within commu-
nities estimated from a baseline network that connects firms at random while
preserving the same distribution of ties as in the observed network. Effectively,
this method evaluates to what extent the observed network differs from a fully
random network in terms of its community structure. Because the number of
possible community splits grows exponentially with network size, however,
finding the best split typically turns into an extensive search problem that
requires various heuristics and optimization algorithms. In our analysis, we relied
on the simulated annealing algorithm proposed by Guimerà and Amaral (2005).
Prior research has evaluated this algorithm as particularly fast and efficient in
finding maximum modularity associated with the best network community split
(Danon et al., 2005).

Table 4 reports the values of network connectedness and community struc-
ture along with the size, average degree, and density of each network, aver-
aged over the study period. As expected, we found the six networks in our
sample to exhibit rather different structural forms, ranging from highly con-
nected systems (biotechnology and pharmaceuticals, microelectronics, and tel-
ecommunications) to rather disconnected systems (automotive, chemicals, and
new materials), and from strong community structures (biotechnology and
pharmaceuticals, chemicals, and new materials) to medium community struc-
tures (automotive, microelectronics, and telecommunications). Somewhat
unexpectedly, we also found that the anticipated tradeoffs between network
connectedness and community structure do not apply equally to all industries;
for example, the system in biotechnology and pharmaceuticals indicated both a
high level of network connectedness and a strong community structure.5

Agent-based model of interorganizational network emergence. We
simulated the process of network emergence starting from a random Erdös–
Rényi network with a fixed number of firms (denoted N ) and a fixed average
number of ties per firm (denoted k). In such a network, any two firms are con-
nected with an equal probability k/(N –1) (Erdös and Rényi, 1959). This approach

Table 4. Network Size (N), Average Degree (k), Network Density (D), Network Connectedness

(C), and Community Structure (Q), Averaged over 1987–1999

Industry N k D C Q

Automotive 179 3.24 0.02 0.21 0.64

Biotech & pharma 386 4.13 0.01 0.44 0.76

Chemicals 311 4.07 0.01 0.20 0.73

Microelectronics 212 4.39 0.02 0.51 0.59

New materials 336 4.00 0.01 0.09 0.73

Telecom 291 4.03 0.01 0.48 0.67

5 Additional analyses confirmed that the observed structural differences among industry-wide net-

works persist over time.
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offered us several advantages; for alternative starting conditions see Online
Appendix A (http://asq.sagepub.com/supplemental). First, starting from a purely
random network that is unlikely to be the result of any systematic processes of
tie formation provided an uncontaminated testing ground to explore how the
simulated firm behaviors could transform and shape the emergent industry-
wide networks. Second, an Erdös–Rényi network also helped us approximate
the empirically observed variation in partnership counts among firms in any
given industry (Cowan and Jonard, 2004; Rosenkopf and Schilling, 2007).6

Finally, we used constant network size and network density to maintain consis-
tent analytic conditions across different simulation runs (cf. Reagans and
Zuckerman, 2001; Buskens and van de Rijt, 2008).

The industry-wide network emerges as firms form new ties to one another,
thereby realizing their preferences for more-open versus more-closed ego net-
works.7 The model distinguishes between open and closed ego networks using
Burt’s (1992) concept of network constraint. Figure 3 illustrates how the pro-
cess works. Suppose that A is the ego; B, D, and E are A’s current alters; and
C, F, G, and H are A’s potential alters. Firm A first ranks its potential alters
according to the expected changes in network constraint. For illustrative pur-
poses, figure 3 provides A’s constraint at time t (0.59) and its expected con-
straint at t+ 1 following the formation of a new tie ({0.46, 0.48, 0.66}). In our
example, the greatest negative change in A’s network constraint is associated
with alter G (0.46), and the greatest positive change is associated with alter
C (0.66). Depending on A’s preference for a more-open or more-closed ego
network, A should thus partner with either G or C.

