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Abstract—Large cities today are facing major challenges in
planning and policy formulation to keep their growth sustainable.
In this paper, we aim to gain useful insights about people living
in a city by developing novel models to mine user lifestyles
represented by the users’ activity centers. Two models, namely
ACMM and ACHMM, have been developed to learn the activity
centers of each user using a large dataset of bus and subway
train trips performed by passengers in Singapore. We show
that ACHMM and ACMM yield similar accuracies in location
prediction task. We also propose methods to automatically predict
“home”, “work” and “others” labels of locations visited by each
user. Through validating with human-labeled home and work
locations, we show that the accuracy of location label assignment
is surprisingly very good even using an unsupervised method.
With the location labels assigned, we further derive interesting
insights of urban lifestyles at both individual and population
levels.

I. INTRODUCTION
Motivation. Urban cities nowadays are densely populated as
they become the centers of both business and culture. To cope
with large population of people working and living in these
cities, it is pertinent for city planners to create various systems to
meet the needs of city dwellers. These include a transportation
system that provides the means for people to travel easily within
and between cities, healthcare system that covers good medical
and hospital care with affordable costs, etc..
Smart urban city’s systems have to be continuously and
upgraded so as to adapt to the evolving city lifestyle. In the
past, this is non-trivial without conducting a large-scale user
survey. With the increased use of digital sensors in the city,
massive human data are recorded each day allowing us to
discover insights about user lifestyles which can in turn be
used to improve the design of public systems and services.
Objectives. In this paper, we focus on analyze human mobility
from bus and subway transaction records for modeling lifestyles
of users in a city. We define the lifestyle to consist of two
components. The first component characterizes a user by
clusters of stay intervals at locations where the user visits
regularly, referred to as activity centers. The second component
consists of labels assigned to activity centres to provide
additional semantics. We call the combined components the
lifestyles. By considering the two, we can derive the activity
interests of users as well as assign their visited locations with
one of the three semantic labels: HOME, WORK, and OTHERS.
Our research objective is to develop models to automatically
summarize the lifestyle patterns at both spatial-temporal and
semantic levels without resorting to labor-intensive efforts.
Apart from acquiring the human mobility data, the above
research task is challenging because the mobility data traces are
raw transactional records and do not capture human trajectory at

all times nor reveal the users’ final destinations. We therefore do
not have the trajectory data to derive specific locations that are
homes or offices. It is however interesting to discover activity
centers of the user where each activity center is represented by
a set of nearby stations visited by the user on a regular basis.
We introduce two probabilistic models called Activity Centre
Mixture Model (ACMM) and Activity Center Hidden Markov
Model (ACHMM) to mine individual lifestyle patterns. We
show that the user’s lifestyle patterns can effectively predict
their coarse grained locations and be used to study population
trends.
The following summarizes our main contributions in the paper.
• Based on a real world transportation dataset, we develop

ways to convert raw transactional records into user trips,
and further define the stay durations of a user. The stay
durations are subsequently clustered into activity center(s)
that define the user’s lifestyle pattern.

• We develop ACMM and ACHMM lifestyle models to
learn the activity centers of a user based on the periodical
mobility patterns observed in a very large subway and
bus trip dataset. The former is based on Non-Bayesian
Gaussian Mixture Model while the latter is based on
Gaussian Hidden Markov Model. Each activity center is
a set of locations the user spends time regularly. Unlike
the previous models, ACMM and ACHMM are specially
designed to model time intervals of user spending time
at locations as opposed to time points of user locations
often observed in mobile phone call detail records.

• We evaluate both ACMM and ACHMM using a future
location prediction task. The two models are shown to
perform better than the frequency based baseline model.
The performance of ACMM and ACHMM are comparable
although ACHMM offers a richer model to capture the
transition between activity centers. We also study the
behavior of ACHMM under different parameter settings,
derive insights about users’ home and work patterns, and
profile the home and work regions in Singapore.

Paper Outline. The remainder of the paper is organized as
follows. We first define several important concepts and terms
before introducing the user lifestyle modeling problem in
Section II. Our proposed lifestyle models are given in Section III
and evaluated in Section IV. We cover the related works in
Section V before concluding the paper in Section VI.

II. PROBLEM FORMULATION
In this section, we first introduce the concept of activity center
and then define the problem of user lifestyle modeling. We
want to model a user’s lifestyle by distilling his activity centers
with spatial-temporal properties and the corresponding activity



labels. Each activity center is represented by a cluster of similar
time periods and stay locations. Furthermore, we assign each
activity center with one of the three semantic labels: HOME,
WORK and OTHERS. Finally, we demonstrate how to utilize
the proposed model for predicting a user’s locations.

