
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2015

Should fixing these failures be delegated to
automated program repair?
LE DINH XUAN BACH
Singapore Management University, dxb.le.2013@phdis.smu.edu.sg

LE BUI TIEN DUY
Singapore Management University, btdle.2012@phdis.smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

DOI: https://doi.org/10.1109/ISSRE.2015.7381836

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LE DINH XUAN BACH, LE BUI TIEN DUY, and David LO. Should fixing these failures be delegated to automated program repair?.
(2015). 26th IEEE International Symposium on Software Reliability Engineering (ISSRE 2015). 427-437. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3091

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35456473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ISSRE.2015.7381836
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Should Fixing These Failures be Delegated to
Automated Program Repair?

Xuan-Bach D. Le, Tien-Duy B. Le, and David Lo
School of Information Systems

Singapore Management University, Singapore
{dxb.le.2013,btdle.2012,davidlo}@smu.edu.sg

Abstract—Program repair constitutes one of the major com-
ponents of software maintenance that usually incurs a signifi-
cant cost in software production. Automated program repair is
supposed to help in reducing the software maintenance cost by
automatically fixing software defects. Despite the recent advances
in automated software repair, it is still very costly to wait for
repair tools to produce valid repairs of defects. This paper
addresses the following question: “Will an automated program
repair technique find a repair for a defect within a reasonable
time?”. To answer this question, we build an oracle that can
predict whether fixing a failure should be delegated to an
automated repair technique. If the repair technique is predicted
to take too long to produce a repair, the bug fixing process should
rather be assigned to a developer or other appropriate techniques
available.

Our oracle is built for genetic-programming-based automated
program repair approaches, which have recently received con-
siderable attention due to their capability to automatically fix
real-world bugs. These approaches search for a valid repair over
a large number of variants that are syntactically mutated from
the original program. At an early stage of running a repair tool,
we extract a number of features that are potentially related to
the effectiveness of the tool. Leveraging advances in machine
learning, we process the values of these features to learn a
discriminative model that is able to predict whether continuing a
genetic programming search will lead to a repair within a desired
time limit. We perform experiments to evaluate the ability of
our approach to predict the effectiveness of GenProg, a well-
known genetic-programming-based automated program repair
approach, in fixing 105 real bugs. Our experiments show that
our approach can identify effective cases from ineffective ones
(i.e., bugs for which GenProg cannot produce correct fixes after
a long period of time) with a precision, recall, F-measure, and
AUC of 72%, 74%, 73%, and 76% respectively.

Keywords—Automated Program Repair, Effectiveness Predic-
tion, Effective Feature Design, Classification Techniques

I. INTRODUCTION

In software development, bugs are prevalent. Even software
systems which are maintained by large commercial entities and
supported by thousands of developers and testers are plagued
with hundreds or even thousands of bugs every year. Thus,
fixing bugs is a crucial task to maintain software quality. Bug
fixing is known to be difficult, time-consuming, and requires
much manual effort. U.S. National Institute of Standards and
Technology reported that software bugs were estimated to cost
U.S. economy more than 50 billion dollars each year [39].
Therefore, there is a need to develop automated techniques
that can help developers in the task of fixing bugs.

Recently, automated program repair is a new research
direction that attracts attention in the software engineering
research community. The purpose of automated program re-
pair is to reduce the cost of manual labor by automatically
generating patches for faulty programs. Several automated
program repair techniques have been proposed [14], [23],
[24], [30]. One promising family of automated repair tech-
niques is search-based automated program repair (SAPR)
which searches through a large set of repair candidates to
find a suitable repair for a bug. GenProg is a well-known
SAPR technique that employs genetic programming to guide
repair candidate generation process. To generate a patch for
a faulty program, GenProg first identifies a set of suspicious
program locations that are likely to contain the bug. It then
works in multiple iterations. In each iteration, it creates a
population of repair candidates (aka. a generation of repair
candidates) by modifying one or more statements in one of
the suspicious program locations. Once repair candidates are
generated, GenProg estimates fitness values of the candidates
by executing them against a set of test cases. Fitness values
are used to guide the process of generating repair candidates in
the subsequent iterations. GenProg repeats the iteration until a
valid program repair, which passes all test cases, is found or
a time limit or maximum number of iterations is reached.

If an automated program repair technique is effective, the
technique should successfully repair input faulty programs
with reasonable repair cost, measured in terms of computation
time. Computation time is important since past studies showed
that waiting time impacts usability of software [29]. It is
interesting to note that the cost incurred by an SAPR technique
to find successful repairs varies for different bugs and different
programs [23]. Some bugs can automatically be fixed in
seconds, while many others cannot be fixed in hours or even
half a day. Developers will waste much time and resources if
they need to wait for many hours and at the end, an SAPR
technique cannot produce a correct repair.

In this work, we aim to develop a technique that can help
make automated program repair more practical for developers.
Our technique will predict whether an SAPR technique can
produce a correct fix given a time budget in the first few
seconds after it is run. For bugs that an SAPR technique
cannot fix in a reasonable amount of time, developers are
better off to switch to traditional approaches (e.g., manual
debugging) instead of waiting for the SAPR technique. In
this work, we refer to repair instances for which an SAPR
technique can produce correct fixes within a time budget as
effective instances, and those that cannot produce correct fixes

within the time budget as ineffective instances. Our goal is to
build an oracle that can differentiate effective from ineffective
instances.

To predict the effectiveness of a repair instance (i.e., an
application of a SAPR technique on a bug), our approach
extracts important features from the instance. The features
are extracted a few seconds after the SAPR technique is run.
They capture general characteristics of the faulty program and
set of test cases, number and locality of program locations
that are suspected by an SAPR technique to be buggy, and
characteristics of the initial population of candidate fixes that
is generated by the SAPR technique. The features are chosen
based on a number of hypotheses, which include the following
three: First, the size of the faulty program and the number
of test cases are likely to determine the cost of checking
the correctness and fitness score of a variant; Second, the
number and locality of suspicious program locations are likely
to determine the difficulty of the bug fixing process; Third,
the diversity of the candidate fixes generated in the initial
population impacts the likelihood of the SAPR technique to be
successful in fixing the bug. Note that an SAPR technique can
identify suspicious program locations, which are potentially
buggy locations, and generate an initial population of candidate
fixes in a short amount of time (i.e., a few seconds). After
these features are extracted from a set of training data (i.e.,
historical bugs that are fixed by an SAPR technique), we build
a discriminative model (i.e., a classifier) that can differentiate
between effective and ineffective repair instances. We use the
random forest classification algorithm to learn this model. This
model is then used as an oracle to determine if future repair
instances will be effective or not.

