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Bug Localization: Better Together

Tien-Duy B. Le, Richard J. Oentaryo, and David Lo
School of Information Systems

Singapore Management University
{btdle.2012,roentaryo,davidlo}@smu.edu.sg

ABSTRACT
Debugging often takes much effort and resources. To
help developers debug, numerous information retrieval (IR)-
based and spectrum-based bug localization techniques have
been proposed. IR-based techniques process textual infor-
mation in bug reports, while spectrum-based techniques pro-
cess program spectra (i.e., a record of which program el-
ements are executed for each test case). Both eventually
generate a ranked list of program elements that are likely
to contain the bug. However, these techniques only con-
sider one source of information, either bug reports or pro-
gram spectra, which is not optimal. To deal with the limita-
tion of existing techniques, in this work, we propose a new
multi-modal technique that considers both bug reports and
program spectra to localize bugs. Our approach adaptively
creates a bug-specific model to map a particular bug to its
possible location, and introduces a novel idea of suspicious
words that are highly associated to a bug. We evaluate our
approach on 157 real bugs from four software systems, and
compare it with a state-of-the-art IR-based bug localization
method, a state-of-the-art spectrum-based bug localization
method, and three state-of-the-art multi-modal feature loca-
tion methods that are adapted for bug localization. Experi-
ments show that our approach can outperform the baselines
by at least 47.62%, 31.48%, 27.78%, and 28.80% in terms of
number of bugs successfully localized when a developer in-
spects 1, 5, and 10 program elements (i.e., Top 1, Top 5, and
Top 10), and Mean Average Precision (MAP) respectively.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging
Keywords: Bug Localization, Information Retrieval, Pro-
gram Spectra

1. INTRODUCTION
Developers often receive a high number of bug reports [9]

and debugging these reports is a difficult task that consumes
much resources [45]. To help developers debug, many re-
search studies have proposed a number of techniques that

help developers locate buggy program elements from their
symptoms. These symptoms could be in the form of a de-
scriptions of a bug experienced by a user, or a failing test
case. These techniques, which are often collectively referred
to as bug (or fault) localization, would analyze the symp-
toms of a bug, and produce a list of program elements
ranked based on their likelihood to contain the bug. Ex-
isting bug localization techniques can be divided into two
families: information retrieval (IR)-based bug localization
techniques [39, 44, 57, 41], and spectrum-based bug local-
ization techniques [19, 8, 40, 56, 55, 13, 23, 24, 25]. IR-
based bug localization techniques typically analyze textual
descriptions contained in bug reports and identifier names
and comments in source code files. It then returns a ranked
list of program elements (typically program files) that are
the most similar to the bug textual description. Spectrum-
based bug localization techniques typically analyze program
spectra that corresponds to program elements that are ex-
ecuted by failing and successful execution traces. It then
returns a ranked list of program elements (typically pro-
gram blocks or statements) that are executed more often in
the failing rather than correct traces.

The above mentioned approaches only consider one kind of
symptom or one source of information, i.e., only bug reports
or only execution traces. This is a limiting factor since hints
of the location of a bug may be spread in both bug report
and execution traces; and some hints may only appear in
one but not the other. In this work, we plan to address the
limitation of existing studies by analyzing both bug reports
and execution traces. We refer to the problem as multi-
modal bug localization since we need to consider multiple
modes of inputs (i.e., bug reports and program spectra). It
fits well to developer debugging activities as illustrated by
the following debugging scenarios:

1. Developer D is working on a bug report that is sub-
mitted to Bugzilla. One of the first tasks that he needs
to do is to replicate the bug based on the description
in the report. If the bug cannot be replicated, he will
mark the bug report as“WORKSFORME”and will not
continue further [33]. He will only proceed to the de-
bugging step after the bug has been successfully repli-
cated. After D replicates the bug, he has one or a few
failing execution traces. He also has a set of regression
tests that he can run to get successful execution traces.
Thus, after the replication process, D has both the tex-
tual description of the bug and a program spectra that
characterizes the bug. With this, D can proceed to use
multi-modal bug localization.
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2. Developer D runs a regression test suite and some test
cases fail. Based on his experience, D has some idea
why the test cases fail. D can create a textual docu-

ment describing the bug. At the end of this step, D has
both program spectra and textual bug description, and
can proceed to use multi-modal bug localization which
will leverage not only the program spectra but also D’s
domain knowledge to locate the bug.

Although no multi-modal bug localization technique has
been proposed in the literature, there are a few multi-modal
feature location techniques. These techniques process both
feature description and program spectra to recommend pro-
gram elements (typically program methods) that implement
a corresponding feature [37, 26, 16]. These feature location
approaches can be adapted to locate buggy program ele-
ments by replacing feature descriptions with bug reports and
feature spectra with buggy program spectra. Unfortunately,
our experiment (see Section 4) shows that the performance
of such adapted approaches are not optimal yet.

Our multi-modal bug localization approach improves pre-
vious multi-modal approaches based on two intuitions.
First, we note that there are a wide variety of bugs [46, 49]
and different bugs often require different treatments. Thus,
there is a need for a bug localization technique that is adap-
tive to different types of bugs. Past approaches [26, 16,
37] propose a one-size-fits-all solution. Here, we propose an
instance-specific solution that considers each bug individu-
ally and tunes various parameters based on the character-
istic of the bug. Second, Parnin and Orso [35] highlight in
their study that some words are useful in localizing bugs and
suggest that “future research could also investigate ways to
automatically suggest or highlight terms that might be re-
lated to a failure”. Based on their observation, we design an
approach that can automatically highlight suspicious words
and use them to localize bugs.

Our proposed approach, named Adaptive Multi-modal
bug Localization (AML), realizes the above mentioned
intuitions. It consists of three components: AMLText,
AMLSpectra, and AMLSuspWord. AMLText only considers
the textual description in bug reports, and AMLSpectra

only considers program spectra. On the other hand,
AMLSuspWord takes into account suspicious words learned by
analyzing textual description and program spectra together.
AMLSuspWord computes the suspicious scores of words that
appear as comments or identifiers of various program ele-
ments. It associates a program element to a set of words and
the suspiciousness of a word can then be computed based on
the number of times the corresponding program elements
appear in failing or correct execution traces. Each of these
components would output a score for each program element,
and AML computes the weighted sum of these scores. The
final score is adaptively computed for each individual bug by
tuning these weights.

We focus on localizing a bug to the method that contains
it. Historically, most IR-based bug localization techniques
find buggy files [39, 44, 57, 41], while most spectrum-based
bug localization solutions find buggy lines [19, 8, 40]. Local-
izing a bug to the file that contains it is useful, however a
file can be big and developers still need to go through a lot
of code to find the few lines that contain the bug. Localizing
a bug to the line that contains it is useful, however, a bug
often spans across multiple lines. Furthermore, developers
often do not have “perfect bug understanding” [35] and thus

by just looking at a line of code, developers often cannot
determine whether it is the location of the bug and/or un-
derstand the bug well enough to fix it. A method is not as
big as a file, but it often contains sufficient context needed
to help developers understand a bug.