A. Definitions
Our research assumes that in a public transportation dataset,
there are subway stations and bus stops collectively called
stations. Users make trips among stations using stored fare
cards. To determine where users spend time on, we require
their data at the trip level. Nevertheless, trip data are not always
readily available as people may have to change between bus
and MRT services in a single trip. For example, a user may
start a journey from home to workplace by taking a bus from
home to the nearest subway station before riding on a train to
the workplace next to a downtown subway station.
We thus define a trip to consist of a series of leg records
representing the different legs of the trip. Each leg record is
represented by a pair of start and end stations, i.e. gs and ge
respectively, the time departing from gs and the time arriving
at ge. We denote the leg record as ri = 〈gs,i, ts,i, ge,i, te,i〉.
We construct a trip from multiple consecutive leg records as
follows. We first extract a maximal sequence of leg records
r1, r2, · · · , rl such that ts,i+1 − te,i < η (1 ≤ i < l) where
η represents the inter-leg time gap threshold. This threshold
applies to between train legs, between bus legs, as well as
between train and bus legs. We then construct a trip as
〈gs,1, ts,1, ge,l, te,l〉 with l denoting the trip length. Note that
when a leg record cannot be combined with any other leg
records to form a multi-leg trip, the leg record itself is then a
trip of length one.
To determine an appropriate inter-leg time gap threshold η to
combine legs into trips, we examine the inter-leg time gaps
for the subway and bus transaction dataset to be described
in Section II-B. Figure 1 shows the distribution of time gaps
between two consecutive legs between 1 and 30 minutes. There
are negligible inter-leg time gaps beyond 30 minutes. This
distribution can be fitted by a Gamma distribution with shape
= 2.24 and scale = 0.7. As the probability of inter-leg time
gap less than 15 minutes according to this fitted distribution is
larger than 90%, we set η = 15 minutes.
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Fig. 1. Inter-leg time gap distribution

We denote the trips of a user u by TR(u). From two
consecutive trips of TR(u), say tri = 〈ss,i, ts,i, s, te,i〉 and
tri+1 = 〈s, ts,i+1, se,i+1, te,i+1〉 , we define a stay interval of
the user u as (te,i, ts,i+1) which is the duration of time spent at
some station g. Due to the definition of trip, every stay interval

TABLE I. DATA STATISTICS

# bus stations 4,903
# subway stations 130
# users with ≥ 30 legs over 15 days 1,246,901
# selected users with stay intervals 338,637
# leg records by selected users 87,138,443
# trips by selected users 53,938,488
# stay intervals by selected users 12,559,660

has a duration ≥ η. We finally use S(u) to denote the set of
all stay intervals derived from TR(u).
Definition 1: (Activity Center) An activity center of user u
is a cluster of stay intervals Sk(u), Sk(u) ⊆ S(u), that share
similar start and end times.
Definition 2: (Geo-Focus of Activity Center) Given an activ-
ity center Sk(u), the geo-focus GFk(u) is a set of stations the
user u stays at during the respective stay intervals in Sk(u).
For example, the typical stations of the activity center from
late night to early morning are near the user’s home.
Definition 3: (Lifestyle) A lifestyle of a user u is a set of
K tuples 〈Sk(u), GFk(u)〉’s, where K denotes the number of
activity centers.
We now define the problem of user lifestyle modeling as
follows.
User Lifestyle Modeling Problem. Given a sequence of trips
TR(u) of user u, the problem of user lifestyle modeling is to
design a probabilistic model that generates user’s lifestyle, i.e.,
{〈Sk(u), GFk(u)〉} for 1 ≤ k ≤ K, which characterizes u’s
periodical stay patterns.
In the above problem formulation, K is an input parameter.
Several applications could utilize the user lifestyle models in
interesting ways. For example, a targeted marketing application
could utilize the user’s lifestyle model to determine the suitable
time to serve ads or discount coupons to a target consumer. City
planners can utilize the activity centers of the user population
to estimate demand for municipal services (e.g., childcare,
hospitals, etc.). With the regular lifestyle patterns of a user, it is
also possible to predict the user’s location during a given time
interval. We formally define the problem of location prediction
task as follows.
Location Prediction Task. Given the sequence of historical
stay intervals of a user u, S(u), and a query stay interval
s = 〈tstart, tend〉, we want to predict the station the user will
visit during s.

B. EZ-Link Dataset
In this research, we obtained a dataset consisting of 4 billion
bus and subway leg records generated by 5 million passengers
in Singapore’s transportation system. The transactions are
recorded by passengers tapping their EZ-Link cards at the
entries and exits of the subway stations, and when boarding
and alighting from buses. Each leg record consists of a card id
(which uniquely identifies the user), transportation mode (bus
or subway), entry station, entry date/time, exit station and exit
date/time. All these records were generated in January 2012.
To focus on users who are residents of Singapore, we selected
users with at least 30 leg records over at least 15 days. We call
this selected dataset the EZ-Link Dataset. Table I summarizes
the statistics of EZ-Link Dataset.
Table II shows three trip legs of a user and two derived stay
intervals. For example, the first two trip legs suggest that the
user stayed nearby Serangoon subway station from at 22:02 to
13:39 as the user exited and entered Serangoon station at 22:02
and 13:39 respectively. Similarly, the last two trip legs suggest
that the user stayed nearby Harbourfront subway station from



TABLE II. AN EXAMPLE OF TRIP LEGS AND DERIVED STAY INTERVALS

Entry Time Exit Time Entry Station Exit Station

Trip Legs 21:25 22:02 City Hall Serangoon
13:39 14:09 Serangoon Harbourfront
18:47 19:15 Harbourfront Serangoon

