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Abstract

It is a frequently encountered problem that new knowledge
arrived when making decisions in a dynamic world. Usually,
domain experts cannot afford enough time and knowledge to
effectively assess and combine both qualitative and quanti-
tative information in these models. Existing approaches can
solve only one of two tasks instead of both. We propose a
four-step algorithm to integrate multiple probabilistic graphic
models, which can effectively update existing models with
newly acquired models. In this algorithm, the qualitative part
of model integration is performed first, followed by the quan-
titative combination. We illustrate our method with an exam-
ple of combining three models. We also identify the factors
that may influence the complexity of the integrated model.
Accordingly, we identify three factors that may influence the
complexity of the integrated model. Accordingly, we present
three heuristic methods of target variable ordering generation.
Such methods show their feasibility through our experiments
and are good in different situations. Finally, we provide some
comments based on our experiments results.

Introduction
Bayesian network, a major type of probabilistic graphic
models, is a powerful knowledge representation tool for ab-
stracting uncertain information and decision problems. Over
the last decades, research over graphical representation of
knowledge receives many applications of modeling uncer-
tainty.

In a rapidly changing world, different new fragments of
knowledge or models may arrive when there is already an
existing model. The problem of models integration is chal-
lenging. The different models to be integrated can differ in
structure, or in parameters, even if they are obtained from
the same data or experts from the same domain. This is due
to the following reasons: (1) The sources of different mod-
els can be different (Druzdzel & van der Gaag 2000). (2)
Models may be constructed with different graphic modeling
techniques (Heckerman, Geiger, & Chickering 1994). They
can be learned from data or elicited from domain experts.

A combined model is usually requested for the final deci-
sion or global view of a certain problem. Unfortunately, it
could be a daunting task to get a united view over more than

Copyright c© 2005, American Association for Artificial Intelli-
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Figure 1: An example of model combination in medical do-
main

one model available towards the same issue for domain ex-
perts, as they cannot afford enough time and knowledge to
both qualitative and quantitative combination of these mod-
els manually.

In medicine, for some complex medical decision prob-
lems, usually more than one expert is invited to provide
their opinions, based on existing data or literature. These
expert opinions, data or literature represent different knowl-
edge sources. These knowledge sources may provide knowl-
edge for the same issues. It is also quite often that different
contributors are likely to have different views based on their
expertise; therefore, different sets of factors (i.e., variables)
will be considered.

Consider the following example: we assume that a sur-
geonJackplans to do a head operation on his patientRose.
However,Jack is not confident of his knowledge on nerve
damnification and skin damnification. In order to make a
sound decision,Jackneeds to acquire additional knowledge
related to possible nerve damnification and skin damnifica-
tion in a head operation. Therefore, he seeks help from der-
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matology literature and neurology data set.
This example case on a forthcoming head operation is

shown in Figure 1. Three Bayesian networks are modeled
from dermatology literature, a surgeon’s domain expertise
(i.e., Jack) and neurology data set respectively. The vari-
ablesoperationanddeathexist in all of the three networks.
The first network and the second network have another two
common variables—skin damnificationandfever. The sec-
ond network and the third network contain another two
common variables—nerve damnificationandparalysis. Al-
though there are some common variables between any two
networks, the structures are different. For example, there is
a direct arc from skin damnification to fever in the second
network, while there is no direct arc in the first network. In
the second network, there is no link from variableparalysis
to variabledeath, while there is a route fromparalysis to
deaththroughlung syndrome. This example is a simplified
version of real medical problems. In fact, real medical prob-
lems usually involve a large number of variables, complex
relationships among the variables, and numerous parame-
ters.

Some research (Clemen & Winkler 1999; Maynard-Reid
& Chajewska 2001) has been done on combining probability
distributions. Some merely address topology combination in
BNs (Matzkevich & Abramson 1992; Joseph, Parmigiani, &
Hasselblad 1998), which only two models can be combined
at one time. Besides of shortcoming of unscalability, the
resulting model can also influenced by the order of combi-
nation, if there are more than two models to be combined.