We defined an ego’s decision to pursue a more-open versus more-closed
ego network using a probabilistic parameter p. In technical terms, this para-
meter reflected ego’s probability of pursuing an alter associated with the great-
est decrease in ego’s network constraint. Ego’s probability of pursuing an alter
associated with the greatest increase in constraint was thus 1 – p. To ensure
some degree of matching between the preferences of ego and alter, the model
considered both actors’ constraint preferences and allowed only for those ties
that reflected alter’s expectations as well. Otherwise ego would pursue the
next best option.8

6 The distribution of tie counts in an Erdös–Rényi network is roughly Poisson (Newman, 2010).
7 Rather than having firms choose between open and closed ego networks, an alternative model

would be to allow firms to connect either locally (within their own network community) or globally

(outside their community). Such a model could perhaps explain the observed changes in community

structure and network connectedness more directly. One key limitation that makes this model less

plausible, however, is that not all interorganizational networks contain strong community structures

that may affect firms’ behaviors equally (Rosenkopf and Schilling, 2007). According to our results,

for example, the degree of community structure varies from medium to strong across different

industrial contexts. Our model, which limits firms’ focus to their proximate ego networks (rather

than to broader communities), allowed us to extend the analysis to a wider spectrum of interorgani-

zational networks with variable degrees of community structure.
8 We modeled this process by allowing alter to reject a tie if forming it would not change its con-

straint level in the desired direction. Ego would then simply move down the list to the next available

alter, with the possibility of not forming a new tie at all. This process was thus akin to a satisficing

behavioral model (Simon, 1947). An alternative approach would be to consider a maximizing beha-

vioral model, in which both actors must draw maximum benefits from the new tie. We discuss this

possibility in Online Appendix A.
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Furthermore, we set the same level of p for all firms in the industry and used
this modeling approach to distinguish between firms’ varying collaborative
behaviors across industries. Although this modeling approach implied that all
firms in an industry would be subject to the same average propensity to pursue
more-open ego networks, in practice our model featured substantial behavioral
heterogeneity across firms. This was primarily guaranteed by the stochastic
nature of the network formation process, which allowed individual firms to act
entirely differently than an average firm. In addition, each firm would also be
exposed to different local network structures determining the access to and
the availability of potential partners (cf. Ibarra, Kilduff, and Tsai, 2005). Taken
together, our specifications ensured close representation of a real-world interor-
ganizational setting.

Building on prior work, we also included a range of other behavioral mechan-
isms to ensure realistic modeling. First, because organizational agents are
unlikely to observe the entire social space around them, we assumed that an
ego’s probability of observing any potential alter declines as a function of net-
work distance (Friedkin, 1983). Formally, we specified the probability that i can
observe j as 1/(dij–1), in which dij is the number of links along the shortest net-
work path between i and j. Should j be entirely unobservable to i by virtue of
the two actors residing in disconnected network components, we assumed
that a tie between i and j is still possible, albeit with a very low probability equal
to 1/(N –1). This rule allowed us to consider the dynamics of real interorganiza-
tional networks, in which both isolates and disconnected network components
could occasionally become connected.9

Second, we assumed that any two partners can terminate their existing rela-
tionship and that the likelihood of relationship termination increases with tie
age. In modeling this process, we built on prior research indicating that partner-
ship terminations are often time-consuming and costly and that alliance

Figure 3. Stylized model of network formation among firms.

9 Information on potential partners may also travel outside the network and come from other

sources, such as media, the Internet, or various industry events and conferences (Rosenkopf,

Metiu, and George, 2001). As a result, even those firms that dissolve all their ties may still find a

way to form new partnerships and reenter the network (Powell et al., 2005).
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partners typically avoid premature contract terminations (Malhotra and
Lumineau, 2011). Consistent with the observation that interorganizational part-
nerships have a clear average lifespan (Kogut, 1988b; Gulati, 1995; Stuart,
2000), we specified a normally distributed duration of ties with a mean of ten
time steps and a standard deviation of two time steps. With the total simula-
tion length of 100 time steps, our analyses thus extended over ten full partner-
ship formation rounds by firms.10

Third, to compare the results among different simulation runs and across dif-
ferent time steps, the agent-based model required us to control for changes in
network density. To ensure constant density, we controlled for the number of
ties terminated in each time step, making it exactly the same as the number of
newly created ties. We modeled this process by first selecting two random
subsets of firms that were chosen independently of each other but could over-
lap. Both subsets were given the same sizes equal to 15 percent of the entire
network, which closely reflected the dynamics of real interorganizational sys-
tems in our data. Subsequently each firm in the first subset was allowed to cre-
ate one new tie per time step, while each firm in the second subset was
allowed to delete one of its existing ties. Finally, firms could connect both to
entirely new partners and to partners who were either their current or past con-
tacts. This condition helped us introduce further realism into the model.