Start Time End Time Stay Station

Stay Intervals 22:02 13:39 Serangoon
14:09 18:47 Harbourfront

14:09 to 18:47 as the user exited and entered Harbourfront at
14:09 and 18:47 respectively

III. PROPOSED LIFESTYLE MODELS
In a lifestyle model associated with a user, each activity center
is a cluster of similar stay intervals belonging to the user who
has some stay patterns. It also represents the user’s preference
to perform some activities at some locations (or stations). In
one extreme, each activity center consists of a single stay
interval at a single station (when K is very large) but such
an activity center does not capture any regularity of user’s
movement patterns. In another extreme, creating only one
single activity center consisting of all stay intervals belong
to the user will likely make the stay intervals of the activity
center overly incoherent. Determining a suitable criteria for
forming activity centers and assignment of semantic labels
to the activity centers are interesting research questions. We
present the activity semantic labeling and the station semantic
labeling in Sections III-C and III-D respectively.
In the following, we introduce two proposed models to
determine the activity centers. The two models, Activity Center
Mixture Model and Activity Center Hidden Markov Model,
are described in the following.

A. Activity Center Mixture Model
The Activity Center Mixture Model (ACMM) is derived
from Non-Bayesian Gaussian Mixture Model (GMM) on stay
intervals and their stations to discover a Gaussian mixture with
K components that best describes the observed stay intervals.
As shown in Figure 2(a), ACMM is determined by grouping
the stay intervals in S(u) = (si)

N
i=1 and the stations G(u) =

(gi)
N
i=1 into K clusters. Each cluster indicates a representative

group of stay intervals and stations. The distribution of stay
intervals is described by a Gaussian component N(µzi , σ

2
zi).

The distribution of respective stations in that group is described
by a Categorical distribution Categorical(M,pzi), where M
denotes the number of stations. The following equation gives
the formal definition:

p(zi) = Categorical(ϕ) (1)

p(si|zi) = N(µzi , σ
2
zi) (2)

p(gi|zi) = Categorical(M,pzi) (3)

where |S(u)| = N , zi is the cluster assignment for the i-th stay
interval si at station gi, ϕ is a parameter of K outcomes such
that ϕk > 0, for k = 1, · · · ,K,

∑K
1 ϕk = 1, and pzi is the

parameter of Categorical distribution such that
∑M
j=1 pk[j] = 1

for every cluster k.
As p(si|zi)’s and p(gi|zi)’s are independent of one another,
the likelihood to generate a user u’s trip data using ACMM
can be expressed as:

pACMM (S(u), G(u)|µ, σ,p, ϕ) =
N∏
i=1

K∑
zi=1

p(si|zi, µi, σi) · p(gi|zi,p) · p(zi|ϕ)
(4)
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Fig. 2. (a) Activity Center Mixture Model; (b) Activity Center Hidden Markov
Model

Input: S(u), G(u): a set of trip events

Output:
L(t): log-likelihood at tth iteration;
θ(t): µ and σ at tth iteration;
p(t): p at tth iteration;
Z(t): cluster assignments at tth iteration;

Initial assignment θ(0), p(0);
L(0) ← computeLogLikelihood(p(0), Z(0));
t = 0 ;
Repeat
t++ ;
Z(t) ← clusterAssignment(θ(t−1), S(u), G(u));
θ(t), p(t) ← updateParameters(Z(t), S(u), G(u));
L(t) ← computeLogLikelihood(p(t), Z(t));
Until abs(L(t) − L(t−1)) ≤ ε ;
return L(t), (θ(t), p(t)), (Z(t));

Algorithm 1: Learning of Parameters (ACMM)

where µ and σ denote the set of µk’s and σk’s respectively.
Note that ACMM models time intervals and stations, which
is different from Periodic Mixture Model(PMM) [1] that
models time points and spatial locations. Periodic Mixture
Model(PMM) models human mobilities (check-in data) using
separate spatial and temporal Gaussian components with social
influence. The learning process of ACMM parameters is given
in Algorithm 1.

B. Activity Center Hidden Markov Model
A user’s lifestyle not only consists of the clusters of their
activity centers, but also the underlying transitions between
activity centers. Instead of considering the ordering of stay
intervals, ACMM treats the data as i.i.d. As a result, ACMM
fails to model the transitions. An intuitive example is that a
user may go for happy hours after work in city center more
often than go home immediately. Such transition probabilities
between states will help to determine the next state based on
current state. To capture such a factor in a lifestyle, we relax
the i.i.d., assumption and explore the latest transitions in a stay
interval sequence. In particular, we propose the Activity Center
Hidden Markov Model (ACHMM), a variant of the Gaussian
Hidden Markov Model that learns the clusters of stay intervals
as hidden states (or activity centers), and parameters to generate
the stay intervals and stations for each activity center.
The plate diagram of ACHMM is shown in Figure 2(b). Con-
sider an observed sequence of stay intervals S(u) = (si)

