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Abstract— The operating environment of cellular networks 
can be in a constant state of change. One Singaporean operator 
expressed difficulty with the coverage assertion (CA) problem of 
whether regulated minimum coverage is met, especially in urban 
areas. Currently, the operator manually appraises coverage 
through laborious and expensive walk/drive-tests. 

In this paper, we propose Tattle, a distributed, low-cost and 
comprehensive cellular network measurement collection and 
processing framework. We exemplify Tattle by leveraging on 
participating UEs to report on network coverage in real-time. 

Tattle exploits wireless local-area interfaces to exchange RSCP 
measurements amongst devices to preserve the co-locality of 
readings and conserve power. We propose U-CURE, a clustering 
algorithm which considers sample location uncertainty and the 
knowledge of device co-location to remove erroneously localized 
readings. We develop a prototype app on the AndroidTM platform 
as a proof-of-concept of the Tattle framework. We then use the 
Tattle framework to perform extensive RSCP measurement 
collection and processing in various areas in Singapore, collecting 
over 3.78 million readings. We present visualizations of mean 
signal coverage and RSCP CDFs for various areas of interest. The 
latter is a key output of Tattle, which helps operators to appraise 
coverage and solve the CA problem by relying on subscriber 
measurements, instead of expensive, laborious and limited-scale 
walk-/drive-tests. 

Keywords— Cellular network management; Cellular coverage 
measurement; Participatory sensing;  

I. INTRODUCTION 
The operating environment of cellular networks can be in a 

constant state of change. Due to evolution of the operating 
environment, operators may therefore have to regularly tune 
their networks so that cell service is not degraded. We 
interviewed a local operator in Singapore to better understand 
the challenges that they face in terms of network management.  
One of the key problems which they put to us is coverage 
assertion (CA): how can they efficiently verify that minimum 
coverage is met for an area of interest? Minimum coverage is 
defined by Singapore’s regulatory authority to be a minimum 
threshold percentage of Received Signal Code Power (RSCP) 
samples (collected at a location of interest) which exceed -100 
dBm. The RSCP is the received code power from the downlink 
Common Pilot Channel (CPICH), sent from base-stations [1]. 

The operator currently follows a manual approach. Areas 
with poor coverage are first identified through subscriber 
feedback. Coverage is then appraised by manual walk-tests, and 
if minimum coverage is not attained, parameters (such as pan, 
tilt and power) are iteratively tweaked. Such an approach is 

labor-intensive, expensive and limited in scale. The process has 
to be repeated whenever the operating environment evolves. 
A. Paper contribution and overview 

In this paper, we propose Tattle, a distributed, low-cost and 
comprehensive RSCP monitoring framework that addresses the 
CA problem in a scalable and real-time manner. Tattle has 3 key 
components, namely: 

1. the local exchange of RSCP measurements between 
devices, and uploading of co-located readings to the 
network,  
2. the pre-processing of co-located readings at the back-end 
to discard erroneously-localized measurements, and 
3. the visualization of coverage based on collected RSCP 
measurements in specific regions-of-interest. 

 Tattle is designed to minimize operator expenses and labor, 
and monitor coverage in real-time on large geographical scales 
with good fidelity by removing erroneously-localized 
measurements. It enables operators to effectively appraise 
coverage without conducting expensive walk-/drive-tests. 
Operators can also proactively identify and mitigate spots with 
poor coverage in a timely manner, instead of reactively acting 
only upon subscriber complaints. 

In Section II, we first describe the background of the CA 
problem, the approach which the operator currently takes, the 
difficulties they face, and why they desire a better solution. In 
Section III, we describe our proposed Tattle framework, and 
give details on the Tattle app and prototype. In Section IV, we 
discuss how readings can be pre-processed based on co-location 
to remove samples with location errors. In Section V, we 
describe our measurement collection procedures, and evaluate 
Tattle in terms of the localization fidelity of resulting 
measurements. We collected over 3.78 million RSCP 
measurements, and present real-world mean RSCP coverage 
maps and RSCP cumulative distribution functions (CDFs) of 
various areas in Singapore. Finally, conclusions and future work 
will be given in Section VI. 

