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Abstract— As part of its overall effort to maintain good 

customer service while managing operational efficiency and 

reducing cost, a bank in Singapore has embarked on using data 

and decision analytics methodologies to perform better ad-hoc 

ATM failure forecasting and plan the field service engineers to 

repair the machines. We propose using a combined Data and 

Decision Analytics Framework which helps the analyst to first 

understand the business problem by collecting, preparing, and 

exploring data to gain business insights, before proposing what 

objectives and solutions can and should be done to solve the 

problem. This paper reports the work in analyzing past daily ad-

hoc ATM failures, forecasting ad-hoc ATM failures and then 

using the forecasted results to optimize the number of field 

service engineers to deploy in each geographical zone, to 

minimize the number of daily unattended ad-hoc ATM failures. 

The optimization model ensures that the least number of 

engineers are deployed in each zone on each day. However, to 

maintain a consistent number of engineers for a 2-week 

schedule, we recommend to deploy the maximum number of 

engineers in each zone within the 2 weeks. The resulting surplus 

engineer idle hours is reduced, and it represents a cost savings of 

28.6% when compared with the bank’s current practice. 

 

I. INTRODUCTION 

Automated Teller Machines (ATMs) are widely used as 
self-service machines by banks to serve their customers. Due 
to the prevalent use of ATM machines, ad-hoc ATM failures 
still occur despite preventive maintenance, and such ad-hoc 
failures will cause disruptions and inconvenience to bank 
customers, especially for cash withdrawal transactions, and 
will also affect the reputation of the bank. A London based 
research and consulting firm, RBR, forecasted the global ATM 
market is set to continue to grow, largely as a result of huge 
projected growth in demand for cash withdrawal services. 
ATM cash withdrawals is projected to rise by around 90% in 
the Asia Pacific and Middle East and Africa regions between 
2011 and 2017. Globally, the total number of cash withdrawals 
is forecast to rise at a rate of 8% per year [1]. 

In order to provide on-time repair service to ad-hoc 
failures, a bank in Singapore consistently deploys 14 service 
engineers daily to each of the four zones, regardless of the 
number of ad-hoc ATM failures experienced. Due to its 
inability to accurately forecast the number of ad-hoc ATM 
failures, some of the engineers are idle at times, when the 
number of ad-hoc failures is lower than expected. For each 
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engineer who is idle for an hour, the bank suffers a $20 in 
manpower cost. As part of its overall effort to maintain good 
customer service while managing operational efficiencies and 
reducing cost, the bank decides to embark on using data 
analytics and decision analytics methodologies to understand 
the ad-hoc ATM failure data, and perform better ad-hoc ATM 
failure forecasting and ATM field service optimization. 

We propose using a combined Data and Decision 
Analytics Framework which will first understand the problem 
by collecting, preparing, and exploring data to gain business 
insights, before proposing what objectives and solutions can 
and should be done to solve the problems.  

Through our analysis of 6 months of past ad-hoc ATM 
failure data, we found that the number of ad-hoc failures 
experienced in each zone differs due to the different mix and 
density of residential and shopping malls in each zone. Thus, 
deploying the same number of service engineers in each zone 
would be sub-optimal. In addition, a study of the daily number 
of failures experienced over the 6-month period, showed that 
a slight increasing trend without seasonality existed in the data. 
Therefore, a practical and easy to implement forecasting 
method which can provide a high forecast accuracy will serve 
the business purpose. We have tested 3 forecasting methods, 
and selected Stepwise Autoregressive forecasting method to 
forecast ATM failures for 14 days into the future, in 4 zones in 
Singapore, using 6 months of past ad-hoc ATM failure data.   

Due to a business requirement, we note that the number of 
engineers to be deployed in each zone should remain 
consistent for a 2-week period, rather than having a different 
number of engineers from day to day serving the same zone. 
With the forecasted ad-hoc ATM failures, our optimization 
model will determine the least number of engineers per zone 
per day, but the recommended deployment should be based on 
the maximum number of engineers in the same zone for the 2-
week period. This will take care of the maximum failure day 
and any unexplainable fluctuations in the number of failures, 
to ensure high level of customer service. By deploying the 
maximum number of engineers per zone for a 2-week period, 
we have shown that our model reduces the total field repair 
cost by 28.6%, as compared to the bank’s current practice. 