In this paper, we present an approach to solve both
of qualitative and quantitative combination of an arbitrary
number of probabilistic graphical models at a time. Our ap-
proach also provides a natural way and simple base for CPT
combination.

Furthermore, we present three heuristic methods for auto-
matic generation of target variable ordering for the resulting
model.

We make two intuitively reasonable assumptions for
model combination: (1) Variables with same name model
the same real world entity. (2) Variables with same name
have to be over the same domains (in the discrete case, the
same set of possible states).

Problem Formulation and Challenges
We assume a finite number of Bayesian networksB1, .., Bm.
Bi = (Vi,

−→
Ei) wherei = 1, 2, ...m, and

−→
E = (a, b) denote

directed edges between every pair of nodesa andb within
one probabilistic graphic model. The direction of edge is
from a to b, which we denote< a, b >. Thesem Bayesian
networks can satisfyφ ⊆

⋂m

i=1
Vi andφ ⊆

⋂m

i=1

−→
Ei.

These available probabilistic graphic models to be com-
bined are termed ascandidate Bayesian networks. To com-
bine the Bayesian networks, we aim at getting a single BN
model. In generalEresult =

⋃m

i=1

−→
Ei is true only in some

special cases. An example of three different Bayesian net-
works is shown in Figure 2.

Each Bayesian network consists of two parts. The qual-
itative part that represents the structure of the network and
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B
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(b) Candidate BN 2

M N

BA
(c) Candidate BN 3

Figure 2: Example of three candidate Bayesian networks

dependency among variables; and the quantitative part that
numerically represents the joint probability distribution over
these variables.

There are four major challenges in this task. Thefirst
challenge lies in the qualitative combination: how to avoid
cycles after combination of multiple Bayesian networks. Di-
rect combination of different models can result in cycle(s) in
the resulting model. Figure 3 presents two examples of pos-
sible situations inDAG (Directed Acyclic Graph) that may
incur a cycle in combination. We name these two situations
asdirect conflictcases andindirect conflictcases. The prob-
lem of avoiding a possible cycle can be solved using the
arc reversal operation (Shachter 1984), which was applied
in topology combination (Matzkevich & Abramson 1992) .
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(a) Direct conflict
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(b) Indirect conflict

Figure 3: Conflict in DAG combination

Thesecondchallenge lies in the change of conditional in-
dependence relationships after combination. Adding an arc,
it will break some independent relationships among vari-
ables. In other words, we may focus on minimize addi-
tional dependence relationships between nodes in the result-
ing Bayesian network. Set operation over conditional in-
dependence statements was used (Sagrado & Moral 2003)
to solve the graph combination problem. Unfortunately, it
is not easy to perform parameter combination based on this
method.
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Figure 4: Probabilistic graphic models combination

Figure 4 shows an example case of combination of two
probabilistic graphic models.M1 andM2 are the two can-
didate models to be combined.G1 andG2 are graphs that
correspond toM1andM2 respectively. AsM1 impliesG1,
andG1 encodes the conditional independenceCI1 in M1,
M1 is not only a valid probabilistic graphic model, but also
a perfect map of the underlying dependency. Therefore, the
problem that we are facing is to get the resultingGresult

where the underlyingCIresult breaks the least conditional
independency fromCI1 andCI2.

The third challenge concerns the quantitative computa-
tion. Different candidate Bayesian networks may have dif-
ferent structure, which means that the internal CPT (Condi-
tional Probability Tables)s may be very different; not only in
numbers, but also in the size of CPT. For example, the value
of P (A) in Model1 is different from the value ofP (A) in
Model2. The CPT over nodeB in Model1 is not only dif-
ferent from the CPT over nodeB of Model 2 in numbers,
but also in CPT size, as shown in Figure 4. There is not a
good way of combining CPTs in models yet.