We have evaluated our solution using a dataset of 157 real
bugs from four medium to large software systems: AspectJ,
Ant, Lucene, and Rhino. We collected real bug reports and
real test cases from these systems. The test cases are run to
generate program spectra. We have compared our approach
against 3 state-of-the-art multi-modal feature localization
techniques (i.e., PROMESIR [37], DITA and DITB [16]),
a state-of-the-art IR-based bug localization technique [53],
and a state-of-the-art spectrum-based bug localization tech-
nique [52]. We evaluated our approach based on two eval-
uation metrics: number of bugs localized by inspecting the
top N program elements (Top N) and mean average preci-
sion (MAP). Top N and MAP are widely used in past bug
localization studies, e.g., [39, 44, 57, 41]. Top N is in line
with the observation of Parnin and Orso, who highlight that
developers care about absolute rank and they often will stop
inspecting program elements, if they do not get promising re-
sults when inspecting the top ranked program elements [35].
MAP is a standard information retrieval metric to evaluate
the effectiveness of a ranking technique [31]. Our experi-
ment results highlight that, among the 157 bugs, AML can
successfully localize 31, 71, and 92 bugs when developers
only inspect the top 1, top 5, and top 10 methods in the
lists that AML produces respectively. AML can successfully
localize 47.62%, 31.48%, and 27.78% more bugs than the
best baseline when developers only inspect the top 1, top 5,
and top 10 methods, respectively. In terms of MAP, AML
outperforms the best performing baseline by 28.80%.

We summarize our key contributions below:

1. We are the first to build an adaptive algorithm for
multi-modal bug localization. Different from past ap-
proaches which are one-size-fits-all, our approach is
instance-specific and considers each individual bug to
tune various parameters or weights in AML.

2. We are the first to compute suspicious words and use
these words to help bug localization. Past studies only
compute suspiciousness scores of program elements.

3. We develop a probabilistic-based iterative optimiza-
tion procedure to find the best linear combination of
AML components (i.e., AMLText, AMLSuspWord, and
AMLSpectra) that maximizes the posterior probability
of bug localization. The procedure features an efficient
and balanced sampling strategy to gracefully handle
the skewed distribution of the faulty vs. non-faulty
methods (i.e., given a bug, there are more non-faulty
methods than faulty ones in a code base).

4. We have evaluated our approach on 157 real bugs from
4 software systems using real bug reports and test cases.
Our experiments highlight that our proposed approach
improves upon state-of-the-art multi-modal bug local-
ization solutions by a substantial margin.

The structure of the remainder of this paper is as follows.
In Section 2, we describe preliminary materials about IR-
based and spectrum-based bug localization. In Section 3,
we present our proposed approach AML. In Section 4, we
describe our experiment methodology and results. We dis-
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cuss related work in Section 5. We conclude and describe
future work in Section 6.

2. BACKGROUND
In this section, we present some background material on

IR-based and spectrum-based bug localization.

IR-Based Bug Localization: IR-based bug localization
techniques consider an input bug report (i.e., the text in
the summary and description of the bug report – see Fig-
ure 1) as a query, and program elements in a code base as
documents, and employ information retrieval techniques to
sort the program elements based on their relevance with the
query. The intuition behind these techniques is that pro-
gram elements sharing many common words with the input
bug report are likely to be relevant to the bug. By using
text retrieval models, IR-based bug localization computes
the similarities between various program elements and the
input bug report. Then, program elements are sorted in de-
scending order of their textual similarities to the bug report,
and sent to developers for manual inspection.

All IR-based bug localization techniques need to extract
textual contents from source code files and preprocess tex-
tual contents (either from bug reports or source code files).
First, comments and identifier names are extracted from
source code files. These can be extracted by employing a
simple parser. In this work, we use JDT [5] to recover the
comments and identifier names from source code. Next, af-
ter the textual contents from source code and bug reports
are obtained, we need to preprocess them. The purpose of
text preprocessing is to standardize words in source code
and bug reports. There are three main steps: text normal-
ization, stopword removal, and stemming:

1. Text normalization breaks an identifier into its con-
stituent words (tokens), following camel casing conven-
tion. Following the work by Saha et al. [41], we also
keep the original identifier names.

2. Stopword removal removes punctuation marks, special
symbols, number literals, and common English stop-
words [6]. It also removes programming keywords such
as if , for , while, etc., as these words appear too fre-
quently to be useful enough to differentiate between doc-
uments.

3. Stemming simplifies English words into their root forms.
For example, ”processed“, ”processing“, and ”processes“
are all simplified to ”process“. This increases the chance
of a query and a document to share some common words.
We use the popular Porter Stemming algorithm [36].

There are many IR techniques that have been employed
for bug localization. We highlight a popular IR technique
namely Vector Space Model (VSM). In VSM, queries and
documents are represented as vectors of weights, where each
weight corresponds to a term. The value of each weight
is usually the term frequency—inverse document frequency
(TF-IDF) of the corresponding word. Term frequency refers
to the number of times a word appears in a document. In-
verse document frequency refers to the number of documents
in a corpus (i.e., a collection of documents) that contain the
word. The higher the term frequency and inverse document
frequency of a word, the more important the word would
be. In this work, given a document d and a corpus C, we

Bug 54460

Summary: Base64Converter not properly handling bytes
with MSB set (not masking byte to int conversion)

Description: Every 3rd byte taken for conversion
(least significant in triplet is not being masked with
added to integer, if the msb is set this leads to a signed
extension which overwrites the previous two bytes with
all ones . . .

Figure 1: Bug Report 54460 of Apache Ant

compute the TF-IDF weight of a word w as follows:

TF-IDF(w, d, C) = log(f(w, d) + 1)× log
|C|

|di ∈ C : w ∈ di|

where f(w, d) is the number of times word w appears in
document d.

After computing a vector of weights for the query and each
document in the corpus, we calculate the cosine similarity
of the query’s vector and the document’s vector. The cosine
similarity between query q and document d is given by:

sim(q, d) =

∑
w∈(q

⋂
d)

weight(w, q)× weight(w, d)√∑
w∈q

weight(w, q)2 ×
√∑
w∈d

weight(w, d)2

where w ∈ (q
⋂
d) means word w appears both in the query

q and document d. Also, weight(w, q) refers to the weight
of word w in the query q’s vector. Similarly, weight(w, d)
refers to the weight of word w in the document d’s vector.

Spectrum-Based Bug Localization: Spectrum-based
bug localization (SBBL), also known as spectrum-based
fault localization (SBFL), takes as input a faulty program
and two sets of test cases. One is a set of failed test cases,
and the other one is a set of passed test cases. SBBL then
instruments the target program, and records program spec-
tra that are collected when the set of failed and passed test
cases are run on the instrumented program. Each of the col-
lected program spectrum contains information of program
elements that are executed by a test case. Various tools can
be used to collect program spectra as a set of test cases are
run. In this work, we use Cobertura [4].

