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Abstract

The low sound speed in water makes propagation delay (PD) based range estimation attractive

for underwater acoustic localization (UWAL). However, dueto the long channel impulse response and

the existence of reflecting objects, PD-based UWAL suffers from significant degradation when PD

measurements of non-line-of-sight (NLOS) communication links are falsely identified as line-of-sight

(LOS) communication links. In this paper, we present an algorithm to classify PD measurements into

LOS and NLOS links for a single transmitter-receiver pair. First, by comparing signal strength-based

and PD-based range measurements, we identify object-related NLOS (ONLOS) links, where signals are

reflected from objects with high reflection loss, e.g., shipshull, docks, rocks, etc. In the second step,

excluding PD measurements related to ONLOS links, we use a constrained expectation-maximization

algorithm to classify PD measurements into two classes: LOSand sea-related NLOS (SNLOS), and to

estimate the statistical parameters of each class. Since our classifier relies on models for the underwater

acoustic channel, which are often simplified, alongside simulation results, we validate the performance

of our classifier based on measurements from three sea trials. Both our simulation and sea trial results

demonstrate a high detection rate of ONLOS links, and accurate classification of PD measurements into

LOS and SNLOS.

Index Terms

Underwater acoustic localization (UWAL), line-of-sight,non-line-of-sight, time-of-arrival classifi-

cation.

Parts of this work have been presented at the IEEE Oceans Conference, Sep. 2010, Seattle, USA.
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Fig. 1: Illustration of various types of communication links: LOS, SNLOS and ONLOS links.

I. INTRODUCTION

Underwater acoustic communication networks (UWAN) are envisaged to fulfill the needs of

a multitude of applications such as navigation aids, early warning systems for natural disasters,

ecosystem monitoring and military surveillance [1]. The data derived from UWAN is typically

interpreted with reference to a node’s location, e.g., reporting an event occurrence, tracking a

moving object or monitoring a region’s physical conditions. However, localization for underwater

nodes is non-trivial. Since GPS signals do not propagate through water, localization of unlocalized

nodes is often based on underwater acoustic communication and triangulation using a set of

anchor nodes with known locations. This underwater acoustic localization (UWAL) typically

employs propagation delay (PD) measurements for range estimation, i.e., time of arrival (ToA)

or time difference of arrival (TDoA) of received signals [2], since angle of arrival methods would

require multiple hydrophones and signal-strength based methods would fail due to inaccurate

propagation models.

Existing UWAL schemes, e.g., [3], [4], [5], implicitly assume that PD measurements corre-

spond to the line-of-sight (LOS) link between the transmitter and receiver. However, signals can

arrive from non-LOS (NLOS) communication links in several ways, as illustrated in Figure 1.

For the node pairs(u, a2) and(u, a3), sea surface and bottom reflections links (referred to as sea-

related NLOS (SNLOS)) exist, respectively, in addition to an LOS link. For(u, a1), the signal
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arrives from the reflection off a rock (referred to as object-related NLOS (ONLOS)). Lastly,

between nodesu and a2, there is also an ONLOS link due to a ship. While it is expected

that power attenuation in the LOS link is smaller than in NLOSlinks, it is common that the

LOS signal is not the strongest. This is because, as shown in multipath models [6] as well as

measurements [7], the underwater acoustic channel (UWAC) consists of groups of NLOS links

with small path delay, but significant phase differences, often resulting in negative superposition

with the LOS link (if delay differences between the LOS and NLOS links are smaller than the

system resolution for path separation) as well as positive superposition between NLOS links. If

PD measurements of NLOS links are mistakenly treated as corresponding to delay in the LOS

link, e.g., in node pairs(u, a2) and(u, a3), localization accuracy will significantly be degraded.

In this paper, we propose a two-step algorithm to classify a vector of PD measurements for

a single transmitter-receiver distance into three classes: LOS, SNLOS and ONLOS, which is

a problem that has not been treated in previous literature. Such a classification can improve

the accuracy of UWAL by either rejecting NLOS-related PD measurements, correcting them, or

using them to bound range estimation. We first identify ONLOS-related PD-measurements by

comparing PD-based range estimations with range estimations obtained from received-signal-

strength (RSS) measurements. Considering the difficulty inacquiring an accurate attenuation

model, our algorithm requires only a lower bound for RSS-based distance estimations. After ex-

cluding PD measurements related to ONLOS, we apply a constrained expectation-maximization

(EM) algorithm to further classify the remaining PD measurements into LOS and SNLOS, and

estimate the statistical parameters of both classes to improve the accuracy of UWAL. Results from

extensive simulations and three sea trial experiments in different areas of the world demonstrate

the efficacy of our approach through achieving a high detection rate for ONLOS links and good

classification of non-ONLOS related PD measurements into LOS and SNLOS.

It should be noted that while our approach can also be adaptedto other types of fading

channels, it is particularly suited for UWAL for the following reasons. First, our algorithm

relies on significant power absorption due to reflection lossin ONLOS links, which are typical

in the underwater environment. Second, we assume that the difference in propagation delay

between signals traveling through SNLOS and LOS links is noticeable, which is acceptable in

the UWAC due to the low sound speed in water (approximately1500 m/sec). Third, our algorithm

is particularly beneficial in cases where NLOS paths are often mistaken for the LOS path, which
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occurs in UWAL, where the LOS path is frequently either not the strongest or non-existent. Last,

we assume that the variance of PD measurements originating from SNLOS links is greater than

that of measurements originating from LOS, which fits channels with long delay spread such as

the UWAC.

The remainder of this paper is organized as follows. Relatedwork on PD-based underwater

localization is described in Section II. Our system model and assumptions are introduced in

Section III. In Section IV, we present our approach to identify ONLOS links. Next, in Section V,

we formalize the EM algorithm to classify non-ONLOS relatedPD measurements into LOS

and SNLOS. Section VI includes performance results of our two-step algorithm obtained from

synthetic UWAC environments (Section VI-A) and from three different sea trials (Section VI-B).

Finally, conclusions are offered in Section VII. The key notations used in this paper are sum-

marized in Table I.

