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Abstract

Collaborative Filtering (CF) is one of the most successful learning techniques in build-
ing real-world recommender systems. Traditional CF algorithms are often based on batch
machine learning methods which suffer from several critical drawbacks, e.g., extremely ex-
pensive model retraining cost whenever new samples arrive, unable to capture the latest
change of user preferences over time, and high cost and slow reaction to new users or
products extension. Such limitations make batch learning based CF methods unsuitable
for real-world online applications where data often arrives sequentially and user prefer-
ences may change dynamically and rapidly. To address these limitations, we investigate
online collaborative filtering techniques for building live recommender systems where the
CF model can evolve on-the-fly over time. Unlike the regular first order CF algorithms
(e.g., online gradient descent for CF) that converge slowly, in this paper, we present a
new framework of second order online collaborative filtering, i.e., Confidence Weighted On-
line Collaborative Filtering (CWOCF), which applies the second order online optimization
methodology to tackle the online collaborative filtering task. We conduct extensive exper-
iments on several large-scale datasets, in which the encouraging results demonstrate that
the proposed algorithms obtain significantly lower errors (both RMSE and MAE) than the
state-of-the-art first order CF algorithms when receiving the same amount of training data
in the online learning process.

Keywords: Collaborative Filtering, Online Learning, Matrix Factorization, Second Order
Optimization

1. Introduction

Collaborative Filtering (CF), an approach that uses known preferences of some users to
make predictions to the unknown preferences of other users, has been widely used as one
of core learning techniques in building real-world recommender systems, including many
commercial websites such as Amazon, Barnes, Netflix, and eBay. Consider online e-
commerce applications where a user wishes to watch a movie or buy a product, the system
offers recommendations using CF techniques in exploiting one’s previous preference and
that of others. A good recommender system is extremely beneficial to users in accurately
predicting their preferences and providing satisfactory recommendations, and consequently
benefiting the company. The fundamental assumption of CF is that if two users rate many
items similarly, they will be likely to rate other items similarly (Goldberg et al., 2001).
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In literature, a variety of CF algorithms have been proposed, which can be generally
grouped in two categories: memory-based CF and model-based CF (Su and Khoshgoftaar,
2009). Memory-based CF algorithms were wildly used in some early generation CF systems.
The systems measure the similarity between items (or users) based on the ratings in the
training dataset and then make prediction to the unknown ratings based on the weighted
average of ratings to similar items (or from similar users) (Sarwar et al., 2001). The main
limitation of memory-based CF methods is that they often suffer from the data sparsity issue
which makes the computation of similarity inaccurate or even impossible. To overcome the
drawbacks of memory-based CF, model-based CF methods have been proposed and found
encouraging results even in the challenging scenarios of sparse data (Miyahara and Pazzani,
2002; Ungar and Foster, 1998). Among different CF techniques, one of the most successful
approaches is the matrix factorization methodology (Koren et al., 2009). Our work also
follows the same methodology due to its leading performance in practice.

Despite being studied extensively, most traditional model based CF algorithms are based
on batch machine learning techniques which assume all training data are provided prior to
the model training (Sarwar et al., 2002; Linden et al., 2003). Such assumption makes
them unsuitable and non-scalable for real-world large-scale online applications for a few
reasons. First of all, the ratings usually arrive sequentially and periodically in an online
application; as a result, batch learning model has to be retrained from scratch whenever new
training samples are received, making the training process extremely expensive. Second,
whenever a new item or a user is added to the system from time to time, batch learning
cannot handle such changes immediately without involving an expensive re-training process.
Third, it is common that users preferences could drift rapidly over time in real-world online
applications, making the batch learning approaches fail to capture such rapid changes on
time. This motivates us to study online/incremental collaborative filtering techniques to
address these limitations.

Recent years have witnessed some emerging studies for online collaborative filtering
(Abernethy et al., 2007; Ali et al., 2011). Unfortunately, these methods generally follow the
first order optimization framework (e.g., online gradient descent (Abernethy et al., 2007))
in finding the optimal solutions of low-rank matrix factorization. Due to the ignorance
of second order information, these approaches suffer from slow convergence. To address
the weakness of these first order online CF approaches, we propose a novel framework of
Confidence Weighted Online Collaborate Filtering (CWOCF), which exploits the confidence
information of the low rank matrixes and online second order optimization method. The key
idea of CWOCF is to not only update the user and item weight vectors at each round, but
also estimate their distribution, i.e., mean and covariance matrix. Because of exploiting the
additional confidence information, CWOCF converges significantly faster and thus achieves
much lower values of RMSE and MAE than those of the regular first order algorithms when
receiving the same amount of rating observations.

