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Not All Trips are Equal: Analyzing Foursquare Check-ins of
Trips and City Visitors

Wen-Haw Chong, Bing Tian Dai, and Ee-Peng Lim
Dept. of Information Systems, Singapore Management University

80 Stamford Road, Singapore 178902
whchong.2013@phdis.smu.edu.sg, btdai@smu.edu.sg, eplim@smu.edu.sg

ABSTRACT
Location-Based Social Networks (LBSN) such as Foursquare
allow users to indicate venue visits via check-ins. This re-
sults in much fine grained context-rich data, useful for study-
ing user mobility. In this work, we use check-ins to charac-
terize trips and visitors to two cities, where visitors are de-
fined as having their home cities elsewhere. First, we divide
trips into two duration types: long and short. We then show
that trip types differ in check-in distributions over venue cat-
egories, time slots, as well as check-in intensity. Based on
the trip types, we then divide visitors into long-term and
short-term visitors. We compare visitor types in terms of
popularities of check-in venues and proximities to friends’
check-ins. Our findings indicate that short-term visitors are
more biased towards popular venues. As for proximity to
friends’ check-ins, the effect is more consistently observed
for long-term visitors. These findings also illustrate that lo-
cations of incoming visitors can effectively be analyzed using
LBSN data in addition to conducting user surveys which are
relatively costlier.

Lastly, we investigate the importance of visitor type in-
formation in models for venue prediction. We apply mod-
els including a state of the art kernel density estimation
technique and ranking based on venue popularity. For each
model, we consider two settings where visitor type informa-
tion is absent/present. For long-term visitors, we observed
little differences in accuracies. However, for short-term vis-
itors, predictions are significantly more accurate by using
type information. These findings suggest that venue predic-
tion or recommender systems should consider visitor type to
improve accuracy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data Mining
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1. INTRODUCTION
In recent years, Location-Based social Social Networks

(LBSN) such as Foursquare and Yelp have grown rapidly
in popularity. In particular, users can check-in with their
mobile devices to various venues, thus providing researchers
with a wealth of fine-grained data about visitation behavior.

In our current work, we are interested in the check-in be-
havior of travelers visiting a city away from their indicated
home city. We simply term them as visitors. Visitors differ
in their purpose, e.g. not all visitors are tourists or behave
similarly. For better planning of city resources and promo-
tion of tourism, some host countries/cities had conducted
surveys on incoming visitors to determine their travel pat-
terns and needs. One example is the survey on inbound vis-
itors conducted by the Office of Travel and Tourism Indus-
tries (OTTI) of US Department of Commerce [1]. Such sur-
veys are costly and do not always capture more fine grained
mobility patterns of the visitors. In addition, they do not
consider the social dimension of visits.

On the other hand, in the context of venue prediction for
LBSNs, there has been little work that specifically studies
the behavior of visitors considering their types and type-
specific visit patterns [7, 14, 20, 9, 12, 18]. In particu-
lar, we note that for visitors who broadcast their check-ins
while traveling, Foursquare provide sufficient data to esti-
mate conservatively the trip duration or the lower bound.
With the observed trip durations, one can now categorize
trips into long or short and consequently, categorize visitors
into long/short-term types. This leads to several research
questions which we study via detailed empirical analysis on
the Foursquare data collected for two major Asian Cities,
Singapore and Jakarta. The research questions and our
corresponding contributions are listed as follows:

1. What are the differences between long and short trips?

(a) We showed that there are significant differences
between long and short trips in their distributions
over check-in venue categories.

(b) Short trips have higher check-in intensity than
long trips.

2. What are the differences between long-term and short-
term visitors?

(a) Short-term visitors tend to check-in at more pop-
ular venues, compared to long-term visitors.



(b) Check-ins for long-term visitors are slightly nearer
those of his friends, compared to non-friends. For
short-term visitors, this was only observed for one
city.

3. Does knowing the visitor type help to improve the ac-
curacy of venue prediction?

(a) We can improve accuracy for short-term visitors
if a prediction model is aware of their type.

(b) For long-term visitors, we do not observe gain in
prediction accuracy.

The outline of the paper follows the sequence of analysis
steps that we have taken:

1. Datasets construction: We extract Foursquare check-
ins and user profile data for the two cities being stud-
ied. See Section 2.1

2. Trip categorization: In Section 2.2, we extract trips
from check-ins and categorize each trip as long/short.

3. Visitor categorization: Section 2.3 categorizes each vis-
itor to a city as long/short-term based on his trip du-
ration.

4. Trip analysis: Section 3 conducts empirical analysis
on trips to contrast the differences between long and
short trips.

5. Visitor analysis: Section 4 discusses our empirical anal-
ysis on visitors to contrast the differences between long-
term and short-term visitors.

6. Prediction experiment : Lastly in Section 5, we apply
models to predict check-in venues for visitors. For each
model, we consider settings which include/exclude vis-
itor type information. This ascertains the impact of
visitor type on prediction tasks.

2. DATA AND CATEGORIZATION

2.1 Datasets
We study Foursquare check-in data collected for users vis-

iting/residing in two Asian cities: Singapore and Jakarta,
where Foursquare users are known to be highly active. We
recognize that more cities can be studied to enhance this
study. At the moment, we are limited to the two cities
which we are collecting data on.

Besides check-ins, we also collect user profile information
in Foursquare. Each user profile includes the user-indicated
home city which we used to differentiate visitors from locals,
as well as a list of friends. The friendship information is
subsequently used when we analyze visitors’ proximity to
friends in terms of their check-in venues.

For Jakarta, we define a polygon based on the city bound-
aries and exclude the suburbs. This allows us to collect pub-
lic check-in data that fall within Jakarta city. This step is
not required for the island-state of Singapore, which is sur-
rounded by the sea with limited entry points. Also note
that Singapore is both a city and a country, hence visitors
to Singapore are necessarily foreigners. In contrast, visitors
to Jakarta comprise both foreigners and domestic travelers.

We apply a widely used method [8, 14] to collect check-in
data, i.e. via crawling Twitter. As check-ins are publicly
available only if the user broadcast them via Twitter, our

data sets are gathered from related tweets. Each user is
tracked throughout the study period, hence any of his check-
ins outside the cities of interest are collected as well. This is
necessary for us to estimate trip duration. In addition, for
greater reliability in analysis, we only consider active users,
which we define as having at least 10 public check-ins over
the study period. Note that this is different from requiring
a visitor to have at least 10 check-ins at his visited city.