N
i=1,

we aim to derive the following probabilities: (1) the transition
probabilities denoted as a K ×K transition probability matrix
M between the K clusters (or activity centers), (2) the
parameters defining the emission probabilities of stay intervals,
µk and σk for k = 1, · · · ,K, and the parameters defining the
emission probabilities of stations p . We explain this in greater



detail as follows.
Transition Probabilities. Given a sequence of stay intervals
S(u) = (si)

N
i=1, ACHMM assigns each stay interval to a

state and forms a state sequence Z(S(u)) = 〈z1, z2, ..., zN 〉,
where p(zi) = Categorical(ϕ). The Markov assumption
allows the probability distribution of zi to depend on the
state of previous latent variable zi−1 through a conditional
distribution p(zi|zi−1). The conditional distribution p(zi|zi−1)
for i = 1, · · · , N forms a K ×K transition probability matrix
M , where

∑K
k=1 p(zi = k|zi−1) = 1. As as result, the

probability of generating the sequence of stay intervals can be
defined as follows:

p(z1, z2, · · · , zN ) = p(z1)

N∏
i=2

p(zi|zi−1) = p(z1)

N∏
i=2

M(zi−1, zi)

(5)
where the initial latent node z1 does not have a parent node
and thus is represented by the initial probability π1,k and∑K
k=1 π1,k = 1. In this work, we default the initial probability

over states as a uniform distribution.
Emission Probabilities. ACHMM determines the conditional
distribution of observed stay intervals p(si|zi) with a Gaus-
sian distribution governed by mean µzi and covariance σ2

zi ,
p(si|zi) ∼ N (µzi , σ

2
zi).

Once the hidden state of each stay interval is determined,
we obtain the occurrences of stations that is associated with
each stay interval in a hidden state. ACHMM determines
the emission probabilities of stations for observed stations
in each hidden state as a Categorical distribution, p(gi|zi) ∼
Categorical(pzi)
The joint probability distribution over observed stay intervals
and stations is then given by

pACHMM (S(u), G(u)|µ, σ,p, ϕ,M) =

(

K∑
z1=1

p(s1|z1) · p(g1|z1) · p(z1|ϕ))·

N∏
i=2

(

K∑
k=1

p(si|zi,k) · p(gi|zi,k) · p(zi|zi−1,k))

(6)

where µ and σ denote the set of µk’s and σk’s respectively.
Figure 3 shows three spatial and temporal patterns of activity
centers derived by ACHMM (with K = 3) for a user
(UID=4266653). Each hidden state indicates an activity center.
Figure 3(a) reveals three activity centers from the user’s stay
intervals. For example, cluster1 centers around the stay interval
µ=[21:30,12:12) covering the stay intervals from evening
to next mid-day. cluster2 centers around the stay interval
µ=[08:03,16:15) and covers the stay intervals from morning
to afternoon. cluster3 reflects the activities that center around
the stay interval µ=[13:25,21:53) from early afternoon to
late evening. Figure 3(b) illustrates the geo-focus of activity
centers by stations. For example, the geo-focus in cluster1,
centered around the stay interval µ=[21:30,12:12), is located at
Serangoon subway station, which is a typical residential area in
Singapore. The geo-focus in cluster2 is located at Promenade
subway station, featuring shopping malls in Marina Center
area. The geo-focus in cluster3 is located nearby shopping
centeres at Promenade, Orchard, Harbourfront subway stations,
and Changi Airport subway stations.
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Fig. 3. Activity centers derived from ACHMM for user(UID=4266653).

C. State Label Assignment
To analyze the lifestyle patterns at both user and population
levels we assign HOME, WORK and OTHERS to the states of
ACHMM (with K = 3). As ACHMM+TH, which is introduced
in detail in Section III-D, achieves high accuracy in station
label assignment (90% in F-score), we thus further extend
ACHMM+TH and apply to state label assignment so as to
derive interesting popular trends. Essentially, among states
with the state mean stay interval [ts, te] te < ts (eg., [18:00,
07:00]), the one with the longest duration is assigned the HOME
label. The remaining stations are assigned the OTHERS label.
Likewise, among states of state mean stay interval [ts, te] such
that ts < te (eg., [07:00, 18:00]), the state with the longest
duration is assigned the WORK label. The remaining states are
assigned the OTHERS label.
Heatmaps of Home and Work regions. We profile the
residence, work and casual areas of 20K users by summing the
emission probabilities of stations in their HOME and WORK
states as shown in Figure 4(b) and 4(c) respectively. The
intensity of a region in the heatmap is high (approach red)
as the emission probabilities of the stations in the region obtain
higher values. Figure 4(b) shows that most users live in the
peripheral Singapore. The top HOME stations are located at:
“Boon Lay”(West), “Woodlands”(North) and “Yishun”(East),
“Ang Mo Kio”(East), “Toa Payoh”(East). This HOME state
heatmap is consistent with the 2010 census report of 3.77
million Singapore residents as shown in Figure 4(a). The
darker color in the figure represents highly populated residential
area. Figure 4(c) however shows that most people work in the
South Central area which covers the downtown and financial
district of Singapore which sees a high concentration of offices
and businesses. The top WORK stations are “Bugis”(South
Central), “Harbour Front”(West Central), “Orchard”(Central),
“City Hall”(South Central), and “Ang Mo Kio”(East). The
distinction between HOME and WORK heatmaps also suggests
that most users have to travel some distance to get to their
work places.
Start and End times of Users’ WORK and HOME States.
The learned ACHMM model of each user also captures the
stay intervals of the HOME and WORK states. We can therefore
analyze the time intervals users are expected to stay home or
work. We first divide a full day into 24 one-hour intervals,
i.e., [00:00,00:59], [01:00, 01:59], · · · , [23:00, 23:59]. We then
count the number of users with HOME states covering each
of these one-hour intervals. Figure 5(a) shows the distribution
of time intervals for HOME, WORK and OTHERS states. The
figure shows that most people begin their work state around
09:00 hrs and end their work around 17:00 hrs although a
number of users may start their work day as early as 06:00 hrs.
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Fig. 4. Labeling spatio-temporal activity centers: (a) residence population by June 2010, (b) HOME and (c) WORK
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Fig. 5. Distributions of time intervals and durations.