The rest of the paper is organized as follows. Section 2 reviews the background and
related work. Section 3 proposes the proposed Confidence Weighted Online Collaborate
Filtering algorithm. Section 4 discusses the experimental results on several real-world date-
sets, and Section 5 concludes this work and discusses the future work.
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2. Background and Related Work

This section briefly reviews the background and major related work, including matrix fac-
torization CF methods, online collaborative filtering, and second order online optimization.

As stated above, among two major categories of CF algorithms (He et al., 2011; Melville
et al., 2002; Ungar and Foster, 1998), model-based CF methods usually outperform than
memory-based ones. One of the most successful approaches for model-based CF is matrix
factorization, which was used to develop the algorithm that won the Netflix prize (Koren
et al., 2009). This algorithm uses a model similar to the linear classification model. It
assumes that the rating of an user to a item is determined by some potential features. Thus
each user or item can be represented by a feature vector and the rating is the inner product
of the user vector and the item vector. Although batch matrix factorization algorithms
predict the preference of users relatively actuate, it is not suitable for real world online
applications on large scale datesets because of the high computational cost in both time
and memory.

Some recent studies have attempted to address Online collaborative filtering (OCF). An
early group of studies (Crammer and Singer, 2001; Harrington, 2003) is to apply the idea
of online/stochastic gradient descent and matrix factorization to find the optimal low-rank
user matrix and item matrix. Another recent approach is to explore probabilistic matrix
Factorization by adopting a probabilistic linear model with Gaussian observation noise
and exploring the dual averaging optimization method (Nesterov, 2009). Despite simple
and efficient, the common limitation of these methods is that they all belong to the first
order online optimization method and thus often suffer from relatively slow convergence
rate. Besides the model-based approaches, another related work is the Online Evolutionary
Collaborative Filtering (OECF), which generally belongs to memory based methods (Liu
et al., 2010). The key idea of their work is to treat the timestamp of a rating as an
important factor when computing the similarity. Although they provide both batch and
online extensions, the key limitation of this work is its extremely high computational cost,
which makes it impractical for large-scale applications.

Our work aims to overcome the slow convergence limitation of first order OCF ap-
proaches by exploring second order optimization techniques, which have been actively stud-
ied for improving learning efficacy of online optimization tasks (Cesa-Bianchi et al., 2005;
Wang et al., 2012; Orabona and Crammer, 2010). In particular, instead of exploiting the first
order information (“mean”) of weight vector during each iteration, second order algorithms
attempt to maintain the second order information (“covariance”) and update them effi-
ciently. Although second order online learning has been actively studied, the most relevant
existing work to our framework is the confidence weighted learning (CW) method (Dredze
et al., 2008; Crammer et al., 2009b), which assumes the weight vector is in Gaussian dis-
tribution and updates both the mean and the covariance matrix during each iteration.
Because of the additional covariance information, CW usually achieves significantly better
performance than the first order methods. Although a variety of CW algorithms have been
actively studied for online classification tasks (Dredze et al., 2010; Crammer et al., 2009a),
to the best of our knowledge, there is no existing study of exploring secord order online
optimization for collaborative filtering tasks.
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3. Confidence Weighted Online Collaborative Filtering

In this section, we present the proposed framework of Confidence Weighted Online Col-
laborate Filtering (CWOCF). The key idea is to follow the low-rank matrix factorization
framework for online collaborative filtering and exploit confidence weighted online learning
techniques in optimizing the low-rank matrixes. In the following, we will first briefly intro-
duce the problem settings, and then present an overview of the main idea of the confidence
weighted online optimization, and finally present the proposed CWOCF algorithms and
discuss some open issues.

3.1. Problem Settings

Consider a typical collaborate filtering task with a total of n users and m (products) items.
We denote by rab the rating given by user a to item b, e.g., rab ∈ {1, 2, 3, 4, 5} for some
movie recommendation datasets. The collection of users’ ratings forms an incomplete rating
matrix R ∈ Rn×m. Note that in an online learning setting, when new items/users are added
or old items/users are deleted, the values of m and n could change over time. We would
first assume that they are constant and known in advance, and will also discuss the issue
of new users or items extension later. In general, the goal of an collaborative filtering task
is to predict the unknown ratings in R based on the observed ones.

