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Abstract—Clinical features found in brain CT scan images are
widely used in traumatic brain injury (TBI) as indicators for
Glasgow Outcome Scale (GOS) prediction. However, due to the
lack of automated methods to measure and quantify the CT
scan image features, the computerized prediction of GOS in TBI
has not been well studied. This paper introduces an automated
GOS prediction system for traumatic brain CT images. Different
from most existing systems that perform the prognosis based on
pre-processed data, our system directly works on brain CT scan
images based on the image features. Our system can also be
extended to large dataset with easy adaptation. For each new
image of a CT scan series, our proposed system first makes use
of sparse representation model that predicts the GOS of each
CT image slice using Gabor features. Logistic regression, which
integrates the GOS of each CT scan slice with a pre-trained
model, is then applied to estimate the GOS score for the new
case which contains multiple CT slices. Evaluation of the system
has shown promising results in prediction of GOS of traumatic
brain injury cases.

Index Terms—Brain CT Scan, Glasgow Outcome Scale, Sparse
Representation Classifier, Logistic Regression

I. INTRODUCTION

Clinical prognosis, which aims to predict the possible
outcome of an illness, is usually made by doctors based on
the knowledge of association between clinical finding and
possible evolvement of an illness. With proper understanding
of prognosis, treatment can be applied for the patient in a
more sensible way and predictable crisis can be avoided [1].
However, it may not be easy to acquire accurate prognosis due
to the limitation of individual doctor’s experience. Statistical
learning on large population can help to increase the accuracy
of prognosis by finding the relationships between important
prognostic indicators and their associated outcome. Prognosis
can then be made based on the statistics from a large number
of existed cases with similar prognostic indicators. In prac-
tice, prognosis models have been previously built based on
statistical data, such as APACHE II and III [2], [3].

Medical imaging modalities such as CT or MRI have played
an important role in improving the quality of clinical diagnosis.

TABLE I
GLASGOW OUTCOME SCALE

1 Dead
2 Vegetative State
3 Severely Disabled
4 Moderately Disabled
5 Good Recovery

Pathological features detected using these modalities are used
as important indicators for outcome prediction. With fast de-
velopments in medical imaging methods and image processing
techniques, more and more radiological data is available for
research community in the field of medical imaging. Robust
and efficient methods are required for deeper understanding
of associations between the medical images and the likely
outcome [4], [5].

In this paper, we focus on traumatic brain injury (TBI) [6],
which is a major cause of mortality. Glasgow Outcome Scale
(GOS) is a widely used five point score to assess the general
functioning of the patient with TBI [7]. The GOS denotes
the level of recovery that patients have achieved, as illustrated
in Table I. Brain CT images are commonly used for clinical
prognosis to predict the GOS of TBI. The prognosis is made
based on the pathological features extracted from brain CT
images.

II. RELATED WORKS

Many studies have been carried out to find the associations
between these pathological findings from images and GOS.
The relationship between brain midline shift and the recovery
from consciousness has been discussed in Ross D.A. et al.’s
work [8]. Sucu H.K. et al. further explored the relationship
between brain midline shift and the chance of survival [9].
The relationship between hemorrhage location and patient
mental status and motor function has been studied by Andrews
B.T. et al [10]. Also, the relationship between Marshall CT



classification [11] and patient mortality has been studied by
Maas A. I. et al. [12]. However, medical image features used
in these studies are either quantitative and manually measured
by experts or qualitative. It is time-consuming and expensive
to extract quantitative clinical features; hence, existing studies
are mostly based on relatively small datasets (less than 100
patients). On the other hand, qualitative feature descriptions
may suffer from inconsistency problems and do not provide
precise information on the associations between brain CT
scan images and possible outcomes. Although there are large
amounts of brain imaging data and analysis available in
hospitals, quantified feature data is still inadequate. Hence,
a robust prognosis model has not been developed.

It is important to automatically quantify clinical features
in brain CT images for TBI prognosis research. A number
of studies have been conducted on extracting features from
the brain CT scan images, such as hematoma detection [13],
hematoma classification [14], [15], hematoma region segmen-
tation [16] and midline shift detection [17]. These extracted
features such as hematoma and midline shift properties are
useful for predicting the possible GOS for TBI [18]. The
performance of feature extraction methods is critical and state-
of-the-art techniques may not always provide precise clinic
features for accurate prognosis. In addition to this, the associa-
tions between GOS and hematoma/midline shift properties are
qualitatively described and need deeper understanding using
statistical and learning techniques. There might also be many
unknown associations between the GOS and the original CT
scan images, which need to be discovered.

Existing online computer prognosis systems for TBI such as
CRASH [19], IMPACT [20] perform the prognosis task using
pre-processed data, such as CT classification grades. These
systems still require manual interpretation of the original
brain CT images by physicians, which is expensive and time-
consuming.