On the other hand, most users stay at home from 18:00 hrs to
08:00 hrs. The home durations of users cover a longer stretch
of time than work durations. As a result, there is no single time
interval when all users are expected to be at simultaneously.
Almost all users, in contrast, are expected to be at home during
the stretch of time from 00:00 hrs to 05:00 hrs. Unlike HOME
and WORK states, users in the OTHERS state do not share a
common demarcated period as users can be in this state any
time.
Length of State Intervals. Now, we want to determine the
amount of time users spend in different states. Figure 5(b) shows
that most people spend 9, 14 and one hours in the WORK,
HOME and OTHERS states respectively. There are however
significant number of people spending 10 or more hours in the
WORK state.

D. Station Label Assignment
To further understand a user’s lifestyle, we need to assign
semantic labels to the stations the user visits. For simplicity, we
consider three station labels: HOME, WORK and OTHERS. We
focus on unsupervised methods as they are simple to implement
and does not require human annotated labels. In this work,
we propose the following four heuristics-based methods for
assigning labels to the user’s stations. Each method assigns,
for a given user, one label (i.e., HOME, WORK or OTHERS) to
each station of the user.
Frequency-based heuristics (FH): Among stations visited
by user u, the most and second frequently visited stations are
assigned with HOME and WORK label respectively, and the
remaining stations are assigned with OTHERS label.
Duration-based heuristics (DH): The stations that the user
spends longest average duration and the second longest average
duration are assigned with HOME and WORK labels respectively.
The remaining stations are assigned with OTHERS label.
Time-based heuristics (TH): Among stations of the user with
at least one stay interval [ts, te] such that te < ts (e.g., [18:00,

07:00]), the one with the longest duration is assigned the HOME
label. The remaining stations are assigned the OTHERS label.
Likewise, among stations of the user with at least one stay
interval [ts, te] such that ts < te (e.g., [07:00, 18:00]), the
station with the longest duration is assigned the WORK label.
The remaining stations are assigned the OTHERS label.
ACHMM with frequency-based heuristics (ACHMM+FH):
We first mine ACHMM (with K = 3) states for user u from
observed stay intervals. As a station may be associated with stay
intervals that belong to different states, we further determine
the dominant state c for the station g based on frequency.
We denote frequency of the dominant state c of station g
by Frequencyc(u,g). The station with the first and second
highest Frequencyc are assigned the HOME and WORK labels
respectively. The remaining stations are labeled as OTHERS.
ACHMM with duration-based heuristics (ACHMM+DH):
Once the dominant state c for each station g are determined,
we derive the average duration of g based on the set of
stay intervals of g associated with the dominant state c, and
denote it as aDurationc(u,g). The stations with the first and
second longest aDurationc’s are assigned the HOME and
WORK labels respectively. The remaining stations are labeled
as OTHERS.
ACHMM with time-based heuristic(ACHMM+TH) Once
the dominant state c for each station g are determined, we derive
the average time difference for each station g (in minutes) based
on the set of stay intervals of g associated with dominant state
c, denoted as aTDiffc(u,g), using equation 7. Essentially,
aTDiffc(u,g) gives: (a) negative value for a stay interval if
aSTc(u,g) < aETc(u,g), or (b) positive value if aETc(u,g)
≤ aSTc(u,g), where the average start times in dominant

cluster c is defined as aSTc(u,g)=
∑

(ts,i,te,i)∈Sc(u,g) ts,i

|Sc(u,g)| and
the average end times in dominate cluster c is defined as

aETc(u,g)=
∑

(ts,i,te,i)∈Sc(u,g) te,i

|Sc(u,g)| . The intuition behind this
heuristics is that we observe users stay at home before midnight
or get out after midnight. For stay intervals covering the
midnight, we derive their average time difference. The same
is done for the other stay intervals. The two average time
differences are then used to determine the label of the station g.
For example, the aTDiffc(u,g) of the interval [21:00,08:00]
is 660, and the aTDiffc(u,g) of the interval [08:00,19:00] is
-660. Among all g visited by user u, we assign HOME label
to the one with the largest positive aTDiffc(u,g) and WORK
label to the one with the smallest negative aTDiffc(u,g). We
assign OTHERS label to the remaining locations.
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Fig. 6. Performance and Goodness-of-Fit Comparison

aTDiffc(u, g) =

{
aSTc(u, g)− aETc(u, g) (a)
−aSTc(u, g) + aETc(u, g) + 1, 440 (b)

(7)

IV. EXPERIMENTS AND RESULTS
We conducted two evaluation tasks using our models on EZ-
Link dataset. The first task evaluates the effectiveness of both
ACMM and ACHMM models through a location prediction
task. The second task evaluates the effectiveness of station
label assignments.