For Singapore, the study period spans June 2013 to Nov
2014, comprising of 1,769,000+ check-ins, prior to filtering
for active users. For Jakarta, 100,000+ check-ins are col-
lected over a period of July 2014 to Feb 2015. Further statis-
tics are listed in Sections 2.2 and 2.3 which discuss how we
categorize trips and visitors.

2.2 Trip Categorization
To analyze the differences between long and short trips,

we first need to extract and then categorize trips. The first
step is straightforward. By tracking a user’s check-ins over
time, one can extract segment(s) where he check-ins at some
given city of interest, say A, i.e. hence indicating trip(s) to
A. Also recap that we define a user as a visitor to city A
only if his listed home location is not in A.

For the second step, we need to categorize trips as long/short
based on the trip duration. The simplest estimate is to use
the time difference between the first and last check-in for
a segment in A. However this requires the first and last
check-in at A to be extremal: user check-ins at the moment
of arrival and just before he departs from A. Otherwise the
trip duration is underestimated. Obviously, it is also tricky
to determine whether each user fits such a scenario.

To circumvent the described issues, we adopt a more gen-
eral approach to estimate trip durations. Given two consec-
utive check-ins in two different cities, the crossing time is
the time where the user crosses from one city to the other.
This can be estimated as the mid-point of the two check-in
times. It can be seen that a trip to a host city is necessarily
bounded by two crossing times, the first being the arrival
time at the host city and the second being the departure
time from the host city. With the estimated arrival and
departure time, the trip duration can then be estimated as
the difference. This is a conservative estimate, not biased
towards overestimating/underestimating the trip duration.
Furthermore, it can be applied even if the trip contains only
one check-in.

Formally, let the tuple < tj , Cj > represent a user’s j-
th check-in, occurring at time tj at city Cj . As an exam-
ple, assume the following sequence of check-ins involving
cities A and B: {< tj , B >, < tj+1, A >,...,< tj+m, A >,
< tj+m+1, B >}. The trip duration for A is estimated as

(tj+m + tj+m+1)/2− (tj + tj+1)/2 (1)

Figure 1 presents a conceptual illustration.
Note that trip durations can be estimated only for uncen-

sored trips, i.e. bounded by two crossings corresponding to
the estimated arrival and departure times at the host city.
After estimating the durations for all such trips, we apply
two-mode Gaussian Mixture Modeling (GMM) to cluster
trips into long and short trips. We also use GMM to de-
rive a duration threshold1, whereby out of sample trips with

1The threshold is an equiprobable point between the two
modes using standard GMM formulation.



Figure 1: Estimating duration for a trip to city A.
Red/blue tick marks are check-ins at city A/B.

Table 1: Statistics from trips by visitors. Thresholds
and durations are in days. Last row list the check-in
count from locals.

Singapore Jakarta
Threshold (days) 9.9 8.34

Long trip mean duration 45.4 22.81
Short trip mean duration 2.8 2.24

No. of long trips 1,490 1,768
(check-ins involved) (37,124) (6,708)
No. of short trips 2,976 5,350

(check-ins involved) (9,114) (11,704)
Check-ins from locals 918,786 43,808

longer/shorter duration than the threshold are categorized
as long/short.

Table 1 displays statistics derived for both Singapore and
Jakarta, including check-ins generated by locals, i.e. from
users listing their home locations as Singapore/Jakarta. In
Section 3, we shall analyze the trips and local check-ins sum-
marized in Table 1.

Reassuringly, the mean duration for short trips to Sin-
gapore is only slightly lower than the official statistics for
average length of stay (3.5 days) for tourists [4]. The latter
statistic excludes visitors from neighboring Malaysia, where
short cross-border trips will have the effect of lowering the
mean duration. For Jakarta, the city limits do not consti-
tute a border between countries, hence the equivalent visitor
statistics are not captured.

Instead of just long and short trips, one can also differen-
tiate trips into more fine-grained duration categories. This
will bring out larger differences when comparing extremal
categories, e.g. very long versus very short trips. In the cur-
rent work, we have used only two categories for brevity and
to simplify our analysis. As will be evident in subsequent
sections, this is already adequate for us to observe significant
differences between long and short trips.

2.3 Visitor Categorization
Given a city A, we consider users to be locals if they in-

dicate their home city in Foursquare as A, otherwise they
are considered visitors if they check-in at A at least once.
For locals, we only include those with at least half of their
check-ins in A, thus excluding cases where locals are mostly
staying elsewhere. For the visitors, we categorize them as
long-term or short-term based on the following criterion:

• Short-term: The visitor has only short trips to A.

Figure 2: Red tick marks are check-ins during a trip.
The shaded block is unobserved data. Trip 1 is short
while trip 2 is long, but they are undifferentiable by
their observed trip durations. Trip 3 is unambigu-
ously a long trip as the observed trip duration is
already long enough.

Table 2: Count of visitors and locals. Ambiguous
visitors have censored trips which appear to be short
and no long trips, hence it is uncertain if they are
short-term or long-term.

Singapore Jakarta
Long-term visitors 2,282 1,337
Short-term visitors 835 948
Ambiguous visitors 782 316

Locals 8,597 1,466

• Long-term: The visitor has at least one long trip to A.

whereby trips are categorized as described in Section 2.2.
Furthermore, short trips are required to be uncensored and
long trips can be censored. This is because if a trip is cen-
sored, the estimated duration is only a lower bound. It is
then possible for a short trip to become a long trip as more
data is collected. However if a trip is already of long du-
ration, more data will not change the fact that it is a long
trip. Figure 2 illustrates the concept.

It is possible to refine the criterion above to account for
other factors, e.g. thresholding the number of trips such that
visitors with too many short trips are treated as a separate
category. We defer this to future work. For ease of analysis
and brevity here, we categorize visitors into just long/short-
term, showing that significant differences already exist.

Table 2 displays the visitors/locals statistics for Singapore
and Jakarta as gathered from Foursquare. We shall analyze
these users in Section 4. We exclude visitors who are am-
biguous, i.e. having censored trips which appear to be short
and no long trips. With more data, their censored trips may
well become long trips. Table 3 gives a breakdown of the
number of check-ins per visitor type per city. For example,
388 short-term visitors to Singapore only made 1 check-in
during their trip. As will be elaborated in Section 5.1, such
sparse data impacts how we design personalized prediction
models.

3. TRIP ANALYSIS
In this section, we study the differences between long and

short trips by a number of measures including check-in dis-
tributions over venue categories/subcategories, check-in dis-
tributions over time and check-in intensity.



