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Latent Factors Meet Homophily in Diffusion Modelling

Minh-Duc Luu and Ee-Peng Lim

School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902.

mdluu.2011@smu.edu.sg, eplim@smu.edu.sg

Abstract. Diffusion is an important dynamics that helps spreading information
within an online social network. While there are already numerous models for
single item diffusion, few have studied diffusion of multiple items, especially
when items can interact with one another due to their inter-similarity. Moreover,
the well-known homophily effect is rarely considered explicitly in the existing
diffusion models. This work therefore fills this gap by proposing a novel model
called Topic level Interaction Homophily Aware Diffusion (TIHAD) to include
both latent factor level interaction among items and homophily factor in diffusion.
The model determines item interaction based on latent factors and edge strengths
based on homophily factor in the computation of social influence. An algorithm
for training TIHAD model is also proposed. Our experiments on synthetic and
real datasets show that: (a) homophily increases diffusion significantly, and (b)
item interaction at topic level boosts diffusion among similar items. A case study
on hashtag diffusion in Twitter also shows that TIHAD outperforms the baseline
model in the hashtag adoption prediction task.

1 Introduction

Ubiquitous presence of online social networks (OSN) has made information diffusion
an important topic that attracts much research interests. While many items may diffuse
in a social network simultaneously, most existing models of diffusion are built upon
independent contagion assumption whereby the diffusion of each item is assumed (at
least implicitly) to happen independent of other items. The interaction among items
during diffusion is thus left out of the picture. This is obviously not true in the com-
plex dynamics of diffusion process. For instance, the diffusion of iPhones in the Face-
book friendship network may interact favorably with that of iPad; and the diffusion of
a catchy phrase on Twitter also aids the diffusion of its variants.

Interaction among items. Modeling these interactions is crucial in both theory and
practice since it helps us understand the detailed dynamics of multiple item diffusion. It
is also valuable for business to develop suitable strategies to promote diffusion of their
own items considering the other items that have been diffused recently or are being
diffused. It may be good to time the diffusion of a new item with the diffusion of other
similar items (possibly by the business or other businesses) to achieve a larger reach.
This idea of diffusion with item interaction can be further illustrated in the following
motivating example.
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Example. A user may be inspired to watch the movie version of “Hunger Games”
after observing some neighbors already read the book. Moreover, if both the book and
the movie versions were adopted by a neighbor, the user will even be more likely to
adopt the movie than if only one of them was adopted by the neighbor (as he may be
more convinced that the movie is good in the former case).

The example not only highlights that diffusion of an item can support that of another
similar item but suggests other deeper ideas which will distinguish our work from the
rest. These ideas are:

1. The more similar items are, the more interaction will happen between them in dif-
fusion. In other words, item similarity can be used as a proxy for item interaction.
This idea will be formulated in Section 3.2 where we propose a general diffusion
framework for modeling item interaction when there is more than one item diffus-
ing.

2. Whether or not a user adopts an item i is affected not only by neighbors who
adopted exactly the item but also by those who adopted other items. A neighbor
who already adopted another item i′ can still influence the decision (see Example)
as i′ may be very similar to i.

3. Each neighbor’s social influence on a user’s adoption decision should include all
contributions from a set of items adopted by the neighbors, not just limited to one
item as in the existing models.

Homophily Factor. Another important aspect which also has great impact on item
diffusion, is the well-known homophily phenomenon. Homophily refers to the tendency
of individuals to associate and bond with similar others. It is well known that homophily
affects the mechanisms in which item diffusion happens, be it innovation [14], infor-
mation [3] or behavior [2]. Thus, it is important to integrate homophily into diffusion
models so that we can better quantify its effect on diffusion. In this work, we assume
a global homophily level of the network and learn it from the diffusion cascade data.
Given that networks with homophily involves more similar users connecting with one
another, it also plays a role in determining if an item can more smoothly diffuse to
across the network links.