Table 1: Raw Statistics for Program Element e
e is executed e is not executed

unsuccessful test nf (e) nf (ē)
successful test ns(e) ns(ē)

Based on these spectra, SBBL typically computes some
raw statistics for every program elements. Tables 1 and 2
summarize some raw statistics that can be computed for a
program element e. These statistics are the counts of unsuc-
cessful (i.e., failed), and successful (i.e., passed) test cases
that execute or do not execute e. If a successful test case
executes program element e, then we increase ns(e) by one
unit. Similarly, if an unsuccessful test case executes program
element e, then we increase nf (e) by one unit. SBBL uses
these statistics to calculate the suspiciousness scores of each
program element. The higher the suspiciousness score, the
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Table 2: Raw Statistic Description
Notation Description

nf (e)
Number of unsuccessful test cases that
execute program element e

nf (ē)
Number of unsuccessful test cases that
do not execute program element e

ns(e)
Number of successful test cases that ex-
ecute program element e

ns(ē)
Number of successful test cases that do
not execute program element e

nf Total number of unsuccessful test cases
ns Total number of successful test cases

more likely the corresponding program element is the faulty
element. After the suspiciousness scores of all program el-
ements are computed, program elements are then sorted in
descending order of their suspiciousness scores, and sent to
developers for manual inspection.

There are a number of SBBL techniques which propose
various formulas to calculate suspiciousness scores. Among
these techniques, Tarantula is a popular one [19]. Using the
notation in Table 2, the following is the formula that Taran-
tula uses to compute the suspiciousness score of program
element e:

Tarantula(e) =

nf (e)

nf

nf (e)

nf
+ ns(e)

ns

The main idea of Tarantula is that program elements that
are executed by failed test cases are more likely to be faulty
than the ones that are not executed by failed test cases.
Thus, Tarantula assigns a non-zero score to program element
e that has nf (e) > 0.

3. PROPOSED APPROACH
The overall framework of our Adaptive Multi-modal bug

Localization (AML) is shown in Figure 2. AML (enclosed in
dashed box) takes as input a new bug report and the pro-
gram spectra corresponding to it. AML also takes as input
a training set of (historical) bugs that have been localized
before. For each bug in the training set, we have its bug
report, program spectra, and set of faulty methods. If a
method contains a root cause of the bug, it is labeled as
faulty, otherwise it is labeled as non-faulty. Based on the
training set of previously localized bugs and a method cor-
pus, AML produces a list of methods ranked based on their
likelihood to be the faulty ones given the new bug report.

AML has four components: AMLText, AMLSpectra,
AMLSuspWord, and Integrator. AMLText processes only the
textual information in the input bug reports using an IR-
based bug localization technique described in Section 2.
AMLText in the end outputs a score for each method in the
corpus. Given a bug report b and a method m in a corpus C,
AMLText outputs a score that indicates how close is m to b
which is denoted as AMLText(b,m,C). By default, AMLText

uses VSM as the IR-based bug localization technique.
AMLSpectra processes only the program spectra informa-

tion using a spectrum-based bug localization technique de-
scribed in Section 2. AMLSpectra in the end outputs a score
for each method in the corpus. Given a program spectra p
and a method m in a corpus C, AMLSpectra outputs a score

AMLText

Input Bug 

Report

Input 

Program 

Spectra

Training 

Data

AMLSpectra

AMLSuspWord

Integrator

Method 

Corpus

Data

Ranked List of 

Methods

Figure 2: Proposed Approach: AML

that indicates how suspicious is m considering p which is de-
noted as AMLSpectra(p,m,C). By default, AMLSpectra uses
Tarantula as the spectrum-based bug localization technique.

AMLSuspWord processes both bug reports and program
spectra, and computes the suspiciousness scores of words
to rank methods. Given a bug report b, a program spectra
p, and a method m in a corpus C, AMLSuspWord outputs a
score that indicates how suspicious is m considering b and
p; this is denoted as AMLSuspWord(b, p,m,C).

The integrator component combines the AMLText,
AMLSpectra, AMLSuspWord components to produce the final
ranked list of methods. Given a bug report b, a program
spectra p, and a method m in a corpus C, the adaptive inte-
grator component outputs a suspiciousness score for method
m which is denoted as AML(b, p,m,C).

The AMLText and AMLSpectra components reuse tech-
niques proposed in prior works which are described in Sec-
tion 2. In the next subsections, we just describe the new
components namely AMLSuspWord and the adaptive integra-
tor component.

3.1 Suspicious Word Component
Parnin and Orso highlighted that “future research could

also investigate ways to automatically suggest or highlight
terms that might be related to a failure” [35], however they
did not propose a concrete solution. We use Parnin and
Orso’s observation, which highlights that some words are
indicative to the location of a bug, as a starting point to de-
sign our AMLSuspWord component. This component breaks
down a method into its constituent words, computes the sus-
piciousness scores of these words, and composes these scores
back to result in the suspiciousness score of the method.
The process is analogous to a machine learning or classi-
fication algorithm that breaks a data point into its con-
stituent features, assign weights or importance to these fea-
tures, and use these features, especially important ones, to
assign likelihood scores to the data point. The component
works in three steps: mapping of methods to words, comput-
ing word suspiciousness, and composing word suspiciousness
into method suspiciousness. We describe each of these steps
in the following paragraphs.

Step 1: Mapping of Methods to Words.
In this step, we map a method to its constituent words.

For every method, we extract the following textual con-
tents including: (1) The name of the method, along with
the names of its parameters, and identifiers contained in
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the method body; (2) The name of the class containing the
method, and the package containing the class; (3) The com-
ments that are associated to the method (e.g., the Javadoc
comment of that method, and the comments that appear
inside the method), and comments that appear in the class
(containing the method) that are not associated to any par-
ticular method.

After we have extracted the above textual contents, we
apply the text pre-processing step described in Section 2.
At the end of this step, for every method we map it to a set
of pre-processed words. Given a method m, we denote the
set of words it contains as words(m).

Step 2: Computing Word Suspiciousness.
We compute the suspiciousness score of a word by con-

sidering the program elements that contain the word. Let us
denote the set of all failing execution traces in spectra p as
p.F and the set of all successful execution traces as p.S. To
compute the suspiciousness scores of a word w given spectra
p, we define several sets:

EF (w, p) = {t ∈ p.F |∃m ∈ t s.t. w ∈ words(m)}
ES(w, p) = {t ∈ p.S|∃m ∈ t s.t. w ∈ words(m)}

The set EF (w, p) is the set of execution traces in p.F that
contain a method in which the word w appears. The set
ES(w, p) is the set of execution traces in p.S that contain a
method in which the word w appears. Based on these sets,
we can compute the suspiciousness score of a word w using
a formula similar to Tarantula as follows:

SSword(w, p) =

|EF (w,p)|
|p.FAIL|

|EF (w,p)|
|p.FAIL| + |ES(w,p)|

|p.SUCCESS|

(1)

Using the above formula, words that appear more often
in methods that are executed in failing execution traces are
deemed to be more suspicious than those that appear less
often in such methods.

Step 3: Computing Method Suspiciousness.
To compute a method m’s suspiciousness score, we com-

pute the textual similarity between m and the input bug
report b, and consider the appearances of m in the input pro-
gram spectra p. In the textual similarity computation, the
suspiciousness of words are used to determine their weights.