TABLE I: List of key notations

Notation Explanation

xi PD measurements

X vector of PD measurementsxi of the same communication link

d transmission distance

dPD PD-based range estimation

dRSS,min lower bound of RSS-based range measurement

γ propagation loss factor

γmax upper bound forγ

α absorption loss factor

M assumed number of classes in PD model

km weight of themth distribution in the mixture distribution model

ωm = [υm, σm, βm] vector of parameters of themth distribution

θ vector of parameters of the distribution ofX

TLIR upper bound on the length of the channel impulse response

c propagation speed in the channel

xLOS, dLOS delay and distance in the LOS link, respectively

dONLOS distance of the ONLOS link

RL reflection loss in ONLOS link

xl group ofxi measurements with the same distributionωm

λl classifier for groupxl

̺i classifier forxi
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II. RELATED WORK

PD measurements for range estimation can be obtained (i) from the symbols of a received

data packet or (ii) from multiple impulse-type signals transmitted in a short period of time. The

former is a standard in many ultra short baseline systems (e.g., [8]) and involves inspecting the

output of an energy detector [9]. The latter involves inspecting the estimated channel impulse

response by performing a matched filter operation at the receiver [7], or by performing a phase-

only correlation and using the kurtosis metric to mitigate channel enhanced noise [10]. The PD

is then estimated by setting a detection threshold to identify the arrival of the first path. In [11],

a fixed threshold is set based on the channel noise level and a target false alarm probability.

In [12], an adaptive threshold is used based on the energy level of the strongest path. A good

overview of practical PD estimators is given in [9].

Mistaking NLOS links for the LOS link gives rise to ranging errors which are usually regarded

as part of the measurement noise [13]. In [14], direct sequence spread spectrum (DSSS) signals,

which have narrow auto-correlation, are transmitted to allow better separation of paths in the

estimated channel response. Following this approach, curve fitting of ToA measurements based

on DSSS was suggested in [15]. Averaging ToA measurements from different signals is suggested

in [16], where results show considerable reduction in measurement errors. In [3], NLOS-related

noise for UWAC is modeled using the Ultra Wideband Saleh-Valenzuela (UWB-SV) model [17],

and a method for mitigating multipath noise for a given multipath model was introduced in [18].

Several works suggested methods to compensate for locationambiguities such as flips and

rotations that arise due to NLOS-related range estimation errors. In [19], additional anchor

nodes were used to resolve such ambiguities. In [20], a three-phase protocol is suggested for

this problem. First, an ambiguity-free sub-tree of nodes isdetermined. Then, localization based

on triangulation is performed where the node is first assumedto be located in the center of a

rectangular area. Finally, a refinement phase is performed using a Kalman filter to mitigate noise

arising from ranging. A robust protocol for mitigating localization ambiguities is suggested in

[21] by rejecting measurements leading to ambiguities, e.g., when there are insufficient anchor

nodes or when the location of anchor nodes is almost collinear. The problem of localization when

all measurements are obtained from NLOS links is consideredin [22], where the relationship

between anchor node distances and NLOS factor is used to improve localization. However, these
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protocols are only applicable when a large number of anchor nodes are available.

Associating PD measurements with LOS or NLOS can improve localization accuracy. In

[23], measurements which increase the global variance are rejected, assuming that NLOS-based

measurements have larger variance than LOS-based measurements. In [24], localization accuracy

is improved by selecting ToA measurements based on minimal statistical mode (i.e., minimal

variance and mean). Alternatively, the authors in [25] suggested a method for reducing the effect

of NLOS-based noise by assigning each measurement with a weight inversely proportional to

the difference between the measured and expected distancesfrom previous localization. In [26],

an NLOS factor (i.e., the difference between the arrival times of the NLOS and LOS-based

signals) is estimated using a maximum likelihood estimatorbased on an attenuation model, and

NLOS-based measurements are incorporated after a factor correction instead of being rejected.

However, to the best of our knowledge, no prior work considered NLOS and LOS classification

of PD measurements for the special characteristics of the UWAC.

III. SYSTEM SETUP AND ASSUMPTIONS

Referring to Figure 1, our system comprises of one or more transmitter-receiver pairs,(u, aj),

exchanging a single communication packet ofN symbols or impulse signals, from which a

vectorX = [x1, . . . , xN ] of PD measurementsxi, is obtained using detectors such as in, e.g.,

[8], [7], [10]. We modelxi such that

xi = xLOS + ni , (1)

wherexLOS is the transmitter-receiver PD in the LOS link, assumed to befixed during the time

X is obtained1, andni is zero-mean (for LOS links) or non-zero-mean (for SNLOS or ONLOS

links) measurement noise. We assume signals are separated by guard intervals such thatni are

i.i.d. Each measurementxi corresponds to a measured timeti, and a PD-based estimate,dPDi ,

is obtained by multiplyingxi with an assumed propagation speed,c. In addition, based on an

attenuation model for an LOS link, we obtain RSS-based rangeestimates,dRSS
i , i = 1, . . . , N ,

from the received signals.

In the following, we introduce our system model for obtaining RSS-based range measurements

as well as the assumed probability density function (PDF) for PD measurements.

1A relaxation of this assumption is presented further below.
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A. RSS-Based Range Measurements

Let dLOS denote the distance corresponding toxLOS, i.e., dLOS = xLOSc. For the purpose of

obtaining RSS-based range measurements, we use the popularmodel [27]

TLLOS(dLOS) = PL(dLOS) + AL(dLOS) + ǫ , (2)

wherePL(dLOS) = γ log10(dLOS) is the propagation loss,AL(dLOS) = α dLOS
1000

is the absorption loss,

γ andα are the propagation and absorption coefficients, respectively, andǫ is the model noise

assumed to be Gaussian distributed with zero mean and variance φ. Considering the simplicity

of the model in (2), we do not directly estimatedRSS
i but rather estimate a lower bounddRSS,min

i ,

for which we apply upper bounds forγ and α in (2) according to the expected underwater

environment.