We evaluate our approach on GenProg, a well-known
SAPR technique [24]. In particular, we apply our approach
to predict the effectiveness of GenProg when it is applied to
a dataset containing 105 defects which were used to evaluate
the effectiveness of GenProg. Our evaluation results show that
our approach can achieve a precision, recall, F-measure, and
AUC of 72%, 74%, 73%, and 76%, respectively. We also
compare our approach with a baseline model which randomly
predicts if a repair instance is effective or not (random model),
and another baseline model that predicts all repair instances
as effective (all-effective model). We find that our approach
can outperforms the best performing baseline model (i.e., all-
effective model) in terms of F-measure and AUC by 9% and
52%, respectively.

The contributions of our work are as follows:

1) We propose a new research problem to make SAPR
techniques more practical to developers by predicting
repair instances for which these techniques are ineffective.
A repair instance is deemed to be ineffective if a SAPR
technique is unable to produce a successful repair patch
after a long period of time. For such instances, developers
are better off to switch to traditional approaches to fix the
bug.

2) We propose a list of features extracted from the faulty
program, test cases, locality of suspicious program points,
and initial population of repair candidates that are gen-
erated by an SAPR technique after a few seconds of
its operation. The extracted features are then input to a

machine learning algorithm to construct a discriminative
model for predicting the effectiveness of repair instances.

3) We evaluate our approach to predict the effectiveness
of a well-known SAPR technique (i.e., GenProg) on a
dataset containing 105 real defects. The empirical results
show that our approach can achieve a precision, recall,
F-measure, and AUC of 72%, 74%, 73%, and 76%
respectively.

The structure of the remainder of the paper is as follows.
Section II highlights background material on search-based pro-
gram repair and the random forest classification algorithm. In
Section III, we describe the overall framework of our approach.
Section IV presents a list of features that our approach extracts
to predict the effectiveness of an SAPR technique given a
repair instance. Next, in Section V, we present the settings
and results of our experiments which evaluate our proposed
approach. Section VI describes some threats to the validity of
our study. We highlight related work in Section VII. Finally, we
conclude the paper and mention future work in Section VIII.

II. BACKGROUND

In this section, we highlight background materials on
search-based automated program repair (SAPR) and random
forest classification algorithm.

A. Search-Based Automated Program Repair

In the literature, a number of automated program repair
tools have been proposed to help developers fix faulty pro-
grams automatically [30], [23], [24], [14]. Among these tools,
GenProg is one of the popular ones. By leveraging genetic
programming [16], GenProg demonstrates its capability in
repairing real-world bugs [23].

GenProg uses genetic programming to guide the search
for a valid repair of a buggy program. GenProg takes as input
a buggy program along with a set of test cases. Each test
case specifies a test input and an expected output. With this
input, the repair process goes through two main phases: bug
localization and valid patch finding. At the first phase, the
input program is compiled and runs against the test cases to
identify suspicious statements that may cause the program to
fail. These suspicious statements then form suspicious areas
which are targets for the second phase which generate repair
candidates.

In the second phase, GenProg applies genetic programming
to generate a large number of repair candidates and search
for a valid repair amongst the generated candidates. GenProg
first uses mutation operators in genetic programming to syn-
tactically modify the original program in the suspicious areas
to create an initial population that contains a large number
of mutants (i.e., repair candidates). The mutation operators
used include append, replace, delete and swap operations,
and they are applied on the suspicious statements of the
original program. These operators either append or replace a
suspicious statement with a statement taken from elsewhere
in the program, delete a suspicious statement, or swap two
suspicious statements. Each variant generated after a mutation
carries along its edit history, i.e., the series of changes made to
the original program to generate the mutant. GenProg also uses
crossover operator that takes as input edit history records of

two arbitrary repair candidates and mixes the history records
to create two new edit history records which are then applied
to the original program to generate two new mutants. Mutants
generated after the mutation and crossover operations form
a population of repair candidates which may contain a valid
repair. Next, to search for a valid repair, each of the mutants
is compiled and run against the test cases to compute a fitness
score which defines how good a repair candidate is. Better
candidates, whose fitness scores are higher, are selected to
form a new population of mutants (aka. a new generation).
This process is repeated many times until a valid repair which
passes all the test cases is found or when some limits are
reached (i.e., a time limit or a maximum number of populations
is reached).

B. Random Forest

Random forest is a popular classification algorithm that
has been widely applied to many problems and shown to
outperform other algorithms [4]. It is an ensemble classifi-
cation technique that employs many weaker classifiers (i.e.,
classification models) to construct a dominant classifier [3].
At first, random forest performs decision tree learning on
sampled subsets of a training data in order to create many
different classification models in the form of decision trees. A
decision tree is a tree in which each leaf node corresponds to a
class label (in our case: effective or ineffective), each internal
node corresponds to a test on the value of a feature, and an
edge corresponds to a result of a test. These decision trees
are the weaker classifiers and they capture characteristics of
the sampled data. Subsequently, random forest combines all of
these weaker classifiers using a majority voting strategy, i.e.,
given an instance to be classified, it takes the class label that
is output by the majority of the weaker classifiers as the final
prediction output. In this work, we use the implementation of
random forest in the Weka toolkit [8], and configure random
forest with 300 weaker classifiers (i.e., decision trees).

III. OVERALL FRAMEWORK

The goal of our framework is to build an oracle that is able
to predict whether continuing a genetic programming search
is likely to find a repair or not. Figure 1 depicts the overall
framework of our approach. There are two main phases in our
framework: training phase and deployment phase. The training
phase is used to train a prediction model (or models) that
is able to distinguish between effective and ineffective repair
instances. The deployment phase then applies the model(s)
generated by the training phase to a number of unknown
repair instances. The output of the deployment phase indicates
whether each of the repair instances is effective (i.e., it can
successfully repair a bug within a time budget) or ineffective
(i.e., it is unable to successfully repair a bug within a time
budget). The following paragraphs describe the two phases of
our framework.

Training phase. This phase takes as input a training set of
program repair instances and their associated effectiveness
labels. Each instance in the training set is a faulty program
that was processed by a SAPR technique. Each instance is
associated with the following pieces information:

1) Source code of the corresponding faulty program.

Faulty

Programs

Repair

Candidates

Search-based

Automated

Program Repair

Model Learning
Feature

Extraction

Training Phase

Deployment Phase

Faulty

Programs

Repair

Candidates

Feature

Extraction

Effectiveness

Prediction

Effectiveness

Labels

Prediction

Output

Legend

Prediction

Model(s)

Data Process Model

Search-based

Automated

Program Repair

Fig. 1. Overall Framework

2) A set of test cases in which at least one of them fails.
3) A set of repair candidates (i.e., mutants) generated in the

first iteration of a SAPR technique.
4) Effectiveness label (i.e., effective or ineffective)

There are two major modules in the training phase: feature
extraction and model learning. In the feature extraction mod-
ule, which is described in detail in Section IV, we extract
features that characterize program repair instances. In the
model learning module, the extracted features and effectiveness
labels of training instances are used to build a prediction
model (or models) which is capable of differentiating effective
instances from ineffective ones using a classification algorithm.