Research Objectives. In this paper, we therefore propose to consider the above two
factors in the design of a new diffusion model. To involve both item similarity (which
helps to estimate item interaction) and user similarity (due to homophily), our modeling
approach employs latent factors (LF) to represent both items and users (e.g. [13], [10])
where each user or item is represented as a vector in a common feature space with
dimension much smaller than that of items and users. The similarity between two items
(or users) can then be defined by the cosine similarity of the respective item (or user)
vectors. Unlike the collaborative filtering approach taken by recommender systems, our
diffusion modeling work also consider social influence among users. Although there
are recently hybrid models ([9], [12]) which combine latent factor approach with social
networks, they still do not model a user adopting an item influenced by the neighbors’
past adoption of similar items and the strength of relationships with these neighbors.
Based on our proposed model, we seek to answer some interesting research questions
related to multiple-item diffusion in homophily networks.
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Summary of contributions. In summary, our work makes the following contribu-
tions.

– We develop an extended diffusion framework which incorporates both item inter-
action and homophily into modeling diffusion. To the best of our knowledge, this
is the first attempt to combine the two factors. The framework is flexible and can
offer useful insights to multiple item diffusion.

– We propose a specific diffusion model based upon the new framework. This model,
known as TIHAD, utilizes latent factors to capture item interaction and homophily
effect for effective modeling diffusion processes of multiple items.

– We formulate the parameter learning of model as a constrained optimization prob-
lem, and devise an effective learning algorithm using Projected Gradient Descent.

– We conduct experiments on both synthetic and real datasets to show that: (a) ho-
mophily increases diffusion significantly, and (b) item interaction at topic level
boosts diffusion among similar items. We also shows that TIHAD outperforms the
baseline model in the hashtag adoption prediction task.

Paper Outline. We will next give an overview of the related works. In Section 3,
we present our proposed diffusion model known as TIHAD. The learning of this model
is given in Section 4. Section 5 describes experiments that evaluate the TIHAD using
both synthetic and real datasets. We finally conclude the paper in Section 6.

2 Related works

Our work is closely related to very well studied adoption and diffusion modeling re-
search: (i) Latent Factor models and (ii) Social Influence models. In the following sec-
tions, we briefly review these research works and relate them with our work.

2.1 Latent Factor Models
These models ([16], [13], [10]) take a user-item adoption matrix and factorize it into
a set of user and item vectors with f dimensions where f is much smaller than the
number of users or items. For each item i, a latent factor vector qi ∈ Rf is derived
and it contains the relevance weights of the latent factors for the item i. Similarly, a
latent factor vector pu ∈ Rf is derived for each user u to represent the weights u
has for the latent factors. Thus, the amount of interest u has towards item i can be
defined as the inner product pTuqi. Unlike latent factor models which focus on user-
item interactions only, our work considers both user-item and item-item interactions in
the diffusion setting. We are therefore also interested in the effect of item similarity. We
exploit the latent factor space by defining the similarity between two items i and j as
the inner product qTi qj .

For better interpretability, many Latent Factor (LF) models (see [13], [15]) require
latent factor vectors to have positive elements. We also follow this practice and consider
only positive latent factor vectors. Although LF models enjoy the benefit of dimension
reduction by matrix factorization, they do not consider the underlying social network
which forms the substrate over which diffusion occurs. To address this shortcoming,
recent research proposed to exploit social influence in the modeling of user-item adop-
tions (or ratings).
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2.2 Social Influence and Diffusion Models

Social influence modeling works takes into account social interest and social trust as
additional input to achieve better accuracy for recommendation ([9], [12], [18], [17],
[4]). These works proposed various ways of modeling the social dimension such as
factorizing the social network graph ([12]) or modeling social factors of users as another
set of latent factors ([17], [4]). While these works focus on recommendation tasks,
they are similar to diffusion models in that both estimate social influence on user-item
adoptions. Social diffusion models on the other hand consider only influence from a
subset of neighbors, called the set of active neighbors Au, who adopt exactly the target
item ([6], [8], [11]). For example, Linear Threshold (LT) model is a social diffusion
model which estimates social influence by the sum of weights of active neighbors. Thus,
its standard form is

social influence =
∑
v∈Au

wv,u (1)

As pointed out in our motivating example, items similar to the item being diffused i can
affect diffusion. Even though a neighbor has not yet adopted item i, he can still affect
the target user’s decision on adopting i, when the neighbor adopted item(s) similar to
i. Such a diffusion scenario has been largely overlooked in the existing social diffusion
models.

3 Proposed Framework and Model

Before we present our proposed modeling framework and the TIHAD model, we first
introduce the notations used in the problem formulation.