A. Evaluation based on Location Prediction
In this evaluation, we apply our models to predict the future
location for individual user given the user’s historical stay
intervals and respective stations as training data. Due to the
way we model the user lifestyle, the future location is one of
the many stations the user has visited earlier. The stay intervals
are constructed from the EZ-Link dataset using the inter-leg
time gap threshold η = 15 minutes.
We compared the performance of both ACMM and ACHMM
against a baseline frequency model (FREQ) that returns the
station most visited by the user. For both ACMM and ACHMM,
we set K = 3. Each model will be trained using first 80%
of a user’s stay intervals, and evaluated using the remaining
20% of the user’s stay intervals. ACMM and ACHMM return
the station with the highest likelihood value for a query stay
interval. Since the focus is to evaluate the accuracy of predicted
future location, we use the following two performance metrics,
namely: (i) prediction accuracy in terms of Hit Rate and (ii)
Euclidean Distance between the predicted station and actual
station. Hit rate is defined by the fraction of test stay intervals
with correctly predicted stations.
As shown in 6(a) and Figures 6(b), ACMM and ACHMM
perform significantly better than FREQ. There is however very
minor performance difference between ACMM and ACHMM.
This could be attributed to the shorter series of stay intervals
among the users. As ACHMM provides a more detailed
modeling user lifestyle, we decide to use the model in the
subsequent analysis.

B. Evaluation of Station Label Assignment
The station label assignment task assigns HOME, WORK or
OTHERS label to each station visited by a user. In this evaluation
task, our goal is to label user locations to answer two research
questions: (a) How accurate is automatic labeling of a user’s
station? and (b) What are the important features for determining
the semantic of a station? To evaluate the task accuracy, we
first construct the ground truth labels.
Ground truth annotation. We first randomly selected 100
users and their trip data from our EZ-Link Dataset in January
2012. On average, each user has 35 stay intervals and 4.4 unique

stay stations. There are altogether 441 user-station pairs as we
pair each user with the stay stations they visited. We recruited
six local residents who are familiar with the city to annotate
these user-station pairs with HOME, WORK and OTHERS labels.
We divided the 100 users into two equal-sized groups and assign
three annotators to assign labels to the (user,station) pairs that
belong each user group. Each annotator is required to annotate
the labels of the stay stations of a user before moving on to the
stay stations of the next user. In the end, each user-station pair
obtains three labels from three different annotators. From the
annotators’ assigned labels, we derived the ground truth label
of a user-station pair by majority vote nv. User-station pairs
are assigned to a ground truth label if two or more annotators
agreed on the label. Table III shows the results of annotation.
Table III shows that all annotators have high level of agreement
(88% in complete agreement) across labels. The numbers of
user-station pairs assigned with HOME, WORK and OTHERS
labels are 106, 105 and 230 respectively. This suggests that
that OTHERS stations are the majority.
We next examine the distribution of number of home, work and
others stations. As expected, most users attach with exactly one
home station (94% users) or one work station (95% users). Very
few users attach with two home (or work) stations and none
attaches with three or more home (or work) stations. When a
user has two home (or work) stations, they are usually very
near each other suggesting that they are not far from the actual
home (or work) location of the user. This is verified by the
average distance of 199 meters between the HOME stations of
the same user (or 522.3 meters between the WORK stations of
the same user) . Most users attach with two or three OTHERS
stations as expected as they may visit several places other
than home and work stations. The average distance between
OTHERS stations per user is 11 km. Interestingly, four users
do not attach with OTHERS stations (h = 0). These users may
use private transport to get to these stations.
Based on the ground truth labels, we evaluate the four station
label assignment method described in Section III-D. We
measure the accuracy of station label assignment methods
using F-score. For each label, say HOME, we define:

Precision =
#user-station pairs correctly assigned the label

#user-station pairs predicted the label

Recall =
#user-station pairs correctly assigned the label
#user-station pairs with the ground truth label

F-score =
2 · Precision · Recall
Precision + Recall

As shown in Table IV, the results vary with the different target
station labels. The assignment of WORK appears to be harder
than HOME. As we can see, DH works more effective for O/Non-
O labels among all labels. This is because the stay patterns
at OTHERS locations usually reflect short durations; whereas
the stay pattern at HOME locations usually reflect regular start
and end times. The results show that TH outperforms DH and
FH as TH considers both duration and relative values of start
and end times as well. FH yields inconsistent performances as
it performs well for O/Non-O labels but poor for minority
labels. With refined information augmented by ACHMM,
ACHMM+DH and ACHMM+TH outperform DH and TH
themselves respectively. As location label is highly correlated
with stay intervals, the stations with similar stay intervals (which
is clustered by ACHMM) thus more likely reflect a real-world



