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Abstract

This paper addresses breast cancer diagnosis problem as a
pattern classification problem. Specifically, the problem is
studied using Wisconsin-Madison breast cancer data set.
Fuzzy rules are generated from the input-output
relationship so that the diagnosis becomes easier and
transparent for both patients and physicians. For each
class, at least one training pattern is chosen as the
prototype, provided (a) the maximum membership of the
training pattern is in the given class, and (b) among all the
training patterns, the neighborhood of this training pattern
has the least fuzzy-rough uncertainty in the given class.
Using the fuzzy-rough uncertainty, a cluster is constructed
around each prototype. Finally, these clusters are
interpreted as the fuzzy rules that relate the prognostic
Sfactors and the diagnosis results. The advantages of the
proposed algorithm are, (a) there is no need to know the
structure of the training data, (b) the number of fuzzy rules
does not increase with the increase of the number of input
dimensions, and (c) small number of fuzzy rules is
generated. With the three generated fuzzy rules, 96.20%
classification efficiency is achieved, which is comparable to
other rule generation techniques.
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Introduction

To achieve better medical diagnostic results, we cast breast
cancer diagnosis problem as a pattern classification
problem. Many classification algorithms act as black boxes,
i.e., for such classifiers we do not have any means to know
why a particular diagnosis is offered to a new patient.
Hence, the objective of this work is to apply machine-
learning techniques to the Wisconsin-Madison breast cancer
diagnosis problem [1] such that fuzzy diagnostic rules [2]
are extracted. Both the physician and the patient can
analyze this rule base to obtain the information why the
particular diagnosis is selected.
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The University of Wisconsin-Madison Hospital collected
699 samples using the fine needle aspiration test [1]. Each
sample consists of the following ten attributes: (1) Patient's
id, (2) clump thickness, (3) uniformity of cell size, (4)
uniformity of cell shape, (5) marginal adhesion, (6) single
epithelial cell size, (7) bare nuclei, (8) bland chromatin, (9)
normal nucleoli, and (10) mitosis. Each sample is either
benign or malignant. The objective of the fuzzy rules is to
classify a new sample into any one of the two classes.

Using parametric and semiparametric classifiers, many
researchers [3][6] have measured the performance of their
classification algorithms on the Wisconsin-Madison breast
cancer problem. The parametric and semiparametric
classifiers need specific information about the structure of
the data (e.g., the number of clusters or the number of
hidden nodes) in the training set. In the breast cancer
problem, where the input dimension is nine, it is difficult to
collect the structural information necessary for constructing
a parametric or semiparametric  classifier. The
nonparametric classifiers do not need the information about
the structure of the training set. Hence, in our earlier work
{4], nonparametric classification techniques like the
conventional and fuzzy versions of the K-nearest neighbors
(KNN) algorithms were adopted. The KNN algorithms
produce better classification results than that of the other
algorithms reported in the literature.

The classification performance of the KNN algorithm
usually varies with the different values of K. When K is one,
the class label of the test pattern is determined just based on
the class label of the closest neighbor. This scheme suffers
if the class label of the closest neighbor is corrupted by
noise. On the other hand, the large value of K may increase
the classification efficiency since there are more bodies of
evidence to classify the test pattern. However, if the
neighborhood is large, then the neighbors may belong to
more than one class. It happens especially in the region
where two classes overlap or noise is present. Thus, it may
increase the confusion in assigning the class label to the test
pattern. Therefore, the optimal value of X can only be found
by a trade-off, which is currently achieved using trial and
error procedures.
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In the conventional KNN algorithm, all the neighbors
receive equal importance. In the fuzzy KNN algorithm, the
importance of a neighbor is determined based on the
relative distance between the neighbor and the test pattern.
Thus, a neighbor that is far away from the test pattern also
receives considerable importance, although strictly speaking
the importance associated with this neighbor should be
close to zero no matter what the other neighbors are. Hence,
in the fuzzy-rough nearest neighbors (FRNN) algorithm [5]
this relative distance is modified to the absolute distance so
that the close neighbors have significant influence on the
test pattern, and this influence decreases as the distance
increases. Instead of considering X closest training patterns
as the neighbors, the FRNN algorithm considers all the
training patterns as the neighbors with different degrees.
The degree depends on the fuzzy typicality of the training
pattern. Thus, the FRNN avoids the problem of choosing
the optimal value of K.

