
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2015

Code Coverage and Test Suite Effectiveness:
Empirical Study with Real Bugs in Large Systems
PAVNEET SINGH KOCHHAR
Singapore Management University, kochharps.2012@phdis.smu.edu.sg

FERDIAN THUNG
Singapore Management University, ferdiant.2013@phdis.smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

DOI: https://doi.org/10.1109/SANER.2015.7081877

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PAVNEET SINGH KOCHHAR, FERDIAN THUNG, and David LO. Code Coverage and Test Suite Effectiveness: Empirical Study
with Real Bugs in Large Systems. (2015). 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 560-564. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2974

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SANER.2015.7081877
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2974&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Code Coverage and Test Suite Effectiveness:
Empirical Study with Real Bugs in Large Systems

Pavneet Singh Kochhar, Ferdian Thung, and David Lo
Singapore Management University, Singapore

{kochharps.2012, ferdiant.2013, davidlo}@smu.edu.sg

Abstract—During software maintenance, testing is a crucial
activity to ensure the quality of program code as it evolves
over time. With the increasing size and complexity of software,
adequate software testing has become increasingly important.
Code coverage is often used as a yardstick to gauge the compre-
hensiveness of test cases and the adequacy of testing. A test suite
quality is often measured by the number of bugs it can find (aka.
kill). Previous studies have analysed the quality of a test suite by
its ability to kill mutants, i.e., artificially seeded faults. However,
mutants do not necessarily represent real bugs. Moreover, many
studies use small programs which increases the threat of the
applicability of the results on large real-world systems.

In this paper, we analyse two large software systems to
measure the relationship of code coverage and its effectiveness in
killing real bugs from the software systems. We use Randoop, a
random test generation tool to generate test suites with varying
levels of coverage and run them to analyse if the test suites
can kill each of the real bugs or not. In this preliminary
study, we have performed an experiment on 67 and 92 real
bugs from Apache HTTPClient and Mozilla Rhino, respectively.
Our experiment finds that there is indeed statistically significant
correlation between code coverage and bug kill effectiveness. The
strengths of the correlation, however, differ for the two software
systems. For HTTPClient, the correlation is moderate for both
statement and branch coverage. For Rhino, the correlation is
strong for both statement and branch coverage.

Keywords—Code Coverage, Bugs, Test Suite Effectiveness

I. INTRODUCTION

Testing is an integral part of software development process
and is crucial to improve the quality of software. Increasing
size and complexity of software has necessitated the need to
improve software testing. However, complete testing is often
infeasible as there is a trade-off between the cost of testing
and the number of faults it can find. Effectiveness of testing
is often measured by the quality of a test suite, i.e., the ability
of a test suite to uncover faults in a program. A test suite that
reveals more bugs is considered of higher quality than the one
which reveals less bugs.

One metric that is commonly used to measure the adequacy
of testing is code coverage, that is, a measure of the set of lines
of code or branches, that are executed by a set of tests1. Code
coverage gives an idea of the thoroughness of a test suite by
measuring the amount of code covered by the test suite. This
is intuitive, since a test suite which does not cover a particular
part of a code will not be able to reveal bugs in that part.

1In this work, we focus on line and branch coverage. We do not consider
other more expensive coverage criteria, e.g., path coverage, etc.

Two recent studies by Gopinath et al. [1] and Inozemtseva
et al. [2] investigate the correlation between code coverage and
bug detection capability. Gopinath et al. analyze hundreds of
open-source projects and measure the quality of test suites of
various coverage levels. They use test cases from the project
as well as generate test cases using Randoop [3]. However,
projects used in this study are very small ranging from 10
LOC to 10,000 LOC. Inozemtseva et al. perform a similar
experiment that involves five large software systems. They
analyse the relationship between test suite size, coverage and
effectiveness. These two studies use mutants, i.e., artificially
injected bugs, and measure test suite effectiveness by its
ability to kill mutants. However, it is not clear whether the
effectiveness of a test suite in killing mutants is representative
to its effectiveness in killing real bugs.

In this study, we investigate two large projects Apache
HTTPClient2 and Mozilla Rhino3 to investigate the relation-
ship between test suite size, code coverage, and effectiveness.
Since mutants do not necessarily represent real bugs, in this
study, rather than using mutants, we use real bugs from the
issue tracking systems of these projects. We use Herzig et
al.’s manually classified dataset and fetch the bug id’s of issue
reports which have been manually labelled as bugs [4]. We
measure test suite effectiveness by its ability to kill these
real bugs. We use Randoop, a feedback directed random test
generation tool, to generate test suites of various coverage
levels. We then measure the correlation between the coverage
levels of these test suites and their effectiveness.