The proposed collaborative filtering framework follows the principle of matrix factor-
ization techniques for recommender systems (Koren et al., 2009). Specifically, the matrix
factorization model maps both users and items into a joint low-dimensional latent factor
space with very small dimensionality k � n,m, i.e., each user a can be represented by a
vector Ua ∈ Rk, and each item b can be represented by a vector Vb ∈ Rk. Consequently,
the rating rab can then be approximated by the dot product of Ua and Vb, i.e., rab = U>a Vb.
To be concise, one can respectively define the user matrix U ∈ Rk×n and the item matrix
V ∈ Rk×m, whose columns are the k-dimensional vectors of certain users/items. The goal
is to find the optimal matrixes U and V that minimizes the approximation error:

arg min
U∈Rk×n,V ∈Rk×m

||R− U>V ||2F , (1)

where ||X||F is the Frobenius norm of the matrix X, i.e.
∑

i,j x
2
ij . Unfortunately, the

rating matrix R is only partly observed and often extremely sparse in a CF task. Thus,
traditional matrix factorization methods, such as Singular Value Decomposition (SVD), are
not suitable to solve the problem. Alternatively, one can formulate the following objective
function which is only related to the sum of prediction loss on all the observed ratings by
excluding the unknown ones:

arg min
U∈Rk×n,V ∈Rk×m

∑
(i,j)∈C

`(Ua, Vb, rab) (2)

where C is the set of all observed ratings and the loss function ` can be defined to minimize
certain evaluation matric. In this paper, we consider two popular metrics, i.e., Root Mean
Square Error (RMSE) and Mean Absolute Error(MAE), defined as follows:

RMSE =

√√√√ 1

|C|
∑

(a,b)∈C

(ra,b − r̂a,b)2, MAE =
1

|C|
∑

(a,b)∈C

|ra,b − r̂a,b|
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where r̂a,b denotes the predicted rating, i.e., r̂a,b = U>a Vb under the matrix factorization
setting. Using the definitions, it is straightforward to define the loss function for optimizing
the RMSE metric by the following square error function:

`1(Ua, Vb, ra,b) = (ra,b − U>a Vb)2, (3)

Similarly, to optimize the MAE metric, one can define the absolute loss function:

`2(Ua, Vb, ra,b) = |ra,b − U>a Vb|. (4)

3.2. Overview of Confidence Weighted Learning

The Confidence Weighted (CW) algorithm (Dredze et al., 2008) was proposed to solve online
linear classification tasks, i.e., finding the optimal classification weight vector w that is able
to make accurate prediction of class label y ∈ {0, 1} for a sequence of instances x ∈ Rd based
on a linear prediction model: ŷ = sign(w · x). Unlike the first order algorithms that learn
only the first order information (mean) of the weight vector, CW attempts to maintain a
Gaussian distribution over the weight vector by assuming w ∼ N (µ,Σ), where µ ∈ Rd is
the mean vector and Σ ∈ Rd×d is the covariance matrix. When making a prediction, the
prediction confidence M = w · x also follows a Gaussian distribution: M ∼ N (µM ,ΣM ),
where µM = µ · x and ΣM = x>Σx. By formulating it as a constrained optimization,
the original CW algorithm gives closed-form (approximate) solutions for optimizing the
model parameters µ and Σ. Despite the pioneering study, the original CW algorithm in
Dredze et al. (2008) has several drawbacks, e.g., assuming data is linearly separable and
difficult to be extended for other learning tasks, which inspired a variety of improved CW
algorithms Crammer et al. (2009b); Wang et al. (2012). In this work, we follow the improved
CW learning study of Adaptive Regularization of Weight Vectors (AROW) Crammer et al.
(2009b), which updates these parameters based on the tradeoff of three desires: (i) to
prevent losing the information learnt so far, the algorithm should make the smallest change
to the distribution of the weight vector as measured by the KL divergence; (ii) the new
distribution must be able to make an accurate prediction to the new sample xt, i.e., suffering
the least classification loss; (iii) the prediction confidence, M , should be stable, i.e., with low
variance. Consequently, the update rule is found by minimizing the following unconstrained
objective function at each round:

C(µ,Σ) = DKL(N (µ,Σ)||N (µt−1,Σt−1)) + λ1`(yt, µ · xt) + λ2x
>
t Σxt (5)

where `(yt, µ · xt) = (max{0, 1 − yt(µ · xt)})2 is the squared-hinge loss and λ1 and λ2 are
regularization parameters to control the tradeoff among the three desires.