A

B

A P(A)
a1 0.7
a2 0.3

B \ A a1 a2

b1 0.4 0.1
b2 0.6 0.2

(a) Model 1

A D

B

A P(A)
a1 0.1
a2 0.9

D P(D)
d1 0.2
d2 0.2
d3 0.6

A a1 a1

B \ D d1 d2 d3 d1 d2 d3

b1 0.15 0.3 0.9 0.11 0.1 0.5
b2 0.85 0.7 0.1 0.89 0.9 0.5

(b) Model 2

Figure 5: CPT disagreement in two models

The fourth challenge in model integration is how to inte-
grate more than two models at the same time. In some large
Bayesian network model learning problems, knowledge en-
gineering sometimes learn some small part of Bayesian net-
works and then combine them into a global Bayesian net-
work. We can imagine a possible case that there are many
small Bayesian networks to be combined. If all these models
can be combined at a time, some manual work or time can
be saved. Unfortunately, existing methods can only combine
two models at a time. This is also a problem that we attempt
to solve.

Bayesian Networks Combination
The proposed algorithm for integration of multiple Bayesian
networks consists of four steps, as follows.

1. Reorganize original BN

2. Adjust variable ordering and edge direction

3. Save amended models as Intermediate Bayesian networks

4. Combine CPT

Step 1: Re-organize Bayesian networks

According to the chain rule factorization property of BN,
a JPD (Joint Probability Distribution) can be factorized in
more than one way. Each factorization indicates a different
ordering of variables. When we change the ordering, we
actually are changing the factorization of JPD. Therefore,
we can always re-organize BN according to different partial
ordering of variables, while maintaining the same JPD.

Step2: Adjust variable ordering to maintain DAG

Defn 1. Order Value. Given aDAG D = (V,E), the
Odervalue(v) of a nodev ∈ V in DAG D is defined as
the longest path from a rooted node to nodev.

Defn 2. Variable Ordering. λ is the sequence of
Ordervalue(v) for all nodev ∈ V in DAG D.

Defn 3. Target Variable Ordering. λresult is the final vari-
able ordering of the combined Bayesian network.

Note thatλresult will not necessarily be the same as that
of any candidate models, although it is possible.

Lemma Cycle can be avoided when every arc in the candi-
date Bayesian networks are from nodes with lower order
value to nodes with higher order value.

Proof:
Givenk Bayesian networksB1,...,Bk , λ1,...,λk are vari-

able ordering inB1,...,Bk .
We assume there exists one arc ¡s1,s2 > in Bi, Bi ∈

{B1, ..., Bk}, in which

ordervalue(s1) ≥ ordervalue(s2) (1)

is satisfied.
According to the definition of ordervalue in Bayesian net-

works, ¡s1,s2 > denotes an arc starts froms1, and ends at
s2. Therefore we can get

ordervalue(s2) = max{ordervalue(Pa(S1))}+1(2)

ordervalue(s2) > ordervalue(s1) (3)

which is conflict with 1. Therefore, every arc in Bayesian
networks is from nodes with lowerordervalueto nodes with
higherordervalue.

Arc Reversal to Adjust Variable Ordering. Arc reversal
is needed here so that variable ordering in these networks are
consistent with target variable ordering with preservation of
JPD, but with some structural changes (Howard & E 1981;
Olmsted 1983). The three candidate Bayesian networks af-
ter arc reversal can been seen in Figure 6.
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Node CBN1 CBN2 CBN3 User Specified Target Ordering

Ordervalue(A) 1 1 1

Ordervalue(B) 1 0 2 2

Ordervalue(C) 2 3

Ordervalue(D) 1 4

Ordervalue(E) 0 5

Ordervalue(F) 0 6

Ordervalue(M) 0 7

Ordervalue(N) 0 8

Table 1: Order values in candidate BNs and target ordering

E

B

C
(a) Reconstruct
Candidate BN1

B

D

F

A

(b) Reconstruct Can-
didate BN2

M N

A B

(c) Reconstruct Can-
didate BN3

Figure 6: Arc reversal results over three candidate BNs

Step 3: Intermediate Bayesian Networks

We present a new concept ofIntermediate Bayesian Net-
worksin the procedure of combination.