In this study, we analyse the following research questions:

RQ1: Is there a correlation between a test suite’s size
and its effectiveness?

RQ2: Is there a correlation between a test suite’s
coverage and its effectiveness?

The contribution of this paper is as follows: We conduct
a study on two large open-source software projects with the
objective of understanding the correlation between the test
suite size, coverage and effectiveness. This study is performed
using real bugs rather than artificially injected mutants.

The structure of this paper is as follows. In Section II, we
briefly describe bug linking, automatic test generation, code
coverage, and point biserial correlation test. In Section III, we
describe our dataset and overall framework for this study. We
present the results of our empirical study and threats to validity
in Sections IV and V respectively. Related work is presented in
Section VI. Section VII concludes and describes future work.

2http://hc.apache.org/httpclient-3.x/
3https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

978-1-4799-8469-5/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada560

II. PRELIMINARIES

In this section, we describe automatic test generation,
specifically its importance and the test generation tool used
in this paper, namely Randoop. We then briefly describe code
coverage as the metric used to measure the quality of a
test suite. Lastly, we describe about point biserial correlation,
which we used to measure the correlation between code
coverage and test suite effectiveness.

A. Automatic Test Generation and Randoop

With the goal to free developers from the need to generate
their own test cases and thus allow them to focus more on
the development of the software, researchers have proposed
a number of automated test cases generation techniques. This
would allow test phase to be performed fully automatically and
to get a higher code coverage than the manually generated
ones, as well as significantly reduce the generation time. In
our work, we use Randoop to automatically generate the test
cases.

Randoop is a feedback-directed random testing approach
for Java [3]. It generates JUnit random tests for Java programs
by considering the output feedback of the generated test cases
when executing the test inputs. It is a fully automatic approach,
in terms that it does not require any specific parameters that
would need some tuning for different cases. Randoop has been
shown to be able to increase the code coverage and to improve
the error detection capability. Specifically, it was able to find
real bugs in the real software systems. Thus, it is a suitable
random test generation tool for our purpose, where we want
to generate random test cases that can uncover real bugs.

B. Code Coverage

Code coverage is a set of measures for test quality that
calculates the percentage of source code that is executed by a
given test suite [5]. Code coverage can be measured at different
granularity levels such as function coverage, statement cover-
age, branch coverage, and condition coverage. In our work, we
use statement and branch coverage.

Statement coverage measures the proportion of the state-
ments that are executed by the test suite.

Branch coverage measures the proportion of branches in
the control structure (e.g., if and case statements) that are
executed by the test suite.

C. Point Biserial Correlation

Point Biserial Correlation is used to measure the correlation
between two variables when one of them is naturally dichoto-
mous [6]. This means that the variable is naturally takes value
of 0 or 1 instead of discretized to 0 or 1. This correlation
is suitable for our purpose, where one of our variable (i.e.,
whether bug is killed or not) is a naturally dichotomous
variable. Given a continuous variable x and a dichotomous
variable y, it is formulated as follows.

rpb =
M1 −M0

sn
×
√

n1n0

n2

where rpb is the point biseral correlation, M1 and M0 are the
mean of group having value of y equals to 1 and 0, respectively,

sn is the standard deviation of x, n is the total number of data
points, and n1 and n0 are the number of data points having
value 1 and 0, respectively.

To interpret the strength correlation, we use the interpre-
tation given in [7], i.e., rpb

2 ≥ 0.81 means very strong,
0.49 ≤ rpb

2 < 0.81 means strong, 0.25 ≤ rpb
2 < 0.49

means moderate, 0.09 ≤ rpb
2 < 0.25 means weak, and

0.00 < rpb
2 < 0.09 means very weak.

III. METHODOLOGY

In this section, we first describe the dataset (subject pro-
grams) that we use for this study. We then describe the overall
process that we follow for this empirical study, which includes
details on data collection as well as its analysis.