3.3. Confidence Weighted OCF (CWOCF) Algorithm

We extend the CW learning framework to tackle online collaborative filtering task by pro-
posed the Confidence Weighted Online Collaborate Filtering (CWOCF). In particular, when
receiving a rating (a, b, ra,b), we assume that both the user vector Ua and the item vector Vb
follow a Gaussian distribution, respectively: Ua ∼ N (µua ,Σua), Vb ∼ N (µvb ,Σvb). Because
of the complexity of modeling the inner product of two Gaussian distributions, we optimize
Ua and Vb separately, and assume one to be fixed when optimizing the other one.
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Following the principle of CW learning, confidence weighted online collaborative filtering
learns to update the distributions of both the user vector Ua and the item vector Vb by
minimizing the following unconstrained objective functions respectively:

CU (µua ,Σua) = DKL(N (µua ,Σua)||N (µua,t−1,Σua,t−1)) + λ1`(µua , Vb, rab) + λ2V
>
b ΣuaVb (6)

CV (µvb ,Σvb) = DKL(N (µvb ,Σvb)||N (µvb,t−1,Σvb,t−1)) + λ1`(Ua, µvb , rab) + λ2U
>
a ΣvbUa (7)

By rewriting the KL divergence DKL explicitly, we can rewrite the above as follows:

CU (µua ,Σua) =
1

2
log(

detΣua,t−1
detΣua

)+
1

2
Tr(Σ−1ua,t−1Σua)+

1

2
(µua,t−1−µua)>Σ−1ua,t−1(µua,t−1−µua)

−k
2

+
1

2α1
`(µua , Vb, rab) +

1

2α2
V >b ΣuaVb (8)

CV (µvb ,Σvb) =
1

2
log(

detΣvb,t−1
detΣvb

) +
1

2
Tr(Σ−1vb,t−1Σvb) +

1

2
(µvb,t−1−µvb)

>Σ−1vb,t−1(µvb,t−1−µvb)

−k
2

+
1

2α1
`(Ua, µvb , rab) +

1

2α2
U>a ΣvbUa (9)

where α1 and α2 are used for simplicity by setting λ1 = 1/2α1, and λ2 = 1/2α2. It is
important to note that the objective function can be decomposed into two decoupled terms:
one depending on µ and the other depending on Σ. As a result, we can optimize and update
the mean vector and covariance matrix separately, as shown in the following propositions.

Proposition 1 In confidence weighted online collaborative filtering, given an observed rat-
ing pair (a, b, rab), the updating rules of Σ with respect to both RMSE and MAE are expressed
as:

Σua = Σua,t−1 −
Σua,t−1VbV

>
b Σua,t−1

α2 + V >b Σua,t−1Vb
(10)

Σvb = Σvb,t−1 −
Σvb,t−1UaU

>
a Σvb,t−1

α2 + U>a Σvb,t−1Ua
(11)

The proof to the above mostly follows the similar proof as in Crammer et al. (2009b). We
omit the details due to space limitation.

Proposition 2 In confidence weighted online collaborative filtering, given an observed rat-
ing pair (a, b, rab), the updating rules of µ with respect to RMSE are expressed as:

µua = µua,t−1 +
rab − V >b µua,t−1

α1 + V >b Σua,t−1Vb
Σua,t−1Vb (12)

µvb = µvb,t−1 +
rab − U>a µvb,t−1
α1 + U>a Σvb,t−1Ua

Σvb,t−1Ua (13)
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Proof We rewrite equation (8) w.r.t. RMSE and omit the terms not depending on µUa

CU (µua ,Σua) =
1

2
(µua,t−1 − µua)>Σ−1ua,t−1(µua,t−1 − µua) +

1

2α1
(µ>ua

Vb − rab)2 (14)

Taking the derivative of CU (µua ,Σua) with respect to µua and setting it to zero leads to

µua = µua,t−1 −
1

α1
ΣuaVb(µ

>
ua
Vb − rab) (15)

We solve µua by taking the dot product with Vb on each side and substituting it back to
(15) to obtain (13). We skip the proof for updating µvb since it is identical to that of µua .