Defn 4. Intermediate Bayesian Networks. Givenk candi-
date Bayesian networks to be combined,B1, · · · , Bk. We
make an identical copy from both qualitative part and quan-
titative part of these candidate Bayesian networks and save
them as Intermediate Bayesian networks.

The advantages of intermediate BN include 1) The struc-
ture and parameters of original input BN models can remain
unchanged. 2) With intermediate BN, we may turn the two
tasks of qualitative combination and quantitative combina-
tion into the single task of CPT combination among a set of
intermediate BNs with isomorphic topology.
Virtual Nodes and Virtual Arcs. In order to get homo-
geneous structure for every intermediate BN, we present the
concept of virtual nodes and virtual arcs. Figure 7 shows the
example of virtual nodes.

Step 4: CPT Combination

With the help of virtual nodes and virtual arcs, for candi-
date BNs to be combined, we can get intermediate BNs with
same topology. An example is shown in Figure 7. In the
CPT combination part, we suggest there are two solutions:
(1) Using weighted combination, we can get standard CPT
filled with point probability distributions in result BN. (2)
Using interval combination, we can get Interval Bayesian
Networks (Ha & Haddawy 1996).

E
M N
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B
CD

F

(a) Intermediate BN1

B A

F

D

E

M

N
C

(b) Intermediate BN2

M N

BA
E
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D F
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Figure 7: Example of virtual nodes
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(b) Intermediate BN2

M N

E

D
F

A B

C

(c) Intermediate BN3

Figure 8: Example of virtual arcs

Three Heuristic Methods of Target
VariableOrdering Generation

We notice that there are some factors, which will influence
the generation of target variable ordering: (1) Original or-
der values of each variable; (2) Number of parents of each
variable; (3) Size of each candidate Bayesian Networks. Ac-
cording to the above factors, we present three heuristic meth-
ods for target variable ordering generation.

Method 1: Target Ordering based on Original
Order Valules

The following algorithm describes a method of automated
target variable ordering generation–Order value based Tar-
get Variable Ordering Generation method. We also provide
the proof of the correctness of this method.
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Algorithm 1 Order value based Target Variable Ordering
Generation in BNs Combination
Require: B1, . . . , Bk, k ≥ 2 andBi = (V,E), i = 1 . . . k
1: for i = 1 to k do
2: ∀v in Bi, StoreOrderV alue(v);
3: end for
4: Vresult = ∪k

i=1
Vi{push all nodes from candidate BNs

into Vresult};
5: NodesNum = —Vresult—;
6: initiate an array
7: AllNodes[NodeNum]=

[NodeID,OrderV alue,NewOrderV alue];
8: for i = 1 to NodeNum do
9: for j = 1 to k do

10: v=AllNode(NumNode);
11: Sumv=

∑k

j=1
OrderV alue(vk) ;{sum the node’s

ordervalue in all candidate BNs}
NodeAppear[NodeNum]++;{count how many
models that this node exist}

12: end for
13: end for
14: for i = 1 to NodeNum do
15: AverageOrder[NodeNum] = Sumv

NodeAppear
;

16: end for
17: sort AverageOrder[NodeNum] according to

averagedordervalue and nodeID {for two nodes
with same average ordervalue, sort according to nodeID
}

18: AssignNewOrdervalue to each Node after sorting

Node CBN1 CBN2 CBN3 Average Target Order

Ordervalue(A) 1 1 1 2*

Ordervalue(B) 1 0 2 2

3
1

Ordervalue(C) 2 2 3

Ordervalue(D) 1 1 2*

Ordervalue(E) 0 0 0

Ordervalue(F) 0

Ordervalue(M) 0 0 0

Ordervalue(N) 0 0 0

Table 2: Example of target ordering based on original order
value

Method 2: Target Ordering based on Number of
Parents and Network Size

The key idea in the following algorithm is to generate tar-
get variable ordering according to linear computation over
1) the number of parent nodes of each variable in candidate
Bayesian networks and 2) the number of nodes for each can-
didate Bayesian network.