Table 3: Check-in distribution at the visited city per
visitor type

Singapore Jakarta
Check-in count short-term long-term short-term long-term

1 388 114 323 137
2 141 57 155 112
3 85 54 137 107
4 44 43 81 91
5 33 42 61 76
> 5 144 1972 191 814

(a) Singapore

(b) Jakarta

Figure 3: Check-in distributions over main cate-
gories for long trips (long), short trips (short) and
from locals (local).

3.1 Venue Categories
Trips to a city are made for various purposes, affecting

both the trip duration and the categories of venues vis-
ited. In this section, we examine the distribution over venue
categories to understand trip purposes. Our task is fa-
cilitated by the fact that Foursquare already categorizes
venues into 10 top-level categories which indicates their func-
tions. These are: Arts & Entertainment (Arts), College
& University (College), Food, Professional & Other Places
(Prof.), Nightlife Spot (Nightlife), Outdoors & Recreation
(Outdoors), Shop & Service (Shop), Travel & Transport
(Travel), Residence and Events.

Figures 3(a) and 3(b) show the check-in distribution over
venue categories for Singapore and Jakarta respectively. For
example in Singapore, the probability of having a check-in
from a long trip at a shopping venue (the ‘Shop’ category) is
0.24. The same probability is lower at 0.19 when the check-
in comes from a short trip. For comparison, we also include
the probability if the check-in is from a local.

From Figure 3, our key observation is: long trips have
check-in distributions more similar to that of local
check-ins, when compared to short trips. To quan-
tify these differences, we compute the Jenson-Shannon di-

vergence (JS) of distribution pairs as shown in Table 4. Note
that the divergence values are small, but statistically signif-
icant, indicating that the differences are not due to chance.
(We describe a test for significance in Appendix A.) In par-
ticular, divergence values between distributions from long
trips and local check-ins are smaller for both Singapore and
Jakarta, consistent with our key observation.

Table 4: Jenson-Shannon divergence values between
pairs of category distributions. All values are statis-
tically significant (p-value < 0.05)

JS divergence Singapore Jakarta
(long, local) 0.0047 0.0137
(short, local) 0.0363 0.0281
(long, short) 0.0185 0.0067

The key observation is intuitive since long-term visitors
may have different focuses from short-term visitors or be
assimilated to some extent in terms of check-in patterns.
For example, if one stays for a long duration, shopping and
dining needs tend to take on greater importance as compared
to sightseeing or attraction hopping. There may also be a
higher likelihood to visit places frequented by locals [27],
instead of the usual tourist hangouts.

Besides the key observation, Singapore and Jakarta share
other similarities:

• For ‘Travel’, short trips have much higher probabilities
than long trips, which in turn have higher probabilities
than local. This is intuitive since under this category,
the various venue sub-categories are generally inter-
esting to travelers, e.g. hotels, resorts, airports etc.
(In Section 3.2, we shall examine the subcategories in
more detail.)

• For both cities, long trips and local are also more sim-
ilar in probabilities for ‘Food’. This suggests that food
places are more popular in long trips and among locals.

For observations specific to Singapore, long trips are closer
in probabilities to local than short trips for ‘Shop’, ‘Nightlife’,
‘College’, ‘Arts’ and ‘Prof’.

Lastly we note that the differences between long/short
trips and local are more pronounced for Singapore than
Jakarta. One contributing factor is the following: Singa-
pore is both a city and a country, hence visitors are for-
eigners by definition. For Jakarta, visitors may be foreign-
ers or fellow Indonesians residing elsewhere. We can expect
the latter group to have somewhat similar visitation pat-
terns/preferences to Indonesians residing in Jakarta. This
brings down differences when we compare visitors and lo-
cals. For example, Indonesia is a Muslim majority country.
One will expect most domestic visitors and locals to not visit
nightlife venues where alcohol may be served. Consistent
with this, Figure 3(b) shows little differences in ‘Nightlife’
probabilities between check-ins from trips and local. In con-
trast, Figure 3(a) shows that for Singapore, local check-ins
have the highest probability for ‘Nightlife’, followed by long
trips and with short trips last in place. As a side note, since
visitors’ ethnic composition affect their travel patterns, one
can conduct interesting analysis of a city’s ethnic composi-
tion or to quantify how cosmopolitan or mixed a population
is. This may be useful as metrics for expat livability index
for different cities [2].



3.2 Venue Subcategories
Earlier, we have seen that for check-in distributions over

main venue categories, long trips are more similar to local
check-ins, than short trips. As main categories are coarse
and each can comprise many subcategories, we further ana-
lyze check-in distributions over subcategories as well. How-
ever it is not informative to display the complete distribu-
tions here due to the large number of subcategories (>700).
Instead, we examine most probable travel-related subcate-
gories where differences are more discernible.

Our procedure is as follows. First, for all trip types and lo-
cal check-ins, we sort subcategories by probability. From the
most probable 30 subcategories for short trips, we then man-
ually select those that are travel-related and examine how
their probabilities vary with trip types. The selected sub-
categories are either places of interest or provide transport
and accommodation services required by typical travelers.
Note that it suffices to select from short trips since we do
not observe any travel-related subcategories that are proba-
ble for long trips / local but not among the top probable in
short trips. We also observe the travel-related subcategories
to be specific to cities, e.g. casinos have zero probabilities
in our Jakarta data, but not in our Singapore data.

(a) (b)

Figure 4: Travel-related subcategories (Singapore)

Figure 5: Travel-related subcategories (Jakarta)

Figure 4 displays the travel-related subcategories for Sin-
gapore. The subcategories are divided into the two fig-
ures 4(a) and 4(b) for better visibility due to differences in
probability range. Figure 5 depicts similar information for
Jakarta. From both figures, it is evident that short trips have
higher probabilities in travel-related subcategories in both
cities. Also consistent with the earlier observation for main
categories, long trips have distributions that are closer to
that of local check-ins, when we consider travel-related sub-
categories. Thus our key observation follows: short trips
have higher check-in probabilities for travel-related
subcategories than long trips and local check-ins.

For example short trips to Singapore has a check-in prob-
ability of 0.013 to theme parks2, much higher than the prob-
abilities of 0.004 for long trips and 0.002 for local check-ins.
Interestingly, among the six subcategories displayed for Sin-
gapore, locals have the lowest probability for casinos. This
is expected since the Singapore government imposes a levy
of $100 [3] on local residents to enter casinos. The levy is
exempted for foreigners.

From the most probable 30 subcategories for short trips,
Jakarta has fewer travel-related subcategories (than Singa-
pore). The inclusion of ‘Train Station’ warrants explana-
tion since it was also probable for short trips in Singapore,
but excluded. We include train stations as travel-related for
Jakarta since visitors may arrive by train from other parts
of Indonesia. This is rather different from train stations in
Singapore, which we manually found to be referring to the
local intra-city subway stations in many cases.