3.1 Basic Notations

We represent a social networks as a (directed), weighted graph G = (U,E) whose
nodes represent users and edges represent links among the users. For each edge (u, v),
the edge weight wv,u represents the social influence that v exerts on u. To model dif-
fusion over the network during a time period, we bin the continuous time into discrete
time steps {1, 2, · · · , T} and consider adoptions in each step.

Denote adoption decision of a user u on item i at time step t as au,i,t. At first sight,
it seems that au,i,t is simply a binary label which is 1 when u adopt i and 0 otherwise.
However, it is often that a user does not adopt an item because he has not been exposed
to the item. It is thus incorrect to assume that he rejects the item, and underestimate his
preference for the item. We can avoid this by considering, at each time step, only items
which are exposed to the user. When the user did not adopt an item he has exposed
to, we say that the case is a non-adoption. We call these user-exposed items as the
candidate items in Definition 1, which in turn help us to define adoption labels properly
in Definition 2.

Definition 1 (Candidate item). At a given time step t, a candidate item for a user is an
item that: (i) he has not yet adopted before t; and (ii) he is exposed to it through some
source (e.g., recent adoptions by his neighbors). The set of candidate items for a user u
at time t is denoted by Cu,t.
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Definition 2 (Adoption label). Given an item i ∈ Cu,t, adoption label au,i,t is a binary
variable which is 1 if u adopts i at time t and 0 otherwise.

3.2 Framework

Our proposed framework extends the latent factor model framework by considering
both personal interest and social influence in the modeling of user-item adoption at dif-
ferent time steps. Personal interest is estimated by user-item similarity in a latent space
and social influence is an aggregation of individual influences from neighbors. How-
ever, that influence from a neighbor v ∈ Nu (the set of neighbors of u) now depends
on: (i) the link weight wv,u, and (ii) the interaction level between item i and a certain
set of items adopted by v. We also follow common practice (e.g. [9]) by including in
the framework global bias µ, user bias bu and item bias bi.

For easy reading, we first state the core formula of the framework in Eqn. (2) and
provide the reasoning behind the formulae subsequently. By denoting personal interest
and social influence as φ(u, i) and σ(u, i, t) respectively, we can express the framework
as follows (the logic behind will be explained soon).

âu,i,t := µ+ bu + bi +

φ(u,i)︷ ︸︸ ︷
pTuqi+

σ(u,i,t)︷ ︸︸ ︷∑
v∈Nu

wv,u · λ (v, t, i) (2)

where we introduce the following

1. wv,u: link weight, which will later be estimated by a function of user similarity
parameterized by the so-called homophily level, which will be denoted as h

2. λ (v, t, i): the interaction level (will be defined formally later) between the items
adopted by v and item i at time step t.

Our framework adapts the general formula by proposing in Eqn. (2) a novel estimation
of social influence term σ(u, i, t) and a homophily derived link weight wv,u. As can
be seen from the definitions, the estimation will incorporate both item interaction and
homophily factor. To keep the framework tractable, we assume the latent factors are
static. Given this framework, we can now apply it for modeling interacting diffusion
processes of items over a social network as follows.

Framework (Interacting Diffusion of Items). Consider a set of items I and a social
network G. For each such candidate item i, its adoption label âu,i,t can be estimated
by Eqn. (2). Candidate i will be adopted by u if the estimation is close enough to 1 (i.e.,
âu,i,t ≥ 1− θ). Thus, at each time step, a user can adopt several candidate items which
satisfy this criterion. The process continues until no more adoption can happen.

We proceed by providing the logic behind Eqn. (2) of our framework. The logic
includes two parts: how to define item interaction and how to incorporate homophily.
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Item interaction The interaction level depends on a certain set of v’s adopted items
which can actually affect u’s decision. This leads us to the concept of effective item set
defined as follows.

Definition 3 (Effective item set). For a given neighbor v of user u, the set of items
adopted by v which can influence adoption decision au,i,t is called effective item set
from the neighbor at time step t and denoted as Ieff (v, t).

Given effective item set Ieff (v, t), we now need to estimate the interaction level
λ (v, t, i) between the adopted items of v and candidate item i and time step t. We now
provide a general estimation of λ (v, t, i) in Definition 4.

Definition 4 (Interaction level). The interaction level λ(v, t, i) is defined as the sum of
interactions (i.e. similarities) between the effective item set of v and i at time step t.