II. PROBLEM DESCRIPTION AND BACKGROUND REVIEW 
 Singapore’s urban landscape is always rapidly evolving. The 
pace of urban development exceeds the operator’s ability to keep 
up with network reconfiguration and infrastructure investment. 
The operator has to rely on subscriber complaints to discover 
areas that are poorly served. The regulatory authority in 
Singapore mandates that at least 85% and 99% of RSCP 
samples, collected within any indoor and outdoor area 
respectively, must exceed -100 dBm. If areas which fail these This work was supported in part by NSF grant 0756998, CyLab grants 

ARO DAAD19-02-1-0389 and W911NF-09-1-0273, and the Agency for 
Science, Technology and Research (A*STAR) Singapore. 



requirements are overlooked, the operator faces penalties by the 
regulator, and stands to lose subscribers to other competitors. 
A. Review of background literature 

The CA problem is loosely related to the problem of 
coverage estimation. The latter has a rich history of background 
work, yet because of the complexities of real-world 
deployments, existing proposed approaches find limited 
application. These approaches can be categorized into three 
groups, namely deterministic, stochastic and empirical. 
Deterministic models, such as ray-tracing [2], are used when the 
complete 3-D propagation environment is known. However, 
obtaining complete knowledge of the propagation environment 
is prohibitively expensive. Stochastic models are often used in 
coverage analysis [3]. While stochastic models are often 
analytically tractable, the assumed propagation models are often 
too generalized. Empirical estimation is based on empirical 
observations. We review this in detail as it is the approach 
currently undertaken by operators. 
B. Coverage assertion (CA): an empirical approach 

The operator typically finds out about areas with poor 
coverage through subscriber feedback. It may dispatch 
technicians to those specific localities to perform walk-/drive-
tests with dedicated measurement and diagnostic equipment. 
The operator’s main complaints about the current approach are 
that it is too labor-intensive, time-consuming, and expensive to 
conduct. Operating expense is high, yet a satisfactory survey of 
signal coverage is not guaranteed for two reasons: 

1. it is prohibitively expensive to collect samples from all 
areas where there might be subscribers, and, 
2. the readings collected by their measuring equipment may 
not directly reflect the coverage experienced by subscribers 
due to device heterogeneity. 
Instead of a manual approach, the operator desires a system 

and framework in which quantitative measurements are 
collected, localized, and reported to the network by the UEs 
themselves, in real-time. In the literature, the following generic 
approach to coverage monitoring is commonly assumed. A 
typical operator may collect physical layer measurement reports 
from UEs [4], monitor cell-wide statistics [5] and alarms [6], 
perform periodic drive-tests to assert cell performance, as well 
as depend on subscriber feedback to determine if a cell is 
providing satisfactory coverage. However, our operator finds 
that directly relying on UEs’ reported physical layer 
measurements has several drawbacks. We list them as follows. 

1. The ability to gather measurement reports from UEs is 
tightly coupled with their abilities to obtain full cell service. 
For places which are very poorly-served, UEs often do not 
get a chance to send measurement reports. 
2. Measurement reports are tagged with any location 
estimate that the UE may have. No additional effort will be 
imposed to refine location information [4][7]. Most reported 
measurements tend to have very coarse location information 
(e.g. somewhere within their cells) and are only useful for 
cell-wide analysis. GPS-based localization gives better 
location accuracy, but in our experiments, we observe some 
instances of egregious GPS errors, which affect the fidelity 
of RSCP measurements. We detail this in Section III.D. 
3. Direct and frequent reporting of measurements can 
quickly consume UE power, as well as uplink capacity. We 
describe this in Section III.D. 

Due to these issues, the local operator which we interviewed 
does not depend on UE-reported measurements. Instead, they 
conduct manual tests where conditions (e.g. mobility, equipment 
used) are well-controlled, and measurements are tagged with 
precise locations. However, these results may not be 
representative of subscriber experience due to device 
heterogeneity. The geographic extent of their tests is also limited 
due to resource constraints. 

RootMetrics [8] is a related commercial entity that aims to 
provide independent evaluations of networks through drive- and 
walk-tests conducted by a small number of hired ‘scouts’. Our 
work differs critically from theirs in the following ways: 

1. Instead of relying on a small number of hired personnel 
to collect measurements along pre-planned routes, Tattle 
devolves the responsibility of collection to subscribers 
whose true locations are mostly uncertain to the operator. 
2. RootMetrics surveys a given area twice a year, while 
Tattle collects measurements in real-time, wherever there are 
participants. 
3. The granularity of coverage maps produced by 
RootMetrics is in the order of hundreds of meters, while 
Tattle can produce coverage maps that are granularized to the 
order of meters, depending on the number of participants. 
This will be described in detail in Section V. 
III. TATTLE – MONITORING THROUGH PARTICIPATION 
We propose Tattle, a distributed monitoring framework that 

is scalable, minimizes manual labor and operator expense on 
drive-tests, monitors real-time coverage on a large geographical 
scale with good measurement location fidelity, and requires 
minimal involvement of subscribers (other than simply running 
a background app on their smart devices). 