In our previous work [21], we found that sparse repre-
sentation based on Gabor features is a useful way to handle
TBI CT images classification for hematoma types. Thus, we
propose a new online prognosis system that works directly
on brain CT scan images uploaded by users. To the best of
our knowledge, this is the first attempt for automatic GOS
prediction in TBI. Different from the previous approach [21],
which only works on single CT image slices, the proposed
system directly associates the original CT scan case and the
GOS. We further propose a logistic model that predicts the
GOS for the test case by combining the GOS prediction
results of each slice in the case. By doing so, the system
reduces the effort of human expertise and the dependence on
the performance of image processing techniques, and hence
is much more robust. Evaluation of the system has shown
promising results in prediction of GOS for TBI patients.

III. PROPOSED METHOD

The brain CT scan images are preprocessed beforehand.
After this, the prognosis system extracts localized low level
features from the preprocessed images using Gabor filter [22].

(a) Original CT scan im-
age

(b) CT scan image after
skull removal

(c) CT scan image after
normalization

Fig. 2. Preprocessing result of a brain CT scan image.

SRC [23] is then applied to Gabor based features to classify
the image slices uploaded by users into certain GOS. Finally,
a logistic regression is performed on all the image slices of
the testing case. The architecture of our proposed system is
illustrated in Figure 1.

Patients with GOS 1 to 3 are considered to have un-
favourable results, since they are either deceased or permanent-
ly depending on other persons’ daily support. On the contrary,
patients with GOS 4 and 5 are considered to have favourable
results, as they are able to care for themselves independently
and resume normal life to some extent. It is common practice
to conduct prognosis analysis based on these two outcome
categories [24], [25], as providing accurate severe/minor out-
come prediction using automatic methods would greatly help
the neurologists as well as the patients. Therefore, We classify
a TBI case as severe (GOS 1 to 3) or minor (GOS 4 and 5)
in addition to classifying it into a specific GOS level to fully
provide decision support.

A. Preprocessing and feature extraction

At the preprocessing steps, the cranial structure is first
removed from the original image. After that, the intensity and
resolution of these images are normalized. The preprocessing
results are shown in Figure 2. We then utilize 2-D spatial
Gabor filter [26] to extract features at the different locations
of the image with different scales and orientations. These
features are scale-invariant and preserve information for GOS
classification. In our prognosis system, the CT images are
downsampled into 21×21. We create a Gabor filter bank with 5
frequencies and 8 orientations. Thus the Gabor feature created
for each image is a vector with 17640 dimensions.

B. Classification of CT image slices

At this stage, each GOS category is considered as an
individual class, and each CT image slice is classified into
one of the five GOS classes. We use a sparse representation-
based classifier (SRC) [27] for CT image classification. In this
method, test data is represented by a linear combination of a
small number of training data. The objective function for SRC
can be written as:

xbst = argminx ||x||1

subject to||Ax− y||2 < ε
(1)
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Fig. 1. Architecture of our proposed auto-prognosis system.

where A, y, and x denote the train data, test data, and sparse
coefficient vector, respectively. || ∗ ||1 and || ∗ ||2 denote L1
and L2 norms. xbst is the desired sparse coefficient vector.
This optimization problem can be solved efficiently by L1-
regularized optimization methods [28]. Based on xbst, the
SRC evaluates the contribution of different classes in the
reconstruction of the test data y to classify the test data. As
each time all the original training data are used to create a
new reconstruction model for the new testing data, there is
no need to develop a classification rule for all possible testing
data before they are encountered.

In our proposed system, the training dataset can be viewed
as a set of brain CT scan images, each of which is represented
by a Gabor feature vector gi. So the whole training dataset can
be represented by a m by n matrix: G = [g1, . . . , gn], where m
denotes the dimension of the feature vector, and n denotes the
number of brain CT scan images. Similarly, the testing brain
CT scan case can also be represented by a m by k matrix:
C = [c1, . . . , ck], where k denotes the number of brain CT
scan images in the testing case.

Since the GOS is evaluated at brain CT scan case level, the
GOS label is not available for a single image slice. In order
to assign a GOS for each image slice in the training dataset,
we assume that every image slice of the same CT scan case
has the same GOS, which is assigned on that CT scan case.
Although this assumption might be naive, it provides a way to
interpret the connection between the GOS of the CT scan case
and each of its image slices. Furthermore, our proposed system
still yields accurate prognosis results on GOS prediction.