For an ONLOS link with distancedONLOS = dONLOS,1+dONLOS,2, wheredONLOS,1 anddONLOS,2

are the distance from source to reflector and from reflector toreceiver, respectively2, we assume

that the power attenuation in logarithmic scale is given by [27]

TLONLOS(dONLOS) = TLLOS(dONLOS,1) + TLLOS(dONLOS,2) + RL , (3)

where RL is the reflection loss of the reflecting object. We further assume thatRL, which

depends on the material and structure of the object and the carrier frequency of the transmitted

signals, is sufficiently large such that

TLONLOS(dONLOS) ≫ TLLOS(dONLOS) . (4)

B. PDF for PD Measurements

We model the PDF of the noisy measurementxi as a mixture ofM = 3 distributions, cor-

responding to LOS, SNLOS, and ONLOS links, such that (assuming independent measurement

noise samples in (1))

p(X|θ) =
∏

xi∈X

M
∑

m=1

kmp(xi|ωm) , (5)

where θ = [ω1, k1, . . . ,ωM , kM ], ωm are the parameters of themth distribution, andkm

(
M
∑

m=1

km = 1) is the a-priori probability of themth distribution. Clearly,p(X|θ) depends on

2Referring to the ONLOS link between node pair(u, a2) in Figure 1,dONLOS,1 = d21 anddONLOS,2 = d22.
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both the UWAC and the detector used to estimatexi. While recent works used the Gaussian

distribution for p(xi|ωm) (cf., [28] and [29]), we take a more general approach and model it

according to the generalized Gaussian PDF [30], such that

p(xi|ωm) =
βm

2σmΓ
(

1
βm

)e
−
(

|xi−υm|

σm

)βm

(6)

with parametersωm = [βm, υm, σm]. We associate the parameter vectorsω1, ω2, and ω3

with distributions corresponding to the LOS, SNLOS, and ONLOS links, respectively. Thus,

by (1), υ1 = xLOS. The use of parameterβm in (6) gives our model a desired flexibility,

with βm = 1, βm = 2, and βm → ∞ corresponding to Laplace, Gaussian, and uniform

distribution, respectively. The flexibility and fit of model(6) is demonstrated using sea trial

results in Section VI-B.

Following [23] and [24], we assume that PD measurements of NLOS links increase the

variance of the elements ofX. Thus, ifς1, ς2, andς3 are the respective variances of measurements

related to the LOS, SNLOS, and ONLOS links, then we have

ς1 < ςm, m = 2, 3. (7)

Since, for the PDF (6),

ςm = (σm)
2
Γ
(

3
βm

)

Γ
(

1
βm

) , (8)

and by (8),ςm does not change much withβm, constraint (7) can be modified to

σ1 < σm, m = 2, 3. (9)

Furthermore, letTLIR be the assumed length of the UWAC impulse response, which is an upper

bound on the time difference between the arrivals of the lastand first paths. Then, sinceς1, ς2,

andς3 in (8) capture the spread of measurements related to the LOS,SNLOS, and ONLOS links

respectively,
√
ςm < TLIR, m = 1, 2, 3 . (10)

Moreover, the propagation delay through the LOS link is almost always shorter than those for
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any NLOS link3. Hence, we have

υ1 < υm < υ1 + TLIR, m = 2, 3. (11)

C. Remark on Algorithm Structure

We offer a two-step approach to classify PD measurements into LOS, SNLOS, and ONLOS.

First, assuming large attenuation in an ONLOS link, we compare PD-based and RSS-based range

estimates to differentiate between ONLOS and non-ONLOS links. Then, assuming PDF (6) for

PD measurements, we further classify non-ONLOS links into LOS and SNLOS links. We thus

exploit in the first step thatdRSS
i is significantly different for ONLOS compared to LOS and

SNLOS links. This in turn simplifies classification in the second step, which is based on the

estimation of statistical parameters using (6). In the following sections, we describe our two-step

approach for classifying PD measurements.

IV. STEP ONE: IDENTIFYING ONLOS LINKS

Considering (4), we identify whether measurementxi ∈ X is ONLOS-related based on three

basic steps as follows:

• Estimation of dPDi

We first obtain the PD-based range estimation asdPDi = c · xi.

• Estimation of dRSS,min
i

Next, assuming knowledge of the transmitted power level, wemeasure the RSS for theith

received signal/symbol, and estimatedRSS,min
i based on (2), replacingγ andα with upper

boundsγmax andαmax, respectively.

• Thresholding

Finally, we comparedPDi with dRSS,min
i . If dRSS,min

i > dPDi , thenxi is classified as ONLOS.

Otherwise, it is determined as non-ONLOS.

Next, we analyze the expected performance of the above ONLOSlink identification algorithm

in terms of (i) detection probability of non-ONLOS links,Prd,non−ONLOS, and (ii) detection

3We note that in some UWACs, a signal can propagate through a soft ocean bottom, in which case SNLOS signals may arrive

before the LOS signal [27]. However, such scenarios are not considered in this work.
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probability of ONLOS links,Prd,ONLOS. To this end, since explicit expression fordLOS cannot

be obtained from (2), in the following, we use the upper boundd̃RSS,min such that

log10(d̃
RSS,min) =

TL

γmax

. (12)

We note that (12) is a tight bound when the carrier frequency is low or when the transmission

distance is small.

A. Classification of non-ONLOS links

For non-ONLOS links, we expectdRSS,min
i ≤ dLOS. Thus, since by bound (12),Pr(dRSS,min

i ≤
dLOS) ≥ Pr(d̃RSS,min

i ≤ dLOS), and substituting (2) in (12), we get

Prd,non−ONLOS ≥ 1−Q

(

(γmax − γ) log10 (dLOS)− α dLOS
1000

φ

)

, (13)

whereQ(x) is the Gaussian Q-function.

B. Classification of ONLOS links

When the link is ONLOS, we expectdRSS,min
i ≥ dONLOS. Then, substituting (3) in (12), and

sincePr(dRSS,min
i ≥ dONLOS) ≤ Pr(d̃RSS,min

i ≥ dONLOS), we get

Prd,ONLOS ≤ Q

(

γmax log10 (dONLOS)− γ log10 (dONLOS,1dONLOS,2)− α dONLOS

1000
− RL

φ

)

. (14)

Next, we continue with classifying non-ONLOS links into LOSand SNLOS links.

V. STEP 2: CLASSIFYING LOS AND SNLOS LINKS

After excluding ONLOS-related PD measurements in Step 1, the remaining elements ofX,

organized in the pruned vectorXex, are further classified into LOS (m = 1) and SNLOS (m = 2)

links and their statistical distribution parameters,ωm, are estimated.