Figure 1 illustrates the overall system architecture of the 
Tattle framework. In the context of network coverage 
monitoring, there are 3 key components, namely: 

1. the local exchange of RSCP measurements between 
devices, and uploading of co-located readings to the network,  
2. the pre-processing of co-located readings to discard 
erroneously-localized measurements, and, 
3. the visualization of coverage based on collected 
measurements in specific regions-of-interest. 

A. Benefits of low-power measurement exchange 
Subscribers are the best monitors of coverage wherever they 

are and wherever they require service. In our framework, the 

 
Figure 1: A diagrammatic description of Tattle, a distributed, low-cost 

and comprehensive cellular network measurement collection and processing 
framework. In this paper, we exemplify Tattle by leveraging on participating 
UEs to report on network coverage in real-time. 



UEs form distributed mobile sensor networks to monitor the 
RSCP experienced by each UE. Instead of purely relying on the 
cellular service to upload measurement reports, we advocate 
using low-power local communications (such as Bluetooth, or 
WiFi Direct) to exchange RSCP measurements between UEs. 
This preserves the co-locality of measurements and conserves 
UE power. 

Conventionally, when a UE reports its measurement, 
together with its coarse location information, its measurement is 
taken in insolation. Two reports from separate UEs cannot be 
corroborated unless they have very reliable location fixes. 
However, if readings are exchanged through local 
communication, the principle of co-locality is preserved because 
a UE that overhears a report from another UE can be sure that 
the transmitter is within range (depending on the interface used). 
In our indoor range test experiment, we find that the devices 
used in our experiments (specifically the Asus Nexus 7’s, and 
the Samsung Galaxy Tab 2 7.0’s) can reliably receive each 
other’s WiFi Direct broadcasts within 30 meters. In Section IV, 
we will use this communication range as an evaluation condition 
to determine whether an assessed reading should be admitted 
into the group of accepted readings, based on the knowledge that 
these readings were co-located. We can reject and discard a 
measurement if the reported GPS-location’s distance to the 
admitted group is beyond local transmission range (in Section 
III.D, we report that GPS locations obtained by UEs in urban 
environments can often be significantly erroneous). This is a key 
feature of Tattle. Outdoor communication range may be higher, 
but we chose to use the observed indoor range of 30 meters as a 
conservative upper limit. This keeps the group of admitted 
measurements tightly clustered in space. We stress that the 
emphasis is on keeping measurements that are likely to be well-
localized, rather than admitting as many measurements as 
possible. Figure 2 illustrates how the measurements can be 
communicated from UEs back to the network. 
B. The Tattle app – Description and operation 

The eponymously-named Tattle app is a simple prototype to 
demonstrate the efficacy of our proposed coverage monitoring 
framework. It exploits WiFi DirectTM [9] as a local 
communication interface for UEs to exchange RSCP 
measurements. Each device periodically broadcasts, per second, 
its GPS location, current network type (UMTS/HSPA/LTE), and 
the signal reading associated with its network type. In an active 
deployment, the sensing and broadcasting interval can be 
extended to automatically adapt to remaining battery power 

[10], current signal conditions, etc. A simple round-robin 
approach is used in our prototype to determine which UE in the 
network reports the next batch of overheard signal readings to 
the measurement database, but our framework readily admits the 
use of other robust reporting schemes. All uploads will be 
tagged with the timestamp of reception, and appended with the 
reporter’s current GPS location. 

We do not make use of Android’s WiFi-assisted localization 
service as we found that it sometimes caused egregious errors in 
reported locations, especially in areas with WiFi routers 
configured as Extended Service Sets and sharing the same 
Service Set Identification (SSID). Since Google’s Location 
Services ties a WiFi router’s MAC address to a spatial location 
[11], we suspect that relocations of enterprise routers will result 
in some period of location confusion for UEs in those areas. 
Further investigation of this issue is beyond the scope of this 
paper. 