First, we create a vector of weights that represents a
bug report and another vector of weights that represents
a method. Each element in a vector corresponds to a word
that appears in either the bug report or the method. The
weight of a word w in document (i.e., bug report or method)
d of method corpus C considering program spectra p is:

SSTFIDF(w, p, d, C) =SSword(w, p)× log(f(w, d) + 1)

× log
|C|

|di ∈ C : w ∈ di|

In the above formula, SSword(w, p) is the suspiciousness score
of word w computed by Equation 1, f(w, d) is the num-
ber of times word w appears in document d, and di ∈ C
means document di is in the set of document C. Similarly,
w ∈ di means word w belongs to document di. The above
formula considers the weight of a word based on its sus-
piciousness, and well-known information retrieval metrics:

term frequency (i.e., log(f(w, d) + 1)) and inverse document

frequency (i.e., log |C|
|di∈C:w∈di|

).

After the two vectors of weights of method m and bug
report b are computed, we compute the suspiciousness score
of the method m by computing the cosine similarity of these
two vectors multiplied by a weighting factor. The formula
to compute this score is as follows:

AMLSuspWord(b, p,m,C) = SSmethod(m, p)×∑
w∈b∩m

SSTFIDF(w, p, b, C)× SSTFIDF(w, p,m,C)√∑
w∈b

SSTFIDF(w, p, b, C)2 ×
√ ∑
w∈m

SSTFIDF(w, p,m,C)2

(2)

Here we use SSmethod(m, p) that computes the suspicious-
ness score of method m considering program spectra p
as the weighting factor. This can be computed by var-
ious spectrum-based bug localization tools. By default,
we use the same fault localization tool as the one used in
AMLSpectra component. With this, AMLSuspWord integrates
both macro view of method suspiciousness (which consid-
ers direct execution of a method in the failing and correct
execution traces) and micro view of method suspiciousness
(which considers the executions of its constituent words in
the execution traces).

3.2 Integrator Component
The integrator component serves to combine the scores

produced by the three components AMLText, AMLSpectra

and AMLSuspWord by taking a weighted sum of the scores.
The final suspiciousness score of method m given bug report
b and program spectra p in a corpus C is given by:

f(xi, θ) = α×AMLText(b,m) + β ×AMLSpectra(p,m)

+ γ ×AMLSuspWord(b, p,m) (3)

where i refers to a specific (b, p,m) combination (aka
data instance), xi denotes the feature vector xi =
[AMLText(b,m),AMLSpectra(p,m),AMLSuspWord(b, p,m)],
and θ is the parameter vector [α, β, γ], where α, β, γ are
arbitrary real numbers. Note that we exclude mentioning
corpus C in both sides of Equation 3 to simplify the set of
notations used in this section.

The weight parameters (θ) are tuned adaptively for a new
bug report b based on a set of top-K historical fixed bugs in
a training data that are the most similar to b. We find these
top-K nearest neighbors by measuring the textual similarity
of b with training (historical) bug reports using the VSM
model. In this work, we propose a probabilistic learning
approach which analyzes this training data to fine-tune the
weight parameters α, β, and γ for the new bug report b.

Probabilistic Formulation.
From a machine learning standpoint, bug localization can

be interpreted as a binary classification task. For a given
combination (b, p,m), the positive label refers to the case
when method m is indeed where the bug b is located (i.e.,
faulty case), and the negative label is when m is not relevant
to b (i.e., non-faulty case). As we deal with binary classi-
fication task, it is plausible to assume that a data instance
follows Bernoulli distribution, c.f., [34]:

p(xi, yi|θ) = σ(f(xi, θ))
yi (1− σ(f(xi, θ)))

(1−yi) (4)
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where yi = 1 (yi = 0) denotes the positive (negative) label,
and σ(x) = 1

1+exp(−x) is the logistic function. Using this

notation, we can formulate the overall data likelihood as:

p(X, y|θ) =

N∏
i=1

σ(f(xi, θ))
yi (1− σ(f(xi, θ)))

(1−yi) (5)

where N is the total number of data instances (i.e., (b, p,m)
combinations), and y = [y1, . . . , yi, . . . , yN ] is the label vec-
tor.

Our primary interest here is to infer the posterior proba-
bility p(θ|X), which can be computed via the Bayes’ rule:

p(θ|X, y) =
p(X, y|θ)p(θ)
p(X, y)

(6)

Specifically, our goal is to find an optimal parameter vector
θ∗ that maximizes the posterior p(θ|X, y). This leads to the
following optimization task:

θ∗ = arg max
θ
p(θ|X, y)

= arg max
θ
p(X, y|θ)p(θ)

= arg min
θ

(− log(p(X, y|θ))− log(p(θ))) (7)

Here we can drop the denominator p(X, y), since it is inde-
pendent of the parameters θ. The term p(θ) refers to the
prior, which we define to be a Gaussian distribution with
(identical) zero mean and inverse variance λ:

p(θ) =

J∏
j=1

√
λ

2π
exp

(
−λ

2
θ2j

)
(8)

where the number of parameters J is 3 in our case (i.e., α,
β, and γ).

By substituting (5) and (8) into (7), and by droppping
the constant terms that are independent of θ, the optimal
parameters θ∗ can be computed as:

θ∗ = arg min
θ

(
N∑
i=1

Li +
λ

2

J∑
j=1

θ2j

)
(9)

where Li is called the instance-wise loss, as given by:

Li = − [yi log(σ(f(xi, θ))) + (1− yi) log(1− σ(f(xi, θ)))]
(10)

Solution to this minimization task is known as the regular-
ized logistic regression. The regularization term λ

2

∑J
j=1 θ

2
j–

which stems from the prior p(θ)–serves to penalize large pa-
rameter values, thereby reducing the risk of data overfitting.

Algorithm.
To estimate θ∗, we develop an iterative parameter tuning

strategy that performs a descent move along the negative
gradient of Li. Algorithm 1 summarizes our proposed pa-
rameter tuning method. More specifically, for each instance
i, we perform gradient descent update for each parameter
θj :

θj ← θj − η
(
∂Li
∂θj

+ λθj

)
(11)

where the gradient term ∂Li
∂θj

resolves to:

∂Li
∂θj

= (σ(f(xi, θ))− yi)xi,j (12)

Algorithm 1 Iterative parameter tuning

Require: Matrix X ∈ RN×3 (each row is a vector xi =
[AMLText(b,m),AMLSpectra(p,m),AMLSuspWord(b, p,m)]
for bug report b, program spectra p, and method m
in one of the top-K most similar training data), label
vector y ∈ RN (each element yi is the label of xi),
learning rate η, regularization parameter λ, maximum
training iterations Tmax

Ensure: Weight parameters α, β, γ
1: Initialize α, β, γ to zero
2: repeat
3: for each n ∈ {1, . . . , N} do
4: if n mod 2 = 0 then . Draw a positive instance
5: Randomly pick i from {1, . . . , N} s.t. yi = 1
6: else . Draw a negative instance
7: Randomly pick i from {1, . . . , N} s.t. yi = 0
8: end if
9: Compute overall score f(xi, θ) using Eq. (3)

10: Compute gradient gi ← σ(f(xi, θ))− yi
11: α← α− η

(
gi ×AMLText(b,m) + λα

)
12: β ← β − η

(
gi ×AMLSpectra(p,m) + λβ

)
13: γ ← γ − η

(
gi ×AMLSuspWord(b, p,m) + λγ

)
14: end for
15: until Tmax iterations

with the feature values xi,1 = AMLText(b,m), xi,2 =
AMLSpectra(p,m) and xi,3 = AMLSuspWord(b, p,m), corre-
sponding to the parameters α, β and γ, respectively. The
update steps are realized in lines 11-13 of Algorithm 1.