Proposition 3 In confidence weighted online collaborative filtering, given an observed rat-
ing pair (a, b, rab), the updating rules of µ with respect to MAE are expressed as:

µua =


µua,t−1 − λ1Σua,t−1Vb if r̂a,b − rab > λ1V

>
b Σua,t−1Vb

µua,t−1 + λ1Σua,t−1Vb if r̂a,b − rab < −λ1V >b Σua,t−1Vb

µua,t−1 otherwise

(16)

µvb =


µvb,t−1 − λ1Σvb,t−1Ua if r̂a,b − rab > λ1U

>
a Σvb,t−1Ua

µvb,t−1 + λ1Σvb,t−1Ua if r̂a,b − rab < −λ1U>a Σvb,t−1Ua

µvb,t−1 otherwise

(17)

Proof We rewrite equation (8) w.r.t. MAE and omit the terms not depending on µUa

CU (µua ,Σua) =
1

2
(µua,t−1 − µua)>Σ−1ua,t−1(µua,t−1 − µua) + λ1|µ>ua

Vb − rab| (18)

Taking the derivative of CU (µua ,Σua) with respect to µua and setting it to zero leads to

µua = µua,t−1 − λ1sign(µ>ua
Vb − rab)Σua,t−1Vb (19)

In the above, if µ>ua
Vb − rab > 0, we have

µua = µua,t−1 − λ1Σua,t−1Vb.

Taking the inner product with Vb on both sides of the equation leads to

µ>ua
Vb = µ>ua,t−1Vb − λ1V

>
b Σua,t−1Vb > rab

Since µua,t−1Vb = r̂a,b, the first case is proved. Similarly, we can prove the second case.
When |r̂a,b − rab| < λ1V

>
b Σua,t−1Vb, |µ>ua

Vb − rab| = 0. Thus, no update is needed.

Finally, Algorithm 1 summarizes the detailed framework of the proposed Confidence Weighted
Online Collaborative Filtering (CWOCF) algorithms. Both time and space complexity of
the proposed algorithm at each learning round are O(k2), where k, the dimensionality of
the joint latent factor space, is typically a small constant.
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Algorithm 1 Confidence Weighted Online Collaborative Filtering (CWOCF-I)

Input: dimension k, a sequence of rating {(at, bt, Rab), t = 1, . . . , T}
Initialization: Initialize a random matrix for user matrix U ∈ Rn×k and item matrix
V ∈ Rm×k, and initialize n covariance matrixes to be I
for t = 1, 2, . . . , T do

receive rating prediction request of user at on item bt
make prediction r̂at,bt = UatV

>
bt

the true rating rat,bt is revealed
the algorithm suffers a loss `(Ua, Vb, ra,b)
update Uat and Vbt byProposition 2 (RMSE) or 3 (MAE)
update Σua andΣvb Proposition 1

end for

3.4. Efficient Update for Large-scale Applications

Although CWOCF is able to achieve significantly fast convergence rate, the computational
cost in both time and space could be potentially high when k is large, making it inefficient
for large-scale applications. To address the tradeoff between efficiency and efficacy, one
solution is to update only the diagonals of the covariance matrixes, thus reducing both the
space and time complexity to O(k).

Proposition 4 In confidence weighted online collaborative filtering, given an observed rat-
ing pair (a, b, rab), the updating rule of Σ in diagonal update setting with respect to both
RMSE and MAE are expressed as:

Σua = Σua,t−1 −
Σua,t−1 � Vb � Vb � Σua,t−1

α2 + V >b (Σua,t−1 � Vb)
(20)

Σvb = Σvb,t−1 −
Σvb,t−1 � Ua � Ua � Σvb,t−1
α2 + U>a (Σvb,t−1 � Ua)

(21)

where � denotes element-wise product.

To save the space cost in practice, the Σua and Σvb in the diagonal update setting can be
implemented by using k dimensional column vectors.

Proposition 5 In confidence weighted online collaborative filtering, given an observed rat-
ing pair (a, b, rab), the updating rules of µ in diagonal update setting with respect to RMSE
are expressed as follows:

µua = µua,t−1 +
rab − V >b µua,t−1

α1 + V >b (Σua,t−1 � Vb)
(Σua,t−1 � Vb) (22)

µvb = µvb,t−1 +
rab − U>a µvb,t−1

α1 + U>a (Σvb,t−1 � Ua)
(Σvb,t−1 � Ua) (23)
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Algorithm 2 Fast Confidence Weighted OCF with Novel Sample Extension (CWOCF-II)