Figure 3 demonstrates the Tattle app in action, with all 6 
devices (as shown in the screenshot) connected to the same WiFi 
Direct network. In our experiments, all devices operate on one 
common provider’s network. However, Tattle can be easily 
extended to work for devices served by different service 
providers, since local-area interfaces such as WiFi Direct are 
operator-agnostic. 
C. Motivation for users 

Oftentimes, when users experience poor or no signal 
coverage (as evinced by the display of ‘signal bars’ on most 
phones), they often ask: is this phenomenon observed by others? 
While knowing that others are experiencing similar coverage 
conditions does not necessarily help a user, it provides some 
level of comfort in knowing that the network, and not the user’s 
equipment, is likely the source of the problem. On the other 
hand, if a user knows that most other subscribers are getting 
adequate signal coverage while his own signal readings are poor 
to non-existent, he can take some limited steps to alleviate the 
situation (e.g. restart his device, check his device settings, etc.). 

To further incentivize subscribers to participate, recent 
studies have focused on monetary-based reward schemes that 
provide payouts to participants based on various criterions, such 
as their current locations [12], or their sensing contributions 
[13]. The operator can readily leverage on these mechanisms to 
instate a reward system by either providing subscription rebates, 
loyalty points, or handset discounts to incentivize participants. 

 
Figure 2: Participating users form local-area communication networks 

using interfaces such as WiFi Direct, to exchange signal strength readings. 
Elected Group Owners forward overheard readings to the network. 

 
Figure 3: Screen capture of the Tattle app in operation. Nearby devices 

will be invited to join the network, and periodically exchange GPS location 
and signal readings. 



D. Tattle – power, and location uncertainty 
In Figure 4, we demonstrate results of battery drain tests 

conducted with 3 Samsung GT-P3100s. All 3 were first set to 
perform naïve reporting, where each device independently 
uploaded their RSCP readings and GPS locations every second 
to a remote server. The same experiment was repeated using 
Tattle’s RSCP local exchange and round-robin network 
reporting approach. Each GT-P3100 broadcast its RSCP reading 
and GPS location every second. Using round-robin, each device 
reported all overheard measurements, including its own, for 
consecutively 20 seconds in every 60 second window. These two 
experiments were each repeated thrice. With naïve reporting, the 
devices lasted an average of 15.38 hours with a standard 
deviation of 0.33 hours. With Tattle, the devices drained 
completely after a mean of 17.22 hours with a standard deviation 
of 0.82 hours, lasting 12% longer on average. Further power 
savings are possible if more robust schemes other than round-
robin are used, and the choice of the latter is simply for ease of 
prototyping.  

We then conducted a ground-truth experiment at a known 
location to investigate the performance of GPS accuracy in an 
outdoor urban environment populated with low-lying buildings. 
We co-located 6 static devices, 3 of which are GT-P3100s and 
the other 3 are Asus Nexus 7s. The first several minutes of the 
experimental data were discarded in order to allow each device 
sufficient time to obtain a coherent GPS signal. In total, 18,191 
samples were collected. 50% of these had mean locations more 
than 27.22 m off from the true location, while 2.79% had mean 
locations that were 2,877.69 m away from the known spot. The 
maximum observed discrepancy between a sample’s mean 
location and the known spot was 2,996.07 m. Only 22.42% of 
measurements were less than 20 m distance from the true spot. 
Figure 5 shows the cumulative distribution function of the root-
mean-square (rms) distances between the sample points and the 
known spot, before and after processing. In Section IV, we 
introduce the CURE algorithm, our extended U-CURE 
algorithm (which we used to pre-process the data in order to 
discard readings that are wrongly localized), as well as how rms 
distances are computed. After processing with U-CURE, the 
number of readings with rms location errors below 30 m saw a 
17.85% improvement, compared to that of a naïve reporting 
approach, and a 16.19% improvement over CURE. 

Figure 6 demonstrates the cumulative distribution of pair-
wise rms distance between each sample-pair in each co-located 
batch of readings. Using the naïve reporting method, all context 
of co-location is lost. However, using U-CURE, we are able to 
exploit the knowledge of measurement co-location to discard 

samples that are likely to be erroneously-localized. All samples 
after U-CURE processing had less than 39.15 m rms pair-wise 
distances, while the naïve reporting method had pair-wise rms 
distances as high as 3,032.22 m, even though they were in reality 
physically juxtaposed. 
E. A note on security, privacy and trust 

In this paper, we focus on the systems aspect of our Tattle 
measurement collection and monitoring framework, and hence 
we omit, for brevity, comprehensive security, privacy and trust 
mechanisms in our Tattle prototype. However, we note the 
importance of having these mechanisms in an active, full-scale 
deployment, and briefly discuss some existing work in this area. 