Recall that estimationsxi correspond to measurement timesti. Assuming that the channel

impulse response is constant within a coherence time,Tc, and that for a bandwidthB of the

transmitted signal system resolution is limited by∆T = 1
B

, we can setequivalenceconstraints

such that closely spaced measurements are classified into the same class. PD measurements

satisfying equivalence constraints are collected into vectors xl, l = 1, . . . , L, whereL denotes

the number of such equivalence sets. Each PD measurement is assigned to exactly one vector,
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i.e., xl have distinct elements. To formalize this, we determinexi and xj being equivalent,

denoted asxi ⇔ xj , if

|ti − tj| ≤ Tc (15a)

|xi − xj | ≤ ∆T . (15b)

Furthermore, while we assume in (1) thatxLOS is constant for the time period during which

vectorX is obtained, nodes may actually slightly move during that time4, and such motion can

affect the distribution of PD measurements of the same class. To illustrate this, letxi, xj , and

xn correspond to the same class (either LOS or NLOS), such thatxi ⇔ xj andxj ⇔ xn. Due to

node motions, condition (15b) might not be satisfied for the pair xi andxn. Accounting for such

motions, we construct vectorsxl such that ifxi ⇔ xj andxj ⇔ xn, it follows that xi andxn

should also be classified to the same state. That is, vectorsxp andxq are merged if they have

a common element. To form vectorsxl, l = 1, . . . , L, we begin with|Xex| (|x| symbolizes the

number of elements in vectorx) initial vectors of single PD measurements, and iteratively merge

vectors. This process continues until no two vectors can be merged. As a result, we reduce the

problem of classifyingxi ∈ X
ex into classifyingxl, which account for resolution limitations

and node drifting.

While classification of measurement samples into two distinct distributions is a common

problem solved by the expectation maximization (EM) algorithm (cf. [31]), here classification

should also satisfy constraints (10), (9), and (11), where the latter two constraints introduce

dependencies betweenω1 andω2. We start by formulating the log-likelihood functionL(θ|θp),

where θ
p is the vector of distribution parameters estimated in thepth iteration of the EM

algorithm. Next, we formulate a constrained optimization problem to estimate parameterskm,

υm, σm and βm that maximizeL(θ|θp), and offer a heuristic approach to efficiently solve it.

Finally, given an estimation forθ, we calculate the probability ofxl belonging to classm = 1, 2,

and classify the elements ofXex accordingly.

A. Formalizing the Log-Likelihood Function

Let the random variableλl be the classifier ofxl, such that ifxl is associated with class

m, m ∈ {1, 2}, thenλl = m. Also let λ = [λ1, . . . , λL]. Since elements inXex are assumed

4For example, an anchored node often moves around the location of its anchor.
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independent,

Pr(λl = m|xl, θ
p) =

kp
mp(xl|ωp

m)

p(xl|θp)
=

kp
m

∏

xi∈xl

p(xi|ωp
m)

∑2
j=1 k

p
j

∏

xi∈xl

p(xi|ωp
j)

. (16)

Then, we can write the expectation of the log-likelihood function with respect to the conditional

distribution ofλ givenX
ex and the current estimateθp as

L(θ|θp) = E [ln (Pr(Xex,λ|θ)) |Xex, θp] =
2
∑

m=1

[

L
∑

l=1

Pr(λl = m|xl, θ
p)
∑

xi∈xl

ln p(xi|ωm) +
L
∑

l=1

Pr(λl = m|xl, θ
p) ln km

]

, (17)

whereln x = loge x is the natural logarithmic function.

Assuming knowledge ofθp, θp+1 is estimated as the vector of distribution parameters that

maximizes (17) while satisfying constraints (9), (10) and (11). This procedure is repeated forPlast

iterations, and the convergence of (17) to a local maximum isproven [31]. Then, we calculate

Pr(λl = m|xl, θ
Plast) using (16), and associate vectorxl with the LOS path if

Pr(λl = 1|xl, θ
Plast) > Pr(λl = 2|xl, θ

Plast) , (18)

or with an SNLOS path otherwise. EstimationθPlast and classificationsλl could be used further to

improve the accuracy of UWAL, e.g., [23], [26]. We observe that the two terms on the right-hand

side of (17) can be separately maximized, i.e., givenθ
p, we can obtainωp+1

m from maximizing

the first term, andkp+1
m from maximizing the second term. Thus (see details in [31]),

kp+1
m =

1

L

L
∑

l=1

Pr(λl = m|xl, θ
p), m = 1, 2 . (19)

In the following, we describe the details of our classification procedure for the estimation of

ωm, followed by a heuristic approach for the initial estimatesθ
0.

B. Estimating the Distribution Parametersω1 andω2

To estimateωm, we consider only the first term on the right-hand side of (17), which for the

PDF (6) is given by

f(υm, σm, βm) =

L
∑

l=1

∑

xi∈xl

Pr(λl = m|xl, θ
p)

[

ln βm − ln(2σm)− ln Γ(
1

βm

)−
( |xi − υm|

σm

)βm

]

. (20)
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Then, considering constraints (9), (10) and (11), we findω
p+1
m by solving the following opti-

mization problem:

ω
p+1
1 ,ωp+1

2 = argmin
ω1,ω2

−
2
∑

m=1

f(υm, σm, βm) (21a)

s.t. : υ1 ≤ υ2 ≤ υ1 + TLIR (21b)

σm

√

√

√

√

√

Γ
(

3
βm

)

Γ
(

1
βm

) − TLIR ≤ 0 , m = 1, 2 (21c)

σ1 − σ2 ≤ 0 . (21d)

We observe that convexity off(υm, σm, βm) depends onβm. In Appendix A, we present an

alternating optimization approach (cf. [32]) to efficiently solve (21).

Next, we present an algorithm to obtain the initial estimation, θ0, whose accuracy affects the

above refinement as well as the convergence rate of the EM algorithm.

C. Forming Initial Estimationθ0

Our algorithm to estimateθ0 is based on identifying a single group,xl∗, whose elements

belong to the LOS class with high probability, i.e.,Pr (λl∗ = 1) ≈ 1. This group is then used as

a starting point for the K-means clustering algorithm [31],resulting in an initial classification

λl for xl, l = 1, . . . , L, to form two classified setsXex
m , m = 1, 2. Finally, we evaluate the

mean, variance, and kurtosis of the elements in vectorX
ex
m , denoted asE [Xex

m ], Var [Xex
m ], and

Kurtosis [Xex
m ], respectively, to estimateθ0 using the following properties for distribution (6):

|Xex
m |

|Xex| = km , (22a)

E [Xex
m ] = υm , (22b)

Var [Xex
m ] =

σ2
mΓ
(

3
βm

)

Γ
(

1
βm

) , (22c)

Kurtosis [Xex
m ] =

Γ
(

5
βm

)

Γ
(

1
βm

)

Γ
(

3
βm

)2 − 3 . (22d)

Since we assume thatσ1 < σ2 (see (9)), we expect small differences between measurements of

the LOS link, compared to those of SNLOS links. We use this attribute to identify groupxl∗
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by filtering X
ex and calculating the first derivative of the sorted filtered elements. Groupxl∗

corresponds to the smallest filtered derivative.