Imbalanced data is an issue that we need to tackle during
the training phase as there may be much more instances of
one class label (in our case: effective or ineffective) than those
of the other class label. Imbalanced data can adversely affect
the effectiveness of a classification algorithm by biasing the
learned prediction model to the class label that is supported
by the majority of the data instances. To deal with this issue,
we first check if the difference between the number of effective
and ineffective instances in the training data is less than 10%
of the total number of training instances. If the difference
is less than 10%, we use the training instances to train one
classification model. Otherwise, we perform an additional step
to deal with the data imbalance problem. Rather than creating
one prediction model, we create many (i.e., N) prediction
models where each of them is trained using a balanced training

dataset. Each balanced training dataset includes all instances
of the minority class (i.e., class label that is supported by
less training instances) and the same number of randomly
selected instances of the majority class – we remove some
instances of the majority class to balance the training dataset.
These N prediction models are used collectively as a single
composite model. By default, in our study, we use the random
forest classification algorithm to train prediction model(s) (see
Section II-B) and set the value of N to be 100. At the end
of the training phase, the prediction model(s) are forwarded to
the deployment phase.

Deployment phase. This phase takes as input a set of program
repair instances with unknown effectiveness labels. Similar to
the training phase, feature extraction module is used to extract
features that characterize the input program repair instances.
Next, by utilizing the prediction model(s) constructed in the
training phase and applying it to the extracted features, the
deployment phase outputs predicted effectiveness labels of
the input instances. If more than one prediction model is
output by the training phase, majority voting is employed.
Each of the models outputs a prediction (in our case: effective
or ineffective), and the prediction that is supported by the
majority of the models is output, i.e., an instance is deemed
effective if more than N /2 models predict it as effective. In
case of a tie (i.e., exactly N /2 models predict an instance as
effective and the others predict it as ineffective), the label of
an instance is randomly decided.

IV. FEATURE EXTRACTION

In our proposed framework, features are extracted from
input program repair instances during the training and deploy-
ment phases. The training phase uses the features to learn a
prediction model, and the deployment phase uses the features
as input to the prediction model to predict effectiveness labels.
In this section, we propose and describe a list of features that
we extract from repair instances. We focus on features that we
can extract from GenProg repair instances. Still, most of our
features are generic enough and they can be extracted from
repair instances of other SAPR techniques.

We consider a total of 27 features to characterize a program
repair instance, and these features are shown in Table I.
These features are extracted from the faulty program, test
cases, locality of suspicious program locations marked by
GenProg, and initial population of repair candidates generated
by GenProg. Since GenProg can identify suspicious program
locations and generate the first set of repair candidates in
little amount of time, the values of all the features can be
extracted for a repair instance just a few seconds after GenProg
is run. The features can be divided into three categories: input
program and test cases, locality and number of suspicious
areas, and initial repair candidates. We describe these three
categories of features and their intuitions in the following
paragraphs.

Input Program and Test Cases: Six features, IP1 to IP6,
capture information about the inputs to GenProg.

IP1 represents the size of the original program. Program
size is likely to affect the amount of time needed to evaluate
it. IP2 to IP4 capture the number of input test cases that are
being used to evaluate the generated variants. The number of

TABLE I. LIST OF FEATURES EXTRACTED FROM GENPROG
INSTANCES (27 FEATURES)

ID Description

Input Program and Test Cases (6 Features)

IP1 Size of program (statements count)
IP2 Number of negative test cases
IP3 Number of positive test cases
IP4 IP2 + IP3

IP5
IP2
IP4

IP6
IP3
IP4

Number and Locality of Suspicious Areas (3 Features)

L1 Number of suspicious statements
L2 Number of files containing suspicious statements
L3 Number of functions containing suspicious statements

Initial Repair Candidates (18 Features)

E1 Number of swap operations performed to create the compilable variants
in the initial population

E2 Number of delete operations performed to create the compilable variants
in the initial population

E3 Number of append operations performed to create the compilable variants
in the initial population

E4 Number of replace operations performed to create the compilable variants
in the initial population

E5 Total number of edit operations that create compilable variants in the
initial population

E5+i
Ei
E5

where i = 1 . . . 4

S1 Sum of the numbers of return statements in functions that are mutated in
the initial population

S2 Sum of the numbers of goto statements in functions that are mutated in
the initial population

S3 Sum of the numbers of break statements in functions that are mutated in
the initial population

S4 Sum of the numbers of continue statements in functions that are mutated
in the initial population

S5 Sum of the numbers of conditional statements (i.e., if, else, else if) in
functions that are mutated in the initial population

S6 Sum of the numbers of loop statements in functions that are mutated in
the initial population

S7 Sum of the numbers of switch statements in functions that are mutated in
the initial population

S8 Sum of the numbers of assignment statements in functions that are mutated
in the initial population

S9 Sum of the numbers of function call statements in functions that are
mutated in the initial population

input test cases significantly impacts the cost of evaluating a
variant. Since each test case has to be run on a variant, the more
test cases are present, the more expensive it is to validate a
variant. Since these features affect the time it takes to evaluate
a variant, and time is the key factor that determines whether
a repair instance is effective or not, we extract these features
from repair instances.

IP5 and IP6 are the ratio of the number of passing test
cases and the number of failing test cases over the total number
of test cases. More failing test cases might result in better
identification of suspicious areas which translates to higher
likelihood of producing a correct repair in a shorter amount of
time.

Number and Locality of Suspicious Areas: Three features,
L1 to L3, capture information about the number and locality
of suspicious areas that are identified by GenProg.

L1 indicates the number of suspicious statements that are
targets to be modified. The probability of generating a correct
repair is likely to be inversely proportional to the number of
suspicious statements. A larger number of suspicious state-
ments translates to more locations where GenProg has to
perform mutations. Thus, if this feature has a higher value,

the search space to find a valid repair will be enlarged and
the repair cost is likely to be increased. Thus, this feature is
related to the effectiveness of GenProg.

L2 and L3 indicate the number of files and functions that
include the suspicious statements. These features are related to
the complexity of a bug that needs to be fixed. For example,
fixing a bug that involves modifications in multiple functions
(or files) may incur much cost since a change at one function
(or file) needs to be accompanied with corresponding changes
in other functions (or files).

Initial Repair Candidates: Eighteen features capture infor-
mation about initial repair candidates (or variants) that are
generated in the initial population.

The first 9 features include E1 to E5 and E5+i where
i = 1 . . . 4. Four features, E1 to E4, capture information on
the number of edits made using GenProg’s append, delete,
swap and replace mutation operators that can create compilable
variants. The next five features, E5 and E5+i where i = 1 . . . 4,
correspond to the sum of the number of edits made using
any one of the four mutation operators as well as the ratio
of the number of edits made using each of the operators to the
sum. The features indicate whether the variants generated in
the first population are diverse (i.e., they are generated using
various edit operators) or uniform (e.g., they are generated
using only one or a few of the operators). A higher diversity
may lead to a higher possibility of obtaining a valid repair.
The extraction of these 9 features is done by calculating the
number of times each edit operation (e.g., append, delete, swap
or replace) is performed to create compilable variants in the
initial population.