For Tattle, there are two primary concerns that we note: 
1. Were the reported measurements actually observed by 
participating UEs, and not fabricated? 
2. How can participating subscribers be assured of their 
anonymity and privacy? 
With regards to the first concern, participants can lie about 

their measurement values, their purported locations, or both. For 
these cases, [14] suggests the possibility of using hardware-
based solutions for trusted computing, such as Trusted Platform 
Modules (TPMs) [15]. As for the second concern, the authors in 
[16] propose a comprehensive reputation and trust framework to 
address the “trust without identity” problem. Tattle is flexible 
enough to incorporate these, as well as other ongoing security, 
privacy and trust research efforts. 

IV. HIERARCHICAL CLUSTERING WITH UNCERTAINTY 
In a naïve reporting approach, the operator has to accept each 

report in good faith. However, the use of local measurement 
exchange guarantees that a mutually-overhearing device-pair is 
surely at least within local communication range. This context 
is important because it allows us to design techniques to discard 
patently incorrect reports that can otherwise affect the fidelity of 
the results. To this end, we propose U-CURE (uncertain 
clustering using representative points), an extension of the 
CURE clustering algorithm [17]. 

We chose to extend the original CURE algorithm because:  
1. it is robust against outliers, and, 
2. it identifies clusters that are non-spherical in shape. 
The latter feature is especially desirable because the spatial 

distribution of participating devices does not conform to any 
particular shape. We stress that our proposed framework readily 
admits other choices of pre-processing algorithms, and the 
choice of U-CURE is intended to be instructive rather than 
exclusive. We make 2 important modifications to the CURE 

   
Figure 4: Battery drain test demonstrating 

the battery consumption of reporting methods. 
Figure 5: CDF plot of the root-mean-square 

distances of 18,191 static sample points from a known 
true location. 

Figure 6: CDF plot of the pair-wise root-mean-
square distance of sample locations known to be co-
located from local-communication exchange. 
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algorithm to handle the reported uncertainty in a measurement’s 
location, as well as to discard samples with likely incorrect 
locations. We refer to the modified algorithm as U-CURE, and 
a sketch of the U-CURE algorithm is given in Figure 7. 
A. U-CURE: Extending the original CURE algorithm 

We first briefly describe the CURE algorithm [17]. CURE 
considers each data point as a point source in Cartesian space. 
The distance between two clusters 𝐴𝐴  and 𝐵𝐵  is the minimum 
distance between all the possible representative point-pairs. It 
works as follows: 

1. Start by considering every point as a separate cluster. 
2. Merge the two clusters that are closest in distance. 
3. Find 𝑛𝑛 representative points of the newly merged cluster, 
where the first point chosen is furthest from the centroid, and 
each subsequent point is chosen sequentially such that its 
minimum distances to all previous representative points is 
maximum. 
4. Repeat Step 2 and Step 3 until the desired number of 
clusters remain.  

 At the conclusion of CURE, we pick the largest cluster as the 
set of admitted points, and discard the rest. We extend CURE in 
2 important ways to further improve clustering accuracy. First, 
we implement a stopping condition: when the closest two 
clusters have an rms distance larger than the maximum range of 
the local communications interface, they should not be merged 
and the algorithm should stop. This corresponds to the max_dist 
condition in the algorithm. Since we are interested in the cluster 
with the largest number of sample points most closely located 
together, we set the desired cluster parameter k as 2, where we 
keep the primary cluster and discard the secondary, out-lying 
cluster. The max_dist condition then terminates U-CURE 
clustering early if clusters are too far apart to be co-located.  In 
doing this, we exploit the knowledge of co-location garnered 
through local measurement exchange. 

Next, unlike the assumption of location certainty in CURE, 
GPS locations in Android are given as a 3-tuple of latitude, 
longitude, and uncertainty. This uncertainty is expressed as a 𝜎𝜎 

value in meters, and modeled as a 2D normal distribution with 
the mean location given by the latitude and longitude. In order 
to extend CURE to take into account the uncertainty of sample 
locations, we consider the expected square-distance between 
uncertain location points, instead of just the distance between 
their means. We formalize the evaluation of the expected square-
distance between two uncertain location points as follows. 