D. Discussion

We note that the constraints in (21) do not set bounds on the values ofω1 andω2, but rather

determine the dependencies between them. This is because, apart from the value ofTLIR and

distribution (6), we do not assume a-priori knowledge aboutthe values ofkm andωm, m = 1, 2.

In a scenario where the LOS path is always the strongest and PDmeasurements are all LOS-

related, i.e., all elements ofXex belong to one class, our classifier might still estimate bothk1

andk2 to be non-zero, resulting in wrong classification into two classes. In this case, using the

average of the elements ofXex might give a better estimation ofdLOS thanυ1.

To limit this shortcoming of our classifier, we assume thatυ1 and υ2 are distinct ifXex is

indeed a mixture of two distributions. To this end, in the last iteration,Plast, we classifyXex

as a single class (of unknown type) if the difference|υPlast

1 − υPlast

2 | is smaller than a threshold

value,∆v (determined by the system resolution for distinct paths). Then, if required, we find the

distribution parameters of the (single) class by solving a relaxed version of (21), settingk1 = 1

and k2 = 0. Nevertheless, we motivate relevance of our classifier in Section VI-B by showing

that scenarios in whichXex is indeed a mixture of two distributions are not rare in real sea

environments.

E. Summarizing the Operation of the Classifier

We now summarize the operation of our classification algorithm, whose pseudo-code is pre-

sented in Algorithm 1. First, we evaluatedPDi and dRSS,min
i (lines 1-2). If dRSS,min

i > dPDi , we

classifyxi as ONLOS; otherwise, we classify it as non-ONLOS (lines 3-5)and form the vector

of non-ONLOS PD measurements,X
ex, and groupsxl, l = 1, . . . , L (line 7). Next, we form

the initial solution,θ0
m (line 7), and run the EM algorithm forPlast iterations (lines 8-14). The

procedure starts with estimatingkp
m (line 9), followed by an iterative procedure to estimateω

p
m

for a pre-defined number of repetitionsNrepeat (lines 10-13). After iterationPlast, we check

if vector X
ex consists of two classes (line 15), and determine classifiersλl, l = 1, . . . , L

(line 16); otherwiseXex is classified as a single class (of unknown type), and, if estimatingωm
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Algorithm 1 ClassifyingX

1: dPDi := c · xi

2: CalculatedRSS,min
i using RSS measurements,γmax, αmax and model (2)

3: if dRSS,min
i > dPDi then

4: Classifyxi as ONLOS link

5: else

6: Exclude ONLOS measurements to form vectorX
ex and groupsxl satisfying (15)

7: Estimateθ0

8: for p := 2 to Plast do

9: Calculatekp
m, m = 1, 2 using (16) and (19)

10: for i := 1 to Nrepeat do {alternating maximization to solve (21) (see Appendix A)}
11: Estimateωp,i

m , m = 1, 2 and setυp,i+1
m :=υp,i

m , σp,i+1
m :=σp,i

m , βp,i+1
m :=βp,i

m

12: end for

13: m = 1, 2: υp
m:=υp,Nrepeat

m , σp
m:=σp,Nrepeat

m , βp
m:=βp,Nrepeat

m

14: end for

15: if |υPlast

1 − υPlast

2 | > ∆v then

16: CalculatePr(λl = m|xl, θ
Plast) andλl, m = 1, 2, l = 1, . . . , L using (16), (18)

17: else

18: VectorXex consists of a single class. Repeat steps 7-14 fork1 = 1, k2 = 0

19: end if

20: end if

is required, we repeat the above procedure while settingk1 = 1, k2 = 0 (line 18). The software

implementation of the above algorithm can be downloaded from [33].

The EM algorithm, as well as the alternating optimization process described in Appendix A,

provably converge to a local maximum of the log-likelihood function (17). In the following, we

provide the hybrid Cramér-Rao bound (HCRB) as a benchmark for our classifier.
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F. Hybrid Craḿer-Rao Bound (HCRB)

Consider the vector of measurementsX
ex whose elements are drawn from distributions (6)

with M = 2 classes (we assume that ONLOS measurements have correctly been identified).

Our classifier estimates the vectorθ = [υ1, σ1, β1, k1, υ2, σ2, β2] = [θ1, . . . , θ7]. We observe

that constraints (11), (9), and (10), introduce dependencies between pairs(θ1, θ5), (θ2, θ6),

(θr, θr+1), r = 2, 6, respectively. Thus, we cannot use the conventional Cramér-Rao Bound

to lower bound the variance of any unbiased estimator ofθ. Instead, we apply the HCRB

consideringθ1 as a deterministic andθr = [θ2, . . . , θ7] a vector of random variables having prior

distributions, respectively. The HCRB is given by [34]

EX
ex,θr |θ1

[

(

θ
Plast − θ

) (

θ
Plast − θ

)T
]

≥ H−1(θ1) , (23)

whereH(θ1) ∈ ℜ7×7 is the hybrid Fisher information matrix5 (HFIM). Let ̺i be the classifier

of xi (i.e., ̺i = λl if xi ∈ xl). Then, the(j, q)th element of the HFIM is

H(θ1)j,q = Eθr|θ1
[F (θr, θ1)j,q] + Eθr |θ1

[

− ∂2

∂θj∂θq
log p(θr|θ1)

]

, (24)

where

F (θr, θ1)j,q = EX
ex|θr ,θ1



−
|Xex|
∑

i=1

∂2

∂θj∂θq
log k̺ip(xi|ω̺i)



 . (25)

Solving (24) requires the calculation of

p(θr|θ1) = p(k1)p(υ2|υ1)p(σ2|σ1, β2)p(σ1|β1)p(β1)p(β2) . (26)

Since, as discussed in Section V-D, we do not assume further knowledge about the values ofk1

andωm, m = 1, 2, accounting for constraints (7)-(11) we assumep(υ2|υ1) is uniform between

υ1 and υ1 + TLIR, p(σ2|σ1, β2) is uniform betweenσ1 andTLIR

√

√

√

√

√

Γ
(

1
β2

)

Γ
(

3
β2

) , p(σ1|β1) is uniform

between0 andTLIR

√

√

√

√

√

Γ
(

1
β1

)

Γ
(

3
β1

) , andp(βm), m = 1, 2, is uniform between1 and a deterministic

parameter,G. Furthermore, we assumep(k1) is uniform between0 and1. Exact expressions for

(24) are given in Appendix B. For the numerical results presented in the following section we

evaluate the HCRB through Monte-Carlo simulations considering the above uniform distributions.