λ(v, t, i) :=
∑

j∈Ieff (v,t)

qTj qi (3)

The social influence from neighbor v will then be wv,u × λ (v, t, i). In total, social
influence on u will be estimated by

σ(u, i, t) :=
∑
v∈Nu

wv,u × λ (v, t, i) =

∑
v∈Nu

∑
j∈Ieff (v,t)

wv,uqj

T

qi (4)

Note that for directed networks, Nu will be replaced by the followee set of u.
Replace (4) into (2), we obtain our novel estimation for adoption label

âu,i,t := µ+ bu + bi + p
T
uqi +

∑
v∈Nu

∑
j∈Ieff (v,t)

wv,uqj

T

qi (5)

This new estimation allows our framework to capture item interaction. Thus, in the
context of interacting diffusion, we expect it to provide a better model than existing
models (e.g. [11]). This will be realized later in our experiments on synthetic data.

Incorporating homophily Eqn. (5) involves link weight wv,u which is determined
by homophily factor. Due to homophily effect, more similar individuals tend to be con-
nected. We therefore propose to estimatewv,u as an increasing function of the similarity
between u and v. In other words, for a social network with an underlying homophily
level h ∈ [0, 1] (smaller h implies low homophily), we propose to define wv,u as:

wv,u := g(pTupv|h) (6)

where g(.) is an increasing function parameterized by h. Since weights are in [0, 1], we
also choose functions g with range in [0, 1].

Finally, by replacing Eqn. (6) in (5) and using estimation of λ (v, t, i), we obtain
Eqn. (7), the main estimation of our framework.

âu,i,t := µ+ bu + bi + p
T
uqi +

∑
v∈Nu

g(pTupv|h) ·
∑

j∈Ieff (v,t)

qTj qi (7)
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3.3 Topic Interaction and Homophily Aware Diffusion (TIHAD) Model

To apply our general framework, we need to give specific definitions for g(pTupv|h),
and Ieff (v, t). This leads to our proposed Topic Interaction and Homophily Aware
Diffusion (TIHAD) Model.

In TIHAD, we define the function g(.) as a linear function of user similarity pTupv
as follow.

g(pTupv|h) := h · (pTupv), ∀(u, v), v ∈ Nu (8)

There are other interesting forms of function g(.) including
(
pTupv

)h
. In this work, we

focus on the linear form due to its tractability and leave other forms for future research.
For Ieff (v, t), we choose the set of items adopted recently by neighbor v. This is

based on the common intuition that a user usually pays attention only to those recent
items (e.g., Twitter users only focus on recent hashtags from their followees [19]). Thus,
for each time t, we choose the effective set as the set of k items which neighbor v
adopted most recently with respect to time step t, which we denote as rk,tv . Hence,
Ieff (v, t) = rk,tv .

The TIHAD model is therefore expressed as Eqn. (9).

âtihadu,i,t = µ+ bu + bi + p
T
uqi + hpTu [St(u)] qi (9)

where the matrix St(u) is

St(u) :=
∑
v∈Nu

pv (
∑
j∈rk,t

v

qj)
T (10)

St(u) can be interpreted as the matrix characterizing the social influence from u’s
neighbors recent adoption events.

3.4 Linear Threshold with Latent Factors (LTLF)

In the special case when Ieff (v, t) = {i}, Eqn. (4) becomes

σ̃(u, i, t) =

 ∑
v∈Ai

u,t

wv,u

 ‖qi‖2
where v now is not an arbitrary neighbor of u but instead an active neighbor i.e. one
who actually adopted i at time t. This estimation of social influence is obviously an
extension of Eqn. (1) commonly used in Linear Threshold models ([6], [1]). Thus, by
substituting it into Eqn. (5), we obtain the following model, called Linear Threshold
with Latent Factors (LTLF)

âltlfu,i,t := µ+ bu + bi + p
T
uqi +

 ∑
v∈Ai

u,t

wv,u

 ‖qi‖2 (11)
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4 Learning of TIHAD Model

We formulate the learning of TIHAD model parameters as a constrained optimiza-
tion problem, which can be solved by Projected Gradient Descent (PGD). We pro-
vide the detailed formula to solve the problem and a pseudocode for model learn-
ing. For brevity, we use P and Q matrices to denote user and item latent factors
respectively. All parameters of TIHAD then can be compactly represented by Π =
(h, µ, {bu}u∈U , {bi}i∈I ,P ,Q). We also use âu,i,t in place of âtihadu,i,t for brevity.