The rest of the paper is organized as follows. We discuss 
the past literature on forecasting of machine failures and 
manpower planning in Section II, followed by describing the 
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Data and Decision Analytics Framework in Section III. 
Section IV discusses the data collection and preparation, and 
Section V discusses the data exploration and business insights 
obtained. Ad-hoc ATM failure forecasting is covered in 
Section VI, and the field optimization model in Section VII. 
Section VIII discusses the conclusions and proposed future 
work. 

 

II. LITERATURE REVIEW 

Complex equipment, like ATMs, fail for various reasons. 
Despite the preventive maintenance which is usually planned 
to prevent failures, unexpected failures still occur which will 
require ad-hoc service and repair to restore the machines back 
to their operational state. 

Using time series forecasting technique to forecast 
machine failure was attempted by [2]. This paper used auto-
regressive moving average (ARMA) model for device down 
time forecasting based on transformed historical data. The 8 
orders moving average method was adopted to predict the 
residual series. By combining data transformation and the 
ARMA model, it could handle the non-linear situation with 
equipment of highly complicated and non-stationary nature.  

In railway networks, point mechanisms are critical track 
elements and a failure in the point mechanism can lead to 
delays, increased cost and even fatal accidents. The expected 
shape of signals in point mechanism was predicted from 
historical data using a combination of vector auto-regressive 
moving average (VARMA) and a harmonic regression model 
in [3]. By comparing the expected shape with the actual signal 
measured, failure of the point mechanism can be predicted 
with high accuracy. 

Other past literature focused on predicting the time-to-
failure of machines using machine learning techniques, such 
as Support Vector Machine (SVM) in [4] and Singular 
Spectrum Analysis (SSA) in [5]. In [4], SVM was used to learn 
time-to-failure data. After successful training, the SVM model 
was used to predict future failure times, and these predicted 
failure times will be used for establishing preventive 
maintenance strategies. In [5], SSA was used to decompose 
the time series into trend, oscillatory behavior and noise, and 
then forecast failure behavior related to time-to-failure using 
reconstruction. 

There are many earlier research works that focused on 
preventive maintenance scheduling in the manufacturing and 
production domain. In [6], a problem of preventive 
maintenance was considered as an unreliable M/G/1 queue-
like job shop where the inter-arrival time of jobs has an 
exponential distribution and processing can breakdown with a 
known probability distribution. In [7], the work dealt with 
scheduling preventive maintenance in a multi-period and 
multi-product situation, based on a time to failure distribution, 
machine load in every period, and varying cost of breakdown 
in different periods. In [8], the work derived optimal 
preventive maintenance policies based on continuous 

probability distribution for machine failure process and the 
information on the states of the system, such as product 
demand, inventory position, costs of repair and preventive 
maintenance plan.  

Combining manpower planning and preventive 
maintenance strategies by aggregate planning was done in [9]. 
Here, using a relationship between preventive maintenance 
and failure rate, a mathematical model of aggregate planning 
will determine the appropriate levels of workforce needed for 
preventive maintenance and repair for each period, to 
minimize the total costs over the planning horizon.  

Similar among all the previous works were their focus on 
forecasting when the next failure will happen, either by using 
time series forecasting, machine learning technique or using 
distribution function to describe time between failures. We use 
the Data and Decision Analytics Framework (Fig. 1), which 
consists of 2 steps, the Data Analytics step and then the 
Decision Analytics step. In step 1 (Data Analytics), we 
perform data analysis to understand the failure data to gain 
insights, before moving to step 2 (Decision Analytics) where 
we apply forecasting technique to forecast failures and 
optimization to optimize number of engineers to be deployed. 
Our work differs from all the previous works in terms of our 
approach and our focus on ad-hoc failures rather than 
preventive maintenance. 