The remaining 9 features, S1 to S9, capture various in-
formation about the structure of the Abstract Syntax Tree
(AST) of the functions mutated in the generated variants. Since
GenProg is a syntactic search-based approach, which tries to
change the AST of the original program to create new mutants,
capturing the characteristics of the changed AST is crucial.
The AST characteristics are related to the search space of
possible variants in the subsequent iterations. For example,
a function with a single loop can be mutated in more ways
than a function with a single assignment statement. A smaller
search space corresponds to a higher likelihood to find an edit
that fixes a bug. We extract these 9 features by using CIL1,
an infrastructure for C program analysis and transformation.
For each function that is mutated to create variants in the
initial population, we traverse its corresponding AST using
CIL and calculate the sums of the numbers of statements of
various kinds (e.g., return, goto, etc) that appear in the mutated
functions’ ASTs.

V. EXPERIMENTS & ANALYSIS

In this section, we first describe our dataset, followed by
our evaluation metrics, research questions, results, and threats
to validity.

A. Dataset

We apply our approach to predict the effectiveness of
GenProg on a popular dataset for automated program repair,

1http://kerneis.github.io/cil/

TABLE II. DATASET DESCRIPTION. “LOC” STANDS FOR NUMBER OF
LINES OF CODE. “#TESTS” REPRESENTS THE NUMBER OF TEST CASES.

“#DEFECTS” IS THE NUMBER OF DEFECTS (I.E., BUGS)

Program LOC #Tests #Defects
fbc 97,000 773 3
gmp 145,000 146 2
gzip 141,000 12 5
libtiff 77,000 78 24
lighttpd 62,000 295 9
php 1046,000 8471 44
python 407,000 355 11
wireshark 2814,000 63 7
Total 5319,000 10193 105

which consists of 105 real defects from 8 different systems 2.
These defects have been utilized to evaluate the performance of
search-based automated program repair techniques [23], [33].
Table II describes detailed information of our dataset.

We apply GenProg to the 105 defects following the pro-
cedure described in [23]. We obtain the implementation of
GenProg from its authors. For each defect, we run 10 GenProg
trials in parallel. Each trial is terminated after 12 hours or 10
generations or whenever a successful repair is found by another
trial. Each trial is assigned to one 3.4 GHz Intel Core i7-4770
CPU and 1 GB of memory. Among the 105 bugs, GenProg
can successfully fix 53 of them.3

An application of GenProg to a defective program corre-
sponds to a GenProg instance. We assign effectiveness labels
to 105 GenProg instances corresponding to the 105 defects
in our dataset. By default, we assign effective labels to 53
bugs that GenProg can fix and ineffective labels to the 52 bugs
that GenProg cannot fix. For this default setting, an instance
is deemed effective if a successful fix can be inferred within
12 hours using 10 parallel GenProg trials. In addition to this
default setting, we also investigate other thresholds to decide
for effective and ineffective instances (see RQ3 in Section V-C).
In particular, we sort the 53 instances that GenProg can repair
in ascending order of their repair time (i.e., time from GenProg
starting to its termination). We then adjust a time budget
threshold that divides these 53 instances to two parts, in which
instances in the first part, which correspond to those that can
be fixed in a time shorter than or equal to the threshold,
are considered as effective, while instances in the second part
and the 52 bugs that GenProg cannot fix are considered as
ineffective.

B. Evaluation Metrics and Experiment Settings

We evaluate the effectiveness of our approach in terms of
precision, recall, F-measure, and AUC. These are well-known
metrics that have been frequently used to evaluate various
prediction engines [9]. To calculate precision, recall, and F-
measure, we need to first compute true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN).
Their definitions are as follows:

2http://dijkstra.cs.virginia.edu/genprog/resources/genprog-icse2012-
benchmarks

3In the experiment conducted by Le Goues et al. [23], GenProg can
successfully fix 55 out of the 105 bugs. Due to randomness of the genetic
programming algorithm that is used by GenProg and differences in the
machines used to run the experiments, in our experiment, the number of bugs
fixed is slightly reduced.

TP: Number of effective program repair instances that
are predicted correctly.

FP: Number of ineffective program repair instances
that are predicted incorrectly.

TN: Number of ineffective program repair instances
that are predicted correctly.

FN: Number of effective program repair instances that
are predicted incorrectly.

Based on the true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), precision, recall and
F-measure can be computed as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F-measure =
2× Precision×Recall

Precision + Recall
(3)

A trade-off between precision and recall usually happens.
In particular, a higher precision is often followed by a lower
recall and vice versa. Thus, F-measure, which is the harmonic
mean of precision and recall, is often used as a summary
measure.

AUC is the area under the Receiver Operating Character-
istics (ROC) curve. A ROC curve for a label l (i.e., effective
or ineffective) plots the true positive rates for l versus the
false positive rates. This curve could be created by taking into
account the likelihood of each data point (i.e., repair instance
whose label is being predicted) that will be assigned label l.
This likelihood is then considered as the classification thresh-
old; allowing the rates of true positives and false positives
to be computed for each repair instance. Thus, each instance
contributes a point in a ROC curve. AUC is the area under
this ROC curve.

We use stratified ten-fold cross validation to estimate the
performance of our approach in terms of precision, recall, F-
measure, and AUC. Stratified ten-fold cross validation aims to
assess the performance of a prediction model on an indepen-
dent test data. To perform stratified ten-fold cross validation,
we divide the dataset into ten groups with equal size. The
proportion of positive instances over negative instances is
maintained across groups. Out of these ten groups, nine groups
are used for training and one group is used for testing. This
process is repeated ten times to make sure that each of the ten
groups is chosen as test group once. The final precision, recall,
F-measure, and AUC are computed by aggregating results
obtained from the ten iterations.

C. Research Questions

We answer the following research questions that assess and
investigate different aspects of our approach.

RQ1 How effective is our approach in predicting the effec-
tiveness of GenProg instances?

In this research question, we investigate the performance
of our approach when predicting whether GenProg instances
are effective or ineffective. To answer this research question,
we apply our approach to predict effectiveness labels of 105
GenProg instances corresponding to the 105 defects (using

stratified 10-fold cross validation). By comparing the predicted
labels (that our approach outputs) with the ground truth labels,
we compute the precision, recall, F-measure, and AUC of our
approach.

RQ2 How effective is our approach in comparison to the
baselines?

In this research question, we compare the performance
of our approach with two baseline models, including an all-
effective model and a random model. The all-effective model
predicts all program repair instances as effective, while the
random model randomly predicts the effectiveness of program
repair instances. For the random model, we apply the model
100 times, and compare its average performance to our ap-
proach.