4.1 Optimization Formulation

LetAT
1 denote the set of all adoption labels in a diffusion cascade during the time span

[1, T ].

AT
1 := {au,i,t : t ∈ [1, T ], u ∈ U and i ∈ Cu,t} (12)

Diffusion data is then represented by a tuple of item set, the social network and the
adoption labels as D =

(
I,G,AT

1

)
. Given D, we formulate the model learning prob-

lem as finding the optimal parametersΠ∗ that minimize squared error upon generating
the adoption labels.
For a givenΠ , the squared error at time step t is the sum

SEt(Π|D) =
∑
u∈U

∑
i∈Cu,t

[âu,i,t(Π)− au,i,t]2 (13)

Hence, over the whole time span [1, T ], the total error is

E(Π|D) =
T∑
t=1

SEt(Π|D) =
T∑
t=1

∑
u∈U

∑
i∈Cu,t

[âu,i,t(Π)− au,i,t]2 (14)

To avoid over-fitting, we also define a regularizer as

R(Π) := h2 +
∑
u

b2u +
∑
i

b2i + ‖P‖2F + ‖Q‖2F (15)

where ‖.‖F denotes the usual Frobenius norm. Hence, the objective function is

J(Π|D) = 1

2
[(E(Π|D) + δR(Π)]

We now can formulate the learning as the following constrained optimization problem.

Problem. Given diffusion data set D =
(
I,G,AT

1

)
. We learn parametersΠ by solv-

ing for optimal parameters which minimize the objective function

Π∗ = argmin
Π

J(Π|D) = argmin
Π

1

2
[E(Π|D) + δR(Π)] (16)

subject to constraints

pu ≥ 0, ∀u ∈ U, qi ≥ 0, ∀i ∈ I and 0 ≤ h ≤ 1 (17)
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4.2 Optimization Solution

In general, the above problem is not convex. Thus, we resort to a solver which uses
grid search and Projected Gradient Descent (PGD). For that, we provide formulae of
gradients in the following sections. Due to space constraints, proofs of these formulae
are not provided, interested readers can find it in the technical note.1

Derivatives for bias variables

∂

∂µ
J =

∑
t

∑
u∈U

∑
i∈Cu,t

eu,i,t︷ ︸︸ ︷
(âu,i,t(Π)− au,i,t) (18a)

∀u ∈ U, ∂

∂bu
J = δbu +

∑
t

∑
i∈Cu,t

eu,i,t (18b)

∀i ∈ I, ∂

∂bi
J = δbi +

∑
t

∑
u∈U :i∈Cu,t

eu,i,t (18c)

Derivative for homophily variable

∂

∂h
J = δh+

∑
t

∑
u

pTu [St(u)] q
err
t (u) (19)

where St(u) is defined in Eqn. (10) and qerrt (u) :=
∑
i∈Cu,t

eu,i,t · qi.

Derivatives for user and item factors

1. (Gradient w.r.t user factor pu) For each given user u, we have

∇pu
J = δpu +

∑
t

[
M t(u)q

err
t (u) + hηt(u)q

k
t (u)

]
(20)

where matrixM t(u) and scalar ηt(u) are defined as

M t(u) := Id+ hSt(u) and ηt(u) :=
∑
v∈Nu

pTv q
err
t (v) (21)

where Id denotes the identity matrix.
2. (Gradient w.r.t. item factor qi) For each given item i, we have

∇qi
J = δqi +

∑
t

h∑
u∈U

[
qerrt (u)ϕTu,i,t

]
pu +

∑
u:Cu,t3i

eu,i,t [M t(u)]
T pu

 (22)

where vector ϕu,i,t :=
∑
recent adopters pv is the sum of factors of neighbors who

adopted i recently.
1 http://goo.gl/2ltY9I
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Algorithm 1 PGD for TIHAD model using an initial guessΠ0

1: procedure TRAIN(D, Π0, ε)
2: InitializeΠc ←Π0

3: while (!converge) do
4: Compute objective value: jc ← J(Πc|D) . use Eqns. (14) – (16)
5: Compute gradients: gc ← ∇J(Πc|D) . use Eqns. (18a) – (22)
6: Descend & project:Πn ← GRADPROJ(Πc, jc, gc) . see gradproj() in [7]
7: Check convergence: converge← ( |Πn −Πc| < ε )
8: Πc ←Πn

9: end while
10: returnΠn

11: end procedure

Now that all derivatives are available, we can use them in Projected Gradient De-
scent (PGD) with grid search to update the corresponding parameters. Thus, we repeat
Algorithm 1 with different initial parameter values to learn the parameters of TIHAD
model. All the derivatives in the algorithm are computed using Eqns. (18a) – (18c) and
(19) – (22).