Lemma: The expected square-distance between two 
samples 𝑈𝑈 = (𝑋𝑋𝑈𝑈, 𝑌𝑌𝑈𝑈)  and 𝑉𝑉 = (𝑋𝑋𝑉𝑉 , 𝑌𝑌𝑉𝑉 ) , centered in 
Cartesian space (𝑋𝑋𝑈𝑈, 𝑌𝑌𝑈𝑈)  and (𝑋𝑋𝑉𝑉 , 𝑌𝑌𝑉𝑉 )  respectively, where 
𝑋𝑋𝑈𝑈~𝒩𝒩(𝑥𝑥𝑈𝑈, 𝜎𝜎𝑈𝑈

2 ), 𝑌𝑌𝑈𝑈~𝒩𝒩(𝑦𝑦𝑈𝑈, 𝜎𝜎𝑈𝑈
2 ), 𝑋𝑋𝑉𝑉 ~𝒩𝒩(𝑥𝑥𝑉𝑉 , 𝜎𝜎𝑉𝑉

2 ) as well as 
𝑌𝑌𝑉𝑉 ~𝒩𝒩(𝑦𝑦𝑉𝑉 , 𝜎𝜎𝑉𝑉

2 ) , is equal to 2(𝜎𝜎𝑈𝑈
2 + 𝜎𝜎𝑉𝑉

2 ) + (𝑥𝑥𝑈𝑈 − 𝑥𝑥𝑉𝑉 )2 +
(𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑉𝑉 )2. 

Proof: Let 𝑋𝑋 = 𝑋𝑋𝑈𝑈 − 𝑋𝑋𝑉𝑉  and 𝑌𝑌 = 𝑌𝑌𝑈𝑈 − 𝑌𝑌𝑉𝑉 . Since the 
difference of Gaussian R.V.s is also normally distributed, we 
know that 𝑋𝑋~𝒩𝒩(𝑥𝑥𝑈𝑈 − 𝑥𝑥𝑉𝑉 , 𝜎𝜎𝑈𝑈

2 + 𝜎𝜎𝑉𝑉
2 ) , 𝑌𝑌 ~𝒩𝒩(𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑉𝑉 , 𝜎𝜎𝑈𝑈

2 +
𝜎𝜎𝑉𝑉

2 ) . Let 𝐷𝐷 = 𝑋𝑋2 + 𝑌𝑌 2 , and 𝐷𝐷′ = (𝑋𝑋 𝜎𝜎𝑋𝑋⁄ )2 + (𝑌𝑌 𝜎𝜎𝑌𝑌⁄ )2 . 
Since 𝑋𝑋  and 𝑌𝑌  are normally-distributed and independent, the 
sum of their squares normalized by their variances is represented 
by the non-central 𝜒𝜒2  distribution, where 𝐷𝐷′~𝜒𝜒2[𝑘𝑘 = 2, 𝜆𝜆 =
(𝜇𝜇𝑋𝑋 𝜎𝜎𝑋𝑋⁄ )2 + (𝜇𝜇𝑌𝑌 𝜎𝜎𝑌𝑌⁄ )2] . Using the known result 𝚬𝚬(𝐷𝐷′) =
𝑘𝑘 + 𝜆𝜆 , and after some after some rearrangement, we obtain 
𝚬𝚬(𝐷𝐷) = 2(𝜎𝜎𝑈𝑈

2 + 𝜎𝜎𝑉𝑉
2 ) + (𝑥𝑥𝑈𝑈 − 𝑥𝑥𝑉𝑉 )2 + (𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑉𝑉 )2.  ■ 

This lemma is an important one because it allows us to easily 
evaluate the numerical result of the expected square-distance 
between any two samples without having to evaluate any 
computationally-expensive integrals. This makes U-CURE 
more efficient in terms of computation. By taking into 
consideration location uncertainty and measurement co-
location, U-CURE enables the pre-processing of co-located 
readings to discard samples that likely to be mis-localized. 

V. MEASUREMENT COLLECTION, PROCESSING, AND 

SIGNAL COVERAGE REPRESENTATION WITH U-CURE 
In this section, we describe the third key component of 

Tattle: the visualization of coverage based on collected RSCP 
measurements in specific regions-of-interest. We conducted 
extensive RSCP measurement collection over the course of 
more than 4 weeks, gathering over 3.78 million samples. 6 
tablets were used in our experiments, namely 3 GT-P3100s, and 
3 Asus Nexus 7s. All 6 tablets were always co-located and 
maintained WiFi Direct connections to one another. Collection 
of data points was done throughout the day, in all kinds of 
environments. 
A. Mean coverage visualization 

In Figure 8, we first illustrate the efficacy of Tattle in the 
mass-collection of data points, particularly on Singapore’s rail 
system and roads. The plots of mean RSCP maps should be of 
particular interest to cellular operators, who will find difficulty 
in achieving this scale of sampling by performing walk-/drive-
tests. Our framework enables this by allowing participating UEs 
to undertake the task of coverage monitoring. These maps are 
obtained as follows: 

1. taking every sample point and weighing its RSCP value 
with a 2D Gaussian filter, centered at the sample’s reported 
mean, with sigma value equal to the sample’s 𝜎𝜎 uncertainty, 
2. summing up the resulting 2D matrix generated for each 
measurement, and, 
3. compute the weighted average for every 1 m by 1 m bin. 