Model validation against empirical data. To validate the model empiri-
cally, we explored how closely it represents real collaborative behaviors of
firms observed across different industrial settings. A useful validation test
entails examining whether the model—when supplied with actual collaborative
behaviors of firms—reproduces roughly the same levels of network connected-
ness and community structure as those found in the real setting (Davis,
Eisenhardt, and Bingham, 2007). We specified firms’ collaborative behaviors
using the empirical values of the fraction of firms with zero probability of form-
ing an open ego network (fracp=0) and the propensity of the remaining firms to
form a more-open ego network (p). To guarantee some baseline concordance
with the conditions of each industry, we also matched the size and density of
each network with the corresponding empirical values shown in table 4. For
each industry, we conducted 100 simulations to mitigate stochastic variance in
the results and recorded average levels of connectedness and community
structure along with their standard deviations.

We then compared these results statistically with the corresponding proper-
ties obtained from real interorganizational networks using z-scores. Specifically,
for network connectedness we specified zC = C � E(C)½ �=σC , where C is the
connectedness of the empirical network and E(C ) and σC are the mean and
standard deviation levels of connectedness measured for the simulated net-
work (Szell, Lambiotte, and Thurner, 2010). Consistently, for community struc-
ture we specified zQ = Q � E(Q)½ �=σQ where Q is the modularity of the
empirical network and E(Q) and σQ are the mean and standard deviation levels

10 It may be helpful to consider these modeling choices in the context of the dynamics of real inter-

organizational systems, in which two simulation steps could correspond to one year in the data.

This means that ten time steps could correspond to five years, which constitutes the typical life-

span of an interorganizational tie in our sample. Our entire analysis could thus be regarded as equiv-

alent to tracing the evolution of a real interorganizational system over the period of some 50 years.
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of modularity produced by the simulation model. Table 5 presents an analysis
of the results on network connectedness [E(C )] and community structure
[E(Q)] produced by the model with respect to the empirical values shown in
table 4. The results illustrate close correspondence between the real and simu-
lated networks, indicating that our model is empirically valid and can produce
generalizeable results (Davis, Eisenhardt, and Bingham, 2007).11

Analytic procedure. To understand the precise link between firms’ local
behaviors and the emergent industry-wide networks, we conducted the simula-
tion over the entire range of conceivable values of fracp=0 and p. We obtained
these values by varying both parameters over the maximum range from 0 to 1
in .01 increments. This procedure resulted in a comprehensive set of
101× 101 = 10,201 analytic cases. To achieve a realistic interorganizational set-
ting, we again followed our descriptive results and those of prior research in
specifying the key model parameters (Rosenkopf and Schilling, 2007). This
involved modeling a medium-sized network with 200 firms with an average of
four ties per firm (see Online Appendix A for alternative specifications). For
each set of fracp=0 and p values, we simulated the network for 100 time steps
to ensure sufficient stability in the emergent network properties (see Online
Appendix B for a formal analysis of model stability). To mitigate stochastic var-
iance, we repeated the simulation 100 times for each analytic case and
recorded average levels of network connectedness and community structure.
Our complete analysis involved conducting 1,020,100 simulation runs.

Results

We summarize our results in figure 4. The results are consistent with the basic
intuition of hypothesis 2, which suggested that as firms’ propensity for open
ego networks increases, the emergent industry-wide networks should be more
connected and should exhibit weaker community structures. Two results are

Table 5. Simulated Network Connectedness [E(C)], Simulated Community Structure [E(Q)],

Z-score for Network Connectedness (zC), and Z-score for Community Structure (zQ)*

Industry E(C) E(Q) zC
� zQ

�

Automotive 0.20 0.63 −0.19 0.09

Biotech & pharma 0.46 0.75 −0.24 0.42

Chemicals 0.22 0.69 0.21 −0.38

Microelectronics 0.51 0.60 −0.05 −0.24

New materials 0.11 0.71 0.07 −0.65

Telecom 0.47 0.69 −0.01 0.48

* Model fit is evaluated using two z-scores: one for network connectedness (zC) and another one for community

structure (zQ). Insignificant z-scores indicate good model fit.

� Difference insignificant at any standard level; two-tailed test.