Our approach of combining forecasting and scheduling is 
somewhat similar to recent works in ATM cash management 
found in [10] and [11]. In [10], they combined a data-driven 
algorithmic approach for stochastic inventory control where an 
optimization model is embedded in a simulation routine to find 
a cost minimizing target level and optimal replenishment time 
interval, to satisfy a target service level. In [11], they employed 
aggregation-disaggregation cash demand forecast and optimal 
replenishment time interval for groups of ATMs. There are 
other works in ATM operations and management being 
studied in terms of network locations, performance 
measurements, error detection, and routing of cash deliveries 
to ATMs, which are not related to our work in this paper. 

 

 

Figure 1: Data and Decision Analytics Framework 



  

III. DATA AND DECISION ANALYTICS FRAMEWORK 

Many operations management problem ranging from 
demand forecasting, inventory management, distribution 
management, capacity planning, workforce scheduling, and 
queue management are usually solved using OM/OR 
techniques such as algorithms, heuristics, and optimization 
techniques. However, such a typical OM/OR solution 
methodology often assumes that the actual understanding of 
the problem is known and the problem objective is well 
defined. 

Practitioners like us would know that real business 
problems do not present themselves clearly, often resulting in 
people solving the wrong problem. Thus, we propose using the 
Data and Decision Analytics Framework. This framework 
shown in Fig. 1 first employs the steps of data analysis 
including data collection, data preparation, and data 
exploration to obtain business insights to the problem before 
defining the problem objective. These steps are usually 
missing in most problem solving frameworks, particularly in 
solving operations management problems. So, careful data 
analysis needs to be performed to understand the business 
problems, before embarking on finding the solution. In our 
case, this refers to collecting, preparing and analyzing the ad-
hoc failure data to obtain insights related to the ad-hoc ATM 
failures. 

After obtaining the business insights, the problem 
objectives can then be established and any assumptions will be 
made. The business problem can be modeled mathematically, 
and depending on the problem difficulty, different algorithms 
or heuristics can be used to obtain the result, which can be an 
optimal solution or just feasible good solution. In our case, this 
refers to devising a forecasting methodology and using the 
most appropriate forecasting technique to forecast ad-hoc 
ATM failures, and then using the forecasted results to optimize 
the number of field engineers required. Selecting the most 
appropriate forecasting technique depends on several 
considerations including availability of data, ease of 
implementation and understanding, forecast accuracy, and 
ability to handle the different components in a time series. 

 

IV. DATA COLLECTION AND PREPARATION 

6 months of daily ad-hoc ATM failure data, from October 
2013 to March 2014, denoted as OCT_2013 to MAR_2014, 
were collected and the fields are: 

 ATM ID 

 Date and Time of Failure 

 Ticket ID 

 Dispatch ID 

 Problem Category 

 

 

Figure 2: Data Merging to Create the Master Table 

 

The ATM_Location data file contains the following fields: 

 ATM ID 

 Location – Latitude 

 Location – Longitude 

 ATM Zone 

 Location Type 

 

Using the ATM ID as the key, the tables were merged into a 
single ATM_Failure_Master_Table as shown in Fig. 2, which 
contains a total of 73,753 records. The fields include: 

 ATM ID 

 Location – Latitude 

 Location – Longitude 

 ATM Zone 

 Location Type 

 Date and Time of Failure 

 Ticket ID 

 Dispatch ID 

 Problem Category 

 

 

V. DATA EXPLORATION AND BUSINESS INSIGHTS 

Dividing the Singapore Island into 4 zones is a common 
practice among major businesses which operate in Singapore, 
where travel time between any 2 locations within a zone can 
be achieved within 20 minutes, a requirement imposed by the 
bank.  Categorizing the failures by these four zones (North, 
South, East and West) using the ATM Zone field, the number 
of failures for each zone in terms of percentage of the total are: 

 North zone – 27% 

 South zone – 17.5% 

 East zone – 30% 

 West zone – 25.5% 

 



  

 

Figure 3: Number of ATM Failures Experienced Across the Island 

 

It is noted that the East and North zones had the highest 
percentages of failures due to a higher number of residential 
areas and shopping malls in these 2 zones, where there are 
more ATMs, thus resulting in having a larger share of the total 
percentage of failures. Thus, deploying the same number of 
engineers in each zone will not be optimal. Instead, more 
engineers should be deployed in the East and North zones, as 
compared to the West zone. South zone should have the least 
number of engineers deployed. 