Input: a sequence of rating pairs {(at, bt, rab), t = 1, . . . , T},
Initialization: Initialize U = V = [], Σu = Σv = [].
for t = 1, 2, . . . , T do

receive rating prediction request of user at on item bt
if user at is new then

initialize Uat as a random vector.
expand the user matrix U as U = [U ;Uat ]
expand the covariance matrix as Σu = [Σu; 1]

end if
if item bt is new then

initialize Vbt as a random vector.
expand the item matrix V as V = [V ;Vbt ]
expand the covariance matrix as Σv = [Σv; 1]

end if
make prediction r̂at,bt = UatV

>
bt

the true rating rat,bt is revealed
the algorithm suffers a loss `(Ua, Vb, ra,b)
update Uat , Vbt , Σua and Σvb by Proposition 4, 5(RMSE) or 6 (MAE)

end for

Proposition 6 In confidence weighted online collaborative filtering, given an observed rat-
ing pair (a, b, rab), the updating rules of µ with respect to MAE are expressed as:

µua =


µua,t−1 − λ1Σua,t−1 � Vb if r̂a,b − rab > λ1V

>
b (Σua,t−1 � Vb)

µua,t−1 + λ1Σua,t−1 � Vb if r̂a,b − rab < −λ1V >b (Σua,t−1 � Vb)
µua,t−1 otherwise

(24)

µvb =


µvb,t−1 − λ1Σvb,t−1 � Ua if r̂a,b − rab > λ1U

>
a (Σvb,t−1 � Ua)

µvb,t−1 + λ1Σvb,t−1 � Ua if r̂a,b − rab < −λ1U>a (Σvb,t−1 � Ua)

µvb,t−1 otherwise

(25)

The proofs to the above propositions are straightforward by simplifying the Proposition 1 to
3 from full matrix update to diagonal update. We omits the details due to space limitation.

3.5. Novel User/Item Extension

In the previous discussion, we assume that the number of users n and the number of items
m are known in advance and fixed during the online learning process. This however is not
realistic in a real-world online application, where new users or new products could be added
to the system at any time. In this part, we extend the previous CWOCF algorithm to handle
novel user/item extension. Due to the advantage of online algorithms, the novel sample
extension can be done in an easy manner by expanding the parameters of the distributions
learned so far. We summarize the detailed algorithm together with the diagonal update in
Algorithm 2.
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4. Experimental Result

In this section, we evaluate the empirical performance of the proposed CWOCF algorithm
for online collaborative filtering tasks. In our experiments, we adapt the similar evaluation
protocol of online learning tasks for collaborative filtering.

4.1. Compared Algorithms

We compare the proposed CWOCF algorithms with two model-based online collaborative
filtering algorithms as follows:

• “OCF”: the Online Collaborative Filtering (Abernethy et al., 2007) by online gradient
descent method;

• “DA-OCF”: the Dual-Averaging optimization method for online collaborative filter-
ing (Ling et al., 2012);

• “CWOCF-I”: the proposed Confidence Weighted Online Collaborate Filtering algo-
rithm with full covariance matrix update;

• “CWOCF-II”: the proposed Confidence Weighted Online Collaborate Filtering algo-
rithm with diagonal covariance matrix update and novel user or item extension.

We note that we cannot compare with many batch collaborative filtering algorithms since
they are not designed for online CF tasks, making them non-scalable and impractical under
online learning settings.

4.2. Experimental Testbed and Setup

To comprehensively examine the empirical performance, we conduct the experiments on
four publicly available datasets, which have been widely used for benchmark evaluation
of collaborative filtering in literature. All of the datasets can be downloaded from the
GroupLens Research webset 1. We first test the compared algorithms on the two relatively
smaller datasets, “Movielens 100k” and “HetRec 2011”, for evaluation on latent factor
dimensionality, time efficiency, and prediction accuracy. We then evaluate the large-scale
experiments on the rest two larger datasets, i.e., “Movielens 1M” and “Movielens 10M”.
Table 1 summarizes the statistics of the datasets, where the “rating matrix density” is
defined as the fraction of observed ratings out of the total number of elements (m · n) in
the rating matrix.