11 The results of this test support our model but cannot explicitly rule out other behavioral mechan-

isms that could be present in our empirical context and could possibly lead to other types of net-

works. We therefore tested a range of alternative models of network formation among firms. We

report these results in Online Appendix A.

70 Administrative Science Quarterly 61 (2016)



particularly striking, though. First, Panel A indicates that a sharp initial increase
in network connectedness occurs over a relatively narrow range of p values.12

Second, Panel B documents that community structure follows a more stable
pattern over p. Particularly noteworthy, however, is the fact that the initial
increase in p is accompanied by a growing rather than a declining community
structure. This appears to be somewhat at odds with hypothesis 2, which
predicted that in sufficiently sparse systems the formation of open ego net-
works should weaken rather than strengthen the system’s community
structure.13

Figure 5 provides a more precise illustration of the above transition effects.
In this figure, we plotted a representative set of scenarios with low fracp=0,
medium fracp=0, and high fracp=0, tracing the changes in network connected-
ness and community structure over the entire range of p values. The individual
plots were produced by fitting a series of Bézier curves that help smooth out
the results of different simulations (Farin, 1997). Using their first-order

Figure 4. Network connectedness and community structure produced by the simulation at t =

100 steps.
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12 This process is akin to the rise of a giant component as the network’s density goes up, a dynamic

that was noted in some prior studies (de Sola Pool and Kochem, 1978; Skvoretz, 1991; Holme and

Newman, 2006). In our case, however, connectedness increases not because actors are adding

new ties to the network at random, but because they are spreading their ties more widely across

the entire system. We thank an anonymous reviewer for pointing us toward this parallel.
13 One way to understand these results is to explore where the observed changes in community

structure come from: inside or outside the main network component. As firms create more-open

ego networks, the initial boost in community structure may come from outside the main compo-

nent and be the result of integrating other, smaller components into the main component. Given

only weak firm propensities toward open ego networks, however, this process is unlikely to fully

absorb the other components and thus eliminate any emergent community structure. Rather, the

integrated components may continue to exist inside the main component as distinct network com-

munities. But after the transition toward a highly connected network is finalized, firms’ opportuni-

ties to pursue more-open ego networks by connecting outside their component may diminish.

Instead, firms may increasingly be required to pursue open ego networks across the distinct net-

work communities that exist inside the main component. Taken together, these processes may

form the basis of an initial rise and a subsequent decline in community structure, as observed in

our results.
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derivatives, we also estimated when each of the fitted Bézier curves transitions
from a positive to a negative slope.14 Our analysis suggested a rather complex,
nonlinear pattern of covariance that occurs along the same set of inflection
points for both network connectedness and community structure (p = .15,
fracp=0 = 0; p = .22, fracp=0 = .35; and p = .34, fracp=0 = .70). Within this pattern
of covariance, certain intervals seemed to be characterized by rather intuitive
effects, such as the quick rise of connectedness over low p and the subsequent
decline of community structure over medium to high p. But the results also

Figure 5. Smooth Bézier curves capturing the critical transitions in network connectedness

and community structure.*
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* The curves represent three distinct scenarios with low fracp=0 = 0, medium fracp=0 = 0.35, and high fracp=0 =
0.70, respectively.

14 These analyses are not reported but are available from the authors upon request.
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indicated that a simple linear trade-off between both properties does not exist
at all levels of p. Instead, we noted a concurrent rise in both network properties
over low p values and subsequently a more stable trend in connectedness than
in community structure.15

These results allow us to develop a general typology of the emergent net-
work archetypes that are engendered by firms’ varying preferences toward
either more-open or more-closed ego networks. These network archetypes are
characterized by significant differences in the emergent industry-wide proper-
ties of network connectedness and community structure, as shown in figure 6.
The first network archetype is characterized by low network connectedness
and a rather strong community structure. Because this configuration is reminis-
cent of a set of clans with strong in-group ties and almost no ties to other

Figure 6. Network archetypes.