To better understand the ATM failures across Singapore, 
the ATM failure frequencies are plotted on a map of the island, 
using the exact Longitude and Latitude information of each 
ATM, as shown in Fig. 3. The size of the bubbles represents 
the number of failures experienced at each ATM in the 6-
month period. The map provides in depth information on the 
exact location of the ATM with high failure rates.  It is found 
that ATM failures were high in locations like Woodlands 
(North), Tampines MRT Station (East), Sims Avenue (East), 
and Bedok Central Branch (East). Having this information will 
allow the field service engineers deployed to these zones, to 
pay more attention to these specific locations. 

Plotting the time series for the cleaned ATM failure data 
revealed that, on a daily basis, there is an increasing trend in 
the number of failures (represented as dotted line) but no 
signification peaks and troughs to denote seasonality, as 
shown in Fig. 4. The average number of failures experienced 
per day is between 250 and 300. Since the profile of the failure 
data is not that complicated, using a well-established 
forecasting technique which can take care of the upward trend 
and errors, to forecast the failure will serve the business 
purpose. In addition, we will employ the aggregate-
disaggregate demand forecasting methodology to first forecast 
the ad-hoc failures for the whole island, and then disaggregate 
using the percentage of failures into each zone. 

 

 

Figure 4: Daily Total ATM Failures from October 2013 to March 2014 

 

VI. ATM AD-HOC FAILURE FORECASTING 

We used three forecasting methods to forecast the number 
of ad-hoc failures for the month of March 2014, using 5 
months of data from October 2013 to February 2014. The three 
methods used are Stepwise Autoregressive, Exponential 
Smoothing and Holt-Winters Additive model. These 3 
methods are selected because they are easy to implement and 
understand, and do not require excessive amounts of past data. 
Moving average model is not used as it cannot cater to trend 
component in time series, and Holt-Winters Multiplicative 
model is not used as there is no multiplicative seasonality 
effect observed. ARIMA forecasting technique is not used as 
it requires excessive amounts of data, which is not available.  

To measure the forecast accuracy, we selected 2 of the 
most commonly used measures, Mean Absolute Percentage 
Error (MAPE) and Mean Squared Error (MSE), and the errors 
are given in Table 1. Based on the MAPE and MSE measures, 
Stepwise Autoregressive forecasting method provides the 
lowest error, or highest accuracy. 

Using Stepwise Autoregressive, we performed back-
testing for 4 cycles of data, where 1 cycle is equivalent to 7 or 
8 days, starting from 1st March 2014 to 31st March 2014. This 
was done to verify the accuracy of the Stepwise 
Autoregressive method. The back testing results showed a 
forecast accuracy of 91.2%, which is a reasonably high 
accuracy. Thus, Stepwise Autoregressive method was used to 
generate the forecast for the total ATM failures for the next 14 
days into the future, from 1st April 2014 to 14th April 2014, as 
shown in Fig. 5. 

 

Table 1: Forecasting Error Measurements for Three Forecasting 
Methods 

Forecasting Method MAPE MSE 

Stepwise Autoregressive 0.04655 214.6 

Exponential Smoothing 0.05587 77967.6 

Holt-Winters Additive 0.05305 371.4 

 



  

 

Figure 5: Total Forecasted Failures from 1st April 2014 to 14th April 2014 

 

After the total ATM failures were forecasted, and using 
aggregation-disaggregation method, the predicted ATM 
failures for each zone were computed in Table 2, based on the 
percentage of failures in each zone. 