For Jakarta, Figure 5 shows the most probable subcat-
egories i.e. ‘Train Station’, ‘Hotel’, ‘Airport’ and ‘Monu-
ment/landmark’. For each subcategory, short trips have
highest probability, followed by long trips and lastly, lo-
cal. Thus short trips are again more biased towards travel-
related subcategories.

Lastly, we observe that for both cities, locals do have some
non-zero check-in probabilities at hotels, which is counter-
intuitive. We attribute this to the trend of staycations, a
form of in-country get-away, where one spends some nights
at a local hotel for rest and relaxation. In fact, online
searches of ‘staycation’ for both cities return a long list of
hotels offering staycation packages to attract locals.

3.3 Check-in Probabilities over Time
We now compare the check-in probability distribution over

hour of the day. Recap that we have observed long trips and
local check-ins being more similar in category/subcategory
distribution. For consistency, we now expect the mentioned
pair to be more similar in temporal distribution as well (than
short trips versus local check-ins).

Firstly, we compute the Jenson-Shannon divergence val-
ues between distributions in each city. This does not contra-
dict what we expect, however the divergence values are not
statistically significant. For example in Singapore, between
short trips and local, we have divergence of 0.006 while be-
tween long trips and local, we obtain 0.0032. Nonetheless
the divergence values are computed over all hours, which
may obscure certain local differences. In the next paragraph,
we describe differences that we observed by zooming in on
certain hours.

Figure 6 presents the check-in probabilities over hour of
the day for Singapore. It is clear that all distributions
slightly peaked around lunch and dinner time. This is ex-
pected as we have earlier seen that the category ‘Food’ is
very popular. On closer analysis, long trips and local check-
ins appears more similar, especially around dinner time, i.e.
1800 to 2000 hours. This suggests a pick up in activities af-
ter office/school hours, leading to more check-ins. For short
trips, one observes relatively more check-ins between lunch
and dinner timings. Certainly, some of these check-ins would
have been contributed by tourists who are not constrained
by office hours, being free to spend the day visiting attrac-
tions, sight-seeing or shopping.

2Many check-ins are at the Universal Studios theme park, a
popular attraction for tourists [5]



Figure 6: Check-in probability (Y-axis) over hour of
day (X-axis) for Singapore.

For brevity, we omit the plot for Jakarta, which is rather
similar, except that check-in probabilities are lower than
those of Singapore during the early hours (hours 0 to 5),
probably due to less nightlife activities. For the check-in
distributions over day of the week, the differences between
trip types and local check-ins are small for both cities and
we omit them from further discussion here.

3.4 Check-in Intensity
How frequent are check-ins made at city A when a visitor

makes long/short trips to A? Our key observation is the
following: Short trips have higher check-in intensity
than long trips at the destination, with smaller time
gap between consecutive check-ins.

Using trips with more than one check-in, we compute
the time gap between consecutive check-ins and tabulate
for different trip types. For short/long trips to Singapore,
the time gaps are computed using 7,530/36,811 check-ins
from 1,392/1,177 short/long trips. For short/long trips to
Jakarta, time gaps are computed using 8,931/6,143 check-ins
from 2,577/1,203 short/long trips.

Figure 7 plots the Cumulative Distribution Function (CDF)
for time gaps. For both cities, it is clear that short trips have
smaller time gaps, or equivalently higher check-in intensity.
For example in Figure 7(a) for Singapore, around 93% of
time gaps from long trips have duration less than 100 hours,
whereas the corresponding figure for short trips is close to
100%. In Figure 7(b) for Jakarta, we have 78% of time gaps
from long trips and 99% of time gaps from short trips to be
under 100 hours.

(a) Singapore (b) Jakarta

Figure 7: CDF for time gap (hours) between con-
secutive trip check-ins. (Red:long trips, blue:short
trips)

Time gap measurement requires more than one check-in
in the trip segment, thus excluding a number of trips from

analysis. However this does not affect our key observation.
As a robustness check, we have computed another statistic:
average time covered per check-in. For each trip, we simply
divide the estimated trip duration by the check-in count, e.g.
if a trip contains two check-ins over two days, each check-in
covers one day on average. In this manner, all trips with
at least one check-ins are also included. Results show that
each check-in in short trips covers a shorter time duration
on average, thus reaffirming our key observation. For Sin-
gapore, each check-in from short/long trips covers 1.7/11.1
days on average. For Jakarta, values for short/long trips are
1.6/12.5 days. The CDFs are similar in form as Figure 7
and omitted for brevity.

To understand the reasons behind the intensity differ-
ences, it is desired to conduct field studies or surveys of
the visitors. We leave this to future work. Currently, we
offer some intuitive reasons: short trips are more likely to
be undertaken by tourists, who may visit more venues over a
shorter period of time. Thus higher check-in intensity simply
reflects more intense visitation activities. Another potential
reason is that for short trips, one may tend to focus on key
venues that are main draws since there is a need to max-
imize utility over limited time. Visiting such venues then
increases one’s propensity to check-in for the ‘cool’ factor
or to enhance self-presentation [10]. Indeed, we shall see in
Section 4.1 that short-term visitors (who make only short
trips) tend to visit more popular venues.

4. VISITOR ANALYSIS
In this section, we conduct analysis on a visitor level.

Since trip characteristics should carry over to visitors, we
examine characteristics that are orthogonal to what we have
studied previously in trips. For example, given that check-
ins from short and long trips have different probabilities over
categories, the resulting visitor types will naturally differ in
this aspect as well.

Recap that we categorize visitors as long/short-term in
Section 2.3. Based on this categorization, we now examine
the differences between different types of visitors in terms
of the popularity of check-in venues and their proximity to
friends’ check-ins. In summary, we observe:

• Short-term visitors are more biased towards popular
venues than long-term visitors.

• For Singapore, both long and short-term visitors tend
to check-in at venues closer to that of their friends than
non-friends. For Jakarta, this proximity effect is only
observed for long-term visitors.

4.1 Venue Popularities
For each venue, we quantify its popularity using two mea-

sures: check-in count and no. of unique visitors. The two
measures differ since each visitor can check-in multiple times
at one venue. For each check-in instance from long/short-
term visitors, we compute venue popularities. Figures 8 and
9 plot the Complementary Cumulative Distribution function
(CCDF) for Singapore and Jakarta respectively.

Our key observation is the following: short-term visi-
tors tend to check-in at more popular venues than
long-term visitors. This is consistent across both cities
and both popularity measures.