A. Subject Programs

We analyse two large systems developed in Java: HTTP-
Client and Rhino. The first, HTTPClient, is a Java library
of components for building client side HTTP services. The
second, Rhino, is an open source JavaScript engine, which is
usually embedded into Java applications to provide scripting to
end users. We selected these two projects as they have different
functionalities and are developed by two different organisations
i.e., Apache and Mozilla. HTTPClient uses Maven to build the
system, whereas Rhino uses Ant. Moreover, both the systems
use different bug tracking systems: HTTPClient uses JIRA and
Rhino uses Bugzilla. Both the projects use git version control
system and are hosted on GitHub4. Table I shows the lines of
code for both the projects.5

TABLE I: Lines of Code of HTTPClient and Rhino

Project Lines of Code
HTTPClient 122,288
Rhino 116,065

B. Overall Process

Figure 1 shows the overall process, which is divided into
three different phases: linking, fixed version analysis and pre-
fix version analysis.

Fig. 1: Overall Process
4Located at https://github.com/apache/httpclient for HTTPClient, and https:

//github.com/mozilla/rhino for Rhino
5We count the lines of code of the latest version of these projects.

561

1) Linking: In the linking phase, we link each bug id to
its corresponding commits. We use a dataset from Herzig
et al. where they characterize issue reports into 14 different
categories. They show that a large number of issue reports are
misclassified, i.e., every third issue report marked as a bug
is not a bug. We use the issue reports which are manually
classified as bugs by Herzig et al. In total, we have 305 bug
ids from HTTPClient and 302 bug ids from Rhino. We analyze
the commit logs from the git version control systems of the
project repositories. Commits logs often contain bug id as
part of the commit message. We link the bug reports to their
corresponding commits by finding the occurrence of bug id in
the commit logs. For each bug id, we collect the fixed version
(non-buggy version), i.e., version where the bug was fixed, and
the pre-fix version (buggy version), i.e., version right before the
bug fixing commit. In total, we find 145 links for HTTPClient
and 242 links for Rhino. We ignore bugs which have more
than one bug fixing commits since for such cases it is difficult
to segregate the non-buggy and buggy version, for which the
difference between the two versions is only the buggy behavior
and nothing else. Some irrelevant commits might be made in
between the bug fixing commits which introduce non-buggy
behavioral differences.

2) Fixed Version Analysis: In this phase, we analyse the
fixed (non-buggy) version of each bug in the repository. We
perform the following steps:

a) Compiling source code: The projects in our study use
different build systems, i.e., HTTPClient uses maven whereas
Rhino uses ant. Projects using Maven can be built using
information stored in the project object model (POM) file,
pom.xml. Projects using ant can be built using build.xml,
which describes the build process and its dependencies. Al-
though we used maven and ant to automate the build process,
still some commits fail to compile due to missing dependencies
such as jar files. Since the commits we analyse are spread over
a long period, some of the versions failed due to incorrect
Java version. We tried to manually resolve such issues and
re-compile the source code files. If the version still failed to
compile despite our attempt, we omit those bugs from our
analysis.

b) Generating Test Suites: We use Randoop to generate test
cases. The reason behind using Randoop is to vary the number
of test cases to get a range of coverage values and analyse the
effectiveness of test suites of varying coverage values to catch
the bugs. We use Randoop to generate test cases for 5 minutes
on the non-buggy version. Based on our analysis, we observe
that Randoop can generate a large number of test cases even
when ran for a short duration. We divide each generated test
suite into smaller suites of varying sizes to get a range of
coverage values. For each test suite that Randoop generates,
we create 5 other test suites of size 0.2%, 0.5%, 1%, 5%,
and 10% of the original test suite. To create these smaller test
suites, we randomly pick test cases from the original test suite.
Thus for each bug, we have 6 test suites: the original test suite,
and the 5 smaller test suites.

c) Running Test Suites: After the test suites are generated,
we run these test cases on the fixed version using junit runner.
We observe that some test cases in the test suites produce
different outputs when we execute them multiple times. Thus,
we repeat the process of running test suites 50 times to account

for non-determinism, i.e., test cases which show different
behaviours on different executions. If a test case provides
different output under the same condition, it is difficult to
interpret the output of the test case when we change the
condition. Thus, in order to have an unbiased analysis, we
filter out non-deterministic test cases from the test suite. We
also store the execution output for each deterministic test case
at this step which is used to compare with the execution output
of the pre-fix version. We remove bugs where there are test
failures (i.e., exceptions or assertion failure) and no execution
output could be generated.

3) Pre-fix Version Analysis: In this phase, we check out
the pre-fix or the buggy version of the code. As we want to
measure the code coverage of this version, we use Cober-
tura6, which instruments the byte code of the compiled
classes. Cobertura stores the information about the instru-
mented classes in a .ser file and is used by Cobertura while
running test cases. After the instrumentation step, we use the
deterministic test cases generated in the fixed version as we
want to observe the behavior of the same test cases on the
fixed and pre-fix versions. We run these test cases to get
the coverage information as well as the execution outputs.
We exclude bugs where test cases fail to compile or run and
produce zero coverage. These include cases where the test suite
invokes methods that do not exist in the pre-fix version.