5Note that while the EM algorithm works on vectorsxl, the actual inputs to our classifier are PD measurements. Thus, in

forming the HCRB, we usexi rather thanxl.
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VI. PERFORMANCE EVALUATION

In this section, we present results from both computer simulations and sea trials to demonstrate

the performance of our classification algorithm. The results are presented in terms of detection

probabilities of LOS, SNLOS, and ONLOS links. In addition, we measure estimation errors

|υp
m − υm|, |σp

m − σm|, and |βp
m − βm|. We compare our results to the HCRB presented in

Section V-F, as well as to several benchmark methods. The purpose of the simulations is to

evaluate the performance of our classifier in a controlled environment, while results from sea-

trial measurements reflect performance in actual UWACs.

A. Simulations

Our simulation setting includes a Monte-Carlo set of10000 channel realizations, where two

time-synchronized nodes, uniformly randomly placed into asquare area of1 km, exchange

packets. The setting includes two horizonal and two vertical obstacles of length20 m, also

uniformly randomly placed into the square area, such that a LOS always exists between the

two nodes. In each simulation, we consider a packet of200 symbols of durationTs = 10 msec

and bandwidthB = 6 kHz transmitted at a propagation speed ofc = 1500 m/sec. To model

movement in the channel (dealt with by forming groupsxl), during packet reception the two

nodes move away from each other at constant relative speed of1 m/sec, anddLOS is considered

as the LOS distance between the nodes when the100th symbol arrives.

In our simulations, we use model (1) to obtain setX as follows. For each channel realization

and node positions, we find the LOS distance between the two nodes, and determineυ1 = xLOS.

Based on the position of nodes and obstacles, we identify ONLOS links as single reflections

from obstacles and determineυ3 as the average delay of the found ONLOS links. We use

TLIR = 0.1 sec and based on constraint (11), we randomizeυ2 according to a uniform distribution

betweenυ1 andυ1+TLIR. For the other distribution parametersθ, we determineβm, m = 1, 2, 3

as an integer between1 and6 with equal probability (i.e.,G = 6 in (26)), andσm, m = 1, 2, 3

according to (8) withςm uniformly distributed between0 and(TLIR)
2, preservingς1 < ς2. Based

on model (5), we then randomizexi, i = 1, . . . , 200 using distribution (6) and a uniformly

distributedkm, m = 1, 2, 3 between0 and 1, while keeping
3
∑

m=1

km = 1 and settingk3 = 0

if no ONLOS link is identified. Considering the discussion inSection V-D, we use∆v = 1 m
c

as a detection threshold to check if measurements in vectorX
ex correspond to a single link.
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Fig. 2: Prd,non−ONLOS andPrd,ONLOS vs. γmax. γ = 15, α = 1.5.

Additionally, for forming groupsxl (see (15)), we use an assumed coherence timeT̃c = a · Ts,

wherea ∈ {1, 5, 10}, and a quantization threshold∆T = 0.16 msec based on the bandwidth

of the transmitted signals. Note that since the distance between nodes changed by2 m during

reception of the200 symbols, ifa > 2 m
∆T ·c

≈ 8.3, condition (15b) is irrelevant, whereasa = 1

results into single-element vectorsxl.

To simulate channel attenuation (2), we useγ = 15, α = 1.5 dB/km (considering a carrier

frequency of15 kHz [27]), and setǫ to be zero-mean Gaussian with variance5/dB2//µPa@1m.

We use a source power level of100 dB//µPa@1m and a zero-mean Gaussian ambient noise with

power20 dB//µPa@1m, such that the signal-to-noise ratio (SNR) at the output of the channel

is high. Attenuation in LOS and SNLOS links is determined based on (2), while for ONLOS

links we use (3) and setRL = 10 dB//µPa@1m. To obtain the lower bound on RSS-based

distance,dRSS,min
i , i = 1, . . . , 200, we use the attenuation model in (2) withγmax = 20 and

αmax = 2 dB/km. An implementation of the simulation environment canbe downloaded from

[33].

First, in Figure 2 we show empirical detection probabilities for ONLOS and non-ONLOS

links as a function ofγmax, as well as corresponding results using bounds (14) and (13). We

observe a good match between the empirical results and the analytical bound forPrd,ONLOS,

and thatPrd,ONLOS is hardly affected byγmax. However,Prd,non−ONLOS increases dramatically

with γmax, and the corresponding bound in (13) is less tight. This is because choosingγmax < γ

might lead todRSS,min > dLOS and neglectance ofα in (13) causes analytical inaccuracies. For
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Fig. 3: Empirical C-CDF ofρerr from (27).

Prd,ONLOS, however, the large RL is more significant than the effect ofγmax.

In Figure 3, we show the empirical complimentary cumulativedistribution(C-CDF) of

ρerr = |cx̂− dLOS| , (27)

wherex̂ is i) υPlast

1 , ii) the average of the elements inX (E(xi)), iii) the minimum ofX (min(xi)),

or iv) the average value ofX after removal of outliers, as suggested in [23] (Outlier). Results

for x̂ = υPlast

1 are shown forT̃c ∈ {Ts, 5Ts, 10Ts}. The results in Figure 3 are also compared

with the HCRB presented in Section V-F. We observe that the Outlier method outperforms

the naive approaches of using the average or minimum value ofX, where the latter performs

extremely poorly for large values ofρerr. However, the use of our classifier improves results

significantly. For example, the proposed classifier achieves ρerr ≤ 7 m in 90% of the cases,

compared to11.2 m when using the Outlier method, and the results are close to the HCRB. Such

an improvement immediately translates into better localization performance as PD estimation

errors significantly decrease. Comparing results for different values ofT̃c, we observe that using

equivalence constraints (i.e.,̃Tc > Ts), performance slightly improves compared to the case of

T̃c = Ts. However, a tradeoff is observed as results forT̃c = 5Ts are marginally better than for

T̃c = 10Ts. This is because of erroneous assignments to vectorsxl for over-estimated coherence

time, T̃c. This effect becomes more significant when in addition to node movements also the

channel changes (which is not included in the simulations),as we show for sea-trial performance

results further below.
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Fig. 4: Estimation error of LOS and SNLOS distribution parameters as a function of EM iteration

number.