Algorithm 2 Target Variable Ordering Generation based on
Number of Parents and Network Size
Require: B1, . . . , Bk, k ≥ 2 andBi = (V,E), i = 1 . . . k
1: for i = 1 to k do
2: ∀v in Bi,

StoreNumParentsi(v);
StoreNetSizei(v); {NetSizei(v) denotes the size
of network that nodev is in};
tempV aluei[v]=
NumParentsi(NodeNum)∗NetSizei(NodeNum);

3: end for
4: Vresult = ∪k

i=1
Vi{push all nodes from candidate BNs

into Vresult};
5: NodesNum = —Vresult—;
6: initiate an array
7: AllNodes[NodeNum]=

[NodeID,OrderV alue,NewOrderV alue];
8: for i = 1 to NodeNum do
9: TargetOrder[NodeNum]=∑

tempV aluei[NodeNum];
10: end for
11: sort NodeNum according to

TargetOrder[NodeNum]and nodeID {for two
nodes with same TargetOrder[NodeNum], sort accord-
ing to nodeID}

12: AssignNewOrdervalue to each Node according to the
position of each node after sorting

Node CBN1 CBN2 CBN3 WeighteSum TargetOrder

Num Parent(A) 1 1 8 2*

Num Parent(B) 1 0 2 11 3

Num Parent(C) 2 6 1

Num Parent(D) 2 8 2*

Num Parent(E) 0 0 0

Num Parent(F) 0 0 0

Num Parent(M) 0 0 0

Num Parent(N) 0 0 0

Num of Nodes 3 4 4

Table 3: Example of target ordering based on num of parents
and network size

Method 3: Target Ordering based on Edge Matrix

In this method, we consider the relative difference in or-
der value between every pair of nodes in the candidate
Bayesian networks. We construct the edge matrix, by storing
the difference in order value for each variable in candidate
Bayesian networks. Thus there are k edge matrix if there are
k candidate Bayesian networks. To get the target variable
ordering, we need to get a final edge matrix after computa-
tion over these k candidate Bayesian networks. According
to the final edge matrix, we may get the relative difference
in order value of between each pair of nodes in the resulting
Bayesian networks.
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Ending Node\Starting Node E B C

E 0 -1 -2

B 1 0 -1

C 2 1 0

(a) CandidateBN1

Ending Node\Starting Node A B D F

A 0 1 0 1

B -1 0 -1 0

D 0 1 0 1

F -1 0 -1 0

(b) CandidateBN2

Ending Node\Starting Node A B M N

A 0 -1 1 1

B 1 0 2 1

M -1 -2 0 1

N -1 -1 -1 0

(c) CandidateBN3

Table 4: Example of edge matrix of candidate BNs

Ending Node\Starting Node A B C D E F M N

A 0 0
∗ 0 0 0 1 1 1

B 0 -1 -1 1 0 2 1

C 0 0 0 1 0 0

D 0 0 0 0 0

E 0 0 0 0

F 0 0 0

M 0 1

N 0

Table 5: Resulting edge matrix according to edge matrix
based target ordering algorithm

System Implementation and Evaluation

We design and develop software architecture of PGMC Sys-
tem (Probabilistic Graphic Model Combination system). As
shown in Figure 10, the PGMC system allows more than
one probabilistic graphic model as inputs, and the output
of the system is a resulting model. This system is devel-
oped in C++ under Windows environment, which is based
on SMILE API and GeNIe (Decision System Lab, 2004).

In our experiments, we applied our system to over 30
Heart disease models (Tham, Heng, & Chin 2003), whose
sizes are from 8 nodes to 13 nodes. There are 41 variables in
total. These variables indicate either genotype or phenotype
attributes for a single human subject. Part of the experiment
results are shown in Tables 3 through 5. The combination
time is counted in seconds, including time of combination
procedure only, excluding the time of target variable order-
ing generation.