At the end of this last phase, we are left with 67 and 92
real bugs from HTTPClient and Rhino. Each of the bug has
six test suites of size 0.2%, 0.5%, 1%, 10%, and 100% of
the original test suite that Randoop creates. We tried other
percentages, e.g., 40%, 50%, etc., but for test suites built with
these percentages, their coverage levels were very close to the
coverage achieved when we use all test cases in the original
test suite. Thus, to generate test suites with varying coverage
levels, we only use the following percentages: 0.2%, 0.5%,
1%, 5%, 10%, 100%. Table II shows the average number of
test cases (i.e., JUnit methods) for each test suite size across
all bugs. Table III shows the average coverage achieved by test
suites of different sizes.

TABLE II: Average Test Suite Size

Project % of Original Test Suite Size
0.2 0.5 1 5 10 100

HTTPClient 7.43 15.62 39.13 197.82 396.17 3967.00
Rhino 7.64 16.01 40.10 202.52 405.46 4059.28

TABLE III: Average Coverage

Project Coverage % of Original Test Suite Size
0.2 0.5 1 5 10 100

HTTPClient Line 7.5 11.0 17.2 28.0 31.8 37.4
Branch 2.8 4.4 7.6 14.4 17.2 22.5

Rhino Line 6.4 8.7 11.6 17.0 19.4 27.1
Branch 3.0 4.2 5.8 9.0 10.5 16.5

C. Measuring Effectiveness

We measure effectiveness by the ability of a test suite to
kill a bug. The underlying assumption of our analysis is: a test
suite that runs successfully (i.e., all test cases run successfully)
on a non-buggy version and fails on the buggy version (i.e.,
one of the test cases fails) kills the bug.

6http://cobertura.github.io/cobertura/

562

IV. RESULTS

In this section, we report the results of our empirical study
which answer the research questions.

A. RQ1: Size vs Effectiveness

Motivation: One way to improve the effectiveness of a test
suite is by increasing the size of the test suite. It might seem
that with more test cases the chance for a bug to get killed by
one of the test cases is higher. However, can we really improve
a test suite effectiveness by simply adding test cases to a test
suite? To answer this question, we investigate the correlation
between test suite size and test suite effectiveness.

Approach: Using the methodology described in Section III,
we have a set of test suites of varying sizes. We also know
whether each of these test suites is effective to kill a bug or
not. We compute the point biserial correlation described in
Section II to check whether there is a correlation between test
suite size and test suite effectiveness.

Findings: The null hypothesis is that there is no correlation
between test suite size and test suite effectiveness, whereas the
alternate hypothesis states that there is a correlation between
these two variables. Table IV shows the correlation between
the size of a test suite and its effectiveness, i.e., whether a bug
is killed by the test suite or not. We can observe that there is a
strong correlation between test suite size and its effectiveness
for HTTPClient (i.e., 0.49 ≤ rpb

2 < 0.81). For Rhino, the
correlation is weak (i.e., 0.09 ≤ rpb

2 < 0.25). The p-values for
the correlations are statistically significant i.e., < 0.05. Thus,
we can reject the null hypothesis and conclude that there is a
correlation between test suite size and test suite effectiveness.

TABLE IV: Point Biserial Correlation Values for Test Suite
Size and Test Suite Effectiveness

HTTPClient Rhino
rpb 0.70 0.37
rpb

2 0.49 0.14
p-value 4.69e−20 4.48e−11

Test suite size is weakly to strongly correlated with test suite
effectiveness.

B. RQ2: Coverage vs Effectiveness

Motivation: Coverage gives information about parts of the
code ran by test cases. Intuitively, if a segment of the code is
not covered by any test case, it is difficult to find bugs in the
code. So, a highly covered code should have lower chances of
containing a bug. Several past studies have shown that such a
correlation exists when we use seeded faults [2], [8]. We want
to examine if this phenomenon stands true when experimenting
with real bugs.

Approach: Using the methodology described in Section III,
we have a set of test suites of varying levels of coverage. We
also know whether each of these test suites is effective to kill a
bug or not. We compute the point biserial correlation described
in Section II to check whether there is a correlation between
test suite coverage and test suite effectiveness.