15 We also found that network connectedness plateaus at around C = 0.8 instead of reaching the

maximum value of 1.0. One explanation could be that by dissolving their ties, firms automatically

introduce some fractures into the system, which then serve to prevent the emergence of a single-

component network (see Online Appendix C for videos that illustrate this process).
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groups, we call it a clan network (Panel A). In our results, clans appeared to be
associated with firms’ lowest propensities to form more-open ego networks.
For example, in the set of scenarios with fracp=0 = 0, clans were found for p <

.15.
The second network archetype is characterized by high network connected-

ness and a medium-to-strong community structure. It is noteworthy that this
structure corresponds to an intermediate network form that is linked to the
complex nonlinearities that were uncovered by our agent-based model. In view
of the sparsely interconnected and dense network communities that populate
this system, we call it a community network (Panel B). Our analysis indicated
that community networks are associated with firms’ moderate propensities for
more-open ego networks. For example, in the set of scenarios with fracp=0 = 0,
community networks were found from p = .15, where community structure
peaks at Q = .7, to p = .65, where community structure drops below Q = .5.

Finally, the third network archetype we identified in our results is a conven-
tion network, described by high network connectedness and a rather weak
community structure.16 This structural pattern features more disorder than the
previous two, bearing some resemblance to a large public gathering (Panel C).
In our results, convention networks seemed to be associated with firms’ strong
propensities toward open ego networks. For example, in the set of scenarios
with fracp=0 = 0, convention networks were found for p > .65. Using a series
of one-way ANOVA tests (see table 6), we found that this typology indeed rep-
resents a set of statistically significant differences in the industry-wide network
properties (network connectedness: F = 278,270.49, p < .001; community
structure: F = 10,960.46, p < .001). The complete typology is plotted in figure
6, Panel D.17

Table 6. Tukey-Kramer Tests of Pairwise Deviance between Network Connectedness and

Community Structure

Network property Test t-score*

Network connectedness Clans vs. communities − 355.62

Clans vs. conventions − 904.60

Communities vs. conventions − 432.03

Community structure Clans vs. communities − 135.07

Clans vs. conventions − 70.09

Communities vs. conventions 70.94

* Differences are significant at p < .001.

16 Our description of a convention network as a system with a rather weak community structure is

consistent with other work on network cohesion, including the work of Moody and White (2003),

who defined cohesion as the presence of multiconnectivity among actors. According to their view,

cohesive social groups are those that manage to withstand separation even in the face of losing

multiple in-group ties. Although it is possible that an entire network could display such a property

by virtue of offering sufficient tie redundancy to withstand separation, the convention networks pro-

duced by our model were not sufficiently dense to provide such system-level cohesion.
17 We also validated these differences post hoc using the Tukey-Kramer test of deviance, which

allowed us to compare a given network archetype directly against the other two types using a stan-

dard t-score. The results of this additional test consistently indicated significant pairwise differences

in network connectedness and community structure (p < .001).
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In a representative application of our typology, we explored which network
archetype best characterizes our sample of six industries. Given that the net-
works in automotive, chemicals, and new materials were found to combine
rather low network connectedness with strong community structures, and that
this configuration seemed to be the result of relatively weak firm propensities
toward open-ego networks, we classified these systems as clan networks. In
turn, the networks in biotechnology and pharmaceuticals, microelectronics, and
telecommunications were all found to combine high network connectedness
with medium-to-strong community structures driven by moderate firm propen-
sities toward open ego networks. Hence we classified them as community net-
works. To illustrate our classification, figure 7 provides two representative real-
world images of a clan network in the new materials industry in 1994 and a
community network in the telecommunications industry in 1994. Broadly
speaking, these results suggest that clan networks may be associated with
technologically more-stable environments, while community networks may
arise in environments that are characterized by greater technological dyna-
mism. Notably, our data showed no evidence of an existing convention
network.

Discussion

The findings of Study 2 demonstrate that the variation in firms’ collaborative
behaviors leads to the emergence of three distinct network archetypes. Clan
networks, which combine rather low network connectedness with strong com-
munity structures, are associated with the lowest firm propensities to form
more-open ego networks. As a result, we find that such networks tend to
describe industries with rather low levels of technological dynamism, such as
chemicals, automotive, and new materials. Community networks, in contrast,
combine high network connectedness with medium-to-strong community
structures, and we find that such networks are engendered by moderate firm
propensities toward open ego networks. As a result, these networks are asso-
ciated with technologically dynamic industries, such as biotechnology and

Figure 7. Representative images of a clan network and a community network in the dataset.
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pharmaceuticals, microelectronics, and telecommunications. Finally, convention
networks are distinguished by high network connectedness and rather weak
community structures that result from firms’ strongest tendencies toward open
ego networks. Such networks were not found in our empirical data, and we
address this finding in the General Discussion.