In both Figures 8 and 9, the CCDF curves for short-term
visitors (blue) are above that for long-term visitors (red)



over a wide interval of popularity values (X-axis) thus sup-
porting our key observation. For example, in Figure 8(b)
for Singapore, 20% of check-ins by short-term visitors are
to venues with at least 2000 unique visitors. For long-term
visitors, the same proportion is only 8%. When we consider
popularity in terms of check-in count, Figure 8(a) shows that
20% of check-ins by short-term visitors are to venues with
at least 3000 check-ins. The corresponding proportion for
long-term visitors is only 13%.

Venues are popular for various reasons, e.g. main attrac-
tions, must-try restaurants, key shopping areas etc. Given
the limited time short-term visitors have, it is natural to fo-
cus on more popular venues where one is assured of a min-
imal level of utility or satisfaction. In contrast, long-term
visitors will have more time and can afford to go off the well
beaten track [27]. Such visitor behavior is well supported by
the results here.

(a) Popularity (check-in) (b) Popularity (unique visi-
tors)

Figure 8: CCDF for venue popularities for long-term
(red) and short-term visitors (blue) to Singapore

(a) Popularity (check-in) (b) Popularity (unique visi-
tors)

Figure 9: CCDF for venue popularities for long-term
(red) and short-term visitors (blue) to Jakarta

4.2 Proximity to Friends’ Check-ins
It has been established [7, 16, 12] that a user’s friendships

and his check-in venues are weakly related. Here, we inves-
tigate to what extent this is true for visitors. Our focus is
different, since we specifically study visitors, who may not
have deep social connections at the cities they are visiting.
Our research question is: to what extent are check-ins and
friendships related for short/long-term visitors.

Recap that we are using the friendship information that
visitors have declared in their Foursquare profile (Section
2.1). We consider the case where visitor u to city A have
friend(s) who also check-in at A. We do not differentiate be-
tween friends who are locals residing in A or other visitors.
For u and each of his friend, we then compute the average

distance between their sets of venues. This is repeated over
all of u’s friends, following which we take the mean to obtain
a ‘friend’ statistic value for u. We compare this value with
one from a ‘non-friend’ null model, where we replace u’s
friends with the same number of non-friends which are ran-
domly sampled. Larger differences between the two values
indicate that a visitor’s check-ins and his friends’ check-ins
are more strongly related.

For a more rigorous approach that does not over-amplify
the distance of non-friends, we restrict the null model sam-
pling to nodes from the social network that u belongs to,
based on visitor type. For example, if u is a short-term
visitor, we sample from a social network comprising of all
short-term visitors and their friends. Note that some users
may be friends of both short and long-term visitors, thus
existing in both short/long-term social networks. To collect
more comprehensive ‘non-friend’ statistics, we sample for 10
trials such that each visitor has 10 non-friend values. Fig-
ures 10 and 11 compare the CDF for the ‘friend’/‘non-friend’
values for Singapore and Jakarta respectively.

Figure 10 shows that for both visitor types in Singapore,
visitors check-in at venues closer to that of their friends,
when compared to randomly sampled non-friends. This is
indicated by the CDF for ‘friend’ values (red) being con-
sistently above that of ‘non-friend’ (blue). The effect of
friends are rather similar for both visitor types in Singa-
pore. Comparing the CDF median at F (x) = 0.5, the
‘friend’/‘non-friend’ statistics are around 13/14 km in Fig-
ure 10(a) . For long-term visitors in Figure 10(a), at the me-
dian, ‘friend’/‘non-friend’ statistics are around 9.6/10.5 km.
Thus at the median, the distance reduction due to friends is
around 1 km. It is also evident that the distance reduction
is fairly constant for a wide band around the median.

Figure 11(a) shows that the distance reduction due to
friends are barely discernible for short-term visitors to Jakarta.
This contrasts with long-term visitors in Figure 11(b) where
some reduction is observable. Thus, not all observations
from Singapore carry over to Jakarta and city characteris-
tics do affect whether visitors check-in close to that of their
friends.

Following the analysis, we can now summarize our key
observations as: For long-term visitors, his check-in
venues and friendships are weakly related. For short-
term visitors, this was only observed for Singapore.

Lastly, we point out that proximity to friends’ check-ins is
related to the homohily phenemenon which is driven by two
processes: [15]: social influence and selection. Under social
influence, visitors’ check-in behavior are influenced by their
friends. For selection, visitors with similar preference visit
similar or nearby venues and bond with each other, thus
becoming friends, e.g. nightclubbers connecting at clubbing
sessions.

5. PREDICTION EXPERIMENTS
Based on each visitors’ indicated home cities and trip du-

ration, we have extracted and categorized visitors to Singa-
pore and Jakarta into long/short-term. We have also shown
that both visitor types have different characteristics. We
now examine if the visitor type information can improve
venue prediction accuracy for different models.

For each visitor, our task is to predict the set of venues in
the last 10% of his check-ins during the trip. For example,
if a visitor makes 20 check-ins during his trip to Singapore,



(a) Short-term visitors (b) Long-term visitors

Figure 10: CDF of average distance to venues of
friends(red) /non-friends(blue) for Singapore

(a) Short-term visitors (b) Long-term visitors

Figure 11: CDF of average distance to venues of
friends(red) /non-friends(blue) for Jakarta

we predict the venues involved in the last 2 check-ins. If
a visitor has less than 10 check-ins for his trip, we simply
predict for the last 1 check-in. Our results show that:

• We can improve prediction accuracy for short-
term visitors if a model is aware of their type.

• For long-term visitors, it is not necessary to differen-
tiate them from short-term visitors and we do not ob-
serve accuracy gains.

The reason for the second point depends on the prediction
model employed, but for personalized models, the amount of
personal data plays a part. As shown in Table 3, long-term
visitors generally have more check-ins during their trips than
short-term visitors. Hence if the model is able to exploit
personal check-in history to make good predictions, then
visitor type information is immaterial.

Inclusion/exclusion of visitor type information. To
predict for each visitor, we use two experiment settings. In
the first setting, the prediction models are aware of the vis-
itor type and use only check-ins from the correct type for
training or ranking. This can be seemed as a form of strat-
ification in the hope of achieving better accuracies. In the
second setting, the visitor type is unknown and the models
simply utilized all visitor check-ins. For each setting, we use
different models to rank venues per visitor such that high
ranking venues are regarded as more likely to be check-in
to. Henceforth we compare the results across settings per
model and ascertain if the first setting gives better accu-
racy. Our prediction models include a sophisticated Kernel-
Density Estimation (KDE) model adapted from a recent
work [18] and simpler popularity-based ranking techniques.