Findings: The null hypothesis is that there is no correlation
between the coverage of a test suite and its effectiveness,

whereas the alternate hypothesis states that there is a correla-
tion between these two variables. Table V shows the correlation
between the coverage of a test suite and its effectiveness,
i.e., whether a bug is killed by the test suite or not. We can
observe that there is a moderate correlation between (statement
and branch) coverage and the effectiveness of a test suite
for HTTPClient (i.e., 0.25 ≤ rpb

2 < 0.49). For Rhino, the
correlation between (statement and branch) coverage and the
effectiveness of a test suite is strong (i.e., 0.49 ≤ rpb

2 < 0.81).
The p-values for all the correlations are statistically significant,
i.e., < 0.05. Thus, we can reject the null hypothesis and
conclude that there is a correlation between coverage and the
effectiveness of a test suite even when we use real bugs.

TABLE V: Point Biserial Correlation Values for Test Suite
Coverage and Test Suite Effectiveness

Statement Branch
HTTPClient Rhino HTTPClient Rhino

rpb 0.57 0.77 0.60 0.74
rpb

2 0.33 0.59 0.36 0.55
p-value 8.71e−14 8.59e−42 3.55e−15 3.67e−39

Code coverage of a test suite is moderately to strongly
correlated to its effectiveness.

V. DISCUSSION

Our study is the first that empirically analyses the correla-
tion between code coverage and test suite effectiveness using
real bugs from large systems. Many prior studies either analyze
small systems, e.g., [8], [9], or use mutants rather than real
bugs, e.g., [1], [2]. Our study finds that test suite effectiveness
is weakly to strongly correlated with test suite size, and
test suite effectiveness is moderately to strongly correlated
with coverage. It supports prior studies by highlighting that
developers have more likelihood to catch bugs by adding test
cases especially those that can increase coverage.

There are several threats that potentially affect the validity
of our study including threats to internal validity, threats to
external validity, and threats to construct validity. Threats to
internal validity refers to experimenters’ biases and errors.
We have rechecked our implementation to make sure there
are no errors. However, there may still be errors that we do
not realize. In the linking process, we link bug reports to
commits by looking for the occurrence of bug ids in commit
logs. This is a standard step done in many prior studies,
e.g., [10]. However, there might cases where developers forget
to enter bug ids in the logs of relevant commits. These commits
will be missed by our linking process. Also, we have only
used test cases that are generated by running Randoop for 5
minutes. We find that even if we run Randoop for 1 hour,
although the number of test cases generated is much larger,
the additional coverage gained is little (less than 5 percent).
Threats to external validity refers to generalizability of our
findings. In this preliminary study, we have only experimented
on two large software systems. In the future, we plan to reduce
this threat by investigating more systems. Threats to construct
validity refers to the suitability of our evaluation metrics. We
use point biserial correlation metric for our experiment. Point
biserial correlation is the recommended metric when we have a
variable which is naturally dichotomous [6]. Thus, we believe
there is little threat to construct validity.

563

VI. RELATED WORK

The most related work to ours are the works done by
Gopinath et al. [1] and Inozemtseva et al. [2]. Gopinath et
al. experimented on hundreds of projects from Github [1].
They calculated test cases’ coverage and performed mutation
analysis on human generated and automatically generated test
cases. Human generated test cases are directly collected from
the projects’ Github repositories. Automatically generated test
cases are produced by running Randoop. They performed cross
validation and found that statement coverage is a good indica-
tor of test suite effectiveness. Inozemtseva et al. experimented
on five open source systems and generated 31,000 test suites
for them [2]. They measured statement, decision, and modified
condition coverage and performed mutation testing to measure
test suite effectiveness. As their paper title explicitly states,
their experiments show that code coverage is not strongly
correlated with test suite effectiveness. Different from the
above studies, we conducted experiments on real bugs rather
than mutants that appear in real large software systems.

Many works have been conducted on code coverage as
a measure for test suite quality. Gligoric et al. showed that
branch coverage is the best measure for evaluating test quality,
but acyclic intra-procedural path coverage might be better
when there is a tie [11]. Frankl and Weiss compared branch
coverage with def-use coverage and found that def-use is more
effective than branch coverage [12]. Gupta et al. compared
block, branch, and predicate coverage and found that predicate
coverage kills more mutants than other tested coverage crite-
ria [13]. Namin and Andrews showed that test suite size and
coverage is correlated with test suite effectiveness [14]. The
above studies either analyze small programs (less than 10,000
LOC) [12], [13] and/or only use mutants (i.e., artificially
seeded faults) [11], [13], [14].