TABLE III. ANNOTATED LABEL DISTRIBUTION (nv: NUMBER OF ANNOTATORS IN AGREEMENT)
Label # user-station pairs # users with h labeled stations

nv=3 nv=2 total h=0 h=1 h=2 h ≥ 3 total
Home 93 (88%) 13 (12%) 106 0 94 6 0 100
Work 91 (87%) 14 (13%) 105 0 95 5 0 100
Others 205 (89%) 25 (11%) 230 4 9 40 47 100
Total 389 (88%) 52 (12%) 441

activity center for a user. Given the same ACHMM cluster
results, ACHMM+TH particularly outperforms ACHMM+DH
for all labels because the time difference (i.e., aTDiffc(u,g))
is more informative than duration (i.e., aDurationc(u,g).
Interestingly, unsupervised approaches (i.e., ACHMM-based)
perform more stable across labels than heuristic approaches as
shown by the standard deviation of average F-score.
Comparison with Supervised Station Label Assignment
methods. To determine how the unsupervised methods perform
compared with supervised methods, we conducted a comparison
with Support Vector Machine (SVM) using 5-fold cross
validation. To allow the importance of features to be analysed,
we used SVM with linear kernel. We divided the annotated
user-station pairs into five equal size folds using four of them
for training a SVM classifier and one fold for obtaining the
predicted labels of the trained classifier. This was repeated
for every fold to be used for test. The predicted labels of all
folds then combined together to derive the overall accuracy.
We introduce two supervised station label assignment methods,
one exploits temporal features (SVM+T) and the one exploits
both temporal feature and dominant cluster features SVM+TC.
The definition of each feature is listed in Table V. As shown in
Table IV, SVM+TC outperforms SVM+T once cluster features
are included in the training process. Particularly, the cluster
features can slightly improve minority classes, HOME and
WORK. Among all approaches, supervised approaches provide
optimal and stable performance in terms of average F-score
and standard deviation of average F-score.
Feature Analysis. To investigate fundamental factors to in-
dicate labels, we show the feature coefficients learned from
SVM with linear kernel. The feature coefficient gives useful
interpretation of the importance of each feature and the absolute
value of the coefficient relative to the others gives an indication
of how important the feature is for separating data points into
different classes. For example, aSTc(u,g) and Frequency(u,g)
are the two most prominent features in both H/Non-H and
W/Non-W classifiers. aSTc(u,g) is prominent because users tend
to regularly start to stay at home (work) in late evening (in early
morning) compared to OTHERS locations. Frequency(u,g) is
prominent because users tend to stay at home (work) places
more often than OTHERS locations. In particular, the dominant
cluster-based feature, aSTc(u,g), is more prominent than the
global aST (u).
To differentiate OTHERS locations from remaining labels,
the global Frequency(u,g) and dominant cluster-based
Frequencyc(u,g), are both essential. As reported in Table V,
the coefficient of Frequency(u,g) (3.48) and Frequencyc(u,g)
(2.42) are significantly higher than remaining features. This
coincides with our intuition that users tend to repetitively stay
at HOME/ WORK places, whereas users do not necessarily
receptively stay at OTHERS locations.

V. RELATED WORKS
A. Urban Computing
Urban computing applies data analytics to wide range of spatial-
temporal data from sensors, people, vehicles, transportation
networks, and others to model the dynamics of urban cities for
better modeling of city activities and planning/design of city
facilities [13], [4], [12]. Based on travel survey data, Zhong et
al. [14] proposed a centrality index for determining functional
centers and proposed attractiveness indices for spatial impact
analysis.
Wang et al. further demonstrated that travel time can be modeled
and predicted using taxi sensor data [9]. Based upon GPS data
tracking car movement, Giannotti et al. proposed a querying
and mining framework to discover trajectory clusters, trajectory
patterns as a sequence of regions and corresponding time
intervals associated to each region [2].
Based on aggregated mobile call detail records, Toole et al.
modeled the spatial-temporal changes of call detail records
in each urban region and trained classifiers to predict the
land use [7]. Using similar kind of data, Wang et al. [8]
investigated the correlation between individual movements and
social interactions. Such strong correlations can be useful in
predicting future user movement and social interactions.
In the social media setting, Silva et al. [6] compared Instagram
and Foursquare data to derive same users’ movement patterns,
popularity of regions in cities, and points of interests. Noulas et
al. [5] analyzed urban human mobility in several metropolitan
cities using Foursquare data. They found that users adopt
uniform probabilities traveling in the first 100 meters but
decreasing probabilities beyond that. They also discovered
that the average distance of human movements is inversely
proportional to the city’s density. Hong et al. [3] proposed a
topic model for modeling both location topics and user topical
interests in geotagged Twitter data.