RQ3 How effective is our approach if the time budget thresh-
old is varied?

As described in Section V-A, by default, we define whether
an instance to be effective or not depending on whether
the bug can be successfully fixed by 10 trials of GenProg
within 12 hours. In this research question, we investigate the
effectiveness of our approach considering different time budget
thresholds. The time budget threshold is the maximum time
limit for an application of GenProg (i.e., a GenProg instance)
to be considered as effective. When the time budget threshold
increases, the number of effective instances increases. On the
other hand, if the time budget threshold decreases, the number
of ineffective instances increases. To answer this research
question, we vary the time budget threshold between 2 hours
and 11 hours – within the time limit for each repair trial.
We compute the precision, recall, F-measure, and AUC of our
approach for each time budget threshold.

RQ4 Which of the proposed features best differentiate effective
from ineffective program repair instances?

In this research question, we investigate which of the pro-
posed features (see Table I) are more dominant and thus more
effective in helping our approach achieves better accuracy. In
the machine learning community, Fisher score is often used to
measure how dominant or discriminative a feature is [7], [6].
The Fisher score is computed as follows:

FS(j) =

∑#class
class=1(x̄

(class)
j − x̄j)

2∑#class
class=1(1

nclass−1

∑nclass

i=1 (x
(class)
i,j − x̄

(class)
j)2)

In the equation above, FS(j) denotes the Fisher score of
the jth feature, nclass denotes the number of data points (in our
setting: repair instances) with label class (in our case: effective
or ineffective), x̄j denotes the average value of the jth feature
of all data points, x̄(class)

j denotes the average value of the jth

feature of class-labeled data points, and x
(class)
i,j denotes the

value of the jth feature of the ith class-labeled data point. It is
worth noting that Fisher score takes a value ranging from 0 to
1. Features with higher Fisher scores are more discriminative,
i.e., features with Fisher score of 1 are very discriminative
while features with Fisher Score of 0 are not discriminative.

RQ5 How do different classification techniques impact the
effectiveness of our proposed approach?

There are various classification techniques proposed in
the literature. By default, our approach uses random forest
as the classification technique. In this research question, we
investigate the effectiveness of our approach using different
classification techniques. We consider four other classification
techniques: Logistic Regression [22], Support Vector Machine
(SMO) [32], [13], [10], KStar [5] and J48 [34]. We use
the implementation of these classification techniques that are
available in the Weka toolkit.

RQ6 How does the amount of training data affect the effec-
tiveness of our approach?

Stratified ten-fold cross validation is used to evaluate our
approach. In stratified ten-fold cross validation, 90% of the
data is used for training, while the remaining 10% is used for
testing. In this research question, we investigate if reducing
the amount of training data would impact the effectiveness of
our proposed approach. To answer this research question, we
perform 100 trials. For each trial, we randomly sample 20%
to 90% of our defect dataset to create 9 training datasets of
various sizes, and evaluate our approach using the new training
datasets. At the end of the 100 trials, for each training data size
(i.e., 20% to 90% of the defect dataset), we report the average
precision, recall, F-measure, and AUC across the 100 trials.
Note that since we randomly resample 90% of the defects and
perform 100 trials, the result for 90% training data differs from
the result of the experiment performed to answer RQ1.

RQ7 How does our proposed approach benefit from active
learning?

Active learning attempts to train a good classification
model with minimal amount of labelled data [37]. Given a
budget specifying how many repair instances we are willing
to manually label, a subset of repair instances that are the
most informative is selected and then labelled by developers.
These manually labelled instances can be used to train a model
to label other unlabelled repair instances. In this research
question, we investigate if active learning can work well in
predicting the effectiveness of GenProg with minimal amount
of labelled training data.

We use a Java library called JCLAL4 that supports active
learning to conduct an experiment to answer this research
question. We use three uncertainty sampling strategies to pick
instances to label: entropy sampling, least confident sampling,
and margin sampling [37]. These strategies pick instances that
a classification model finds hard to label. We first build an
initial random forest model using 10% of all instances that
are randomly sampled from the original pool of instances
(i.e., a pool of 105 instances). Using the initial model, the
active learning process then starts to recommend new instances
to label and it stops when the number of manually labelled
instances reaches 20% of the total number of instances. We use
stratified ten-fold cross validation to assess the performance
of the three uncertainty sampling strategies, and report their
precisions, recalls, F-measures, and AUCs.

D. Results

In this section, we describe the results of our experiments
which answer our research questions.

4http://sourceforge.net/projects/jclal/

RQ1: Overall Accuracy. Our approach can achieve precision,
recall, F-measure and AUC of 72%, 74%, 73%, and 76%,
respectively. The variances of precision, recall, F-measure, and
AUC across the ten folds during the ten-fold cross validation
are small (less than 0.04). This indicates that the performance
of our approach is stable across folds. Comparing with other
studies solving various prediction tasks in the software engi-
neering research literature, e.g., [36], [38], [43], the F-measure
and AUC that our approach can achieve is comparable or
higher.

RQ2: Comparison with Baseline Models. Table III compares
the performance of baseline models, including the all-effective
model and random model, with our approach in terms of
precision, recall, F-measure and AUC. From the table, we
can note that our approach performs the best among the
three models. Particularly, our approach outperforms the best
performing baseline – all-effective model, in terms of F-
measure and AUC by 9% and 52%, respectively.

TABLE III. OUR APPROACH VS. BASELINE MODELS

All-Effective Model Random Model Our Approach
Precision 51% 51% 72%

Recall 100% 50% 74%
F-measure 67% 50% 73%

AUC 50% 50% 76%

RQ3: Varying Time Budget Threshold. Figure 2 and 3 show
the precisions, recalls, F-measures, and AUCs of our approach
for various time budget thresholds. From Figure 2, we can
note that our approach achieves the highest F-measure of 80%
and when the time threshold is set to five hours. When the
time threshold is increased from five hours to 11 hours, the
F-measure of our approach reduces to 70%. When we reduce
the time threshold from five hours to two hours, there is also a
degradation in the performance of our approach. The lowest F-
measure of 65% is when the time threshold is set at two hours,
for which the proportion of effective instances is around 36%.
From Figure 3, we can note that the fluctuations of AUC across
the time thresholds is similar to the fluctuations of F-measure.
Overall, our approach works reasonably well (i.e., F-measure
and AUC larger than 60% and 70%, respectively) for all time
budget thresholds.

For thresholds equal to 2, 3, and 4 hours, data imbalance
problem exists and our data balancing strategy kicks in (i.e., by
creating N prediction models learned from balanced training
datasets instead of only one model). Without this data bal-
ancing strategy, the effectiveness of our approach is reduced.
Figure 4 and 5 show the precisions, recalls, F-measures, and
AUCs of our approach when the data balancing strategy is
turned off. F-measure can be increased by up to 23% (for
time threshold at 2 hours) while AUC remains more or less
the same, when we employ the data balancing strategy.