There are a number of studies that investigate test adequacy
of open-source projects. Kochhar et al. investigated 50,000
open-source projects from GitHub to understand the correla-
tion between the presence of test cases and various project
development characteristics, including the lines of code and
the size of development teams [15]. They extended their study
to include characteristics such as number of bugs, number of
bug reporters and the programming languages [16]. Moreover,
in their latest study they investigated over 300 large open-
source projects to measure the adequacy of testing by analysing
correlations between code coverage and software metrics such
as lines of code, cyclomatic complexity, and number of devel-
opers [17]. In this work, we investigate whether code coverage
is correlated to test suite quality. However, we perform our
empirical study on large software systems rather than small
ones, using real bugs rather than mutants.

VII. CONCLUSION AND FUTURE WORK

Test cases are important artefacts in any software project
as they allow developers to check the reliability of their code
and produce reliable software. Code coverage is often used
to evaluate the thoroughness and adequacy of testing and to
find areas of code not touched by test cases. Past studies have
analysed correlation between code coverage and effectiveness
of test suite using manually seeded faults. In this work, we
conduct a study using real bugs from two large systems to

evaluate the relationship between test suite size, coverage and
effectiveness.

Our study highlights the following results:

1) Test suite size is weakly to strongly correlated with
test suite effectiveness.

2) Code coverage is moderately or strongly correlated
to the effectiveness of a test suite.

As a future work, we plan to investigate other experiment
settings that we did not consider. For example, rather than
generating test cases from the fixed version, we can generate
test cases from the pre-fix version. Also, we plan to use human-
generated tests rather than Randoop-generated tests. Further-
more, we plan to investigate more projects which will reduce
the threats to external validity. It would also be interesting to
investigate patterns/features of tests that would lead to more
effectiveness.

ACKNOWLEDGEMENT

We would like to thank Kim Herzig, Sascha Just, and
Andreas Zeller for making their issue report datasets publicly
available.

REFERENCES

[1] Rahul Gopinath, Carlos Jensen, and Groce Alex. Code coverage for
suite evaluation by developers. In ICSE, pages 72–82, 2014.

[2] Laura Inozemtseva and Reid Holmes. Coverage is not strongly corre-
lated with test suite effectiveness. In ICSE, pages 435–445, 2014.

[3] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In ICSE, pages 75–84, 2007.

[4] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a
feature: How misclassification impacts bug prediction. In ICSE, pages
392–401, 2013.

[5] Paul Ammann and Jeff Offutt. Introduction to software testing.
Cambridge University Press, 2008.

[6] James Dean Brown. Understanding research in second language
learning: A teacher’s guide to statistics and research design. Cambridge
University Press, 1988.

[7] M. A. Pett. Nonparametric Statistics for Health Care Research: Statis-
tics for Small Samples and Unusual Distributions. Sage Publications,
Inc., 1997.

[8] Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. All-uses versus
mutation testing: An experimental comparison of effectiveness. The
Journal of Systems and Software, 38:235–253, 1996.

[9] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In ICSE, pages 402–411, 2005.

[10] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In ICSM,
pages 23–32, 2003.

[11] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mo-
hammad Amin Alipour, and Darko Marinov. Comparing non-adequate
test suites using coverage criteria. In ISSTA, pages 302–313, 2013.

[12] Phyllis G Frankl and Stewart N Weiss. An experimental comparison
of the effectiveness of branch testing and data flow testing. IEEE
Transactions on Software Engineering, 19:774–787, 1993.

[13] Atul Gupta and Pankaj Jalote. An approach for experimentally evalu-
ating effectiveness and efficiency of coverage criteria for software test-
ing. International Journal on Software Tools for Technology Transfer,
10:145–160, 2008.

[14] Akbar Siami Namin and James H Andrews. The influence of size and
coverage on test suite effectiveness. In ISSTA, pages 57–68, 2009.

[15] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. Adoption of
software testing in open source projects-a preliminary study on 50, 000
projects. In CSMR, pages 353–356, 2013.

[16] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. An empirical study
of adoption of software testing in open source projects. In QSIC, pages
103–112, 2013.

[17] P. S. Kochhar, F. Thung, D. Lo, and J. Lawall. An empirical study on
the adequacy of testing in open source projects. In APSEC, 2014.

564

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2015

	Code Coverage and Test Suite Effectiveness: Empirical Study with Real Bugs in Large Systems
	PAVNEET SINGH KOCHHAR
	FERDIAN THUNG
	David LO
	Citation

	