For each testing image slice ci,where i ∈ [1, . . . , k], we
apply the SRC to reconstruct ci using the training dataset G
and obtain the corresponding sparse coefficient vector π. Then
the class specific reconstruction error is calculated for each

GOS by reconstructing ci only with those training samples
with the same GOS and corresponding sparse coefficient
vectors. After that, the GOS with the smallest reconstruction
error is assigned as the label of ci, because the testing image
slice is better reconstructed by those training images with that
GOS, and hence more similar to those training images in that
group. The detail of the work flow is illustrated in Algorithm 1.

To increase the processing speed, we propose to use the
local SRC technique [29], which uses a subset of the training
data instead of the whole training dataset to apply the SRC.
The subset is chosen by selecting the N most similar data
samples from the original training dataset based on Euclidean
Distance. This mechanism also relieves the imbalance of our
brain CT scan dataset.

C. GOS prediction of testing brain CT scan case

The GOS for every image slice of the testing brain CT
scan case has been obtained in previous section. We still need
to predict the GOS for the testing case C, given the GOS
vector of each image slice LC = [lc1 , . . . , lck ]. A simple and
straightforward method would be majority voting, which is to
choose the most frequently GOS in LC as the representative
GOS for the brain CT scan case. However, majority voting
does not take the relationship between GOS into account. For
example, a testing case with a GOS vector ¡1, 1, 2, 5, 5¿ should
be likely to have a GOS 1 than 5. Furthermore, majority voting
just considers the GOS distribution of the single testing case.

In our proposed system, we choose logistic regression [30]
to predict the GOS for the testing brain CT scan case.
Logistic regression is widely used in different classification
problems. This method tries to fit the possible outcome and
input variables with some regression analysis. It could avoid
the over-fitting problem when the number of features is more



Algorithm 1 GOS prediction for testing brain CT images
Require: A matrix G = [g1, . . . , gn] of training samples and

corresponding GOS labels.
A testing brain CT scan case C = [c1, . . . , ck].

Ensure: A label vector LC = [lc1 , . . . , lck ] corresponding to
the testing CT scan image case.

1: Scale each column of G and the test sample C to have
unit L2-norm.

2: for each testing CT image slice ci, i ∈ [1, . . . , k]: do
3: Find a sparse coefficient vector π of length N to recon-

struction ci using the training samples G by solving the
L1-norm minimization problem defined in Equation 1,
where G, ci, π refer to A, y, x, respectively.

4: for each unique GOS label p = 1, . . . , P : do
5: Construct a vector πp that only contains values whose

corresponding labels are GOS p.
6: Construct a matrix Gp that only contains features

whose corresponding labels are GOS p.
7: 7. Evaluate the class specific reconstruction error:

rp(ci) = ||Gpπp − ci||2

8: end for
9: Choose the GOS with the minimum reconstruction error

and assign it as the label lci of the testing CT image
slice ci.

10: end for

than the number of training examples. The logistic regression
function is defined as follows:

p(O = i|V, θi) = 1

1+e−θ
T
i
V

Obst = argmaxi(p(O = i|V, θi))
(2)

where O and V denote the possible outcome and the input
variable, respectively. θi denotes the trained logistic regression
model for GOS i. The final classification result Obst is
assigned to the label with maximum probability. The outcome
O of our logistic regression model is the five level GOS.
The input variable is a five dimension vector that denotes the
possibility of each GOS in a brain CT scan case, which is
defined as follows:

V = [v1, · · · , v5]

vi =
Ni
N

(3)

where vi refers to the possibility of GOS i, Ni and N denote
the number of slices with predicted GOS i, and the number
of slices in the test case, respectively.

We then construct the training data for the logistic regression
model by cross-validating the scan-based training dataset. For
each case C in the training dataset, we use the remaining
training cases to reconstruct each image slice ci based on local
SRC. As a result, these image slices will be assigned a GOS.

Fig. 4. A brain CT scan case with 20 slices.

By combining predictions of these slices, we can construct
the input variable V for logistic regression using Equation 3,
which is illustrated in Figure 3.

In total, we can build N corresponding input variables and
outcome tuples [Vi, Oi] for the logistic regression model given
a brain CT scan image training dataset with N samples. These
tuples are then used to solve the logistic regression model.
Finally, the testing brain CT scan case is assigned a GOS
based on the GOS of its image slices using the trained logistic
regression model.

IV. EXPERIMENTS AND DISCUSSION

Data used for evaluation of our proposed method is taken
from the database of the Neuroradiology Department in a
tertiary referral hospital specializing in neurological diseases
in Singapore.