One key challenge in the current bug localization task
is the extremely skewed distribution of the labels, i.e., the
number of positive cases is much smaller than the number of
negative cases. To address this, we devise a balanced random
sampling procedure when picking a data instance for gradi-
ent descent update. In particular, for every update step, we
alternatingly select a random instance from the positive and
negative instance pools, as per lines 4-8 of Algorithm 1.

Using this simple method, we can balance the training
from positive and negative instances, thus effectively mit-
igating the issue of skewed distribution in the localization
task. It is also worth noting that our iterative tuning proce-
dure is efficient. That is, its time complexity is linear with
respect to the number of instances N and maximum itera-
tions Tmax.

4. EXPERIMENTS

4.1 Dataset
We use a dataset of 157 bugs from 4 popular software

projects to evaluate our approach against the baselines.
These projects are AspectJ [3], Ant [1], Lucene [2], and
Rhino [7]. All four projects are medium-large scale and im-
plemented in Java. AspectJ, Ant, and Lucene contain more
than 300 kLOC, while Rhino contains almost 100 kLOC.
Table 3 describes detailed information of the four projects
in our study.

The 41 AspectJ bugs are from the iBugs dataset which
were collected by Dallmeier and Zimmermann [14]. Each
bug in the iBugs dataset comes with the code before the
fix (pre-fix version), the code after the fix (post-fix version),
and a set of test cases. The iBugs dataset contains more
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Table 3: Dataset Description

Project #Bugs Time Period
Average

# Methods

AspectJ 41 03/2005 – 02/2007 14,218.39
Ant 53 12/2001 – 09/2013 9,624.66
Lucene 37 06/2006 – 01/2011 10,220.14
Rhino 26 12/2007 – 12/2011 4,839.58

than 41 AspectJ bugs but not all of them come with failing
test cases. Test cases provided in the iBugs dataset are
obtained from the various versions of the regression test suite
that comes with AspectJ. The remaining 116 bugs from Ant,
Lucene, and Rhino are collected by ourselves following the
procedure used by Dallmeier and Zimmermann [14]. For
each bug, we collected the pre-fix version, post-fix version, a
set of successful test cases, and at least one failing test case.
A failing test case is often included as an attachment to a
bug report or committed along with the fix in the post-fix
version. When a developer receives a bug report, he/she first
needs to replicate the error described in the report [33]. In
this process, he is creating a failing test case. Unfortunately,
not all test cases are documented and saved in the version
control systems.

4.2 Evaluation Metric and Settings
We use two metrics namely mean average precision (MAP)

and Top N to evaluate the effectiveness of a bug localization
solution. They are defined as follows:

• Top N: Given a bug, if one of its faulty methods is in the
top-N results, we consider the bug is successfully local-
ized. Top N score of a bug localization tool is the number
of bugs that the tool can successfully localize [57, 41].

• Mean Average Precision (MAP): MAP is an IR
metric to evaluate ranking approaches [31]. MAP is
computed by taking the mean of the average precision
scores across all bugs. The average precision of a single
bug is computed as:

AP =

M∑
k=1

P (k)× pos(k)

number of buggy methods

where k is a rank in the returned ranked methods, M
is the number of ranked methods, and pos(k) indicates
whether the kth method is faulty or not. P (k) is the
precision at a given top k methods and is computed as
follows:

P (k) =
#faulty methods in the top k

k
.

Note that typical MAP scores of existing bug localiza-
tion techniques are low [39, 44, 57, 41].

We use 10 fold cross validation: for each project, we divide
the bugs into ten sets, and use 9 as training data and 1 as
testing data. We repeat the process 10 times using different
training and testing data combinations. We then aggregate
the results to get the final Top N and MAP scores. The
learning rate η and regularization parameter λ of AML are
chosen by performing another cross validation on the train-
ing data, while the maximum number of iterations Tmax is
fixed as 30. We use K = 10 as default value for the num-
ber of nearest neighbors. We conduct experiments on an
Intel(R) Xeon E5-2667 2.9GHz server running Linux 2.6.

We compare our approach against 3 state-of-the-art multi-
modal feature localization techniques (i.e., PROMESIR [37],
DITA and DITB [16]), a state-of-the-art IR-based bug lo-
calization technique named LR [53], and a state-of-the-art
spectrum-based bug localization technique named MUL-
TRIC [52]. We use the same parameters and settings that
are described in their papers with the following exceptions
that we justify. For DITA and DITB, the threshold used to
filter methods using HITS was decided “such that at least
one gold set method remained in the results for 66% of the
[bugs]” [16]. In this paper, since we use ten-fold cross valida-
tion, rather than using 66% of all bugs, we use all bugs in the
training data (i.e., 90% of all bugs) to tune the threshold.
For PROMESIR, we also use 10-fold CV and apply a brute
force approach to tune PROMESIR’s component weights
using a step of 0.05. PROMESIR, DITA, DITB , and MUL-
TRIC locate buggy methods, however LR locate buggy files.
Thus, we convert the list of files that LR produces into a list
of methods by using two heuristics: (1) return methods in a
file in the same order that they appear in the file; (2) return
methods based on their similarity to the input bug report as
computed using a VSM model. We refer to the two variants
of LR as LRA and LRB respectively.

4.3 Research Questions
Research Question 1: How effective is AML as compared
to state-of-the-art techniques?

PROMESIR [37], SITIR [26], and several algorithm
variants proposed by Dit et al. [16] are state-of-the-
art multi-modal feature location techniques. Among
the variants proposed by Dit et al. [16], the best per-
forming ones are IRLSIDynbinWMHITS(h, bin)bottom and
IRLSIDynbinWMHITS(h, freq)bottom. We refer to them
as DITA and DITB in this paper. Dit et al. have shown
that these two variants outperform SITIR. However, Dit
et al.’s variants have never been compared with PROME-
SIR. PROMESIR has also never been compared with SITIR.
Thus, to answer this research question, we compare the
performance of our approach with PROMESIR, DITA and
DITB. We also compare with the two variants of LR [53]
(LRA and LRB) and MULTRIC [52] which are recently pro-
posed state-of-the-art IR-based and spectrum-based bug lo-
calization techniques respectively.

Research Question 2: Are all components of AML con-
tributing toward its overall performance?

To answer this research question, we simply drop one
component (i.e., AMLText, AMLSuspWord, and AMLSpectra)
from AML one-at-a-time and evaluate their performance.
In the process, we create three variants of AML: AML−Text,
AML−SuspWord , and AML−Spectra. To create AML−Text,
AML−SuspWord , and AML−Spectra, we exclude AMLText,
AMLSuspWord , and AMLSpectra components from Equa-
tion 3 of our proposed AML, respectively. We use the default
value of K = 10, and apply Algorithm 1 to tune weights of
these variants, and compare their performance with our pro-
posed AML.

Research Question 3: How effective is our Integrator
component ?