Although the FRNN has good classification ability, it
behaves like a black box. To avoid this problem, we employ
the FRNN to cluster the training set in a nonparametric and
supervised fashion. The output of the FRNN corresponding
to a training pattern signifies the amount of fuzzy-rough
uncertainty [2] associated with the region around the
training pattern. If the maximum class membership of a
training pattern is in the class C, and among all the training
patterns, the neighborhood of this training pattern has the
least fuzzy-rough uncertainty in the class C (it can be known
from the FRNN output), then this training pattern is chosen
as the prototype of the class. One or more than one such
prototype is selected in a nonparametric fashion for each
class. Using the fuzzy-rough uncertainty, a cluster is
constructed around each prototype. These clusters are
finally interpreted as the fuzzy rules that relate the input
features and the output class labels.

Proposed Method

The proposed method consists of two parts: (1) Designing
or training the fuzzy rule base, and (2) testing the rule base.

Rule Base Designing
It involves the following three steps (Figure 2):

Fuzzy-Rough nearest neighbors algorithm: The philosophy
of the FRNN is to classify the test pattern based on the class
label of all the training patterns. The training pattern that is
the closest or most similar to the test pattern influences the
decision most. From this angle, the principle of the FRNN
is similar to that of the conventional KNN algorithm. But
the difference is that in the KNN algorithm, the class label
of the test pattern is decided based on the class labels of the
K closest training patterns, and all these X training patterns
are considered equally important. In contrast, in the FRNN,
(a) class labels of all the training patterns are considered,
but with different importance, and (b) class labels of the
training patterns can be fuzzy. Another difference is that for
any input test pattern the KNN algorithm produces some
class label. If some absurd input is fed, then also the KNN
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algorithm provides some class label. On the other hand, in
this case the FRNN has the capability to indicate that the
input pattern does not belong to any output class. This
property is known as possibilistic classification ability
[21[5]). These three characteristics make the FRNN more
attractive than the KNN counterparts.

In the FRNN, two different kinds of information are
exploited: How similar the training patterns are to the test
pattern, and the class label of these training patterns. The
class label of the training patterns can be both conventional
or fuzzy depending on the problem domain. Let X C R"
be the set of all possible input patterns, and
{x,%, ,....,x,}€ X be a set of input training patterns
for which the corresponding class labels are already known.
When the test pattern y€ X is fed to the algorithm, the
similarity between the test pattern y and the training pattern
. . . 1/(g~1)
X, is determined using exp(~d(y,x;) ). Here
31
d(y,x,) =Z7(—( Ve =Xy ) is the squared, weighted,
k=1 Rk
Euclidian distance between the test pattern and the training
pattern, k=[K, Kyy oy Kyl

n 2 n 2y
[%Zm(yl =X4)" ---,%ZH()’N —Xy)'] the
average squared distance between the test pattern and all the
training patterns. Thus, the similarities between y and all the
training patterns are computed. Then the fuzzy-rough
ownership value [4] of y for the cth class is computed as

1 §
0,(c)= ;ZM 1. (x)exp(=d(p,x,)"™) (1)

and

is

where fi_(X;) is the initial class membership value

assigned to the training pattern X; for the class c. Here ¢

determines the shape of the exponential. The role of g is
quite similar to the index of fuzziness in the concentration
and dilation operators [2], and the index of fuzziness in
fuzzy C-means clustering algorithm [2]. Using the
information supplied by the training patterns, for any test
input, the output of the FRNN algorithm indicates the
amount of fuzzy-roughness is present in the relationship
between the input representation and the output class.

Next, we slightly modify the FRNN algorithm. Each
training pattern is also considered as the test pattern. We
seek to know how much fuzzy-rough ownership value at
each training pattern is supported by the reaming training
patterns. The fuzzy-rough ownership values of the training
patterns represent two significant points: (a) how
dense/compact the neighborhood of the training pattern is,
and (b) whether the neighboring training patterns are from
the same class. Thus, the fuzzy-rough ownership value aids
us to locate the dense and homogeneous regions. Note that a
region is called homogeneous if all patterns from the region
belong to the same class. The fuzzy-rough ownership value
is effective even if the output classes are overlapping or
fuzzy. The high value of the fuzzy-rough ownership value
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indicates that the neighboring region of the training pattern
has less fuzzy-roughness, i.e., the neighboring region is
compact and homogeneous. For each training pattern, the
fuzzy-rough ownership value (o) and the corresponding
value of K are passed to the next step, where this
information is exploited to cluster the input space in a
nonparametric manner.

Clustering: The fuzzy-rough ownership values provide
clues about the compact and homogeneous region in the
training data. In this step, we choose the training patterns
that represent the most compact and homogeneous region
for each class. We follow a technique similar to mountain
clustering [7]. For each class, all the training patterns are
the candidates for the cluster centers. Without losing the
generality, let us consider the cth class. The training pattern
with the highest fuzzy-rough ownership value for the cth
class is chosen as the first cluster center for the class c.
Suppose it is the jth training pattem x, with the spread K.