Extensions to the Analysis of Collective Outcomes

So far, we have deliberately limited our focus to the study of variations in
industry-wide network structures. Underlying this focus, however, is an
assumption that the macro-level structures of industry-wide networks can be
highly consequential for various collective outcomes of firms. We briefly
explored this assumption in supplementary analyses, in which we modeled a
simple process of knowledge diffusion across the industry network. In line with
prior research, we considered a basic process of knowledge diffusion in which
the probability of knowledge transfer between two firms is a function of (a) the
existence of a network tie between them and (b) the firms’ familiarity with and
trust in each other (Rogers, 2003). We modeled firms’ familiarity and trust
using the sum of their current and past ties and the fraction of ties held to the
same third parties, respectively (Gulati, 1995). We considered a dynamic model
of network diffusion in which new knowledge diffuses in parallel with the pro-
cesses of network emergence (Cowan, 2005).18 We subsequently evaluated
how quickly and broadly new knowledge can diffuse through the emergent
industry-wide network.

Results suggest that among the three network archetypes we analyzed,
community networks have the greatest capacity to sustain the diffusion pro-
cess. These networks facilitate the spread of new knowledge for two reasons.
First, they help create higher levels of network connectedness, which allows
knowledge to spread more widely across the emergent industry system.
Second, they also help firms attain higher levels of familiarity and trust in one
another, which are enabled by the emergent structure of dense and cohesive
network communities. Clan networks provide a rather strong community struc-
ture as well, but they fail to offer enough connectedness to facilitate industry-
wide knowledge flows. Thus, compared with community networks, clan net-
works tend to inhibit diffusion.

Interestingly, we found that clan networks are better at spreading new
knowledge among firms than convention networks. Given that firms are signifi-
cantly more isolated from one another in clans than in convention networks,
we expected to see the opposite effect (cf. Davis and Greve, 1997; Westphal,
Gulati, and Shortell, 1997). In additional analyses, we found that clan networks
tend to provide a rather dynamic network setting that enables sufficient knowl-
edge access via transient ties that span different network components (see

18 Modeling the dynamics of network formation independently from the dynamics of diffusion is

consistent with the majority of empirical work on network diffusion, which typically assumes inde-

pendence between the two processes (e.g., Haunschild, 1994; Davis and Greve, 1997).

Furthermore, a model in which diffusion interferes with network formation might preclude us from

capturing the precise impact of the emergent network on diffusion outcomes. In some diffusion

scenarios, for example, the dynamics of network formation could be shaped by actors’ desire to

access knowledge via new ties. Future work could examine such interdependent dynamics of net-

work structure and diffusion in more detail.
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Online Appendices C and D). Over time, such transient bridges may effectively
substitute for permanent connections through the wider network, thus mitigat-
ing the negative effects of low overall connectedness.

One example of a transient bridging tie in our data was the 1989 joint venture
between the Japanese automaker Daihatsu and Balkancar, a state-owned
Bulgarian manufacturer of large utility vehicles. The two companies got together
to exchange knowledge and pool resources to eventually come up with the first
Japanese–Bulgarian truck. Although the partnership got off to a good start and
in the beginning managed to facilitate substantial knowledge transfer between
both firms, it dissolved as political turmoil swept across Eastern Europe in the
early 1990s. The two companies have not collaborated since, and ties between
their respective network communities have been rare as well. Another example
of a transient bridge was the 1992 alliance between BP and the Japanese new
materials specialist Ube Industries. The objective of that partnership was to
transfer knowledge and technology, with the shared goal of developing a new
line of low-density plastics. The partnership terminated in 1997, and both com-
panies, as well as their respective network communities, have remained discon-
nected ever since. This transient bridge thus also stands out for its key role in
supporting knowledge flows across wider areas of the industry-wide network.
Both transient bridges are illustrated in Online Appendix E.