Fig. 5: Empirical detection probabilities with and withoutEM algorithm.

Convergence of the EM iterative procedure is demonstrated in Figure 4, where we show

average estimation errors of the distribution parameters of the LOS class as a function of the EM

iteration step number. We observe that estimates stabilizeafter 10 iteration. While improvement

compared to the initialization process (see Section V-C) isshown for all estimations, the impact of

the EM algorithm is most pronounced for the estimation ofk1, which greatly affect classification

performance. This improvement is also observed in Figure 5,where we show empirical detection
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probabilities6 for LOS (LOS (EM)) and SNLOS (SNLOS (EM)) links, as well as the total

detection probability (ALL (EM)), which is calculated as the rate of correct classification (of any

link). Also shown are classification performance using onlythe initialization process (init), i.e.,

before the EM algorithm is employed. We observe that the constrained EM algorithm achieves

a significant performance gain compared to the K-means algorithm, used in the initialization

process. Furthermore, results show that for the former, thedetection rate is more than92% for

both LOS and SNLOS.

Next, we present classification results based on real-worlddata collected from sea trials.

B. Sea Trials

While our simulations demonstrate good classification performance for our algorithm, the tests

relied on the distribution model (6), and upper bound on transmission loss models (2) and (3),

which might not be faithful representations of realistic UWACs and PD estimators. Thus, we

present classification results for UWACs measured during three sea trials conducted in Israel and

Singapore. One of these experiments was conducted in a harbor environment to test only ONLOS

classification, while the other two were in shallow water to test LOS and SNLOS classification.

To acquire PD measurements from recorded sea-trial data, weused a matched-filter (MF) as

well as the phase-only-correlator (POC) detector as described in [10]. The MF estimation method

assumes an impulse-like auto-correlation of the transmitted symbols, which is not required for

the POC method. However, the latter introduces some degree of noise enhancement [10]. For

the ith received signal,xi is estimated as the first peak at the output of the POC or MF that

passes a detection threshold.

1) Classifying ONLOS links:

In this section, we show the performance of ONLOS link identification for an experiment

conducted at the Haifa harbor, Israel, in May 2009. The experiment included four vessels, each

representing an individual node in the network. Here we consider a subset of the recorded data for

which nodes were static. In each vessel, a transceiver was deployed at a fixed depth of3 m. The

four nodes were time synchronized using GPS and transmittedwith equal transmission power at

6We note that detection probabilities are calculated only when vectorX consists of both LOS and SNLOS related PD

measurements; classification cannot be made otherwise.
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Fig. 6: Satellite picture of the sea trial location for identification of ONLOS links (picture taken

from Google maps on September 29, 2009.).

a carrier frequency of15 kHz. Referring to Figure 6, node 2 was placed at a fixed location 2A,

while nodes 1, 3 and 4 sent packets to node 2 while moving between various locations, creating

a controlled environment of five non-ONLOS and four ONLOS communication links with a

maximum transmission distance of1500 m. For each link,(2, j), j ∈ {1,3,4}, we evaluated

(i) dPD as the product of an assumed propagation speed of1550 m/sec and the position of the

first peak of the POC for the synchronization signal of each received packet, and (ii)dRSS,min,

employing an energy detector over the synchronization signal and using (2) forαmax = 2 db/km

andγmax = 20. We note that results only changed slightly when alternative methods for obtaining

dRSS,min anddPD were applied.

In Table II, we present values ofdRSS,min and dPD for each of the 9 communication links.

Applying our proposed ONLOS link identification method, allfour ONLOS links were correctly

classified and there was no false classification of non-ONLOSlinks. In particular, we observe

that for all ONLOS links,dPD is much lower thandRSS,min, validating our assumption that the

reflection loss of the reflecting objects (which could have been harbor docks, ship hulls, etc.)

are sufficiently high to satisfy assumption (4).

2) Classifying non-ONLOS links:Next, we present results from two separate experiments

conducted in open sea: (i) the first along the shores of Haifa,Israel, in August 2010 and (ii) the

second in the Singapore straits in November 2011, with waterdepths of 40 m and 15 m respec-

tively. This is done to demonstrate our classifier’s performance in different sea environments. As
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TABLE II: Harbor trial results for ONLOS link classification.

non-ONLOS links

Link dRSS,min [m] dPD [m]

(2A, 3B) 579 780

(2A, 4A) 179 242

(2A, 4B) 343 415

(2A, 1A) 428 610

(2A, 3A) 647 817

ONLOS links

Link dRSS,min [m] dPD [m]

(2A, 1B) 1957 1105

(2A, 3C) 1639 740

(2A, 1D) 1549 1254

(2A, 1C) 1816 950

communication links were all non-ONLOS links in both experiments,Xex = X and we only

present results for LOS/SNLOS classification.

The first sea trial included three vessels, representing three mobile nodes, which drifted with

the ocean current at a maximum speed of 1 m/sec, and were time-synchronized using a method

described in [35]. Throughout the experiment, the node locations were measured using GPS

receivers, and the sound speed was measured to bec = 1550 m/sec with deviations of no more

than2 m/sec across the water column. Each node was equipped with a transceiver, deployed at

10 meters depth, and transmitted more than 100 data packets which were received by the other

two nodes. Each packet consisted of200 direct-sequence-spread-sequence (DSSS) symbols of

durationTs = 10 msec and a spreading sequence of63 chips was used. From each packet, vector

X was obtained by applying (i) the MF detector, and (ii) the POCdetector for theith DSSS

symbol.

As discussed in Section V-D, our classifier can classifyxi ∈ X
ex to LOS or SNLOS only

if X
ex comprises both classes (but parameter estimation is not limited to this condition). To

evaluate the likelihood for the occurrence of a single classin X
ex, we measure the difference

ρdiff = c(υPlast

2 −υPlast

1 ), assumed to be limited by node motions ifX
ex consists only of one class.