In summary, for Setting A, our visitor-type aware pre-
diction models are as follows:

• KDE model that includes a background component
comprising check-ins from the specific visitor type

• Ranking of venues based on number of check-ins from
the specific visitor type

• Ranking of venues based on number of unique visitors
from the specific visitor type

In Setting B, the models are unaware of the visitor type:

• KDE model that includes a background component
comprising check-ins from all visitors

• Ranking of venues based on number of check-ins from
all visitors

• Ranking of venues based on overall number of unique
visitors

Ranking venues based on check-ins/unique visitors are
straightforward and self-explanatory. In the next section,
we briefly explain the KDE model and the notion of the
background component.

5.1 KDE Model
For each visitor in his city of visit, we fit a continuous two

dimensional KDE model that estimates his check-in prob-
ability density at any city location. Compared to tradi-
tional spatial modeling techniques with Gaussian mixtures,
the KDE model does not assume any parametric form for
the spatial distribution and is better able to handle sharp
transitions in spatial densities due to man-made or natural
terrain.

We compute the probability of a visitor’s check-in at a
venue by predicting the density at the venue’s spatial loca-
tion: e =< x, y >. The density conditional on the training
data E = {e1, ..., en}, can be written as:

f(e|E) =
1

n

n∑
i

exp[− 1
2
(e− ei)tC−1

h(ei)
(e− ei)]

2πh(ei)
(2)

where we have used the Gaussian kernel with a diagonal
covariance matrix, C = Ih(ei), and h(ei) is the local band-
width for training point ei, estimated by taking the distance
to the k-th neighbor of ei. Compared to using a global
bandwidth, locally estimated bandwidths vary the degree
of smoothing to better handle regions with sparse or high
density of training points [18, 6].

5.1.1 KDE Models in Setting A
For a long-term visitor u, we can use solely his personal

check-in history Eu for modeling. However to include ad-
ditional information, we use a mixture of KDE components
instead, (each component is equivalent to a KDE model on
its own). Our choice of components differs from that of
[18]. We include a component from the history of friends’
check-ins Ef (u), due to our analysis in Section 4.2. We also
include a background component. In Setting A, the back-
ground component is estimated from the check-in history of
other long-term visitors EL−term. Formally, the KDE model
contains 3 components:

Long-term, Setting A: f(e|E) = αuf(e|Eu)+

αff(e|Ef(u)) + (1− αu − αf(u))f(e|EL−term)
(3)

where ‘α’s are the mixture weights.
For short-term visitors, we again utilize a mixture of KDE

components. However such visitors usually have very few
check-ins at the visited city. For example Table 3 shows that



82.75%/79.85% of short-term visitors to Singapore/Jakarta
have 5 or less check-ins at the visited city. This makes it
difficult to build a KDE component from personal history.
Hence, our KDE mixture uses only 2 components: friend’s
check-in history and a background component. As friends
are specific to each visitor, there is still some personalization,
although at much lower degree than long-term visitors. In
Setting A, the background component is estimated from the
history ES−term of other short-term visitors. The mixture
model is as follows:

Short-term, Setting A: f(e|E) = αff(e|Ef(u))+

(1− αf(u))f(e|ES−term)
(4)

5.1.2 KDE Models in Setting B
The KDE models in Setting B differs from that of Setting

A only in terms of how the background component is con-
structed. For both short and long-term visitors, the back-
ground component utilizes the check-ins of all visitors EAll,
without any differentiation of visitor type. Other compo-
nents in the respective mixture models are retained.

For long-term visitors, the KDE model is now:

Long-term, Setting B: f(e|E) = αuf(e|Eu)+

αff(e|Ef(u)) + (1− αu − αf(u))f(e|EAll)
(5)

For short-term visitors, the model is written as:

Short-term, Setting B: f(e|E) = αff(e|Ef(u))+

(1− αf(u))f(e|EAll)
(6)

5.2 Experiment Design and Metrics
For each visitor, we hide check-in venues from the last 10%

of his trips (by check-in count). We then build the KDE
and popularity-based models to rank all candidate venues
and assess ranking accuracies. Note that for model build-
ing, we only include friend and background check-ins that
occur earlier than the last 10% of the trip. For long-term
visitors, we only consider visitors with > 6 check-ins at the
visited city such that the personal KDE component can be
reasonably constructed. KDE mixture parameters, i.e. the
‘α’s are inferred using a grid search in step size of 0.05.

We refer to each visitor and his hidden venues as a test
case. For Singapore, we obtained 1,498 test cases for long-
term visitors and 582 test cases for short-term visitors. There
are 65,701 candidate venues for ranking. For Jakarta, we
have 461 test cases for long-term visitors and 382 test cases
for short-term visitors. It is required to rank 30,254 venues
in Jakarta. Note that due to the large number of venues per
city, randomly ranking the venues will produce accuracies
much lower than the KDE model or popularity ranking.

To measure ranking accuracy, each hidden venue is con-
sidered only once for the visitor even if he check-ins multiple
times. We use the following accuracy metrics:

• Mean Precision. Given the p highest ranked venues
for a visitor, precision at p, Prec(p) is the proportion
of hidden venues, i.e. venues that he actually check-in
to. We then average precision over all test cases to
obtain the mean precision at position p, MP(p).

• Mean Recall. Given the p highest ranked venues
for a visitor, recall at p, r(p) is the number of hidden
venues retrieved at position p, divided by the total
number of hidden venues. We then average recall over
all test cases to obtain mean recall MR(p).

• Mean Average Precision (MAP). This is based on
Average Precision (AP), commonly used in document
retrieval tasks. For a test case, AP attains a perfect
accuracy of 1 if all hidden venues are ranked higher
than all other candidate venues. AP is computed as:

AP =
∑

p
Prec(p)∆r(p) (7)

where ∆r(p) is the change in recall from position p−1
to p. We average AP over all test cases to obtain MAP.
Also note that for each test case, we evaluate AP over
all ranked venues (instead of just the top p).

5.3 Results
Tables 5 and 6 display the best prediction results in terms

of MAP obtained for long-term and short-term visitors to
Singapore. The corresponding KDE parameters are shown
in Table 7.

5.3.1 Singapore
For each model, we compare the accuracies across settings

A and B. For long-term visitors to Singapore, the relative
differences are extremely small and negligible for both KDE
and popularity ranking. In contrast for short-term visitors,
all models perform much better in Setting A. For such visi-
tors, the MAP gain of Setting A over B ranges around 100%
for popularity ranking to 56% for KDE. Large gains are also
observed for the other metrics of recall and precision. Hence
for short-term visitors, it is beneficial to identify them as
such, and use only check-ins from the correct visitor type. If
one simply uses all visitor check-ins, there is too much noise
from long-term visitors.