Note that the fuzzy-rough ownership values corresponding
to noise and outliers will be close to zero, and hence it is
less likely that they would be chosen as the cluster centers
(see Figure 1). Then the fuzzy-rough ownership value of
each training pattern, particularly the training pattern closest
to the recent cluster center, is reduced so that two
neighboring patterns cannot be the cluster centers.
Specifically,

N
0,(c)= {1 —exp(-Y.

k=

'KL(xjk _xlk)z/(r—l))]ol @vi @
1 Ky

Here 7€ (1,00) determines the importance we assign to the

distance concept while subtracting values. Note that for all
values of 7, 0,(c)=0, and hence the jth training pattern

cannot be selected as the next cluster center. Now the
training pattern with the maximum updated fuzzy-rough
ownership value is chosen as the next cluster center. Again,
the fuzzy-rough ownership values of all the training patterns
are updated. This process is repeated until the ratio of the
fuzzy-rough ownership value of the recently chosen cluster
center and the first cluster center becomes less than some
threshold value. Adopting this method, for the c th class we
obtain r. clusters. Repeating this procedure for all the

c
classes, we obtain total zc_] F, clusters for all the classes.

In the subsequent discussion, we represent the center,
spread and the output values of the ith cluster for the cth

class by z;, v;and u(c), respectively.

Rule extraction: Each cluster corresponds to a fuzzy rule
that relates a region in the input space to an output class.
The right column in Table ! contains the information
obtained from the clustering, and the left column shows the
corresponding interpretation in terms of the fuzzy rules. The
ith rule of the cth class has the following format:
IF
the 1st dimension is around z, AND
............................... AND

the Nth dimension is around z,,,
THEN
the input belongs to cth class with confidence #,(c).

In the above rule, the fuzzy linguistic variable around for
the kth dimension is defined as a Gaussian with center z

and spread 1/v,.k /2 . The number of fuzzy rules for each

class is equal to the number of clusters for that class (Table
1). Since the fuzzy rule base contains 7, fuzzy rules for the

c
cth class, it contains total zc=l ¥, fuzzy rules.

ocooo0
o oog ©
ocoo0o
oo
o

o

o

Figure I - In this 2-class hypothetical example, each
training pattern has two dimensions. The training patterns
are shown in white and dark circles to indicate that they
belong to class 1 and class 2, respectively. The fuzzy-rough
ownership value for the class 1 at the training pattern B is
higher than that of at A, because close to B all the patterns
belong to the same class, but close to A, the patterns belong
to both the classes. Hence, compared to the pattern 4, it is
move likely that the patterns B (similarly pattern D) will be
the cluster centers. The fuzzy-rough ownership value for the
class 1 at the pattern C (which is an outlier) is low since no
other training pattern is close to it. In this manner, the
Juzzy-rough ownership value does not favor the pattern C
to be a cluster center. Thus, the fuzzy-rough ownership
values enable us to select the good cluster centers in a
nonparametric fashion.

Table 1 - The relationship between the fuzzy rules and the
corresponding fuzzy clusters.

Fuzzy Rules | 'Fuzzy Clusters .

No. of clusters
No. of dimension of each

No. of fuzzy-rules =
No. of input variables in IF

part = training pattern

Center of the linguistic Cluster center along that
variable along a dimension = | dimension

Spread of each linguistic Spread of the

variable = corresponding cluster

Confidence factor of the
THEN part =

Fuzzy-rough ownership
value at the cluster center

INPUT:
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Training data {x,| i =1, 2, ..
labels . (x,)Vi,c.

., n} with initial fuzzy class

ALGORITHM:
(a) Fuzzy-Rough nearest neighbors algorithm
Initialize oj.(c) =0forj=1,2,..,nandc=1,2,.,C
FORi=1ton

FORj=1ton

Compute K Jcp,()2 Vke{l,.,N}

n
-2 _
=5 Z (x Jjk
p=l
Determine the squared weighted distance between

&1
x,and x, using d(x;,X;) =z— x, )

k=1 D p

(xjk_
FORc =1to C

0,(c)=0,(c)+ %#c (x,) exp(~d(x;,x,)"™D)

END FOR
END FOR
END FOR

(b) Clustering
FORc=1to C
i=1
DO
i=i+1
Choose the training pattern with maximum o(c) .
Record it as the new cluster center, and call it z,
Record K of the training pattern corresponding

to the new cluster, and call it spread v;.
Record 0(c) of the training pattern corresponding

to the cluster center, and call it #,(c).