5 Experiments

In this study, we want to be able to evaluate TIHAD model with some parameter settings
that control the item interaction and homophily factor during the diffusion process.
Hence, we need a synthetic diffusion data generation method with the following input
parameters: (a)M items, (b)N users, (c)Ne relationships among the users, (d) f latent
factors, (e) homophily value h for the social network, (f) T number of time steps, and
(g) k recently adopted items. The generation steps are described below:

1. (Generation of M items and N users in latent space) We generate M items and
N users as f -dimensional vectors qi’s and pu’s respectively. The item and user
vectors are generated such that each of them has a dominant factor. The set of users
and items are denoted by U and I respectively.

2. (Generation of a social network with homophily value h) We generate Ne edges
among the users using Algorithm 2. The resultant network, Gh = (U,Eh) where
Eh denotes the set of Ne edges, satisfies the required homophily level h.

3. (Generation of an initial adoption state) We want to ensure that every user in the
network initially has adopted at least k items. We assign k items to each user based
on his latent factor interests.

4. (Generation of a diffusion cascade) We randomly assign a user as the single seed of
diffusion. The seed user will adopt all M items initially. We then employ TIHAD
model to start generating a data set of simultaneous diffusion of the items over the
network Gh within the time interval [1, T ]. The details of this step are given in
Algorithm 3.

We generate N diffusion cascades by performing steps 3 and 4 with a different
initial adoption state and different user as the seed each time. Hence every diffusion
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Algorithm 2 Generation of a network with a given homophily level
1: procedure BUILDNETWORK(U, Ne, h)
2: Pairs← {(u, v) : u 6= v ∈ U}
3: for each user pair (u, v) ∈ Pairs do
4: Compute user-item similarity: sim(u, v)← pTupv
5: Compute edge weight: ρ(u, v) ∼ exp (h · sim(u, v))
6: end for
7: Normalize: p(u, v)← ρ(u,v)∑

ρ(u′,v′) , ∀(u, v) ∈ Pairs
8: Collect probabilities: probs← (p(u, v) : (u, v) ∈ Pairs)
9: Sample Ne edges based on the probabilities: Eh ← sample(Pairs,Ne,probs)

10: return Network Gh = (U,Eh)
11: end procedure

Algorithm 3 Generation of diffusion data
1: procedure CREATEDIFFUSION(I, Gh, θ, T, us) . Gh = (U,Eh): network in Algo. 2
2: for t ∈ [1, T ] do
3: Initialize At ← ∅ . Set of adoption records at time t
4: for u ∈ U do
5: Derive Cu,t by Definition 1 . use seed us to get Cu,1, ∀u
6: for i ∈ Cu,t do
7: Compute adoption label approximation âu,i,t by Eqn. (9)
8: end for
9: Pick adoptions It(u)← {i ∈ Cu,t : âu,i,t ≥ 1− θ} . approx. is close to 1

10: At ← At ∪ {(u, i, t) : i ∈ It(u)} . Add to adoption records at time t
11: end for
12: end for
13: Collect all adoption records:AT

1 ←
⋃T
t=1At

14: return D =
(
I,Gh,A

T
1

)
15: end procedure

cascade share the same network with identical user and item latent factor vectors. We
finally generateN different data sets so that we can get empirical distribution of cascade
sizes.

5.1 Impact of Homophily on Diffusion

Experiment Setup: We study how the size of diffusion cascade is affected by different
degrees of homophily h. Thus, we generate items and users by setting f = 10. We then
generate diffusion in five different networks Gh’s each with a different h value, h ∈
{0, 0.2, 0.4, 0.6, 0.8}. These networks however share the same set of users and same
number of edges to minimize the effect of choices of users and number of relationships
among them. For each such network, we generate N diffusion cascades of M items
using TIHAD and study distribution of the average cascade size over the M items.
Detailed statistics of this experiment is provided in Table 1.
Result: As the homophily level increases, the diffusion cascade also becomes larger
(see Figure 1a). This trend is observed for all items. To evaluate the robustness of the
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Fig. 1: Impact of homophily and item interaction on diffusion.

result, we repeat the experiment for f = 15 and f = 20. We report here results for
f = 10 and f = 15. This result is expected as homophily facilitates diffusion ([5], [3]).
It also shows that our model has incorporated homophily effect properly.