RQ4: Important Features. Table IV shows the list of the top-
10 most important features5. We find that the top-10 features
come from all three feature categories in Table I. Six out of the
top-10 features belong to the initial repair candidates category.
This highlights that the diversity of the initial repair candi-
dates has an important role in determining whether a repair
instance will be effective or not. Also, the AST characteristics

5Please refer to Table I for a detailed description of the features

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11

P
e

rc
e

n
ta

g
e

 (
%

)

Time Threshold (Hours)

Precision Recall F-measure Effective Instances/Total

Fig. 2. Precisions, Recalls, F-measures of Our Approach and Percentages of
Effective Instances for Different Time Budget Thresholds

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11

P
e

rc
e

n
ta

n
g

e
 (

%
)

Time Threshold (Hours)

AUC Effective Instances/Total

Fig. 3. AUCs of Our Approach and Percentages of Effective Instances for
Different Time Budget Thresholds

which govern the space of possible repair candidates in the
subsequent GenProg iterations are also important to predict the
effectiveness of a repair instance. All features belonging to the
number and locality of suspicious areas category are among
the top-10 features. These features correspond to the size of the
search space that GenProg needs to traverse to find a successful
fix and the complexity of a defect. One of the top-10 features
belongs to the input programs and test cases category. This
feature is the number of negative test cases which influences
the difficulty of finding a successful fix. The more negative
test cases are available to characterize a defect, the more hints
GenProg has to locate and fix the defect.

TABLE IV. TOP-10 MOST DISCRIMINATIVE FEATURES

Rank Feature Short Description
1 S4 Number of continue statements in mutated functions
2 IP2 Number of negative test cases
3 S7 Number of switch statements in mutated functions
4 E5 Total number of edit operations that create compilable variants
5 L2 Number of files containing suspicious statements
6 S3 Number of break statements in mutated functions
7 S8 Number of assignment statements in mutated functions
8 L1 Number of suspicious statements
9 L3 Number of functions containing suspicious statements
10 S2 Number of goto statements in mutated functions

RQ5: Effectiveness of Different Classification Algorithms.
Table V shows precisions, recalls, F-measures, and AUCs of
our approach when we use different classification algorithms.

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11

P
e

rc
e

n
ta

g
e

 (
%

)

Time Threshold (Hours)

Precision Recall F-measure Effective Instances/Total

Fig. 4. Precisions, Recalls, F-measures of Our Approach (Without Data
Balancing) and Percentages of Effective Instances for Different Time Budget
Thresholds

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11

P
e

rc
e

n
ta

g
e

 (
%

)

Time Threshold (Hours)

AUC Effective Instances/Total

Fig. 5. AUCs of Our Approach (Without Data Balancing) and Percentages
of Effective Instances for Different Time Budget Thresholds

From the table, we can note that among the five classification
algorithms, random forest, which is the default classification
algorithm, is the best performer. The second best performer is
KStar, followed by J48, Logistic Regression and SMO.

TABLE V. PRECISIONS, RECALLS, F-MEASURES AND AUCS OF
DIFFERENT CLASSIFIERS

Classification Algorithm Precision Recall F-measure AUC
Random Forest [Default] 72% 74% 73% 76%
SMO 50% 64% 56% 49%
Logistic Regression 52% 55% 53% 53%
J48 64% 72% 68% 65%
KStar 67% 64% 65% 73%

RQ6: Varying Amount of Training Data. Table VI shows
the precisions, recalls, F-measures, and AUCs of our approach
for various amount of training data. From the table, we can
note that in general the effectiveness of our approach is pro-
gressively increased (in terms of F-measure and AUC) when
we increase the amount of training data from 20% to 90% of
all instances. Overall, our approach performs reasonably well
(F-measure and AUC of 60% or higher) when the amount of
training data is at least 40% of all instances.

RQ7: Active Learning. Table VII shows the precisions, re-
calls, F-measures, and AUCs of our approach when employing
an active learning approach with different uncertainty sampling
strategies. From the table, we can note that margin sampling
is the best performer, followed by entropy sampling and least

TABLE VI. PRECISIONS, RECALLS, F-MEASURES, AND AUCS FOR
DIFFERENT AMOUNT OF TRAINING DATA

Amount of Training Data Precision Recall F-measure AUC
20% 56% 55% 55% 56%
30% 58% 57% 57% 61%
40% 60% 62% 60% 65%
50% 63% 64% 63% 68%
60% 66% 62% 63% 70%
70% 69% 62% 65% 71%
80% 68% 65% 65% 72%
90% 71% 71% 69% 77%

confident sampling. It is interesting to note that with only 20%
of all instances (21 out of 105 instances) manually labelled,
active learning can achieve reasonable performance (i.e., F-
measure of 62% and AUC of 65%). This result is better than
when active learning is not employed – c.f., Table VI.

TABLE VII. ACTIVE LEARNING: PRECISIONS, RECALLS,
F-MEASURES AND AUCS.

Sampling Strategy Precision Recall F-measure AUC
Margin Sampling 54% 74% 62% 65%
Entropy Sampling 58% 58% 55% 61%
Least Confident Sampling 42% 51% 44% 61%

VI. THREATS TO VALIDITY

We consider three kinds of threats to validity: internal,
external and constructing validity. We describe each of threats
to validity separately as follow

Threats to Internal Validity. Threats to internal validity
relate to errors in our implementation and experiments. We
have rechecked our implementation and experiments and fixed
errors that we have found. Still, there could be additional errors
that we did not notice.

Threats to External Validity. Threats to external validity
correspond to the generalizability of our findings. In this study,
we have analyzed 105 real bugs from 8 different C programs.
These programs have been extensively used to evaluate past
search-based automated program repair techniques, e.g., [23],
[33]. Still, more programs with more real bugs can be analyzed
to mitigate the threats further. Besides, more search-based
program repair techniques can be used for our study as well.
We plan to do this in our future work.

Threats to Construct Validity. Threats to construct validity
correspond to the suitability of our evaluation metrics. The
standard metrics of precision, recall, F-measure, and AUC
that we use are well-known metrics in data mining and
machine learning. These metrics have been used as yardsticks
to evaluate many past software engineering studies, e.g., [11],
[21]. Another threat to construct validity is our definition of
an effective repair instance. We consider an instance to be
effective if a SARP technique can successfully produce a
fix within a time budget threshold. Other definitions of an
effective repair instance can be considered, e.g., number of
patch candidates generated until a successful fix is found is
less than a certain threshold, etc. We leave the consideration
of other definitions of an effective repair instance to a future
work.

VII. RELATED WORK

In this section, we describe related research studies in
automated program repair and application of classification
algorithms for various software engineering tasks.

A. Automated Program Repair

Recently, automated program repair have received consid-
erable attention in the software engineering research commu-
nity. Several techniques have been proposed to automatically
repair program defects [30], [23], [24], [14].