 

Table 2: Forecasted ATM Failures from 1st to 14th April 2014 

Date Total North South East West 

01 Apr 297 80 52 89 75 

02 Apr 294 79 51 88 74 

03 Apr 295 79 51 88 75 

04 Apr 293 79 51 88 74 

05 Apr 295 79 51 88 75 

06 Apr 299 80 52 89 76 

07 Apr 305 82 53 91 77 

08 Apr 306 82 53 91 77 

09 Apr 306 82 53 91 78 

10 Apr 308 83 53 92 78 

11 Apr 308 83 53 92 78 

12 Apr 309 83 54 92 78 

13 Apr 310 83 54 93 79 

14 Apr 313 84 54 93 79 

 

 

VII. FIELD SERVICE OPTIMIZATION MODEL 

Using the forecasted ATM failures as inputs to the 
optimization model, the bank can now optimize the number of 
service engineers to deploy to each zone for each day. Due to 
a business requirement, the number of engineers to be 
deployed in each zone should remain the same for a 2-week 
period, rather than having a different number of engineers 
from day to day serving the same zone. Therefore, our 

optimization model will first determine the least number of 
engineers per zone per day, but the actual deployment is be 
based on the maximum number of engineers in the same zone 
for the 2-week period, to take care of the maximum failure day. 
This will also take care of any unexplainable fluctuations in 
the number of failures, to ensure high level of customer 
service. It is estimated that it takes 1 hour to attend to each 
failure, which includes 20 minutes of travel time and 40 
minutes of repair time. So, for an engineer who works 8 hours 
a day, the maximum number of failures he can attend to per 
day will be 8. 

The optimization model aims to minimize the total number 
of unattended ATM failures on a daily basis, to determine the 
optimal number of engineers to deploy on each day. The result 
will be the least number of engineers per zone per day. Instead 
of deploying varying number of engineer each day, we 
recommend to deploy the maximum number of engineers in 
each zone over the 14 days. This will result in zero unattended 
ATM failures, and reduces idle periods for the engineers, as 
compared to the bank’s current practice of deploying 14 
engineers, thus reducing total field repair cost, as explained in 
Fig. 6. 

 

We define the following parameters: 

 d = index for days, d = 1 to 14 

 z = index for zone, z = n, s, e, w 

 N = maximum possible number of failures attended to 

per day per engineer = 8 

 𝐹𝑧𝑑 = number of forecasted failures in zone z on day 

d 

 𝑈𝑧𝑑 = number of unattended failures in zone z on day 

d, where 𝑈𝑧0 = 0 

 

The decision variables are: 

 𝑋𝑧𝑑 = number of engineers deployed in zone z on day 

d 

 

The objective function is to minimize: 

 

∑∑𝑈𝑧𝑑
𝑑𝑧

 

Subject to: 

 

𝑈𝑧𝑑 = 𝑈𝑧𝑑−1 + 𝐹𝑧𝑑 − (𝑋𝑧𝑑𝑁)   ∀𝑧, 𝑑   (1) 

 

𝑋𝑧𝑑 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟       ∀𝑧, 𝑑   (2) 

 

𝑈𝑧𝑑 ≥ 0           ∀𝑧, 𝑑   (3) 

 

 

The objective function aims to minimize the total number of 
unattended failures for all zones on all days. This definition is 
important, as oppose to minimizing the total number of 



  

unattended failures just for the last day, the 14th day, as it will 
allow some earlier days (day 1 to day 13) to have very large 
unattended failures, which will not fit the business objective. 
An alternate objective function can be to minimize the 
maximum 𝑈𝑧𝑑 for all z and d, which will achieve a similar 
solution. 

Constraint (1) computes the number of unattended failures 
in zone z on day d by adding the number of unattended failures 
in zone z in the previous day d-1, with the number of 
forecasted failures in zone z on day d, and minus the maximum 
number of failures that can be attended by the 𝑋𝑧𝑑 number of 
engineers. This allows for the number of unattended failures 
in the previous day to be carried over to the next day. In this 
way, the model will not add an additional engineer if the 
number of unattended failures is less than 8. This fits our 
objective of getting the least number of engineers possible. 