B. Location Prediction
Location prediction research focuses on learning the history of
human movement for future location prediction. Cho et al. [1]
provided several observations from cell phone location data
and two online location-based social networks. Specifically,
they identified three fundamental factors of users’ mobil-
ity: geographical periodicity, temporal periodicity, and social
network structure. Based on these observations, the authors
proposed to model human mobilities using separate spatial and
temporal Gaussian components with social influence. Xue et
al. [10] addressed the data sparsity issue in location prediction
and proposed a Sub-Trajectory Synthesis algorithm to predict
destinations. The algorithm decomposes historical trajectories
into sub-trajectories and synthesizes the sub-trajectories using
a Markov model to increase the prediction coverage. Yang et
al. [11] explored social spatial-temporal events to predict both
time and location of user’s next movements. They proposed
to integrate the social and spatial-temporal information of
human movements to reveal the regularity and the dynamics
of social interactions of users. They addressed both time and



TABLE IV. ACCURACY OF STATION LABEL ASSIGNMENT

H/Non-H W/Non-W O/Non-O Average
Method Precision Recall F-score Precision Recall F-score Precision Recall F-score F-score
FH 0.53 0.53 0.53 0.52 0.50 0.51 0.92 0.96 0.93 0.66 ± 0.20
DH 0.60 0.58 0.59 0.55 0.53 0.54 0.84 0.88 0.86 0.66 ± 0.14
TH 0.84 0.82 0.82 0.95 0.93 0.94 0.86 0.89 0.87 0.88 ± 0.82
ACHMM+FH 0.49 0.59 0.52 0.39 0.37 0.37 0.81 0.81 0.80 0.56 ± 0.18
ACHMM+DH 0.58 0.57 0.57 0.55 0.53 0.54 0.85 0.88 0.86 0.66 ± 0.14
ACHMM+TH 0.86 0.95 0.89 0.95 0.93 0.94 0.93 0.87 0.89 0.90 ± 0.02
SVM+T 0.94 0.98 0.95 0.95 0.95 0.94 0.92 0.96 0.94 0.94 ± 0.005
SVM+TC 0.96 0.96 0.96 0.96 0.95 0.95 0.92 0.95 0.93 0.95 ± 0.01

TABLE V. FEATURE WEIGHTS OF SVM+TC.
Temporal Feature Definition H/Non-H W/Non-W O/Non-O
aST(u,g) average start times associated with station g for user u -1.15 1.25 -0.26
aET(u,g) average end times associated with station g for user u 1.01 -1.16 -0.11
aDuration(u,g) average durations associated with station g for user u -0.19 -0.27 0.48
Frequency(u,g) number of time that user u spent time at station g -1.95 -1.64 3.48
Dominant Cluster Feature Definition H/Non-H W/Non-W O/Non-O
aSTc(u,g) average start times associated with station g that belongs to dominate cluster c for user u -1.41 1.91 -0.41
aETc(u,g) average end times associated with station g that belongs to dominate cluster c for user u 1.31 -1.45 -0.01
aDurationc(u,g) average durations associated with station g that belongs to dominate cluster c for user u -0.002 -0.35 0.33
Frequencyc(u,g) number of times that station g is associated with in its dominate cluster c for user u -1.15 -1.30 2.42
aTDiffc(u,g) average time differences of station g that belongs to dominant cluster c for user u 0.10 -1.25 0.30
vStartTimec(u,g) variance of start times associated with station g that belongs to dominant cluster for user u -0.75 -0.001 0.31
vEndTimec(u,g) variance of end times associated with station g that belongs to dominant cluster for user u -0.04 -0.33 -0.04
nUniqStnc(u,g) number of unique stations in dominant cluster that station g belongs to for user u 0.22 0.31 0.22
mDurationc(u,g) the duration of mean interval µc=[ts, te] of dominant cluster c that station g belongs to for user u -0.23 0.51 -0.0003
clusterSizec(u,g) number of observations in dominant cluster c that station g belongs to for user u -0.24 -0.65 0.52

location prediction. The former aims to estimate how long it
will take before the next social spatial-temporal event occurs
to a given person. For location prediction, they proposed a
ranking model which combines the periodicity and sociality of
human movements
Our work differs from existing location prediction research in
two aspects. Firstly, we focus on modelling spatial-temporal
information of users’ staying behaviour to predict stay locations
of given time interval. Secondly, other than predicting locations
as a way to evaluate our models, we further explore semantic
aspects of users’ staying behaviors and offer insights at both
individual (personal activity centers) and population level
(residential and work areas).

VI. CONCLUSION
Transportation data such as commuter bus and subway trip
data capture much of the urban movement and activity data in
an urban city. In this research, we learn from bus and subway
trips the regularities of user movement that represent their
activity centers. The two probabilistic lifestyle models we have
developed are shown to work effectively on trip data represented
by start and end locations and time points. We also show that
the models can generate population density distribution similar
to that of of a census report. This combined study leads to
several novel insights about urban population and usage of
urban regions.
Two directions for future work are of particular interest. Firstly,
we could explore different number of states in ACMM and
ACHMM. This is particularly appropriate for users who have
more complex lifestyles spending time at more than three
activity centers. Secondly, we plan to explore our proposal
lifestyle models to study evolution of lifestyles among users
and relate them to real world events.
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