Le Goues et al. propose GenProg, the first search-based
automated patch generator [23], [24]. By syntactically mutat-
ing a buggy program using genetic programming, GenProg
generates a large number of variants that are possible patch
candidates. GenProg favors variants that pass more test cases
and select promising variants to produce new variants until one
variant, which passes all the test cases, is found. A systematic
evaluation of GenProg has shown GenProg’s capability to fix
many real-world bugs [23].

Kim et al. propose a novel automated patch generation
technique, named Pattern-based Automatic program Repair
(PAR), which uses fix patterns learned from existing human-
written patches [14]. Several common fix patterns are learned
from more than 60,000 human-written patches, and divided
into eight common fix patterns. Based on the common fix
patterns, ten fix templates are manually created, which can
be applied to generate patches at various fault locations of
the buggy program. PAR uses genetic programming to help
in applying the fix templates. The result of their experiment
shows that PAR can automatically generate patches that are
comparable to human-written patches.

Qui et al. propose RSRepair, which repairs faulty program
by using random search [33]. RSRepair uses the same mutation
operators that are used by GenProg to create mutants as repair
candidates. However, different from GenProg, RSRepair does
not compute fitness scores of mutants to guide the mutant
generation process. Rather, RSRepairs randomly generates
mutants until a valid repair is found. Since RSRepair does
not compute fitness scores of mutants, it can discard a repair
candidate once one of the test cases fails. GenProg on the other
hand needs to run all the test cases to compute the fitness score
of a mutant. When the number of the test cases is large, the
random search process of RSRepair saves significant cost in
evaluating repair candidates.

B. Applications of Classification Algorithms

There have been several prior studies that employ classifi-
cation algorithms to help automate various software engineer-
ing tasks. We highlight some of them below.

Classification techniques have been applied to predict im-
portant information of issues opened in bug tracking systems.
Menzies and Marcus, Lamkafi et al., and Tian et al. uti-
lized classification algorithms to predict the severity of bug
reports [28], [17], [18], [40]. Menzies and Marcus and Tian
et al. predict fine-grained bug severity labels, while Lamkafi
et al. predict coarse-grained bug severity labels. Tian et al.
build a statistical model that considers multiple factors to
predict the priority of bug reports [41]. Different from severity

which is assigned based on a user’s perspective, priority is
assigned based on developers’ perspective considering other
bugs that developers need to fix. Tian et al. consider temporal,
textual, author, related-report, severity, and product features to
predict the priority of bug reports. Antoniol et al. introduce
a framework to predict whether an issue is a bug report or
a feature request [1]. Kochhar et al. extend Antoniol et al.
work by predicting fine-grained issue reclassifications [15]. In
their work, an issue can be classified as a bug, request for
improvement, documentation, refactoring, task, etc. Jalbert and
Weimer and Tian et al. predict if a bug report is a duplicate
bug report [12], [42]. Zhang et al. propose an approach that
can predict if the time needed to resolve a bug report will be
short or long [45].

Classification techniques have also been used to predict
modules that are likely to contain bugs and vulnerabilities. Lu
et al. propose approaches that utilize semi-supervised learning
and active learning with dimensionality reduction to predict
defect prone modules [27], [26]. Panichella et al. predict defect
prone software entities by leveraging defect data from another
project [31]. Zimmermann et al. use several classical metrics
such as complexity, churn, coverage, dependency measures,
and organizational structure of a company, to predict modules
containing security vulnerabilities in Windows Vista [46].
Scandariato et al. propose a vulnerability prediction model
learned from text features extracted from source code files to
predict which components of a software system are likely to
contain security vulnerabilities [35].

Classification techniques have also been applied to pre-
dict if a software behavior is normal or faulty. Lo et al.
mine iterative patterns from execution traces, and use these
mined patterns as features to train a classifier for failure
detection [25]. An iterative pattern is a sequence of method
calls that appear frequently in execution traces. These patterns
form composite features that can be used as signatures to
differentiate normal and faulty execution traces. Bowring et
al. propose an active learning technique where a classifier is
incrementally trained based on a series of training data points
to classify software behaviors [2]. The proposed approach uses
Markov models to capture regularities in program execution
traces and clusters these Markov models to create an effective
predictors to classify software behaviors.

Different from the above mentioned studies, our work con-
siders a different problem. We utilize a classification algorithm
to recommend whether developers should continue to wait
for an automatic software repair tool to finish fixing a faulty
program or revert to other traditional approaches to fix the
program.

The closest to our work are studies which utilize classi-
fication algorithms to recommend whether developers should
follow an output of an automatic debugging tool [19], [20],
[21]. Le and Lo propose an approach to predict the effec-
tiveness of a spectrum-based fault localization (SBFL) tool
for a given set of program spectra [19], [20]. To predict
the effectiveness of a SBFL tool on a program spectra, their
proposed approach extracts many features from execution
traces and suspiciousness scores outputted by the SBFL tool.
Le et al. propose an approach to predict the effectiveness of
an information retrieval (IR) based bug localization tool for a
given bug report [21]. To predict the effectiveness of an IR-

based bug localization tool on a bug report, their proposed
approach extracts many features from the textual contents of
the bug report and suspiciousness scores outputted by the
IR-based bug localization tool. In this work, we consider a
different problem namely the prediction of the effectiveness
of an automated program repair tool when fixing a faulty
program. Since we are considering a new problem, we need to
extract a new set of features that are related to the likelihood of
a repair instance to be effective or not. Different from the work
by Le and Lo, and Le et al., in this work, we extract features
from the input program, number and locality of suspicious
program locations marked by GenProg, and the first initial
population of repair candidates generated by GenProg.

VIII. CONCLUSION AND FUTURE WORK

In this study, we build an oracle that can predict whether
an automated program repair tool will find a repair for a defect
within a desired time limit or not. We evaluate our solution
based on a well-known genetic programming based program
repair tool named GenProg. To build the oracle that can predict
the effectiveness of GenProg, we propose 27 features that
capture various characteristics of program repair instances (i.e.,
applications of GenProg to repair faulty programs). These
features are extracted from the faulty program, test cases,
number and locality of suspicious program locations marked
by GenProg, and the first initial population of repair candidates
generated by GenProg. Using a machine learning algorithm,
we build a discriminative model based on features extracted
from a training set of program repair instances. This model is
then leveraged to predict if unknown program repair instances
can be successfully fixed by GenProg in a given time budget.
We have evaluated the ability of our approach to predict
the effectiveness of GenProg in fixing 105 real bugs. The
experiment results show that approach can achieve a precision,
recall, F-measure, and AUC of 72%, 74%, 73%, and 76%,
respectively. Furthermore, our approach outperforms the best
baseline that predicts all repair instances as effective by 9%
and 52% in terms of F-measure and AUC, respectively.