Let s be the maximum node speed during the trial. By taking the firstNsym PD measurements
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Fig. 7: Empirical C-CDF ofρdiff , using POC and MF detector.̃Tc = 10Ts.

from each packet, the case ofρdiff > 2sNsymTs indicates thatXex comprises two classes with

high probability, andρdiff = 0 refers to the case where the classifier identified only one class

(i.e., |υPlast

1 −υPlast

2 | < ∆v in line 15 in Algorithm 1). In Figure 7 we show the empirical C-CDF

of ρdiff for Nsym = 50, 100, where T̃c = 10Ts. For s = 1 m/sec, we observe that the number

of cases whereρdiff > 2sNsymTs is greater for the POC compared to the MF detector. This

is because the auto-correlation function of the used DSSS sequence is not sufficiently narrow,

which decreases the path separation in the MF compared to thePOC method. From Figure 7,

we further observe that for both values ofNsym, ρdiff > 2sNsymTs in more than20% (MF) and

37% (POC) of the received packets, respectively, which motivates the use of our classifier for

realistic sea environments even for short messages.

An estimation parameter of interest isβPlast
m , which determines the type of distribution of the

mth class. We consider only packets received for whichρdiff > 2NsymTs, i.e., vectorX consists

of two classes, and show results only for the POC method (while noting that similar results are

obtained using the MF method). In Figure 8, forNsym = 100, we show the histogram ofβPlast

1

andβPlast

2 for different values ofT̃c. As the results are similar for both̃Tc = Ts and T̃c = 10Ts,

this implies that clustering PD measurements in vectorsxl does not affect the estimated type

of distribution. We also observe that the LOS class seems to lean towardsβPlast

1 = 6, which

implies a uniform distribution, while SNLOS measurements cluster aroundβPlast

2 = 2, which

corresponds to the normal distribution.
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Fig. 8: Histogram of estimationsβPlast
m , m = 1, 2, using POC.Nsym = 100.
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Fig. 9: Empirical C-CDF ofρerr from (28), using the POC method.̃Tc = 10Ts, Nsym = 100.

In Figure 9, we show the empirical C-CDF of

ρerr = |cx̂− E(di)| , (28)

whereE(di) is the mean of the GPS-based transmitter-receiver distanceduring the reception of

each packet,̂x is eitherυPlast

1 , the average of the PD measurement inX (E(xi)), the minimum of

X (min(xi)), or the average of the obtained PD measurements after removal of outliers, i.e., the

method described in [23] (Outlier), and elementsxi ∈ X were estimated using the POC method.

Results are shown for̃Tc = aTs, wherea ∈ {1, 10, 20}. Assuming GPS location uncertainties

of 5 m, we requireρerr to be below6 m. Results show thatρerr for x̂ = min(xi) is lower than

for x̂ = E(xi) and almost the same as the results for the Outlier method. However, proposed
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Fig. 10: Histogram ofρerri from (29). Bin width0.3 m, E(di) = 324.1 m.

classifier achieves always the lowest error, which is smaller than6 m in more than90% of the

cases (compared to55% for x̂ = min(xi)). Comparing results for the different values ofT̃c, we

observe that a notable advantage forT̃c = 5Ts. Since in the sea trial, during packet reception

nodes were almost static, this difference is due to the time varying channel conditions.

The second sea trial included two underwater acoustic modems, manufactured by Evologics

GmbH, which were deployed at a depth of 5 m. One of them was suspended from a static

platform and the other from a boat anchored to the sea bottom.Throughout the experiment, the

boat changed its location, resulting in three different transmitter-receiver distances which were

monitored using GPS measurements. Measurementsxi ∈ X were obtained every6 sec. For each

transmission distance, the boat remained static for20 min, allowing around200 measurementsxi

at each node. In this experiment, a propagation speed ofc = 1540 m/sec, as measured throughout

the year in the Singapore straits [28], was considered.

In Figure 10, since in the second sea trial the boat moved around its anchor whileX was

obtained, we show the histogram of

ρerri = cxi − di (29)

for a single vectorX, wheredi is the GPS-based transmitter-receiver distance measured at time

ti (i.e., whenxi is measured), with mean and variance ofE(di) = 324.1 m andVar(di) = 3 m2,

respectively. We also plottedcE(xi) − E(di) and cmin(xi) − E(di) as well as PDFs (6) of

the LOS and SNLOS classes for estimationθPlast, for which cυPlast

1 − E(di) = 0.1 m and
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Fig. 11: cx̂−E(di)
E(di)

, averaged over results from the two nodes.

cυPlast

2 − E(di) = 18.4 m. The estimated factors for each class wereβPlast

1 = 1 andβPlast

2 = 6,

where the former matches the narrow peak distribution observed for the LOS class, and the

latter matches the near uniform distribution observed for the SNLOS class. We note the good

fit between the shape of the estimated PDF and the histogram for both classes. In addition, we

observe that estimationυPlast

1 gives much better results than the naive approach of taking the

average or minimum value ofX .

In Figure 11 we plot the ratiocx̂−E(di)
E(di)

for the three locations of the boat in the sea trial,

averaged for the two nodes, forx̂ = υPlast

1 , υPlast

2 , E(xi),min(xi). The difference between results

for υPlast

1 and υPlast

2 indicates the long channel impulse response. We observe that min(xi)

usually, but not always, results in better propagation delay estimation thanE(xi), which in turn

always results in better estimation thanυPlast

2 , as expected. However, best results are obtained

for cυ
Plast
1 −E(di)

E(di)
with average of0.7 m compared to more than10 m for the other methods.

Based on the results obtained from both sea trials, we conclude that our classifier significantly

improves PD-based range estimations in different sea environments compared to often used

conventional approaches.

VII. CONCLUSIONS

In this paper, we considered the problem of classifying propagation delay (PD) measure-

ments in the underwater acoustic channel into three classes: line-of-sight (LOS), sea surface- or

bottom-based reflections (SNLOS), and object-based reflections (ONLOS), which is important
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for reducing possible errors in PD-based range estimation for underwater acoustic localization

(UWAL). We presented a two-step classifier which first compares PD-based and received signal

strength based ranging to identify ONLOS links, and then, for non-ONLOS links, classifies

PD measurements into LOS and SNLOS paths, using a constrained expectation maximiza-

tion algorithm. We also offered a heuristic approach to efficiently maximize the log-likelihood

function, and formalized the Cramér-Rao Bound to validatethe performance of our method

using numerical evaluation. As our classifier relies on the use of simplified models, alongside

simulations, we presented results from three sea trials conducted in different sea environments.

Both our simulation and sea trial results confirmed that our classifier can successfully distinguish

between ONLOS and non-ONLOS links, and is able to accuratelyclassify PD measurements

into LOS and SNLOS paths. Further work will include using these classifications to improve

the accuracy of UWAL.
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