5.2 Impact of Item Interaction on Diffusion

Experiment Setup: In this experiment, we change our focus to study how item inter-
action (i.e. support among items) affects diffusion. We now generate diffusion cascades
on the same network with a fixed homophily level h = 0.1. The item set is however
generated differently. We partition the item set I into the majority set I1 (occupy 75% of
I) and the minority set I2. In each subset, items are generated such that they are similar
to each other. Thus, items in I1 receive more interaction than items in I2 and we can
study difference in cascade sizes of items in two sets. Other statistics of this experiment
is the same as in Table 1.

Under this setting, we use TIHAD model to simulate diffusion as done in the previ-
ous experiments. We then compare cascade size distribution of items in I1 against that
of items in I2. We also want to see if cascades generated by TIHAD are significantly
different from those generated by a baseline diffusion model that does not consider
item interaction. Hence, we generate another set of cascades following the same pro-
cess using the LTLF model. The cascade size distributions of the two models are then
compared.
Result: Figure 1b shows several interesting insights. First, it provides strong evidence
that TIHAD model can capture the item interaction effect (among similar items) cur-
rently ignored by the existing models including LTLF. The figure shows that the cascade
size of an item diffused with TIHAD is much larger than that of the item when it is dif-
fused using LTLF. Moreover, the more similar an item with previous items, the larger
cascade size it can reach. This makes sense since an item will receive more support in
diffusion if it is more similar to other previously adopted items.
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Table 1: Parameters used in synthetic data generation
# factors # items # users # edges Homophily level # recent items # time steps

f ∈ {10, 15, 20} 100 500 70K h ∈ {0, 0.2, 0.4, 0.6, 0.8} k = 5 T = 20

Table 2: Statistics of diffusion data among Singapore Twitter users in Valentine Day
Data set # hashtags # users # follow links # adoptions # time steps # adoption labels
Training 4002 1000 9935 11, 565 12 60, 875
Test 1219 884 8754 9390 12 39, 375

Total 4002 1000 9935 20, 955 24 100, 250

5.3 Hashtag Diffusion Prediction Evaluation

This experiment aims to evaluate TIHAD using real dataset and compare it with the
baseline LTLF model which does not consider item interaction.
Data set: We first collected the diffusion of hashtags in the Twitter network among
Singapore users during on 14 February 2014, the Valentine Day. We expected that there
should be some interesting diffusion cascades on this special day. We extracted the
tweets of about 150,000 Singapore users from 3 to 16 February and sampled 1000
active users who adopted at least 3 hashtags per day. These users are connected by a
social network with 9935 follow links.

We next wanted to determine the time step when each user first adopted a hash-
tag during the Valentine Day. Each time step duration is set as one hour. We confined
ourselves to fresh hashtags which only appeared during Valentine Day but not the days
during [3 Feb, 13 Feb]. We then identified the time step a user adopted a hashtag as
the first time step in 14 February he used the hashtag. We obtained 20, 847 hashtags
which the active users adopted from 00:00am to 11:59pm on the Valentine day. By fil-
tering away unpopular hashtags, i.e., those with less than 5 active users adopting them,
we were left with 4002 hashtags and 20, 955 adoptions. Based on Definition 2, we de-
rived 100, 250 adoption labels (both adoption and non-adoption) associated with these
24 hours. Adoptions of the users on previous day (13 Feb) were used as their initial
adoption histories. The hashtag diffusion data on 14 February from 0:00am to 11:59am
is then used as the training data, while the remaining data on 14 February is used as the
test data. The statistics of combined training and test datasets is summarized in Table 2.
Training process: We trained both TIHAD and LTLF using the diffusion training
dataset on February 14. We tried different values for the regularization constant and
observed that δ = 0.1 gives the best result in terms of minimizing RMSE. We also
tried different values for the number of recent items k ∈ {1, . . . , 10} and found that
k ∈ {3, 4} yield the best RMSE result for this training dataset. In the learning process,
we observed that both models can achieve smallest RMSE for the training data.
Evaluation metrics: For evaluations, we used two accuracy metrics: (i) RMSE for
measuring the model performance during training, and (ii) F1@l when using the trained
models for the hashtag adoption prediction task on the test data. To compute F1@l, we
use the trained models to predict hashtag adoptions (based on estimated adoption labels)
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Fig. 2: Comparing TIHAD against baseline LTLF. Both models were trained with
regularization coefficient δ = 0.1; for TIHAD, the number of recent items k is set as 3.