Figure 7:  The U-CURE algorithm. 
function u_cure(S, k, max_dist) 
% S is an input of N×3 matrix of N rows of [x,y,uncertainty] entries 
% k is the desired number of clusters 
% max_dist is the maximum expected distance allowed between clusters 
1. Initialize C, a sorted array of clusters, each cluster has: 

a. list of points inside the cluster, 
b. a pointer to its nearest cluster, 
c. expected distance to nearest cluster, 
d. centroid in [x,y], simply the mean of all x's and all y's of points in C, 
e. a list of representative points for this cluster 

2. Sort C according to ascending distances to nearest cluster 
3. Initialize r, the number of representative points that represents each cluster 
4. While length(C) > k, 
        if distance of cluster C{1} to the next nearest cluster is > max_dist, 
            break; 

    else 
        merge top two clusters of C; 
endwhile 

function merge_clusters(C, r) 
1. Sort C according to ascending distances to nearest cluster 
2. merge the first two clusters of C, 
3. evaluate centroid of the newly merged cluster, 
4. find the representative points of the newly merged cluster, 
5. re-compute expected distance between every cluster-pair and re-sort C 

function find_rep_points(p, centroid, r) 
    % p is the complete set of points in the cluster that we want representative points for 
1. if length(p) ≤ r 
        return p, 

else 
    set the first representative point as the point furthest from centroid 

2. while length(rep_points) < r, 
find the point from p whose min. distance to other rep_points is max 
add that point to rep_points and clear it from p 

return rep_points  



The corresponding scatter plots of measurements for naïve 
reporting, CURE and U-CURE are juxtaposed. In reality, all of 
the sample points should lie on the main veins, which 
correspond to high-speed rail tracks and roads. In both the naïve 
reporting and CURE approaches, we see the debilitating effects 
of stray signal points with especially large uncertainties in the 
highlighted areas. They pollute the overall signal map with large 
blobs of measurements (due to their large  values) that extend 
way beyond the main veins, and causes measurements with high 
location accuracies (and correspondingly low  values) to be 
averaged out. We term this as the ‘smirching’ effect. Interesting 
features, which are specific areas with either excellent or 
unacceptable coverage are difficult to spot. 

This poses a problem for operators as they require a high 
degree of fidelity to identify specific problem areas. In contrast, 
U-CURE processing removed most of the mis-localized points 
and reveals a significant coverage hole demarcated at the bottom 
right. Localized features are more accentuated with much less 
‘smirching’ blobs. 

In Figure 9, we present mean RSCP signal maps, overlaid 
with scatter plots for a newly-developed area which is known to 
have poor signal coverage. The 1- 𝜎𝜎  uncertainty radius for 
measurements with  exceeding 90 m were also plotted for 
illustration purposes. Without processing, the signal map has 
indistinct features that appear ‘smirched’ and averaged out. This 
is evident by the existence of large numbers of points with high 
location uncertainty. However, after applying U-CURE to 

discard polluting points with large location uncertainties, the 
areas that had either excellent coverage or poor coverage are 
now clearly demarcated. No remaining measurements had 𝜎𝜎 
exceeding 90 m. Figure 9(c) shows the differences in the mean 
signal map between U-CURE and naïve reporting. U-CURE 
reveals that some areas had worse RSCP reception by up to 5.23 
dBm compared to naïve reporting, and better reception in others 
by up to 10.06 dBm. These differences will otherwise be 
‘smirched’ out by large uncertainties in naïve reporting. We 
remark that these are mean spatial RSCP maps, and hence areas 
with only barely-acceptable mean coverage will most likely fail 
the minimum coverage requirement described in Section II. 
B. Region-of-Interest based CDF derivation 

In Figure 10(a)-(c), we present another representation of 
signal coverage that allows cellular operators to directly solve 
the CA problem. In this figure, the cumulative distribution of 
RSCP readings, rather than just the mean, is illustrated for an 
urban outdoor area. Figure 10(a) represents the distribution of 
34,837 RSCP measurements’ location uncertainty collected over 
the 187 m x 374 m area. U-CURE processing results in a 25% 
increase of points with under 20 m uncertainty. We see another 
dimension of analysis when we separate the data by the type of 
reporting device. In all of our experiments, we observed that the 
GT-P3100 reports RSCP measurements very responsively, and 
the delta of consecutive RSCP measurements is often as small 
as ±1 dBm within a space of 1 second. 