As future work, we plan to further improve the precision,
recall, F-measure, and AUC of our approach. To achieve this
goal, we plan to design additional features that can help to
differentiate effective from ineffective repair instances. We also
plan to perform an in-depth analysis to explain the reason
why our approach is less effective in some cases. Based on
this analysis, we will design appropriate extensions to our
approach. Furthermore, we plan to apply our solution to predict
the effectiveness of other automated program repair techniques,
e.g., [30], [14], [44]. Subsequently, we can build a general
framework to recommend developers the best program repair
technique that should be used to fix a particular bug. Addition-
ally, rather than using a standard off-the-shelf classification
algorithm, it will also be interesting to design a specialized
classification algorithm that is optimized to predicting the
effectiveness of program repair instances.

ACKNOWLEDGMENT

We would like to thank Claire Le Goues, ThanhVu Nguyen,
Stephanie Forrest, and Westley Weimer for providing us the
implementation of GenProg and the bugs that were used to
assess the effectiveness of GenProg.

REFERENCES

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the center
for advanced studies on collaborative research: meeting of minds.
ACM, 2008, p. 23.

[2] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning
for automatic classification of software behavior,” in ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 4. ACM, 2004, pp. 195–205.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[4] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of su-
pervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 161–168.

[5] J. G. Cleary and L. E. Trigg, “K*: An instance-based learner using
an entropic distance measure,” in 12th International Conference on
Machine Learning, 1995, pp. 108–114.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons,, 1999.

[7] Q. Gu, Z. Li, and J. Han, “Generalized fisher score for feature selection,”
arXiv preprint arXiv:1202.3725, 2012.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[9] J. Han, M. Kamber, and J. Pei, “Data mining: Concepts and techniques,
(the morgan kaufmann series in data management systems),” 2006.

[10] T. Hastie, R. Tibshirani et al., “Classification by pairwise coupling,”
The annals of statistics, vol. 26, no. 2, pp. 451–471, 1998.

[11] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “Autoodc:
Automated generation of orthogonal defect classifications,” in 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2011, pp. 412–415.

[12] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC, 2008. IEEE, 2008, pp.
52–61.

[13] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to platt’s smo algorithm for svm classifier design,”
Neural Computation, vol. 13, no. 3, pp. 637–649, 2001.

[14] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International Con-
ference on Software Engineering (ICSE), May 2013, pp. 802–811.

[15] P. S. Kochhar, F. Thung, and D. Lo, “Automatic fine-grained issue report
reclassification,” in 2014 19th International Conference on Engineering
of Complex Computer Systems, Tianjin, China, August 4-7, 2014, 2014,
pp. 126–135.

[16] J. R. Koza, Genetic programming: on the programming of computers
by means of natural selection. MIT press, 1992, vol. 1.

[17] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in 7th IEEE Working Conference on Mining
Software Repositories (MSR). IEEE, 2010, pp. 1–10.

[18] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
15th European Conference on Software Maintenance and Reengineering
(CSMR). IEEE, 2011, pp. 249–258.

[19] T.-D. B. Le and D. Lo, “Will fault localization work for these failures?
an automated approach to predict effectiveness of fault localization
tools,” in 29th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 2013, pp. 310–319.

[20] T.-D. B. Le, D. Lo, and F. Thung, “Should i follow this fault localization
tool’s output? automated prediction of fault localization effectiveness,”
Empirical Software Engineering, 2014.

[21] T.-D. B. Le, F. Thung, and D. Lo, “Predicting effectiveness of ir-based
bug localization techniques,” in 25th IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2014.

[22] S. le Cessie and J. van Houwelingen, “Ridge estimators in logistic
regression,” Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[23] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for
8 each,” in Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, 2012, pp. 3–13.

[24] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[25] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classification of
software behaviors for failure detection: a discriminative pattern mining
approach,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009,
pp. 557–566.

[26] H. Lu, B. Cukic, and M. Culp, “Software defect prediction using
semi-supervised learning with dimension reduction,” in Automated
Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM
International Conference on. IEEE, 2012, pp. 314–317.

[27] H. Lu, E. Kocaguneli, and B. Cukic, “Defect prediction between
software versions with active learning and dimensionality reduction,”
in 25th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE), 2014.

[28] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in IEEE International Conference on Software Mainte-
nance (ICSM 2008). IEEE, 2008, pp. 346–355.

[29] F. F.-H. Nah, “A study on tolerable waiting time: how long are web
users willing to wait?” Behaviour & Information Technology, vol. 23,
no. 3, pp. 153–163, 2004.

[30] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE), May 2013, pp. 772–781.

[31] A. Panichella, R. Oliveto, and A. D. Lucia, “Cross-project defect
prediction models: L’union fait la force,” in 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering, CSMR-WCRE 2014, Antwerp, Belgium, February
3-6, 2014, 2014, pp. 164–173.

[32] J. Platt et al., “Sequential minimal optimization: A fast algorithm for
training support vector machines,” 1998.

[33] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair.” in ICSE, 2014, pp. 254–265.

[34] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

[35] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” 2014.

[36] H. Seo and S. Kim, “Predicting recurring crash stacks,” in Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2012, pp. 180–189.

[37] B. Settles, “Active learning literature survey,” University of Wisconsin,
Madison, vol. 52, no. 55-66, p. 11, 2010.

[38] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs in open
source software,” Empirical Software Engineering, vol. 18, no. 5, pp.
1005–1042, 2013.

[39] G. Tassey, “The economic impacts of inadequate infrastructure for
software testing.” National Institute of Standards and Technology.
Planning Report 02-3.2002, 2002.

[40] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction,” in 19th
Working Conference on Reverse Engineering (WCRE), 2012. IEEE,
2012, pp. 215–224.

[41] ——, “DRONE: predicting priority of reported bugs by multi-factor
analysis,” in 2013 IEEE International Conference on Software Mainte-
nance, Eindhoven, The Netherlands, September 22-28, 2013, 2013, pp.
200–209.

[42] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identifi-
cation,” in 16th European Conference on Software Maintenance and
Reengineering, CSMR 2012, Szeged, Hungary, March 27-30, 2012,
2012, pp. 385–390.

[43] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in Software Reliability
Engineering (ISSRE), 2014 IEEE 25th International Symposium on.
IEEE, 2014, pp. 23–33.

[44] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program equivalence for
adaptive program repair: Models and first results,” in 2013 IEEE/ACM
28th International Conference on Automated Software Engineering
(ASE), Nov 2013, pp. 356–366.

[45] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: an
empirical study of commercial software projects,” in 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, 2013, pp. 1042–1051.

[46] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista,”
in Software Testing, Verification and Validation (ICST), 2010 Third
International Conference on. IEEE, 2010, pp. 421–428.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2015

	Should fixing these failures be delegated to automated program repair?
	LE DINH XUAN BACH
	LE BUI TIEN DUY
	David LO
	Citation

	tmp.1490946176.pdf.aisEG