IFi=1

max = 0(c)
ENDIF
FOR/=1ton,

Update the fuzzy-rough ownership value of the
training pattern using

o,(c)= |:1 - exp(_z-,(l_('xjk - xzk)Z/(T_U) o,(c)

k=t By
ENDFOR
DOWHILE (0(c)/ max > THRESHOLD) AND (i < r)
ENDFOR

(c) Extraction of fuzzy rules
FOR ¢=1,2,..,C
FOR i=12,..,r,
FOR k=12,..,N
Consider the kth dimension of the ith cluster as the
linguistic variable “amount” with the center z,

and spread v, .
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END FOR
Make confidence in the THEN part equal to 0,(c) .

Construct IF part of the ith fuzzy rule for the cth class
using the linguistic variables and the confidence
factor.
END FOR
END FOR

OUTPUT:
. c
A fuzzy rule base consisting of Zc= T rules.

Figure 2 - Proposed training algorithm to generate fuzzy
rules. Here C is the total number of classes, q € [1, o) is
an index that controls the fuzziness while finding the
similarity between two patterns, and T € (1, o) influences
the updating of the fuzzy-rough ownership values. The

constant THRESHOLD is used to control the number of
clusters.

Rule Base Testing

The test pattern is fed to the fuzzy rule base. Based on the

weighted distance between each rule and the test pattern,
N

e, d(y,z) Z'—(yk ~Zi
k=1
fuzzy rule fires. Dependmg on the firing strength, the
THEN part of each rule is activated. The outputs (i.e., ©)
corresponding to the THEN parts of all the rules for a
particular class (say cth class) are aggregated. Particularly,

out(©)= 3 u,(c)exp(-d(y,5)"*) @)

e i=l

, the IF part of each

The class label is determined based on the class that
provides the maximum value for out. If no crisp class label
is needed, then out can be used to indicate the
belongingness of the input into different classes (Figure 3).

The advantages of the proposed algorithm are as follows:
(a) it does not need to know the required number of rules,
(b) it has the possibilistic classification ability, (c) it is fast
to design and test, (d) unlike other parametric and
semiparametric rule extraction techniques, the proposed
method does not need any a priori structural information
about the training data, (e) it is a simple algorithm, and (f)
unlike feedforward neural networks with backpropagation
learning, it does not have any convergence problem.

Results and Discussion

We preprocess the data as follows: The data set contains 16
samples each with one missing attribute. The 683 samples
(339 malignant and 444 benign) are split randomly into a
training set that consists of 119 malignant and 222 benign
samples. The test set consists of the remaining 120
malignant and 222 benign samples.
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Using ¢ = 2, 7=2 and THRESHOLD = 0.8, we have
obtained 1 rule for the class malignant and 2 rules for the
class benign. One such extracted rule is

IF
the clump thickness is around 2 AND
the uniformity of cell size is around 1 AND
the uniformity of cell shape is around 1 AND
the marginal adhesion is around 1 AND
the single epithelial cell size is around 2 AND
the bare nuclei is around 1 AND
the bland chromatin is around 2 AND
the normal nucleoli is around 1 AND
the mitosis is around 1,
THEN
the output class is malignant with confidence 0.4.

The linguistic variable around is considered as a fuzzy
number. The shape of the fuzzy number around for the
clump thickness is shown in Figure 4.

INPUT:
@) Fuzzy rule base generated in the training phase.
(i1) Test pattern y
ALGORITHM:
Initialize out(c) = 0 for all ¢
FORc=1to C
FORi=1tor,
Determine the squared weighted distance
between p and the IF part of the ith rule using

N 1 )
dp,z) =2, — e —2)
k=1 Vik
Calculate
1 -
out(c) = out(c) + —u,(c) exp(-d(y,z,)"*™)
%
END FOR
END FOR
Class label of y is j where out(j) = max{out(1), out(2), ...,
out(c)}.
OUTPUT:
(i) Class label of y.
(ii) Class confidence values out(c) for all c.

Figure 3 - Proposed testing algorithm.

If the constant THRESHOLD is decreased further, more
rules are generated and the classification efficiency
increases further. However, the increase of the number of
rules makes it more difficult to understand the diagnosis
process.

Although this paper reports the experimental results on the
breast cancer problem, the same technique can be used for
the other diagnosis problems where the inputs features are
real numbers. This paper does not attempt to identify the
prognostic factors that are more important for the diagnosis.
In other words, the feature selection task is left for the
future research.
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Figure 4 - The fuzzy numbers around 2, around 8 and
around 9 are shown for the prognostic factor clump
thickness.
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