Rather than using the integrator component, it is possible
to use a standard machine learning algorithm, e.g., learning-
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to-rank, to combine the scores produced by AMLText,
AMLSuspWord, and AMLSpectra. Indeed, the two state-of-
the-art IR-based and spectrum-based bug localization tech-
niques (i.e., LR and MULTRIC) are based on learning-to-
rank. In this research question, we want to compare our
Integrator component with an off-the-shelf learning-to-rank
tool namely SVMrank [18], which was also used by LR [53].
We simply replace the Integrator component with SVMrank

and evaluate the effectiveness of the resulting solution.

Research Question 4: How efficient is AML?

If AML takes hours to produce a ranked list of methods
for a given bug report, then it would be less useful. In this
research question, we investigate the average running time
needed for AML to output a ranked list of methods for a
given bug report.

Research Question 5: What is the effect of varying the
number of neighbors K on the performance of AML?

Our proposed approach takes as input one parameter,
which is the number of neighbors K, that is used to adap-
tively tune the weights α, β, and γ for a bug. By default,
we set the number of neighbors to 10. The effect of varying
this default value is unclear. To answer this research ques-
tion, we vary the value of K and we investigate the effect of
different numbers of neighbors on the performance of AML.
In particular, we want to investigate if the performance of
AML remains relatively stable for a wide range of K.

4.4 Results

Table 4: Top N: AML vs. Baselines. N ∈ {1, 5, 10}.
P = PROMESIR, D = DIT, L = LR, and M =
MULTRIC.
Top Project AML P DA DB LA LB M

1

AspectJ 7 4 4 3 0 0 0
Ant 9 7 3 3 1 11 2
Lucene 11 8 7 7 1 7 4
Rhino 4 2 1 1 0 2 2
Overall 31 21 15 14 2 20 8

5

AspectJ 13 6 4 3 0 0 1
Ant 22 17 10 10 11 20 7
Lucene 22 18 13 13 6 16 13
Rhino 14 13 5 5 2 8 8
Overall 71 54 32 31 19 44 29

10

AspectJ 13 9 4 3 0 0 2
Ant 31 28 20 20 19 32 15
Lucene 29 21 20 19 10 24 16
Rhino 19 14 7 7 3 12 11
Overall 92 72 51 49 32 68 44

Table 5: Mean Average Precision: AML vs. Base-
lines. P = PROMESIR, D = DIT, L = LR, and M
= MULTRIC.
Project AML P DA DB LA LB M

AspectJ 0.187 0.121 0.092 0.071 0.006 0.004 0.016
Ant 0.234 0.206 0.120 0.120 0.070 0.218 0.077
Lucene 0.284 0.204 0.169 0.166 0.063 0.184 0.188
Rhino 0.243 0.203 0.092 0.090 0.034 0.103 0.172

Overall 0.237 0.184 0.118 0.112 0.043 0.127 0.113

4.4.1 RQ1: AML vs. Baselines
Table 4 shows the performance of AML, and all the base-

lines in terms of Top N. Out of the 157 bugs, AML can
successfully localize 31, 71, and 92 bugs when developers in-
spect the top 1, top 5, and top 10 methods respectively. This
means that AML can successfully localize 47.62%, 31.48%,
and 27.78% more bugs than the best baseline (i.e., PROME-
SIR) by investigating the top 1, top 5, and top 10 methods
respectively.

Table 5 shows the performance of AML and the base-
lines in terms of MAP. AML achieves MAP scores of 0.187,
0.234, 0.284, and 0.243 for AspectJ, Ant, Lucene, and Rhino
datasets, respectively. Averaging across the four projects,
AML achieves an overall MAP score of 0.237 which outper-
forms all the baselines. AML improves the average MAP
scores of PROMESIR, DITA, DITB, LRA, LRB , and MUL-
TRIC by 28.80%, 100.85%, 111.61%, 451.16%, 91.34%, and
109.73% respectively. Moreover, considering each individual
project, in terms of MAP, AML is still the best performing
multi-modal bug localization approach. AML outperforms
the MAP score of the best performing baseline, by 54.55%,
13.59%, 39.22%, and 19.70% for AspectJ, Ant, Lucene, and
Rhino datasets, respectively.

Moreover, we find that our novel component of AML,
i.e., AMLSuspWord, can outperform all the baselines.
AMLSuspWord can achieve a Top 1, Top 5, Top 10, and MAP
scores of 26, 66, 83, and 0.193. These results outperform
the best performing baseline by 23.81%, 22.22%, 15.28%,
and 4.89% respectively.

4.4.2 RQ2: Contributions of AML Components
Table 6 shows the performance of the three AML vari-

ants, and the full AML. From the table, the full AML has
the best performance in term of Top 1, Top 5, Top 10, and
MAP. This shows that omitting one of the AML components
reduces the effectiveness of AML. Thus, each of the compo-
nent contributes towards the overall performance of AML.
Also, among the variants, AML−SuspWord has the smallest
Top 1, Top 5, Top 10, and MAP scores. The reduction in
the evaluation metric scores are the largest when we omit
AMLSuspWord. This indicates that AMLSuspWord is more im-
portant than the other components of AML.

Table 6: Contributions of AML Components
Approach Top 1 Top 5 Top 10 MAP

AML−Text 28 68 87 0.212

AML−SuspWord 28 62 83 0.201

AML−Spectra 26 63 84 0.210

AML 31 71 92 0.237

4.4.3 RQ3: Integrator vs. SVMrank

Table 7 shows the results of comparing our Integrator with
SVMrank. We can note that for most subject programs and
metrics, Integrator outperforms SVMrank. This shows the
benefit of our Integrator component which builds a person-
alized model for each bug and considers the data imbalance
phenomenon.

4.4.4 RQ4: Running Time
Table 8 shows means and standard deviations of AML’s

running time for different projects. From the table, we
note that AML has an average running time of 46.01 sec-
onds. Among the four projects, AML can process Rhino
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Table 7: Integrator vs. SVMrank.
Metrics Project Integrator SVMrank

Top 1

AspectJ 7 4
Ant 9 7
Lucene 11 10
Rhino 4 4
Overall 31 25

Top 5

AspectJ 13 11
Ant 22 24
Lucene 22 23
Rhino 14 13
Overall 71 71

Top 10

AspectJ 13 14
Ant 31 31
Lucene 29 26
Rhino 19 16
Overall 92 87

MAP

AspectJ 0.187 0.131
Ant 0.234 0.234
Lucene 0.284 0.267
Rhino 0.243 0.227
Overall 0.237 0.215

bugs with the least average running time (i.e., 17.94 sec-
onds), and AML needs the longest running time to process
AspectJ bugs (i.e., 72.79 seconds). Compared to the other
three projects, AspectJ is considerably larger. Therefore,
it takes more time for AML to tune its component weights.
Considering that a developer can spend hours and even days
to fix a bug [20], AML running time of 20-80 seconds is rea-
sonable.

Table 8: Running Time of AML (seconds)
Project Mean Standard Deviation

AspectJ 72.79 5.50
Ant 40.88 2.52
Lucene 43.39 3.40
Rhino 17.94 1.58

Overall 46.01 18.48

4.4.5 RQ5: Effect of Varying Number of Neighbors
To answer this research question, we vary the number of

neighbors K from 5 to all bugs in the training data (i.e.,
K = ∞). The results with varying numbers of neighbors is
shown in Table 9. We can see that, as we increaseK, the per-
formance of AML increases until a certain point. When we
use a large K, the performance of AML decreases. This sug-
gests that in general including more neighbors can improve
performance. However, an overly large number of neighbors
may lead to an increased level of noise (i.e., the number of
non-representative neighbors), resulting in a degraded per-
formance. The differences in the Top N and MAP scores are
small though.