   
(a) (b) (c) 

Figure 8:  The figures above represent the individual cases of (a) naïve reporting, (b) standard CURE and (c) U-CURE respectively applied to 39,947 sample points 
in the region (1.307, 103.763) to (1.320, 103.791). Top row of figures represent the scatter plot of sample points’ mean position in each individual case. Bottom row of 
figures represent the mean signal map (where orange to red regions represent areas of barely- to unacceptable coverage, i.e. -90 dBm to -110 dBm, and blue to yellow 
regions represent regions of excellent- to barely acceptable coverage -50 dBm to -90 dBm ). Areas of interest are marked out with rectangles. 

   
(a) (b) (c) 

Figure 9:  The figures above represent the individual cases of (a) naïve reporting and (b) U-CURE, respectively applied to 30,352 samples in the region (1.309, 
103.768) to (1.312,103.772). This sub-region was chosen from the above region to highlight the importance of removing wrongly-localized sample points. The 1-𝜎𝜎 
uncertainty radii were plotted for points with location uncertainty exceeding 90 m. Figure (c) represents the spatial plot of differences in the mean RSCP maps observed 
in (a) and (b). 



However, the Nexus 7s tend to be comparatively sluggish 
and often go tens of seconds or more without reporting any 
change in RSCP, even when mobile. This can either be due to a 
driver implementation issue (e.g. a large smoothing window) or 
hardware differences (in terms of antenna size, build and 
quality). The ability for Tattle to be extended to include device 
make and model in RSCP reporting is especially useful for 
operators, which have to support a plethora of mobile devices on 
their networks. Knowing that a model of UE is particularly 
problematic helps the operator in making either network (e.g. 
increase cell tower antenna coverage at places with higher 
number of these devices) or business (e.g. present explicit 
caveats to consumers buying problematic devices) decisions. 
C. Current limitations of our prototype 

Figure 10(d) illustrates the RSCP distribution of 
measurements collected in an indoor environment. In these 
cases, GPS localization works poorly. There is no basis to keep 
or discard any particular data point, as their uncertainties, and 
hence their rms distance between one another, even when co-
located, is often very large. Hence, there is little difference 
between the results of naïve reporting and U-CURE. However, 
we remark that in terms of measurement location fidelity, naïve 
reporting forms the lower bound of performance, and Tattle will 
not perform worse. To address this limitation, we intend to 
extend Tattle to include other dimensions of location 
information to address the limitation observed indoors, e.g. by 
allowing volunteer input, suggesting possible lists of locations 
to select from using historical likelihood, and so on. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we describe Tattle, a comprehensive, large-

scale cellular network monitoring framework, which we 
exemplify by leveraging on participating UEs to address the CA 
problem. The Tattle framework relies predominantly on 
opportunistic inter-UE measurement exchange to preserve the 
co-location of measurements and conserve UE power. 

We show through experiments that in urban built-up areas, 
GPS locations reported by UEs may have significant 
uncertainties and can sometimes be several kilometers away 
from their true locations. We describe how U-CURE can take 
into account reported location uncertainty and the knowledge of 
measurement co-location to remove erroneously-localized 
readings. 

We then illustrate several real-world representations of 
signal distributions that are of interest to cellular operators. 
These are made possible through the Tattle monitoring 

framework. When deployed on a large-scale with sufficient 
participants, operators can minimize their operational costs of 
conducting manual walk-/drive-tests. They can also proactively 
mitigate poor coverage conditions in a timely manner, instead of 
depending on subscriber complaints after the fact, which can 
often be vague and subjective. 

For future work, we expect to extend Tattle to monitor 
cellular service quality, in addition to just downlink signal 
reception. We will also focus on ways to enhance performance 
in fully-indoor environments. 
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(a) (b) (c) (d) 

Figure 10(a)-(c): The figures above represent the cumulative probability distribution of (a) the 1- 𝜎𝜎 location uncertainty of sample points before and after processing, 
(b) RSCP for GT-P3100s in the same area, and (c) RSCP for Asus Nexus 7s in the area, constructed from 34,837 sample points in the region-of-interest from (1.332, 
103.741) to (1.335, 103.743). (d)  Indoor residential area, where Tattle’s effectiveness is tapered. 
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