Table 1: Statistics of the Datasets Used in Experiments
Datasets # Ratings #Items #Users Rating Scale rating matrix density

Movielens 100k 100,000 1,682 943 1-5 6.3%

HetRec 2011 855,598 10,109 2,113 1-5 4.0%

Movielens 1M 1,000,209 3,900 6,040 1-5 4.2%

Movielens 10M 10,000,054 10,681 71,567 1-5 1.3%

1. http://www.grouplens.org/
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For parameter settings, to enable fair comparisons of different algorithms, we follow a
standard approach of parameter selection for online learning experiments. In particular, all
of the parameters including the λ and τ in OCF, the α1 and α2 in CWOCF and the λU
and λV in DA-OCF were found automatically by searching from a single experiment on a
random permutation of each dataset, except that the latent factor dimensionality is fixed
to a constant (5 or 10) for all the algorithms. The search range for λ, τ , λU and λV is from
10−5 to 10−1 and the range for α1 and α2 is from 1 to 100. After all the parameters are
chosen, all the experiments are conducted over 20 runs of different random permutations
for each dataset. All the experimental results are reported by averaging over these 20
runs. For performance metrics, we evaluate the performance of online collaborative filtering
algorithms by measuring their scores of online Root Mean Square Error (RMSE) and online
Mean Absolute Error (MAE).

4.3. Evaluation on Medium-Scale Datasets

We first evaluate the algorithms on two medium-scale datasets under two settings of the la-
tent factor dimensionality (k = 5 and k = 10). Table 2 summarizes the average performance
of the compared algorithms. We can draw some observations as follows.

Table 2: Performance Evaluation, where k is the rank parameter for matrix U and V . The
bold elements indicate the best performance for each setting.

ML k=5 k=10

100k RMSE time MAE time RMSE time MAE time

OCF 1.1151±0.0014 0.33 0.9463±0.0015 0.35 1.0461±0.0007 0.33 0.8558±0.0008 0.35

DAOCF 1.2427±0.0160 0.67 0.9815±0.0170 0.67 1.2231±0.0100 0.67 0.9631±0.0075 0.70

CWOCFI 1.0439±0.0010 6.40 0.8397±0.0014 5.44 1.0103±0.0005 7.27 0.8091±0.0006 6.12

CWOCFII 1.0314±0.0009 1.58 0.8172±0.0010 1.92 1.0106±0.0011 1.65 0.8045±0.0010 2.07

Het k=5 k=10

Rec RMSE time MAE time RMSE time MAE time

OCF 0.9234±0.0003 2.96 0.7484±0.0003 3.02 0.8803±0.0001 3.13 0.6891±0.0002 3.20

DAOCF 1.0462±0.0053 6.06 0.7527±0.0065 6.01 1.0871±0.0053 6.20 0.7659±0.0034 6.27

CWOCFI 0.8736±0.0015 55.9 0.6686±0.0010 47.4 0.8473±0.0013 65.1 0.6499±0.0009 55.3

CWOCFII 0.8732±0.0002 14.9 0.6656±0.0002 17.8 0.8603±0.0003 18.9 0.6582±0.0002 20.3

First of all, compared with the existing OCF and DA-OCF approaches, we observe that
the proposed CWOCF algorithms achieve significantly better performance of smaller RMSE
and MAE values for all the cases. This shows that the proposed learning strategy is more
effective than the existing first order online gradient descent approaches.

Second, when examining the standard deviation results, we observe that CWOCF is
almost the most stable algorithm to different random permutations of training samples,
while the DA-OCF is relatively sensitive since it only learns the mean of the weight vector
at each iteration and thus loses lots of information. This is an important strength of
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CWOCF since it learns the Gaussian distribution by capturing both first order and second
order information, leading to more precise and stable update in the entire online learning
process.

Third, the performance gap between CWOCF and the first order algorithms in low
dimensional space tends to be more significant than that in high dimensional space. This
indicates that OCWOCF is able to learn effectively even in very low dimensional space
while the first order algorithms would suffer significantly when the dimensionality is too
small.

Fourth, when comparing the two variants of the proposed CWOCF algorithms, i.e., the
full confidence matrix update and the diagonal update, we found that they generally have
very comparable performance, while CWOCF-II is significantly faster, only a few times
slower than the first order algorithms. The gain of CWOCF-II is mainly because it only
updates the diagonals of confidence matrixes with time complexity O(k) instead of O(k2). In
addition, we found that the performance of CWOCF-II could even exceed that of CWOCF-
I. We conjecture that this is primarily because CWOCF-I might suffer from the overfitting
if the model is over-complex. Thus, we believe CWOCF-II is the more applicable solution
for solving large-scale applications.

To further inspect the details of online CF performance, Figure 1 also shows the online
performance convergence of all the compared algorithms in the entire online learning pro-
cess. The result again shows that CWOCF algorithms outperform the first order algorithms
especially at the beginning of the online learning process. We note that is extremely im-
portant and beneficial to many real-world online recommender systems because the amount
of collected ratings could be very scarce at the beginning of the deployment of the recom-
mender system. Thus, a highly effective online updating algorithm is particularly important
to tackle the sparsity challenge of online collaborative filtering tasks.