A B C

M N E

FD

(a) Resulting BN
based on Method 1

A B C

M N E

FD

(b) Resulting BN
based on Method 2

A B C

M N E

FD

(c) Resulting BN
based on Method 3

Figure 9: Example of Resulting BNs after Combination us-
ing three Methods

PGMC System (Probabilistic
Graphic Model Combination)

SMILE
SMILE.NET

GeNIe

Output PGM

PGM1 PGMn

Engineer
Knowledge Domain

Expert

Figure 10: System overview

Num ArcReversed Num ArcAdded Combination Time (Sec)

Method 1 6 5 1.953

Method 2 10 5 5.999

Method 3 6 3 1.813

Table 6: Comparison of 3 methods in three 6-node BN com-
bination

Num ArcReversed Num ArcAdded Combination Time (Sec)

Method 1 5 7 162.754

Method 2 8 9 350.143

Method 3 6 3 15.222

Table 7: Comparison of 3 methods in three 7-node BN com-
bination

The experimental results indicate that different variable
ordering has great impact on the resulting model. The net-
work sizes of input models usually have influence on com-
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plexity of resulting model, but it is not a deterministic factor.

Discussion
One of our main contributions of our paper is extending ex-
isting research of combining probability distributions to the
case of aggregating probabilistic graph models.

Our resulting model after combination is based on a cer-
tain target variable ordering. According to the target vari-
able ordering, all arcs have to start from node with low or-
der value, ends at node with high order value. In this way,
no cycle will be generated in the procedure of combination
and DAG structure can be maintained.

As previous research work only focus on either structure
combination of Bayesian networks, or probability distribu-
tion. Solution to accomplish both tasks at one time is not
available yet. Our approach can solve both structure combi-
nation and parameter combination for Bayesian networks.

In addition, the result of combination will not be influ-
enced by the order of combination.

However, our models combination algorithm has its lim-
itation, which results from the inherent property of arc re-
versal operation. Arc reversal often significantly increases
the number of parents of the nodes that the two nodes in
the arc are involved. Since CPT size increases exponentially
with the number of parents, the resulting CPTs can become
very large and require a prohibitive amount of computation
to construct.

Conclusion
In this paper, we address the problem of integrating multiple
probabilistic models. The main part of our research focuses
on multiple Bayesian networks combination problem. We
separate the task into two subtasks: qualitative combination
and quantitative combination.

The qualitative combination of BNs is the first task. As
BN can be reconstructed because JPD is factorizable with
different partition of variables, a basic idea in our method is
to get a target variable ordering for resulting BN so that the
direction of arcs in the resulting BN are only allowed when
it is from nodes with lower order value to nodes with higher
order value. With target variable ordering, we utilize arc re-
versal operation to adjust order value of variables within one
probabilistic model. In order to let the quantitative combi-
nation step can be clear and easy, we present the concept
of intermediate BN, so that all modification steps, including
arc reversal, filling of virtual nodes and virtual arcs, are per-
formed over intermediate Bayesian networks and the struc-
ture and parameters of original Bayesian networks can be
preserved. At last, we can reach consensus topology for each
input BNs.

The target variable ordering can be specified by the user,
for example, a domain expert. In case of absence of domain
experts, the three heuristic methods of target variable order-
ing generation that we proposed, can be very helpful. How-
ever, the three methods are not guaranteed to yield optimal
solution as it is a NP-hard problem (Matzkevich & Abram-
son 1993).

In the quantitative combination of Bayesian networks, we
argue that the CPT in resulting Bayesian network after com-
bination can be filled with either point probability distribu-
tions or interval probabilities, since exact probabilities are
not always necessary.

The work in this paper that is designed for knowledge
combination should be a general system that supports a wide
spectrum of decision problems. Our approaches can be ap-
plied in various areas, such as stocks, business, air traffic
control, medicine, military operation, etc. The research in
this paper can also be applied in collaborative environments
agents (e.g., robots or softbots) might develop their own un-
derstanding of the environment and want to combine their
understanding with that of other agents.

Future work
It is possible to extend BN model combination to influence
diagram combination, when we want to extend our objective
from just knowledge representation to decision analysis. In
an influence diagram, decision nodes and utility nodes are
added, and those nodes inherited from Bayesian network are
now named as chance nodes.
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