from 12:00 noon to 11:59pm of 14 Feb 2014. We selected those users who appear in
both the training and test datasets and extracted from their tweets generated during the
test period the hashtags that already appeared in the training set. The resultant test set
had 884 users and 1219 hashtags which were actually adopted during the test period
(detailed statistics of the test set can be found in Table 2).

Results: We first focus on the accuracy of trained models using RMSE defined on the
training data. As shown in Figure 2a, the RMSE obtained by TIHAD is much smaller
than that of LTLF when they are trained using the same dataset for different latent factor
settings (i.e., 4 ≤ f ≤ 16). TIHAD achieves the best RMSE when f = 10, while LTLF
achieves best RMSE at f = 12.

In the prediction task, TIHAD shows a huge improvement over LTLF as shown in
Figure 2b. Other than l = 2, TIHAD outperforms LTLF for all other i values. The
highest F1 achieved by TIHAD (F1@8) is more than 150% that of LTLF (F1@10).

As TIHAD performs best for 10 factors, we would like to know what are the 10
factors. We manually check the top hashtags of each latent factor. We discover that the
latent factors are topical and manually assign them topical labels. Table 3 shows the
latent factors and their top 3 hashtags (due to limited space). Most of the latent factors
(e.g., Music tour, Valentine, Electronics, Self-Improve) are self explanatory based on
hashtags. The “Music bands/Singers” latent factor covers names of singers (e.g., Siti
Nurhaliza and Eminem) and music concert (e.g., SUL14). The “Local movies/actors”
latent factor covers popular movies (e.g., “You Who Came From the Stars”, “Brothers
Keeper”) and actor (e.g., Gong Li). The other latent factors can be interpreted in a
similar manner.

Finally we would like to see what TIHAD can tell us about the network based
on the homophily level and influence weights it learned. The homophily level learned
by TIHAD is h = 0.08. This value is quite small and can be explained due to the
sparseness of the network under study. Moreover, the histogram of influence weights
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Table 3: Latent factors and their top-3 hashtags
Latent Factors Hashtags

Music bands/Singers eminemftw, DatoSitiNurhaliza, SUL14
Local movies/actors YouWhoCameFromTheStars, BrothersKeeper, GongLi

International movies/actors frozen, jimmyfallon, KristenWiig
Music tour RedAsiaTour, TheScriptUSTour, BANGERZTour2014

Sport ICC2014, F1NightRace, LFCfacebook
Beauty ILoveWTF, Dior, maybellinesg

Valentine happyvalentine, firstvalentine, TweetforLove
Scandal/Controversy AsylumSeekers, bigimmigrationrow, LittleIndiaRiot

Electronics Xiaomi, ipadmini, Logitech
Self-improve limitless, nickvijucic, empoweryourself

wv,u in Figure 3 shows that most weights are very small (80% of them are close to 0),
which matches the nature of weak links among most Twitter users.

6 Conclusion

This work deals with the challenging problem of modeling multiple simultaneous dif-
fusion processes where topic level interaction exists among items being diffused in a
social network with homophily. We successfully incorporate item interaction and ho-
mophily by proposing a novel way to model social influence from recent adoptions of
user’s neighbors. Behavior of the model under different settings and parameters have
been investigated. Results on synthetic data show that both homophily and interaction
at topic level can increase diffusion remarkably. Experiment on hashtag diffusion on
Twitter shows that TIHAD can model interacting diffusion effectively and give better
prediction as well.

Since training TIHAD is not a convex problem, we are currently using grid search
to deal with the non-convexity. However, the problem is still convex for each set of
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parameters if others are kept fixed. Thus, we plan to use Alternating Descent to develop
a more rigorous algorithm.
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