Evidently, check-ins from short-term visitors do not im-
pose a problem of noise if included in the prediction model
for long-term visitors. There are several possible reasons,
one of which is many check-in venues of short-term visitors
are popular and also frequented by long-term visitors. For
example, Singapore’s main shopping belt is Orchard Road
which attracts both short and long-term visitors (and lo-
cals). On the other hand, long-term visitors may frequent
less accessible sub-urban malls, which draw fewer short-term
visitors.

For personalized models such as KDE, the length of check-
in history plays a part as well. Short-term visitors spend
much shorter duration at the visited city and many have
insufficient check-ins for estimating the personal component
(refer Table 3). On the other hand, long-term visitors have
richer check-in history and the personal component plays an
important role, i.e. weighted by αu in Table 7. There is
then less sensitivity to the background component, and in
turn, to whether the background uses all visitor check-ins or
not.

Table 7 displays the optimal KDE parameters. Interest-
ingly for long-term visitors, the component for friends are
not important, i.e. αf(u) = 0, which on the surface, seems
contradictory to our earlier empirical analysis (Section 4.2).
This can be explained by the fact that the visitor’s personal
check-in history has already captured the same information
provided by his friends’ check-ins. For example, if a visitor u
and his friends frequent a shopping mall, u’s check-ins alone
may suffice for the KDE model to infer a high density value
for that shopping mall.

5.3.2 Jakarta



Table 5: Results for long-term test cases (Singapore)
Models
Setting MP(10) MP(30) MR(10) MR(30) MAP
KDE model

A 0.0796 0.0346 0.172 0.201 0.1523
B 0.0798 0.0347 0.174 0.201 0.1524

Ranking venues by check-in count
A 0.0496 0.0276 0.127 0.180 0.1118
B 0.0503 0.0277 0.132 0.181 0.1121

Ranking venues by unique visitor count
A 0.0515 0.0282 0.134 0.197 0.1129
B 0.0482 0.0280 0.132 0.196 0.1130

Table 6: Results for short-term test cases (Singa-
pore)

Models
Setting MP(10) MP(30) MR(10) MR(30) MAP
KDE model

A 0.0320 0.0132 0.309 0.380 0.1748
B 0.0182 0.0072 0.174 0.206 0.1124

Ranking venues by check-in count
A 0.0328 0.0143 0.316 0.411 0.1794
B 0.0155 0.0080 0.144 0.227 0.0823

Ranking venues by unique visitor count
A 0.0332 0.0144 0.319 0.413 0.1836
B 0.0211 0.0087 0.200 0.247 0.0958

Tables 8 and 9 display the results for long-term and short-
term visitors to Jakarta, with corresponding KDE parame-
ters displayed in Table 10. Again, for each prediction model,
we compare the results between settings A and B. Table 8
shows that for long-term test cases, Setting A does not con-
sistently provide accuracy improvement across all models
and metrics, when compared to Setting B. On the other
hand, accuracies for short-term test cases (Table 9) are con-
sistently higher for Setting A across all metrics and models.
This agrees with our earlier observation for Singapore.

We note that for short-term test cases in Jakarta, Setting
A provides a smaller magnitude of improvement over Setting
B, as compared to Singapore. For example, MAP for KDE
model increases by 10.39%, from 0.0635 to 0.0701, much
less than the corresponding increase for Singapore (55.6%).
One explanation is that both short and long-term visitors
to Jakarta include fellow Indonesians residing outside the
city. Such domestic visitors may have check-in behaviors
that are more similar to each other, although trip durations
may differ. Thus the differences between short and long-
term visitors are reduced.

5.3.3 Comparisons
Comparing the optimal KDE parameters for Singapore

(Table 7) and Jakarta (Table 10), the background compo-
nent 1−αu −αf(u) for long-term Jakarta visitors has much
smaller weights than the case for Singapore. Concurrently,
long-term Jakarta visitors also have larger weights αu for
their personal history component than long-term Singapore
visitors. Both observations suggest that long-term Jakarta
visitors are relatively more personalized in their behavior.

To investigate further, we compute the normalized en-
tropy of the distributions over venues for long-term visi-
tor groups. We obtain 0.795 for long-term Jakarta visitors

Table 7: Optimal KDE parameters for visitors to
Singapore

KDE model (long-term)
Setting αu αf(u) 1−αu−αf(u)

A 0.40 0.00 0.60
B 0.45 0.00 0.55

KDE model (short-term)
Setting - αf(u) 1− αf(u)

A - 0.15 0.85
B - 0.20 0.80

versus 0.74 for long-term Singapore visitors. Thus the for-
mer visitor group contains more uncertainty, which supports
the notion of each visitor being more personalized. Various
factors may contribute to this, including city planning, car
ownership and the availability of public transport etc. For
example, the subway3 is a popular transport mode in Sin-
gapore while Jakarta does not currently have a subway sys-
tem. In the trivial extreme case, if all visitors only take the
subway and check-in at venues near subway stations, then
personalization is low.

Lastly, our results show that sophisticated models do not
always outperform simpler techniques. While the KDE model
easily outperforms ranking by popularity for long-term visi-
tors (Tables 5 and 8), it fails to do so for short-term visitors
(Tables 6 and 9). As mentioned earlier in the discussion of
Singapore results and also shown in Table 3, such visitors
have very few check-ins in their trip history for modeling,
thus the KDE loses its advantage of being more personal-
ized.

Table 8: Results for long-term test cases (Jakarta)
Models
Setting MP(10) MP(30) MR(10) MR(30) MAP
KDE model

A 0.0245 0.0101 0.117 0.128 0.0928
B 0.0262 0.0106 0.131 0.138 0.0964

Ranking venues by check-in count
A 0.0102 0.0062 0.0690 0.107 0.0352
B 0.0093 0.0066 0.0601 0.105 0.0318

Ranking venues by unique visitor count
A 0.0102 0.0061 0.0671 0.109 0.0303
B 0.0111 0.0060 0.0724 0.109 0.0315

Table 9: Results for short-term test cases (Jakarta)
Models
Setting MP(10) MP(30) MR(10) MR(30) MAP
KDE model

A 0.0128 0.0055 0.122 0.158 0.0701
B 0.0120 0.0041 0.114 0.116 0.0635

Ranking venues by check-in count
A 0.0139 0.0072 0.132 0.203 0.0788
B 0.0126 0.0060 0.119 0.174 0.0703