In this work, we focus on prediction of GOS, so cases with-
out abnormalities were removed from the dataset beforehand.
In total, the data set consists of the CT scan cases for 147
patients with TBI. Each case is in the form of a volumetric
stack consisting of 10 to 30 slices and is manually labeled
with a GOS by radiologists. Figure 4 shows a sample brain
CT scan case. Each slice is an 8-bit gray-scale image with size
512×512. We further manually remove slices that are without
hematoma. However, the dataset is quite imbalanced; most of
the brain CT scan cases are labeled with GOS 1 or 5. Due



Fig. 3. The workflow of construction training data for logistic regression model

to the lack of CT scan case samples of GOS 2, we combine
GOS 1 and 2.

The whole brain CT scan image dataset is randomly sam-
pled into five-fold sub-datasets for cross validation. This is to
evaluate the performance of our classifiers. We compared the
performance of our proposed method with the SVM classifier.
SVM classifier is treated as a baseline method and is directly
trained using the Gabor feature. The GOS is first divided into
4 classes, by treating GOS level 1 and 2 as one class. We
further compare the performance of using majority voting and
logistic regression when classifying the testing cases into 2
classes: Severe with GOS of 1 to 3, and Minor with GOS of
4 and 5.

Table II shows the accuracy of GOS prediction using
different methods. The experimental results show that our
proposed method outperforms the SVM classifier in both 2
GOS classification and 4 GOS classification. That is because
the GOS of the image slices in the training dataset are labeled
based on their corresponding cases, which might be inaccurate.
The SVM classifier when directly applied on these labels may
fail to distinguish the data from different classes. On the other
hand, our proposed method that makes use of local SRC [27]
tries to reconstruction the testing image slices with similar
slices in training data. This non-parameterized mechanism
helps to suppress the noise within the training dataset.

Furthermore, the performance of SVM classifier varies for
different folds, which is due to the imbalance of data between
different folds and within a fold. The GOS distribution of
each fold is non-uniform. Some GOS levels, such as 1 and 5,
appear more frequently than the other GOS within a fold. So
the classifier tends to assign the testing image slice into class 1
or 5. The local SRC [29] is proposed to handle such problem
by selecting a subset of the data as the new training dataset.
The variation of performance of our proposed technique on the
five folds is much smaller compared with the SVM classifier.

Comprehensive human evaluation might be important for
the performance of our proposed prognosis system for GOS

prediction. In our initial evaluation with physicians, the predic-
tion accuracy is promising from their perspective. In practice,
the GOS is determined not only based on the patient’s CT scan
images, but also relied on the medical profile of the patient
(age, health record, etc.). Our proposed system provides an
initial prognosis result based only on CT scan images.

V. CONCLUSION

In this paper, we propose a sparse representation based
prognosis model for GOS prediction. The proposed method
makes use of the sparse representation and logistic regression
methods to directly build the association between the brain
CT scan image case and the GOS. The prognosis system
first applies the sparse representation classifier (SRC) using
Gabor feature to predict the GOS of each image slice of
the testing CT scan case. A logistic regression model is then
trained to predict the GOS of the testing CT scan case based
the estimated GOS of its image slices. Experimental results
have shown promising performance of our proposed prognosis
system.

One advantage of our proposed model is the direct associa-
tion between the CT scan images with the prognosis outcome.
This model enables statistical research on large TBI datasets.
The proposed system could be useful to physicians and re-
searchers dealing with prognosis information. Furthermore, the
proposed prognosis model can be easily generalized to other
prognosis problems.

On the other hand, our proposed model is a non-
parameterized method, which will take longer time to compute
when the size of the training dataset increases. Parallel compu-
tation technique can be a clue for this problem. In addition to
this, our dataset suffers from imbalance data problem. Most of
the CT scan cases have GOS 1 or 5, which makes us difficult
to model the cases with GOS of 2 to 4.

In future, we would like to include some hematoma prop-
erties (size, location, etc.) and midline shift feature into our
prognosis model. These features will provide more information



TABLE II
GOS PREDICTION ACCURACY OF DIFFERENT METHODS

Methods Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
SVM Classifier for 4 GOS 0.41 0.63 0.37 0.52 0.45

SVM Classifier for 2 GOS using majority voting 0.62 0.73 0.47 0.66 0.52
SVM Classifier for 2 GOS using logistic regression 0.66 0.73 0.43 0.66 0.48

Proposed method for 4 GOS 0.66 0.67 0.67 0.59 0.66
Proposed method for 2 GOS using majority voting 0.55 0.67 0.7 0.62 0.62

Proposed method for 2 GOS using logistic regression 0.83 0.83 0.73 0.7 0.76

for GOS prediction. It may improve the prognosis accuracy by
building association between the hematoma and midline prop-
erties and GOS. However, better hematoma segmentation and
midline shift detection techniques will have to be employed.
Furthermore, it will also help to improve the GOS prediction
accuracy by incorporating with the demographic information
of the cases in our system. Besides we will explore a better
model to describe the relationship between the GOS of a CT
scan case and its individual image slices.
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