4.5 Discussion
Number of Failed Test Cases and Its Impact: In our
experiments with 157 bugs, most of the bugs come with few
failed test cases (average = 2.185). We investigate whether
the number of failed test cases impacts the effectiveness of
our approach. We compute the differences between the aver-

Table 9: Effect of Varying Number of Neighbors (K)
#Neighbors Top 1 Top 5 Top 10 MAP

K = 5 29 68 84 0.223
K = 10 31 71 92 0.237
K = 15 30 70 91 0.237
K = 20 29 70 88 0.227
K = 25 29 67 87 0.224

K =∞ 28 69 86 0.222

age number of failed test cases for bugs that are successfully
localized at top-N positions (N = 1,5,10) and bugs that are
not successfully localized. We find that the differences are
small (-0.472 to 0.074 test cases). These indicate that the
number of test cases do not impact the effectiveness of our
approach much and typically 1 to 3 failed test cases are suf-
ficient for our approach to be effective.

Threats to Validity: Threats to internal validity relate
to implementation and dataset errors. We have checked our
implementations and datasets. However, still there could be
errors that we do not notice. Threats to external validity
relate to the generalizability of our findings. In this work,
we have analyzed 157 real bugs from 4 medium-large soft-
ware systems. In the future, we plan to reduce the threats
to external validity by investigating more real bugs from ad-
ditional software systems, written in various programming
languages. Threats to construct validity relate to the suit-
ability of our evaluation metrics and experimental settings.
Both Top N and MAP have been used to evaluate many
past bug localization studies [39, 44, 57, 41]. MAP is also
well known in the information retrieval community [31]. We
perform cross validation to evaluate the effectiveness of ap-
proach on various training and test data. Cross validation
is a standard setting used to evaluate many past studies [10,
17, 15, 43]. Unfortunately, cross validation ignores tempo-
ral ordering among bug reports. If bugs reported at different
dates do not exhibit substantially different characteristics in
terms of their program spectra and descriptions, then this
threat is minimal.

5. RELATED WORK
Multi-Modal Feature Location: Multi-modal feature lo-
cation takes as input a feature description and a program
spectra, and finds program elements that implement the cor-
responding feature. There are several multi-modal feature
location techniques proposed in the literature [37, 26, 16].

Poshyvanyk et al. proposed an approach named PROME-
SIR that computes weighted sums of scores returned by an
IR-based feature location solution (LSI [32]) and a spectrum-
based solution (Tarantula [19]), and rank program elements
based on their corresponding weighted sums [37]. Then,
Liu et al. proposed an approach named SITIR which filters
program elements returned by an IR-based feature location
solution (LSI [32]) if they are not executed in a failing ex-
ecution trace [26]. Later, Dit et al. used HITS, a popular
algorithm that ranks the importance of nodes in a graph,
to filter program elements returned by SITIR [16]. Sev-
eral variants are described in their paper and the best per-
forming ones are IRLSIDynbinWMHITS(h, bin)bottom and
IRLSIDynbinWMHITS(h, freq)bottom. We refer to these
two as DITA and DITB , respectively. They have showed
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that these variants outperform SITIR, though they have
never been compared with PROMESIR.

In this work, we compare our proposed approach against
PROMESIR, DITA and DITB . We show that our approach
outperforms all of them on all datasets.

IR-Based Bug Localization: Various IR-based bug local-
ization approaches that employ information retrieval tech-
niques to calculate the similarity between a bug report and a
program element (e.g., a method or a source code file) have
been proposed [39, 30, 22, 44, 57, 41, 47, 48, 53].

Lukins et al. used a topic modeling algorithm named La-
tent Dirichlet Allocation (LDA) for bug localization [30].
Then, Rao and Kak evaluated the utility of many stan-
dard IR techniques for bug localization including VSM and
Smoothed Unigram Model (SUM) [39]. In the IR commu-
nity, historically, VSM is proposed very early (four decades
ago by Salton et al. [42]), followed by many other IR tech-
niques, including SUM and LDA, which address the limita-
tions of VSM.

More recently, a number of approaches which considers
information aside from text in bug reports to better locate
bugs were proposed. Sisman and Kak proposed a version his-
tory aware bug localization technique which considers past
buggy files to predict the likelihood of a file to be buggy and
uses this likelihood along with VSM to localize bugs [44].
Around the same time, Zhou et al. proposed an approach
named BugLocator that includes a specialized VSM (named
rVSM) and considers the similarities among bug reports to
localize bugs [57]. Next, Saha et al. proposed an approach
that takes into account the structure of source code files and
bug reports and employs structured retrieval for bug local-
ization, and it performs better than BugLocator [41]. Subse-
quently, Wang and Lo proposed an approach that integrates
the approaches by Sisman and Kak, Zhou et al. and Saha
et al. for more effective bug localization [47]. Most recently,
Ye et al. proposed an approach named LR that combines
multiple ranking features using learning-to-rank to localize
bugs, and these features include surface lexical similarity,
API-enriched lexical similarity, collaborative filtering, class
name similarity, bug fix recency, and bug fix frequency [53].

All these approaches can be used as the AMLText compo-
nent of our approach. In this work, we experiment with a
basic IR technique namely VSM. Our goal is to show that
even with the most basic IR-based bug localization compo-
nent, we can outperform existing approaches including the
state-of-the-art IR-based approach by Ye et al. [53].

Spectrum-Based Bug Localization: Various spectrum-
based bug localization approaches have been proposed in the
literature [19, 8, 27, 28, 24, 25, 11, 12, 56, 55, 13, 29]. These
approaches analyze a program spectra which is a record of
program elements that are executed in failed and successful
executions, and generate a ranked list of program elements.
Many of these approaches propose various formulas that can
be used to compute the suspiciousness of a program element
given the number of times it appears in failing and successful
executions.

Jones and Harrold proposed Tarantula that uses a sus-
piciousness score formula to rank program elements [19].
Later, Abreu et al. proposed another suspiciousness for-
mula called Ochiai [8], which outperforms Tarantula. Then,
Lucia et al. investigated 40 different association measures
and highlighted that some of them including Klosgen and

Information Gain are promising for spectrum-based bug lo-
calization [27, 28]. Recently, Xie et al. conducted a theoret-
ical analysis and found that several families of suspicious-
ness score formulas outperform other families [50]. Next,
Yoo proposed to use genetic programming to generate new
suspiciousness score formulas that can perform better than
many human designed formulas [54]. Subsequently, Xie et
al. theoretically compared the performance of the formulas
produced by genetic programming and identified the best
performing ones [51]. Most recently, Xuan and Monperrus
combined 25 different suspiciousness score formulas into a
composite formula using their proposed algorithm named
MULTRIC, which performs its task by making use of an off-
the-shelf learning-to-rank algorithm named RankBoost [52].
MULTRIC has been shown to outperform the best perform-
ing formulas studied by Xie et al. [50] and the best perform-
ing formula constructed by genetic programming [54, 51].