Constraint (2) ensures that the 𝑋𝑧𝑑 number of engineers are 
positive integer numbers. Constraint (3) ensures that the 
number of unattended failures in zone z on day d is zero or 
positive. Due to the minimization of the objective function, 
this constraint is necessary to force the number of unattended 
failures for all days in all zones to take the smallest possible 
positive value. Together with Constraint (1), this will result in 
the model selecting the least possible number of engineers on 
each day in each zone. Without this constraint, the number of 
unattended failures may become negative, resulting in idle 
engineer hours with surplus engineers. 

The results of the optimization is given in Table 3 where 

the least possible number of engineers 𝑋𝑧𝑑 deployed for each 

day is determined. The minimized objective function value, 

which is the sum of all the unattended ATM failures for all 

the 14 days is 187. Using the least possible number of 

engineers given by 𝑋𝑧𝑑, we compute the maximum number of 

engineers in each zone to be deployed for the entire 2-week 

period as: 

 

�̅�𝑧 = 𝑚𝑎𝑥𝑑(𝑋𝑧𝑑)  ∀𝑧       (4) 

 

Instead of deploying varying number of engineers in each 

zone on each day, we recommend to deploy the maximum 

number of engineers in each zone for the entire 2-week 

schedule. For example, for the North zone, 11 engineers will 

be deployed for the entire 2-week schedule, rather than 9 to 

11 on different days. By doing so, the number of unattended 

failures dropped to zero and there is a surplus of 269 idle 

hours. This surplus is the minimum possible, as deploying 

more engineers than this maximum number will result in idle 

hours exceeding 269, while deploying fewer than the 

maximum number will not satisfy the business requirement. 

As compared to the bank’s current practice of deploying 14 

engineers daily, the expected surplus will be 2,061 idle hours. 

Comparing both results, there is a savings of 1,792 idle hours, 

which is equivalent to $35,840 or 28.6% cost savings. 

 

Figure 6: Optimized vs Recommended vs Current Practice Results 

 

 
Table 3: Optimal Number of Engineers (𝑋𝑧𝑑)  from 1st to 14th April 

2014 

 Optimal number of engineers (𝑿𝒛𝒅) 

Date North South East West 

01 Apr 10 6 11 9 

02 Apr 9 6 11 9 

03 Apr 10 7 11 10 

04 Apr 10 6 11 9 

05 Apr 10 7 11 9 

06 Apr 10 6 11 10 

07 Apr 10 7 11 9 

08 Apr 11 6 12 10 

09 Apr 10 7 11 10 

10 Apr 10 7 11 9 

11 Apr 11 6 12 10 

12 Apr 10 7 11 10 

13 Apr 10 7 12 10 

14 Apr 10 6 12 10 

�̅�𝒛 11 7 12 10 

 



  

VIII. CONCLUSIONS 

We propose a combined Data and Decision Analytics 
Framework to solve a bank’s ATM failure and servicing 
problem, by first performing data analysis including data 
collection, data preparation, and data exploration to obtain 
business insights. We found that the number of ATM failures 
in the 4 zones were uneven, and thus different number of 
service engineers should be deployed, and the number of 
failures had a slight increasing trend. After obtaining these 
insights, we use the Stepwise Autoregressive technique which 
provides a high forecast accuracy to forecast the number of 
ATM failures. Using the forecasted results, we propose an 
optimization model to determine the least possible number of 
field service engineers that are required per day per zone, 
which will minimize the number of unattended ATM failures. 
By recommending to deploy the maximum number of 
engineers in each zone for the entire 2-week schedule, the 
number of unattended ATM failures drops to zero with a 
surplus of 269 idle hours. This surplus hours is very small as 
compared to the bank’s current practice and it represents a cost 
savings of 28.6%. 

We propose future work in terms of linking the ATM 
failures to the Problem Category found in the original failure 
data. We can forecast the number of failures for each problem 
category and adjust the service time required for each problem 
type to better plan the service engineers deployment. We can 
even dissect the data according to zone, and study the problem 
category in each zone to have even finer grained forecasting 
and manpower planning. 
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