4.4. Evaluation on the Latent Factor Dimensionality

The second experiment is to examine how the latent factor dimensionality k affects the
learning performance of the proposed algorithms. Figure 2 summarizes the performance
of the three compared online algorithms on a series of different latent factor dimensions k
ranging from 4 to 20. Several interesting observations can be drawn from the experimental
results.

First of all, we found when the latent factor dimensionality k is very small (e.g., smaller
than 5), increasing the value of k leads to the improvement of the learning performance.
This is reasonable as a model with too small value of k could suffer from underfitting, i.e.,
the model is too simple to make powerful prediction. Second, we found that when k is large
than some threshold (e.g., larger than 12 on the ML100 and HetRec datasets), increasing
the value of k could lead to the degrade of the overall performance. This is because the
model with a large value of k could suffer from overfitting from insufficient training data,
i.e., the model is too complex to learn from the highly sparse rating matrix.

The above observations indicate that choosing the appropriate value of latent factor
dimensionality is essentially a tradeoff between underfitting and overfitting with respect to
the provided dataset.
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Figure 1: Convergence evaluation of online collaborative filtering algorithms (best viewed
in color).
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Figure 2: Performance evaluation on different values of latent factor dimensionality k.

4.5. Evaluation on Large-scale Datesets

Our last experiment is to evaluate the proposed CWOCF-II algorithm on two large-scale
datesets: “Movielens 1M” and “Movielens 10M”. The empirical evaluation results are
summarized in Table 3 and Figure 3. From the results, we can observe that CWOCF-II
converges considerably faster, obtains significantly lower values of RMSE and MAE, while
runs only a few times slower than the first order algorithms. These encouraging results
again demonstrate that the proposed algorithm can scale well for large-scale datasets.

In addition, by comparing the performance of the CWOCF algorithms across different
datasets, we found that when the dimensionality k increases from 5 to 10, the values of
RMSE and MAE on the denser dataset ML100k can decrease for about 2%, while they
only decrease for 0.7% in the sparse dataset of ML10M. This again shows that CWOCF
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benefits less from increasing the dimensionality on sparser datasets, which again validates
our analysis in last section.

Table 3: Performance Evaluation on Large-Scale Datasets. The bold element indicates the
best performance for each setting.

ML k=5 k=10

1m RMSE time MAE time RMSE time MAE time

OCF 1.0328±0.0002 3.42 0.8640±0.0003 3.58 0.9774±0.0001 3.59 0.7897±0.0002 3.75

DAOCF 1.1136±0.0061 7.35 0.8652±0.0037 6.96 1.1068±0.0030 7.43 0.8576±0.0021 7.32

CWOCFII 0.9653±0.0003 16.1 0.7631±0.0002 19.3 0.9580±0.0003 17.5 0.7609±0.0003 20.6

ML k=5 k=10

10M RMSE time MAE time RMSE time MAE time

OCF 0.9476±0.0001 36.8 0.7591±0.0001 37.1 0.9192±0.0001 39.3 0.7239±0.0001 39.8

DAOCF 1.0764±0.0049 74.2 0.7638±0.0013 74.6 1.0774±0.0032 79.7 0.7632±0.0013 80.5

CWOCFII 0.9096±0.0001 321 0.7043±0.0001 343 0.9033±0.0001 515 0.7014±0.0001 540
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Figure 3: Convergence Evaluation on Large Scale Datesets (best viewed in color).

5. Conclusions

In this paper, we proposed a novel framework of Second Order Online Collaborative Filtering
in building realistic solutions for online recommender systems. In particular, we presented
the Confidence Weighted Online Collaborative Filtering (CWOCF) method, which attempts

338



Second Order Online Collaborative Filtering

to maintain the distributions of both the user and item vectors by updating both the first
order and the second order information of the model in the online learning process. In
contrast to the existing first order algorithms which only exploit the first order information,
our algorithms converge significantly faster and thus achieve much lower values of RMSE
and MAE. We conducted extensive experiments on four different data sets of different sizes
and sparsity levels, in which the promising results validate the effectiveness of the proposed
algorithms. Future work will address the theoretical analysis of the CWOCF algorithms
and exploring other second order algorithms for improving the performance.
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