Many of the above mentioned approaches that compute
suspiciousness scores of program elements can be used in
the AMLSpectra component of our proposed approach. In
this work, we experiment with a popular spectrum-based
fault localization technique namely Tarantula, published a
decade ago, which is also used by PROMESIR [37]. Our goal
is to show that even with a basic spectrum-based bug local-
ization component, we can outperform existing approaches
including the state-of-the-art spectrum-based approach by
Xuan and Monperrus [52].

Other Related Studies. There are many studies that
compose multiple methods together to achieve better per-
formance. For example, Kocaguneli et al. combined several
single software effort estimation models to create more pow-
erful multi-model ensembles [21]. Also, Rahman et al. used
static bug-finding to improve the performance of statistical
defect prediction and vice versa [38].

6. CONCLUSION AND FUTURE WORK
In this paper, we put forward a novel multi-modal bug

localization approach named Adaptive Multi-modal bug
Localization (AML). Different from previous multi-modal
approaches that are one-size-fits-all, our proposed approach
can adapt itself to better localize each new bug report by
tuning various weights learned from a set of training bug
reports that are relevant to the new report. AML (in par-
ticular its AMLSuspWord component) also leverages the con-
cept of suspicious words (i.e., words that are associated to
a bug) to better localize bugs. We have evaluated our pro-
posed approach on 157 real bugs from 4 software systems.
Our experiments highlight that, among the 157 bugs, AML
can successfully localize 31, 71, and 92 bugs when develop-
ers inspect the top 1, top 5, and top 10 methods, respec-
tively. Compared to the best performing baseline, AML
can successfully localize 47.62%, 31.48%, and 27.78% more
bugs when developers inspect the top 1, top 5, and top 10
methods, respectively. Furthermore, in terms of MAP, AML
outperforms the best baseline by 28.80%.

In the future, we plan to improve the effectiveness of our
proposed approach in terms of Top N and MAP scores. To
reduce the threats to external validity, we also plan to inves-
tigate more bug reports from additional software systems.

Dataset. Additional information of the 157 bugs used
in the experiments is available at https://bitbucket.org/

amlfse/amldata/downloads/amldata.7z.
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G. Antoniol, and V. Rajlich. Feature location using
probabilistic ranking of methods based on execution
scenarios and information retrieval. IEEE Trans.
Software Eng., 33(6):420–432, 2007.

[38] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu.
Comparing static bug finders and statistical
prediction. In Proceedings of the 36th International
Conference on Software Engineering, pages 424–434.
ACM, 2014.

[39] S. Rao and A. C. Kak. Retrieval from software
libraries for bug localization: a comparative study of
generic and composite text models. In Proceedings of
the 8th International Working Conference on Mining
Software Repositories, MSR 2011 (Co-located with
ICSE), Waikiki, Honolulu, HI, USA, May 21-28,
2011, Proceedings, pages 43–52, 2011.

[40] M. Renieris and S. P. Reiss. Fault localization with
nearest neighbor queries. In 18th IEEE International
Conference on Automated Software Engineering (ASE
2003), 6-10 October 2003, Montreal, Canada, pages
30–39, 2003.

[41] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry.
Improving bug localization using structured
information retrieval. In 2013 28th IEEE/ACM
International Conference on Automated Software
Engineering, ASE 2013, Silicon Valley, CA, USA,
November 11-15, 2013, pages 345–355, 2013.

[42] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Commun. ACM,
18(11):613–620, 1975.

[43] S. Shivaji, E. J. W. Jr., R. Akella, and S. Kim.
Reducing features to improve code change-based bug
prediction. IEEE Trans. Software Eng., 39(4):552–569,
2013.

[44] B. Sisman and A. C. Kak. Incorporating version
histories in information retrieval based bug
localization. In 9th IEEE Working Conference of

Mining Software Repositories, MSR 2012, June 2-3,
2012, Zurich, Switzerland, pages 50–59, 2012.

[45] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. Technical report,
National Institute of Standards and Technology, 2002.

[46] F. Thung, S. Wang, D. Lo, and L. Jiang. An empirical
study of bugs in machine learning systems. In 23rd
IEEE International Symposium on Software Reliability
Engineering, ISSRE 2012, Dallas, TX, USA,
November 27-30, 2012, pages 271–280, 2012.

[47] S. Wang and D. Lo. History, similar report, and
structure: Putting them together for improved bug
localization. In ICPC, 2014.

[48] S. Wang, D. Lo, and J. Lawall. Compositional vector
space models for improved bug localization. In 30th
IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada,
September 29 - October 3, 2014, pages 171–180, 2014.

[49] X. Xia, X. Zhou, D. Lo, and X. Zhao. An empirical
study of bugs in software build systems. In 2013 13th
International Conference on Quality Software, Najing,
China, July 29-30, 2013, pages 200–203, 2013.

[50] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A
theoretical analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Trans. Softw.
Eng. Methodol., 22(4):31, 2013.

[51] X. Xie, F. Kuo, T. Y. Chen, S. Yoo, and M. Harman.
Provably optimal and human-competitive results in
SBSE for spectrum based fault localisation. In Search
Based Software Engineering - 5th International
Symposium, SSBSE 2013, St. Petersburg, Russia,
August 24-26, 2013. Proceedings, pages 224–238, 2013.

[52] J. Xuan and M. Monperrus. Learning to combine
multiple ranking metrics for fault localization. In 30th
IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada,
September 29 - October 3, 2014, pages 191–200, 2014.

[53] X. Ye, R. C. Bunescu, and C. Liu. Learning to rank
relevant files for bug reports using domain knowledge.
In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, pages 689–699, 2014.

[54] S. Yoo. Evolving human competitive spectra-based
fault localisation techniques. In Search Based Software
Engineering - 4th International Symposium, SSBSE
2012, Riva del Garda, Italy, September 28-30, 2012.
Proceedings, pages 244–258, 2012.

[55] A. Zeller. Isolating cause-effect chains from computer
programs. In Proceedings of the Tenth ACM
SIGSOFT Symposium on Foundations of Software
Engineering 2002, Charleston, South Carolina, USA,
November 18-22, 2002, pages 1–10, 2002.

[56] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transaction on
Software Engineering, 28:183–200, 2002.

[57] J. Zhou, H. Zhang, and D. Lo. Where should the bugs
be fixed? more accurate information retrieval-based
bug localization based on bug reports. In 34th
International Conference on Software Engineering,
ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
pages 14–24, 2012.

590

https://bugzilla.mozilla.org/page.cgi?id=fields.html
https://bugzilla.mozilla.org/page.cgi?id=fields.html

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2015

	Information Retrieval and Spectrum Based Bug Localization: Better Together
	Tien-Duy B. LE
	Richard J. OENTARYO
	David LO
	Citation


	Introduction
	Background
	Proposed Approach
	Suspicious Word Component
	Integrator Component

	Experiments 
	Dataset
	Evaluation Metric and Settings
	Research Questions
	Results
	RQ1: AML vs. Baselines
	RQ2: Contributions of AML Components
	RQ3: Integrator vs. SVMrank
	RQ4: Running Time
	RQ5: Effect of Varying Number of Neighbors

	Discussion

	Related Work
	Conclusion and Future Work
	References