Ranking venues by unique visitor count
A 0.0136 0.0066 0.130 0.192 0.0769
B 0.0131 0.0067 0.124 0.195 0.0684

3www.lta.gov.sg/content/ltaweb/en/public-transport/mrt-
and-lrt-trains.html



Table 10: Optimal KDE parameters for visitors to
Jakarta

KDE model (long-term)
Setting αu αf(u) 1−αu−αf(u)

A 0.75 0.15 0.10
B 0.80 0.15 0.05

KDE model (short-term)
Setting - αf(u) 1− αf(u)

A - 0.05 0.95
B - 0.00 1.00

Remarks. We have shown that predictions are more ac-
curate if we know a visitor is a short-term one, based on his
trip duration, i.e. trip has ended. However, real applications
require knowing the visitor type as early as possible, such
that predictions can be made during the trip. For this, other
data sources will be useful, e.g. content from tweets before or
during the trip, immigration declarations etc. In other sce-
narios, we can motivate the visitors themselves to directly
provide their trip duration to the prediction model. This is
especially true for venue recommendation apps (related to
venue prediction) in mobile phones, where the durations can
be used to improve recommendations [25].

6. RELATED WORK
Users of location-based social networks have been well

studied in prior work [13, 26, 7, 17, 16, 7, 14, 20, 9]. Gao
and Liu [11] had provided a good survey in this area. How-
ever much focus has been on locally active users [16, 7, 14,
20, 9], which by excluding users with too few check-ins, may
ignore most short-term visitors. In our case, we do not ex-
clude short-term visitors even if they have only one check-in
at their visited city. Some other works [17, 27, 19] studied
inter-city visitation behavior, but do not differentiate be-
tween visitor types. In contrast, we study the differences
between long/short trips and long/short-term visitors.

Liu et al. [19] define trips as city visits, which resembles
our work. However trips are used differently to derive city-
level interaction models as well as group cities into spatial
communities. Wu et al. [24] define trips differently as each
user’s transition between different activity types, whereby
activity types are derived from venue categories. They pro-
posed a model for the transition probabilities of users.

Zhao et al. [27] matched interest communities (e.g. food-
ies) across regions, to recommend venues that are locally
interesting for tourists, but omitted by dominant tourist re-
sources. All city visitors are regarded as tourists, regardless
of trip duration. As we have shown, short/long-term visitors
have different check-in characteristics. Hence it will be inter-
esting to compare recommendation accuracies across visitor
types. We also envisage that numerous other recommenda-
tion/prediction models [7, 21, 17] are applicable and likely
to perform differently on different visitor types. For exam-
ple, topic models [14, 20, 13, 9] that model each user as a
document and venues as words will encounter challenges for
short-term visitors. Such users usually have little check-in
history at the visited city and are analogous to extremely
short documents.

Our analysis can be easily repeated on other forms of tra-
jectory data, e.g. cell phone tower logs or GPS data, where
trip durations can be estimated even more precisely. For
GPS data, some related work includes [28, 29, 25], where

the common goal is to make venue recommendations. In
particular, Yoon et al [25] utilizes trip duration, input by
users on their mobile devices, to make more useful recom-
mendations. This supports our finding that visiting behavior
is dependent on visitor type as determined by trip duration.

7. CONCLUSION
We have categorized trips and visitors to two cities and

showed that significant differences exist between short and
long trips and subsequently between short-term and long-
term visitors. Our empirical analysis has been extensive and
covers multiple aspects of check-in behavior. Many of the
differences are intuitive and can be reasonably explained.
For example, short-term visitors are biased towards more
popular check-in venues as there may be a need to maximize
utility over limited trip duration.

We follow up on the analysis by a venue prediction exper-
iment. The results indicate that it is beneficial to identify
short-term visitors properly and include that information in
prediction models. Doing so increases prediction accuracy
significantly. Equivalently, this indicates that trip duration
and check-in behavior are highly related and that to make
good predictions (or recommendations), one should factor
in the trip duration. In certain scenarios, e.g. mobile apps,
the app user himself can be easily motivated to input his
intended trip duration to obtain better recommendations.

For further work, an interesting direction is to explore
dynamic predictions as a trip progresses. In the context of
a trip, the predictions may not only depend on the observed
trip history to-date, but also on the estimated remaining trip
duration. In fact estimating the latter is akin to the problem
of Survival Analysis[23]. In survival analysis, one predicts
the failure time of equipment or time of death of patients. In
our problem domain, the failure time is analogous to the end
of the trip. Check-ins and other data features are analogous
to emitted symptoms which can help to refine the estimated
trip end time. To our knowledge, it is still unexplored how
one can estimate the trip end time and exploit this in a
prediction model to achieve better prediction accuracies. At
the moment, this seems to be a highly challenging problem,
especially for short-term visitors. In fact the trade-off of
latency versus accuracy in predictions arises [22].
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âĂIJlocalâĂİ, âĂIJcategoriesâĂİ and âĂIJfriendsâĂİ:
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APPENDIX
A. SIGNIFICANCE TEST

We design a significance test for Jensen–Shannon (JS) di-
vergence based on sampling. Given two probability distri-
butions X and Y , JS divergence is defined as

JS(X||Y ) = [KL(X||M) +KL(Y ||M)]/2 (8)

whereM = (X+Y )/2 and KL(.) is the Kullback-âĂŞLeibler
divergence.

If X and Y are not significantly different, both will be
close to M . Thus we regard M as a form of null model and
use this in our significance test. Each time, we draw 2 sets
of samples from M and estimate the distribution per sample
set. This gives a pair of distributions, from which we com-
pute the JS divergence. Since both distributions are in fact
generated from M , the divergence value can be interpreted
as what is expected by chance given an identical distribution
pair. We do this over multiple pairs and count the number
of pairs with higher divergence values than JS(X||Y ). Such
occurrences should be very low if X and Y are very different.

Formally, let X, Y be 2 empirical distributions estimated
from samples of size Sx and Sy respectively, we test if they
are significantly different via the following steps:

1. Compute M = (X + Y )/2, d = JS(X||Y ). Initialize
counter c := 0.

2. For i = 1 to P

(a) From M , draw 2 sets of samples, of sizes Sx and
Sy.

(b) For each sample set, estimate the multinomial dis-
tribution by proportions. Hence from 2 sample
sets, obtain a pair of distributions: Mi,x, Mi,y.

(c) Compute di = JS(Mi,x||Mi,y). if di ≥ d, update
counter c := c+ 1.

3. Compute c/P . If this is less than α, then JS(X||Y ) is
significant at p-value=α.

In all our significance tests, we have used P = 1000.
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