Existing studies treat network connectedness as one of the key determi-
nants of diffusion (Coleman, Katz, and Menzel, 1957; Watts and Strogatz,
1998; Cowan, 2005). Our study and the examples we shared, however, sug-
gest that successful diffusion does not necessarily require high overall levels of
connectedness. Even if the overall network appears to be rather disconnected,
this static image could mask the system’s dynamic capacity to compensate
through transient bridging ties that offer sufficient range for a system-wide dif-
fusion, albeit over relatively short periods of time. An important implication of
this finding is that understanding actors’ collective outcomes may require
reframing network connectedness as a dynamic network property. As our addi-
tional analyses suggest, for example, repositioning network connectedness as
a dynamic property could significantly enhance our conclusions with respect to
the link between social structure and knowledge diffusion.

GENERAL DISCUSSION

This work was motivated by the recognition that the networks we observe in
different social and economic settings vary significantly in terms of their struc-
tural properties and that this variation can be consequential for a range of col-
lective outcomes of actors. With this insight in mind, we set out to explore the
differences in the industry-wide structures of networks among firms. We pre-
sented two complementary studies that combined empirical analyses of sev-
eral interorganizational networks with agent-based modeling of network
emergence. Our first study showed that firms’ collaborative behaviors vary sig-
nificantly with the technological dynamism of the industry. Complementing
these results, the second study showed that this behavioral variation can lead
to the emergence of distinct structural forms of the industry-wide network.

Our combined results represent an important step toward an environmental
contingency theory of network formation that proposes a close association
between the characteristics of the environment in which actors reside and the
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processes of network formation among actors. We demonstrated that organi-
zations may respond to environmental demands not only in terms of their inter-
nal organizational design (Lawrence and Lorsch, 1967; Davis, Eisenhardt, and
Bingham, 2009) but also in terms of the patterns of collaboration with other
organizations. In our first study, we found that in technologically dynamic indus-
tries, firms on average pursue more-open ego networks. In contrast, in techno-
logically stable industries, firms on average pursue more-closed ego networks.
This effect likely indicates that firms in technologically dynamic industries may
favor access to novel and non-redundant knowledge and resources, which is
best enabled by open ego networks. In technologically stable industries, firms
may favor the benefits of resource preservation and safe collaboration, which
are best enabled by closed ego networks.

In our second study, we explored whether the variations in firms’ collabora-
tive behaviors across industries are sufficiently strong to explain distinct net-
work structures at the industry level. In our extensive analyses, we found that
although the differences in firm behaviors seem rather subtle, they result in
entirely different network archetypes characterized by significant differences in
network connectedness and community structure. These effects seem to
result from the complex interactions between firms’ local behaviors and the
emergent industry-wide networks. Our results indicated that technologically
stable industries are associated with the emergence of clan networks, which
exhibit low network connectedness and a rather strong community structure.
More dynamic industries, in contrast, are associated with the emergence of
community networks, which exhibit high network connectedness and medium-
to-strong community structures.

The results of Study 2 also revealed another network archetype, a conven-
tion network, which showed high connectedness and a weak community struc-
ture. In our model, the convention network was produced by firms’ strong
tendencies to pursue open ego networks. Interestingly, the convention net-
work was not found among the six empirical networks analyzed in this paper.
One explanation is that firms could be driven by several potent forces to form
more-closed ego networks. For example, the formation of closed ego networks
could correlate with geographic proximity, which could enable co-located firms
to draw on the economic efficiencies and the institutional support mechanisms
of an industry cluster (Krugman, 1991; Marquis, 2003). As another possibility,
firms could be driven into dense communities by structural similarities or homo-
phily (Powell et al., 2005). Finally, closed ego networks could also result from
inertia and the comfort of familiarity, which could overshadow the economic
imperatives of interorganizational collaboration (Li and Rowley, 2002).

Intriguingly, the very same forces might also serve to align firms’ private
goals with the shared goal of creating an overall network that best serves the
entire collective. This conjecture is consistent with research in complexity sci-
ence showing that many complex systems self-organize in distinct ways and
that this self-organization can reduce the high costs of tie formation or make
the system more robust to failure (Simon, 1962; Boisot and McKelvey, 2010).
It is also relevant that self-organization may be adaptive and may occur in
response to pressures stemming from the environment. Based on this logic,
firms might be increasingly adapting their collaborative behaviors to respond to
the requirements of value creation that are present in their industry. For exam-
ple, we see community networks in technologically dynamic industries in
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which these networks are particularly valuable and are needed to facilitate
knowledge transfer among firms. Although our theory and analyses focused on
the particular requirement of knowledge transfer, future research could extend
this logic to a wider range of systems and other possible outcomes. In some
systems, for example, environmental adaptation could reflect the need to mini-
mize the costs of tie formation or to avoid network failure (Jackson and
Wolinski, 1996; Schrank and Whitford, 2011).

Our paper offers several contributions to studies of social systems. First, we
advance prior studies in the social embeddedness domain (Baker, 1984;
Granovetter, 1985; Uzzi, 1996) by exploring the relationship between the
micro-processes of tie formation by individual actors and the emergent macro-
structures of social systems. Our primary insight is that the variation in actors’
collaborative behaviors across different social and economic contexts helps
explain the emergent differences in macro-level networks, and we find that
these differences are stable over time. Our work thus extends prior research
on network variation that focused on a single social context (Rosenkopf and
Padula, 2008; Zaheer and Soda, 2009; Gulati, Sytch, and Tatarynowicz, 2012).
We find that networks may show different industry-wide features not just over
time but also across different socioeconomic contexts. Importantly, we relate
these differences to the varying behavioral tendencies of actors, such as the
pursuit of open or closed ego networks, and demonstrate their link to different
industrial settings, their varying levels of technological dynamism, and the asso-
ciated demands of value creation.

Second, the typology of network structures developed in this paper offers
fruitful opportunities for a comprehensive analysis of a wider range of systems.
Our typology provides conceptual and analytical guidance with respect to the
link between the differences in actors’ collaborative behaviors and the salient
transitions between different industry-wide networks. These transitions charac-
terize the emergence of distinct archetypes of clan, community, and conven-
tion networks, which feature pronounced differences in network
connectedness and community structure and seem to have profound effects
on actors’ collective outcomes. It is important to note that the scope of our
argument is conditioned by generally low levels of network density that charac-
terize many interorganizational settings. Yet because sparse networks occur in
other settings as well (Podolny and Baron, 1997), we believe that our typology
has the potential to be applicable to a wider range of empirical contexts.

In particular, the typology of clan, community, and convention networks
allows for a more precise classification of overall network forms when com-
pared with alternative typologies using other network-analytic concepts, such
as betweenness centralization, closeness centralization, degree centralization,
or the small-world quotient (e.g., Uzzi and Spiro, 2005). First, our typology is
applicable to a broader range of network structures, including highly fragmen-
ted structures, for which many of these alternative typologies are undefined.
Because the emergent clan, community, and convention networks are differen-
tiated in part by their degree of network connectedness, using our typology
allows scholars to assess precisely how network systems differ structurally, as
well as how they shape actors’ outcomes. The additional analyses we con-
ducted showed that none of the alternative typologies could capture the emer-
gent differences in interorganizational networks as precisely as the
combination of network connectedness and community structure. As applied
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to our present analyses, the centralization-based metrics produced only two
crude network forms, while the small-world quotient turned out to be higher
for conventions than for clans. Unsurprisingly, we also found that the typology
of clan, community, and convention networks significantly outperforms the
alternative typologies in terms of explaining industry-wide diffusion outcomes
(by a factor of 1.8 to 8.8 depending on which alternative typology was used).

Third, the results of this paper also contribute to the ongoing debate about
the varying implications of social structures in different environments (Rowley,
Behrens, and Krackhardt, 2000; Xiao and Tsui, 2007). Our results establish a
connection between the collaborative behaviors of firms and the technological
dynamism of their industry, which is essential for understanding the antece-
dents of network variation. This connection helps reconcile some of the con-
flicting findings regarding how social networks emerge and how they affect
actors’ outcomes (Kilduff and Brass, 2010). For example, the present study
sheds more light on why closed ego networks prevail in technologically stable
contexts, such as the automotive industry or new materials (Gulati, 1995), but
not in dynamic contexts, such as biotechnology and pharmaceuticals (Sytch
and Tatarynowicz, 2014b). The present paper also helps clarify why chemical
companies have been found to benefit more from closed ego networks (Ahuja,
2000) and why companies in the media sector (Zaheer and Soda, 2009) and the
semiconductor industry (Rowley, Behrens, and Krackhardt, 2000) have been
found to gain greater advantages from open ego networks. Although our goal
has not been to examine how a firm’s network position affects its perfor-
mance, the present findings suggest that one way for research to explore this
link would be to account for the baseline differences in value creation regimes
across different industrial settings.
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